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Identi�cation of Terrestrial Re
ectance from Remote Sensing

Rachel Alter-Gartenberg and Scott R. Nolf

Computer Sciences Corporation, 3217 N. Armistead Ave., Hampton, VA 23666.

Abstract

Correcting for atmospheric e�ects is an essential part of surface-re
ectance recovery from radiance

measurements. Model-based atmospheric correction techniques improve the accuracy of the identi�cation

and classi�cation of terrestrial re
ectances from multi-spectral imagery. Successful and e�cient removal

of atmospheric e�ects from remote-sensing data is a key factor in the success of Earth observation

missions. This report assesses the performance, robustness and sensitivity of two atmospheric-correction

and re
ectance-recovery techniques as part of an end-to-end simulation of hyper-spectral acquisition,

identi�cation and classi�cation.

1 Introduction

One of the tasks of space-borne Earth observation systems is mapping and monitoring changes in terrestrial

re
ectances. Future hyper-spectral remote-sensing imagery will record solar radiance re
ected by the Earth

and scattered by the atmosphere, using up to 250 spectral channels from the near UV through the visible

to the short-wavelength IR (0.4 { 3.0�m). The atmosphere attenuates the irradiance re
ected from the

ground and creates a path scattered contribution in the received signal, which has little to do with the

underlying surface. Therefore, any meaningful identi�cation and classi�cation of terrestrial re
ectances

from remote sensing imaging under varying atmospheric conditions requires a model-based atmospheric

radiative transfer correction technique, which accounts for the atmospheric attenuation and scattering.

This report presents a spatio-spectral sensitivity assessment of two atmospheric correction techniques

in the context of an end-to-end hyper-spectral re
ectance recovery simulation. The sensitivity assessment

begins with 1-D deterministic assessments of spectral re
ectance recovery and extends to stochastic assess-

ments of the recovery of 3-D spatio-spectral image cubes. The acquisition model includes deterministic

and stochastic presentations of randomly selected terrestrial re
ectance image cubes, simulation of various
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atmospheric conditions, the subsequent deterministic and stochastic simulations of the atmospheric e�ects,

and the simulation of the spectral �ltering and spatial optical �ltering for each spectral band. This report

uses the MODTRAN 3.7 software package as the atmospheric radiative transfer model [1], which is an

evolutionary development of LOWTRAN [2], to compute the irradiance at the surface, the transmittance,

and the beam and path radiance components, which comprise the measured total radiance at the observer's

location for a given surface.

This report further assesses the ability of the atmospheric-correction and re
ectance-recovery tech-

niques to restore and identify the initial re
ectance, and their sensitivity to uncertainty in the atmospheric

conditions. The re
ectance-recovery techniques include Bowker's correction technique [3, 4] which is based

on a relatively simple modeling of the atmospheric e�ects, and the more recent Richter's correction tech-

nique [5, 6] which is based on a heuristic modeling of the same atmospheric e�ects. Following Slater's

formulation [7], the end-to-end modeling presented here extends previous work by Bowker et. al [3, 4] and

Huck et. al [8, 9] to include a more detailed and realistic simulation and evaluation of the atmospheric

e�ects. Ground re
ectances are obtained from a data-base of re
ectance signatures [4]. The results assess

the correct identi�cation and classi�cation of 27 pre-selected terrestrial re
ectances from their measured

radiance. Finally, the report assesses the robustness and sensitivity of each technique to uncertainties

related to the acquisition conditions.

2 Remote-Sensing Imagery

A general model-based expression for the acquisition process of a hyper-spectral cube typically considers

the following components: the spectral distribution on the irradiance on the target surface E(�), the

atmospheric transmittance T (�), the spectral re
ectance of the target �(x; y; �) at an (x; y) spatial location,

the spectral sensor response of each channel �i(�) which de�nes the spectral center wavelength �i, and the

spatial response of the optics �g(x; y;�i) at each center wavelength �i, as given by

Lm(x; y;�i) = �g(x; y;�i) �

Z
�
E(�)T (�)�(x; y; �)

h
�i(�) + n

�i
(�)
i
d�+ ng(x; y;�i): (1)

The image-cube Lm(x; y; �i) is the radiance measurement of the average surface re
ectance at the center

wavelength of the ith channel at the spatial location (x; y), and � denotes spatial convolution of the

measured radiance with the optical response �g(x; y;�i) for the ith spectral channel. The hyper-spectral

model recognizes two separate noise sources, the spectral sensor noise n
�i

associated with the sensor for

the ith spectral channel, and the spatial electronic noise ng(x; y;�i) associated with the optical image at

4



0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
0

50

100

150

200

250

λ, µm

Ir
ra

d
ia

n
ce

, m
W

 c
m

-2
 µ

m
-1

Figure 1: Exoatmospheric solar irradiance 
ux Es(�) for a solar zenith angle of 0� and d = 1.

the ith spectral band. The following sub-sections model the various components that de�ne the measured

radiance L(x; y; �) in the context of remote-sensing imagery.

2.1 Irradiance

The exoatmospheric solar irradiance (solar irradiance outside the atmosphere) Es(�), illustrated in Fig. 1,

is attenuated by the atmosphere on its path to the Earth's surface. The global solar 
ux (irradiance) on

the surface is the sum of the direct (non-scattered) and di�use (sky) irradiances,

E(�) = Ed(�) +Ep(�): (2)

The direct irradiance for a solar zenith angle of �z is given by [7]

Ed(�; Td; �z; d) =
Es(�) cos(�z)

d2
Td(�; �z); (3)

where d is the ratio of the Sun-Earth distance at a given date to its mean value, and Td(�) is the direct

Sun-to-surface atmospheric transmittance, given as a function of the atmospheric optical depth �(�) by

Td(�; � ; �z) = exp

�
�

�(�)

cos(�z)

�
: (4)
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The indirect (di�use) irradiance component Ep(�), often called the \sky" irradiance, also contributes to the

total irradiance at the surface. Di�use irradiance is caused by multiple scattering of photons on their way

through the atmosphere (Rayleigh and aerosol scattering) and additional multiple scattering of photons

that are �rst re
ected from the Earth's surface and subsequently re-scattered downward to the surface by

molecules and aerosols in the atmosphere.

The optical depth �(�) is a linear combination of the aerosol optical depth (turbidity) �a(�;V ) and the

molecular (Rayleigh) optical depth �m(�) [10]

�(�;V ) = �a(�;V ) + �m(�); (5)

where V , the atmospheric visual range, varies with the aerosol density in the boundary layer. Therefore,

the atmospheric visual range V , for a given aerosol density �a, is an alternative measure to �(�), when

most of the aerosol lies in the surface boundary layer of 0 to 2km. Visual ranges considered in this report

are between V = 5km (hazy condition) and V = 50km (very clear condition) in a rural atmosphere. The

relationship between the visual range and the aerosol optical depth (turbidity) �a(�) can be obtained from

the nearly linear relationship between ln(V ) and ln(�a). The slope of this linear relationship is given by

S(�) =
lnf�a(�;V = 23)g � lnf�a(�;V = 5)g

ln(23)� ln(5)
(6)

and the corresponding aerosol optical depth �a(�;V ) for a given visual range V , is given by

�a(�;V ) = �a(�;V = 5)

�
V

5

�S(�)
: (7)

Although visual range and visibility are not equivalent [1], this report terms visual range as visibility.

Bearing in mind that a clear visibility at the surface does not account for a potential thick layer of aerosol

higher in the atmosphere, our modular and robust simulation can incorporate aerosol layers anywhere in

the atmosphere.

Figure 2 illustrates the total, direct and di�use components of the irradiance at the Earth for surface

re
ectances of 0.1, 0.4, and 0.7 respectively, for a solar zenith angle of �z = 30�, and for visibilities of

V = 23km and 5km respectively. The irradiance is calculated for the 93rd day of the year (April 3), when

the Earth is at its mean distance from the Sun (d = 1). The attenuation of the irradiance from about

230 mW cm�2
�m�1 at � = 0:5�m (Fig. 1) to about 170 mW cm�2

�m�1 for V = 23km (Fig. 2 top)

and 140 mW cm�2
�m�1 for V = 5km (Fig. 2 bottom) is due to molecular and aerosol attenuation and

scattering. The direct irradiance for the lower visibility conditions decreases, while the di�use component

increases considerably, relative to these components for the higher visibility condition. Fig. 2 also shows
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Figure 2: Total, direct and di�use components of the solar irradiance, E(�), Ed(�) and Ep(�), for �z = 30�

and a surface re
ectance of (a) �(�) = 0:1, (b) �(�) = 0:4, and (c) �(�) = 0:7.
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Species Band (�m)

O2 0.688

H2O 0.721

O2 0.762{0.767

H2O in lower atmosphere 0.919

O2 0.933{0.978

H2O 1.114{1.157

H2O 1.179

O2 and a CO2 1.322{1.503

H2O 1.794{2.003

CO2 and H2O 2.072

H2O 2.402{2.7

CO2 and H2O 2.7{3.0

Table 1: Signi�cant molecular absorption bands in the spectral region of 0.4 { 3.0�m

that the direct irradiance on a clear day (e.g., visibility of V = 23km) exceeds the di�use irradiance at

all wavelengths � > 0:45�m, whereas on a hazy day (e.g., visibility of V = 5km), the di�use irradiance

exceeds the direct irradiance at all wavelengths � < 0:7�m, regardless of the magnitude of the surface

re
ectance. The sensitivity of the irradiance components to the original re
ectance �(�) is minimal.

Regions of signi�cant molecular absorption are evident from the dips in the total solar irradiance curves,

and are summarized in Table 1.

2.2 Radiance

Assuming Lambertian re
ectance �(�), the surface radiance, as measured on the ground, is given by

Ls(�) = �
�1
E(�)�(�) (8)

where E(�) is the surface global irradiance given by Eq. 2. When viewed by a remote sensor, the total

measured radiance LT (�) is the sum of the beam and path radiances Lb(�) and Lp(�),

LT (�) = Lb(�) + Lp(�): (9)
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The beam radiance is made up of photons that are re
ected from the surface and transmitted directly to

the remote sensor without further scattering in that direction,

Lb(�) = Ls(�)Tb(�) (10)

= �
�1
E(�)�(�)Tb(�);

where Tb(�), the surface-to-sensor atmospheric transmittance, is given by Eq. 4 when the zenith angle is

replaced with the nadir-viewing angle. The path radiance Lp(�) consists of photons that are either back-

scattered o� the atmosphere, emitted by the atmosphere, or surface-re
ected and subsequently scattered

by the atmosphere on their way to the sensor. All path-radiance photons constitute a noise source, which

interferes with the inference of the actual surface re
ectance �(�). For the range of wavelengths considered

in this study, the fraction of photons emitted by the atmosphere as thermal energy is negligible, whereas

the back-scattered and path-scattered photons are signi�cant, especially at the shorter wavelengths. As a

result, the path radiance Lp(�) is given by

Lp(�) = Lo(�) + Ls(�)Tp(�) (11)

= Lo(�) + �
�1
E(�)�(�)Tp(�);

where Lo(�) is the radiance of a zero-re
ectance (black body) target viewed through the atmosphere, and

Tp(�) is the di�use transmittance. The zero-re
ectance radiance Lo(�) consists solely of photons that are

back-scattered o� the atmosphere, independent of the re
ectance of the underlying surface. Therefore, its

magnitude depends only on the solar zenith angle, the aerosol density and the sensor viewing geometry.

Figure 3 illustrates the path and beam radiance components for surface re
ectance of �(�) = 0:1,

0.4, and 0.7, with visibilities of 23km (top) and 5km visibility (bottom). In general, information about

the surface is contained mainly in the beam radiance, while the path radiance consists mostly of light

scattered into the path from the atmosphere and from the surrounding re
ectances. Both the beam

and the path radiances increase with increasing surface re
ectance, where the path radiance contribution

decreases with increasing wavelength due to diminished scattering at longer wavelengths. The relative

contributions of beam and path radiance components however, vary signi�cantly with changes in the

visibility conditions. The wavelength beyond which the magnitude of the beam component exceeds that

of the path component decreases with increasing surface re
ectance, due to the higher fraction of beam

radiance at longer wavelengths. For the 23km-visibility case, the cross-over wavelengths are 0.6, 0.47, and

0.43 �m, for �(�) = 0:1, 0.4, and 0.7 respectively. For the 5km-visibility case, the respective cross-over

wavelengths shift to 1.1, 0.87, and 0.82 �m, respectively, demonstrating the more dominant role of path
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Figure 3: Beam and path radiance components, Lp and Lb, for V = 23km (top) and V = 5km (bottom),

�z = 30� and (a) �(�) = 0:1, (b) �(�) = 0:4, and (c) �(�) = 0:7.
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radiance in low-visibility conditions. For example, for the 5km visibility case, the path radiance exceeds

the beam radiance at all wavelengths in the visible region.

2.3 Adjacency E�ects

The above 1-D spectral model does not account for the e�ects of radiance contributions from surrounding

pixels (adjacency e�ects [11]). The MODTRAN package computes each of the model's 1-D components

independent of the surrounding spatial contributions, whereas radiance contributions from surrounding

pixels are similar to the e�ects of spatial optical blurring [11]. Kaufman's empirical approximation of

the adjacency e�ects for a square target of edge-length l with a uniform re
ectance �f , surrounded by a

uniform background re
ectance �b, as a function of the molecular (Rayleigh) and aerosol optical thickness

�m(�) and �a(�) respectively, and the molecular and aerosol average heights Hm and Ha respectively, is

given by the fraction weight function �(l; �) [11]

�(l; �) = 0:7�m(l; �) exp

�
�l

2Hm

�
+ 0:37�a(l; �) exp

�
�l

Ha

�
+ 0:32�a(l; �) exp

�
�l

6Ha

�
: (12)

The weight �(l; �) indicates the transfer fraction of the surrounding radiance �elds in the measured radiance,

and therefore models the measured radiance as a linear combination of the target and its adjacent �elds,

as given by

L(l; �) = L(�b)�(l; �) + L(�f)[1� �(l; �)]: (13)

The molecular optical thickness �m(�) is not a�ected by the visual range V , and can be obtained by

�m(�) = � ln(Tm(�)), where Tm(�) is the molecular transmittance of the atmosphere between the observer

and sea level. Similarly, the aerosol transmittance, a part of the direct surface-to-sensor path atmospheric

transmittance (Eq. 11) for a a given visibility condition V , can be extracted using Eq. 4 for the nadir-

viewing angle, as �a(�;V ) = � ln(Ta(�;V )), or by using Eq. 7.

Fig. 4 illustrates the l � � plane of �(l; �) for V = 10km, assuming Hm = 8km, and Ha = 2km as the

average height of the molecular and aerosol boundary layers respectively, while Fig. 5 illustrates 1-D spatial

projections of the fraction weight function �. These �gures show that the fraction of scattered radiance

from background re
ectances decreases with increasing edge-�eld length l and with increasing wavelength

�. As expected, Fig. 5(b) also shows that the fraction of scattered radiance increases with decreased

visibility. However, these �gures reveal unrealistically high contributions from background scattering. For

example, according to this formulation, for � = 0:4�m and V = 23km, 20% of the measured radiance of

the target �eld with an edge-�eld length of 10km comes from the surrounding areas. This contribution
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Figure 5: Projections of the transfer fraction function �(l; �) illustrated in Fig. 4 for (a) � = 0:5, 0.7, 1.5,

and 2.5 �m for V = 5km, and for (b) V = 5, 10, 15, and 23km for � = 0:4�m

increases to 35% for low visibility of 5km. Slater ([7], pp. 220) indicates that re
ectances within 100

meters of the borders are a�ected by the adjacency e�ects under normal turbidity conditions. Even under

zero-turbidity conditions, re
ectances within ten meters of the borders are a�ected, and only under highly

turbid conditions does this e�ect extends to one kilometer from the target's boundary. Therefore, while

the trend of the proposed �-function is correct, it requires spatial re-scaling to achieve a more realistic

contributions radius.

Kaufman's model is restricted to a two-re
ectance model, i.e., the target and its surround. It does

not account for scattering from multiple surrounding re
ectances. To overcome this limitation, L(�f) and

L(�b) can be replaced with a spatio-spectral cube, and the weighting fraction function � can be replaced by

a convolution with an equivalent spatio-spectral blurring �lter cube with the path radiance spatio-spectral

cube Lp(x; y; �).

To extend this empirical approximation to the x� � plane, the �eld-edge l is replaced with the scaled

Euclidean distance ds = sjx � x0j between the spatial location x0 and all the scattering locations x,

�1 < x < 1, where s > 1 is a spatial scale factor. For every spectral band �, the extended adjacency

13



e�ects model is therefore given by

L(x0;�) =

R
x;x 6=x0

L(x;�)�(ds;�)

2
R
x
�(ds;�)

+

2
641�

R
x;x 6=x0

�(ds;�)

2
R
x
�(ds;�)

3
75L(x0;�); (14)

where the normalization factor ensures that the weight of the scattered radiance remains a probability

function. Consequently, Eq. 14 can be re-written as a spatial convolution between the path radiance

Lp(x; �) and the kernel Z(x; �), given in terms of ds as

Z(ds; �) =

8>>>>><
>>>>>:

�(ds;�)R
d

�(ds;�)
for d 6= 0

1�

R
d;x 6=x0

�(ds;�)R
d

�(ds;�)
d = 0

: (15)

The resulting total measured radiance, after accounting for the adjacency e�ects, is therefore given by

LT (x; �) = Lb + Lp(x; �) � Z(ds; �): (16)

To account for 
uctuations in the amount of scattered radiance, Eq. 16 can be replaced with

LT (x; �) = Lb +
�
Lp(x; �)[1+ n

Lp
(x; �)]

�
� Z(ds; �); (17)

where n
Lp

is a uniform random white noise in the [�a; a] range, a < 1. Typical 
uctuations are between

a = 0:05 and 0.1, indicating 
uctuations of 5% { 10% around the path radiance. Fig. 6 illustrates the

fraction kernel Z(d; �) for visibility of 10km and for x � 0 and a spatial scale factor of s = 1. As expected,

a comparison of this �gure with Fig. 4 shows the same general response. Eq. 15 can be easily extended to

2-D spatial coordinates, thus obtaining the desired spatio-spectral blurring e�ect.

Fig. 7 illustrates the measured radiance of a spatio-spectral target of only three discrete re
ectances,

�(�) = 0:4, 0.1, and 0.7, each spread over 80 processing pixels for �z = 30�, V = 5, 10 and 15 km, and s = 2

and s = 3. It assesses the di�erence between a model that ignores the adjacency e�ects (Eq. 9), drawn in

gray, and the measured radiance which accounts for these e�ects (Eq. 13), drawn in black. It shows that

the adjacency e�ects blur the transitions between re
ectances. A comparison between Fig. 7(a) and (b)

illustrates the spread factor control on the amount of blur. The spatial spread of the blur reduces from 20

pixels on each size of the edge for a spatial scale factor of s = 2 in Fig. 7(a), to 10 pixels on each size of the

edge for a spread scale factor of s = 3 in Fig. 7(b). Assuming as an example remote sensing images with

a resolution of 100m, this spread translates to 2km on each side of the edge for a spread scaler of s = 2,
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di�erent wavelengths.
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and 1km for a spread scaler of s = 3. As expected, the amount of blur is controlled by the visibility. Both

�gures show that the lower the visibility, the higher the contribution from the adjacency e�ects. Fig. 7(c)

illustrates a cut through the measured radiance for V = 10km and �z = 0� at di�erent wavelengths for a

scale factor of s = 2. This �gure shows that adjacency blurring e�ects diminish with increased �, as the

wavelength shifts from the visible into the IR.

2.4 Apparent Re
ectance

The apparent re
ectance (albedo), as de�ned by

�a(�) =
�d

2

Es cos(�z) cos(�s)
LT (�); (18)

is often used to estimate the re
ectance from the measured radiance LT (�). Figure 8 illustrates the

albedo dependency on surface re
ectance and visibility condition, as viewed from a satellite, based on the

acquisition conditions used in Fig. 2. This �gure also compares the e�ects of stratospheric aerosol density,

by simulating a case with a normal level of stratospheric aerosol (top), and the conditions following a

volcanic eruption (bottom), to assess the sensitivity of the visibility parameter to layers of aerosol higher

in the atmosphere. This �gure shows that for rural aerosols, the albedo for low re
ectance equals or

exceeds the re
ectance value at all wavelengths, except within the absorption band regions, and is lower

for re
ectances that are higher than 0.21, as illustrated in Figs. 8(b) and (c). For �(�) = 0:1, the albedo in

the visible band 0.4-0.8�m increases as visibility decreases because the path radiance, which increases with

decreased visibility, is dominant for low-re
ectance conditions, as illustrated in Fig. 8(a). This phenomenon

does not hold for � > 1�m, where scattering is negligible, and the albedo is independent of turbidity, or

for higher re
ectances, as illustrated in Figs. 8(b) and (c), where the beam radiance is dominant and the

albedo increases with increased visibility. Changes in the albedo between the top and bottom �gures can

be attributed to increased attenuation in the beam radiance described above, while the increase in the

troughs is caused by increased back-scattering o� the stratospheric aerosol.

Figure 9 illustrates the e�ects of the atmosphere on the albedo as a function of the sensor's altitude,

for visibilities ranging from V = 5km to 23km, using the same simulation conditions as in Fig. 8. The

�gure covers the 0.4{0.8�m region to highlight important di�erences in the visible and near-IR regions

of the spectrum. It demonstrates that the albedo is most sensitive to atmospheric degradation at the

shortest wavelengths, due to increased scattering. For V = 23km the albedo is relatively unperturbed

at wavelengths beyond 0.7, 0.57, and 0.5�m, for � = 0:1, 0.4, and 0.7 respectively. This �gure shows a

signi�cant increase in albedo as altitude increases and the re
ectance decreases. For very low re
ectances,
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Figure 8: Apparent re
ectance (albedo) �a(�) for a surface re
ectance of (a) �(�) = 0:1, (b) �(�) = 0:4,
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V = 15km, and (c) V = 23km
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illustrated in Fig. 9(a), the albedo exceeds the true re
ectance because of increased optical depth, which, in

turn, increases the path radiance. With just a normal background aerosol loading higher in the atmosphere

(\normal" case), this increase is negligible above 30km. Comparison of this \normal" case with that of

a thick layer of volcanic aerosol shows that the albedo in the latter case is smoother than in the former.

For both top and bottom sets of �gures, a comparison between the albedo at V = 23 and 5km for a range

between 0.57 and 0.7�m reveals an abrupt albedo decrease at the 30km altitude to levels that are below the

5km altitude for higher re
ectances. This phenomenon is caused by the stratospheric ozone layer, which

has some absorption at these wavelengths, and thus decreases the beam radiance, particularly for high

re
ectances. Figs. 8 and 9 clearly demonstrate the limitations of the albedo approximation, and the need

to account for atmospheric degradations before the re
ectance identi�cation and classi�cation processes

take place.

3 Simulation

3.1 Radiometry and Sensors

Substituting Eqs. 10 and 11 into Eq. 9 yields

LT (�) = Lo(�) + �
�1
E(�)�(�) [Tb(�) + Tp(�)] (19)

= Lo(�) + �
�1
ET (�)�(�);

where

ET (�) = E(�)Tt(�) (20)

is de�ned as the \e�ective irradiance", and

Tt(�) = Tb(�) + Tp(�); (21)

is the corresponding total transmittance. With the de�nition of the \e�ective irradiance" ET (�), the

measured surface radiance from remote sensing LT (Eq. 19) parallels the measured surface Ls radiance

right at the ground (Eq. 8), where the irradiance E is replaced with the e�ective irradiance ET , and Lo

constitutes a pure scattering noise term. Fig. 10 illustrates the direct (path), di�use and total transmittance

components for �z = 30�, V = 5 and 23km, and �(�) = 0:1, 0.4, and 0.7, respectively. This �gure shows that

the total transmittance decreases with decreasing visibility. Speci�cally, it shows that the path component

decreases while the di�use component increases with decreasing visibility. It also shows that the e�ects of
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Figure 10: Total, direct (path) and di�use transmittance components, Tt(�), Tb(�) and Tp(�), for �z = 30�

and a surface re
ectance of (a) �(�) = 0:1, (b) �(�) = 0:4, and (c) �(�) = 0:7.
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the di�use transmittance diminishes at longer wavelengths. These observations help explain the decrease

in the adjacency blurring e�ect for longer wavelengths and the blur increase with decreased visibility.

Substituting Eq. 19 into Eq. 1 yields the remote-sensing measured radiance for the ith channel,

Lm(x; y; �i) = �g(x; y;�i) � �

Z
�
LT (x; y; �)

h
�i(�) + n

�i
(�)
i
d�+ ng(x; y;�i): (22)

The radiance-to-digital conversion for the ith channel is given by

Lmd
(x; y; �i) = Lm(x; y; �i) [c0(i) + c1(i)D] ; (23)

where �i is the center wavelength of the ith channel, D is the digital number, and c0(i) and c1(i) are the

o�set and slope of the calibration coe�cients respectively. The permissible wavelength regions to be used

in Eqs. 22 and 23 exclude the natural absorption bands summarized in Table 1. Avoiding the absorption

bands minimizes the errors arising from the wide variation in the atmospheric water-vapor content.

3.2 Assumptions

The parameters used to simulate the atmospheric acquisition conditions are:

� 93rd day of the year (April 3)

� 1976 Standard Atmosphere

� Nadir view angle of 0�.

� Sensor altitude of 800km.

� Solar zenith angles of 0�, 30�, and 45�.

� Surface visibility 5, 10, 15, and 23km, in rural aerosol.

� Surface terrain angle of 0�.

To assess the correction techniques, the simulation assumes non-overlapping spectral �lters �i(�), one

for each spectral frequency assessed in our simulation, i.e., �i(�) = 0 for the � bands speci�ed in Table 1,

and �(�i) = �(�i) for all the remaining spectral frequencies within the 0.4 { 3.0�m range. The simulation

also assumes no radiance-to-digital errors, i.e., Lmd
(�) � Lm(�). The simulation uses the (x; y) dependency

to allow a stochastic treatment of the spatial representation of the di�erent re
ectances, with uncertainty

22



50 100 150 200
(a) Original  reflectance

0.0
0.2

0.4

0.6

0.8
1.0

50 100 150 200
(b) Surface  radiance

0.00

0.02

0.04

50 100 150 200
(c) Spatial  scattering

0.00

0.02

0.04

50 100 150 200
(d) Sensor  noise

0.00

0.02

0.04

Figure 11: The simulation of Eq. 22.

around a mean value for each �. Without a priori knowledge of the initial re
ectance, the recovery

techniques assume a constant initial re
ectance of �(�) = 0:4 for the simulation of ~E(�), and ~Tp(�).

The simulations use targets with large mean spatial details relative to the processing (pixel) size. The

discrete (x; y) locations are at the pixels' centers, and the sampling lattice is identical to the processing

lattice. The spectral frequency � is de�ned with a �� interval of 0.0083 cm�1, which, in turn, de�nes the

wavelength vector �i as � = 1=� for the (0.4 { 3.0�m) range. Therefore, the numerical implementation

of this simulation is dense enough in both the spatial and the spectral domains, and the signals are

bandlimited to the processing passband in the spatio-spectral domains. We assume an acquisition device

with a spatial-frequency response given by

�g(�; !;�i) = exp

(
�
2 + !

2

�2
g(�i)

)
; (24)

where �g(�i) is the optical-response index and (�; !) are given in cycles/pixel.

Figure 11 illustrates the the e�ects of di�erent components in Eq. 22 on the measured radiance, using

the same 240-pixels re
ectance target used in Fig. 7, namely, an x�� spatio-spectral target of three constant

re
ectances, �(�) = 0:4, 0.1, and 0.7, each spread over 80 processing pixels. Fig. 11(a) illustrates the e�ects

of 10% 
uctuations in the re
ectance signature. Fig. 11(b) illustrates the e�ects of this uncertainty on the

measured surface radiance Ls, assuming V = 10km, �z = 30�, and a 5% uncertainty in the atmospheric
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Figure 12: A random re
ectance test target

conditions, simulated with 5% perturbations around the total irradiance E. Fig. 11(c) illustrates the

remote-sensing measured radiance of the surface radiance measured in (b), with spatial path-radiance


uctuations n
Lp

of 10%, and adjacency e�ects with a spatial scale factor of s = 3. Fig. 11(d) illustrates

the addition of 5% sensor noise n
�i

to the total measured radiance. This �gure demonstrates the ability

of the proposed model to simulate stochastic radiance measurement in the spatio-spectral domain.

3.3 The Spatio-Spectral Target

Figure 12 illustrates a 256-by-256 pixel random-polygon test target with a mean spatial detail of 40 pixels.

The re
ectance for each polygon is randomly selected from the set of 25 re
ectance signatures listed in

Table 2, where each re
ectance signature response is taken from [4], and assigned a unique gray-level. The

stochastic process randomly selected 14 re
ectance signatures from the database, and assigned them into

the randomly divided polygon areas. Subsequently, Fig. 12 visualizes a hyper-spectral random data-cube,

where each of the 14 gray levels represents a unique spectral signature associated with the spatial (x; y)

location. This �gure is a more realistic representation of a natural target, as imaged by a remote sensing

system, than the typical square uniform target with uniform background, and will be used to assess the

ability to identify and classify the correct re
ectance signature after implementing each of the correction

techniques. Fig. 13 superimposes the boundaries of the spectral re
ectance cube on the original target,

identi�es the spatial location of each of the 14 selected re
ectance signatures, and associates the assigned

gray-level with the size (in pixels) of each selected re
ectance signature. Together, these �gures serve as

24



Vegetation Soil Water

Crops Forests Identi�ed Samples

Barley American Elm Basalt Multi-mineral Water

Beans Silver Maple Dry red clay Whitley County

Oats Burr Oak Wet red clay Powell Grassland

Potatoes Ponderosa Pine Gypsum sand Dry sand

Soybeans Sycamore Silicon sand Wet sand

Tobacco Kentucky Blue Grass

Wheat

Fallow �eld

Table 2: Re
ectance signatures for the three di�erent categories studied in this report

 Barley
6028

 Beans
9424

  Oats
 354

Potatoes
 96 

 Wheat
8823

 Fallow
 11 

 Maple
2242

  Oak
383 

W. Clay
 39 

 Gypsum
22379

 Silicon
3908

Mlt−mnrl
3068

W. Smpl
8779

  Water
  2 

Reflectance color map

Figure 13: A random re
ectance test target, where each major re
ectance area is identi�ed and marked,

the corresponding \color" map, and the number of pixels of each re
ectance in the target.
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the bench mark to quantify the e�ectiveness of each recovery technique.

4 Atmospheric Correction Techniques

The approximated albedo ~�a(�) as extracted from the measured radiance Lm(�) by the remote sensing

system, is commonly derived from Eqs. 8, 18 and 22 as

~�a(�) =
�d

2

Es(�) cos(�z) cos(�s)
Lm(�); (25)

where � indicates estimated terms. While the albedo �a(�) is a useful measure for several applications, it

does not account for the perturbations imposed by the transmittance components, Td(�), Tb(�) and Tp(�)

and the path radiance Lp(�). Therefore, it di�ers from the surface re
ectance �(�), as illustrated in Figs. 8

and 9.

Figure 14(a) illustrates the albedo estimate of the deterministic and stochastic measured radiance signal

illustrated in Fig. 11. The dotted line indicates the original re
ectance at � = 0:5�m, the solid gray line

is the albedo estimate from the deterministic measured radiance (no added noise or uncertainties) after

the addition of the adjacency blurring e�ects with a spatial scale factor of s = 3, and the solid black line

indicates the albedo estimate from the stochastic measured radiance illustrated in Fig. 11(d). As expected,

this �gure shows that the albedo estimate is too high for low re
ectances and too low for high re
ectances.

4.1 Bowker Re
ectance Recovery Technique

Bowker's atmospheric correction technique [3] uses Eqs. 9 and 10 to estimate the surface re
ectance �(�)

from the radiance Lm(�) measured by a remote sensing system. By subtracting the path radiance from

the measured radiance (Eq. 9), and substituting Eq. 10 for the result, the estimated re
ectance is given by

~�(�) =
�

~E(�)Tb(�)

h
Lm(�)� ~Lp(�)

i
(26)

where Tb(�) is the surface-to-sensor direct atmospheric transmittance. When the original re
ectance is

unknown, Lp(�) is estimated from a constant re
ectance of �(�) = 0:4. Since Lp(�) depends directly on

�(�), the di�erence between ~Lp(�) and Lp(�) poses an accuracy problem.

Similar to Fig. 14(a), Fig. 14(b) illustrates the performance of Bowker's re
ectance estimate of the

deterministic and stochastic total radiance signal. This �gure shows that Bowker's estimate is very accurate
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Figure 14: The correction techniques.

when Lp(�) = ~Lp(�), as indicated from the recovery of the � = 0:4 segment. However, this technique is

extremely inaccurate when Lp(�) di�ers from ~Lp(�) as indicated from the recoveries of � = 0:1 and 0.7 to

the physically unreasonable re
ectance values of -0.2 and 1.03 respectively.

4.2 Richter Re
ectance Recovery Technique

Richter's technique, developed for fast atmospheric correction of Landsat Thematic Mapper (TM) images,

can be divided into a spectral correction that accounts for the e�ective irradiance ET (Eq. 20), followed

by a spatial correction that accounts for the adjacency blurring e�ects. The spectral re
ectance correction

is derived from the measured radiance, using Eqs. 19 and 22 [5, 6]

~�(1)(�) =
�

~E(�)
h
Tb(�) + ~Tp(�)

i [Lm(�)� Lo(�)] (27)

=
�

~E(�) ~Tt(�)
[Lm(�)� Lo(�)]

=
�

~ET (�)
[Lm(�)� Lo(�)] ;

where ~E(�) and ~Tp(�) are the estimated values of the total irradiance and di�use atmospheric transmittance

respectively, for a constant re
ectance of �(�) = 0:4, and Lm(�) is the measured digital radiance given
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Figure 15: Richter's spatial correction.

by Eq. 22. Accurate corrections depend on an accurate knowledge of the solar zenith angle (within 5

degrees) and a relatively accurate estimation of the atmospheric conditions, including the haze type and

visibility. In contrast to Bowker's technique, Richter's spectral correction subtracts Lo(�), which is a pure

atmospheric noise term, instead of subtracting Lp(�), which depends on �(�). Therefore, this technique is

self-correcting and less susceptible to inaccuracies when the underlying surface re
ectance is unknown.

Figure 14(c) assesses Richter's spectral re
ectance correction estimate. In contrast to Bowker's correc-

tion technique, Richter's spectral correction is very accurate throughout the whole re
ectance range, and

is not sensitive to the assumption of a constant re
ectance of � = 0:4. However, it does not correct for the

adjacency blurring e�ects, because it assumes a constant average surface re
ectance value for the viewed

area. Therefore, it is a very good approximation for a small uniform area of square kilometers, but does

not account for the e�ects of radiance scattered from surrounding pixels of di�erent re
ectance signatures.

The spectral approximation is updated by the spatial correction given by

~�(2)(�) = ~�(1)(�) + q

h
~�(1)(�)� ��(1)(�)

i
; (28)

where

q =
~Tp(�)

Tb(�)
;
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is the ratio between the di�use and path transmittance at the (x; y) spatial location, and

��(1)(x; y; �;w) =
1

w2

wX
i=1

wX
j=1

~�(1)(x+ i� w=2; y+ j � w=2; �);

is the spatial summation (average) of w-by-w neighboring spectral re
ectance estimates. Neither the spec-

tral nor the spatial corrections account for random noise. The underlying assumption of the spatial correc-

tion technique is that the center/surround numerical di�erentiation operation in Eq. 28,
h
~�(1)(�)� ��(1)(�)

i
,

enhances only the adjacency blurring a�ects. However, in the presence of noise, and away from the edge,

this operation di�erentiates, and therefore enhances, pure random 
uctuations (noise). Therefore, the

spatial correction, which is designed as a deblurring operator for a noiseless signal, has the potential of

boosting the noisy elements at spatial locations away from the edge.

Figure 15 evaluates the spatial recovery as a function of w for a deterministic simulation with di�erent

visibility conditions and a constant solar zenith of �z = 30�. The solid gray line illustrates Richter's

spectral recovery for the � = 0:5�m band, and is compared to Richter's spatial correction as a function of

w, illustrated in black patterned lines. Optimal widths w for this deterministic case are 5, 9, 11, and 13

pixels for visibilities of 5, 10, 15, and 23km respectively. This �gure shows that selecting a w that is too

narrow does not deblur the recovered re
ectance estimate near the edge. However, a w that is too wide

enhances the edge by creating Mach-bands around it, similar to the non-linear Retinex �lter with a wide

surround [12, 13]. This phenomenon perceptually sharpens the overall spatial signal at each spectral band,

at the cost of correct identi�cation at the target's edges.

Figure 14(d) assesses the e�ects of Richter's spatial re
ectance correction estimate with w = 9, relative

to its spectral correction illustrated in Fig. 14(c). This �gure shows that Richter's spatial correction

deblurres the adjacency blurring e�ect, as demonstrated by the sharp and accurate edge transition for both

the deterministic and stochastic signals. The deterministic estimate di�ers from the original re
ectance

by only 1%, and therefore exhibits a very accurate recovery. However, as predicted, this technique boosts

the local random 
uctuation away from the edge. To minimize the e�ect of random 
uctuations, and

enhance the measurement of the spatial blurring defects, the above di�erence operation can be replaced

by a di�erence between two smoothed signals, each with a di�erent width w. The �rst, a smoothing �lter

by a relatively small w, will minimize the local random 
uctuations. The second �lter, performed on the

already smoothed signal, will use a wider w to capture the adjacency blurring degradations and correct for

them.
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4.3 Assessment Tools

The spectral accuracy of each recovery technique at each pixel (x; y) is de�ned by the root-mean-square

error (rmse) metric, applied to the relative di�erence between the original and the recovered re
ectances,

�(x; y; �) and ~�(x; y; �), over the set of permissible spectral wavelengths f�ig,

"(x; y; ~�) =

0
@
(�

�(�i)� ~�(x; y; �i)

�(�i)

�2
)
f�ig

1
A

1=2

(29)

respectively, where f�g
f�ig

denotes the statistical mean over the f�ig set. Similarly, the global recovery

accuracy for each spectral signature area �(x; y; �) is de�ned by the relative rmse between the original

�(�) and the averaged recovered re
ectances ��(�), across the set of pixels f(x; y)�g that belongs to that

re
ectance area,

"(~�) = f"(x; y; ~�)g
f(x;y)�g

: (30)

Accordingly, the identi�cation process seeks the spectral signature that is closest, in the rmse sense, to

the recovered signature. Hence, if f�j(�)g represents the set of possible signatures, and f"jg denotes the

set of rmse's between ~�(�) and each of the spectral signatures �j(�), as given by

"j(x; y; ~�) =

0
B@
8<
:
 
�j(�i)� ~�(x; y; �i)

�j(�i)

!2
9=
;
f�ig

1
CA

1=2

;

then the identi�cation process is de�ned by the index j that minimizes the set f"jg. The local identi�cation

error for each pixel (x; y), "(x; y), which associates �j with the the recovered re
ectance ~�, is given by

"(x; y; �j) = min
j
f"j(x; y; ~�)g : (31)

Similarly, the global identi�cation error " that associates �j with ~� over the set of pixels f(x; y)g is given

by

" = min
j
f"j(~�)g : (32)

The identi�cation and classi�cation process is also accompanied by the fraction of misidenti�ed pixels

Fm, the fraction of unidenti�ed pixels Fu, and the assessment of the misidenti�ed and unidenti�ed pixels-

location distribution in the set f(x; y)g. An unidenti�ed pixel is de�ned as a pixel for which the process

�nds more than one index j with the same minimum "(x; y; �j), or for which the rmse is above a speci�ed

threshold. On one hand, without any threshold, there will always be a minimum "(x; y; �j), and therefore

no unidenti�ed pixels. On the other hand, a low threshold will increase Fu and decrease Fm. Therefore,

there is a tradeo� between the pre-determined rmse threshold and the values of Fu and Fm.
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5 Deterministic Evaluation

5.1 Spectral Assessment

This section assesses the recovery techniques presented in Sec. 4 for the deterministic case, i.e., when all

the components in Eq. 19 are well de�ned, with no inaccuracies, noise, or uncertainties. Fig. 16 compares

the Bowker (Eq. 26) and Richter (Eq. 27) 1-D spectral re
ectance recovery techniques to the well-known

apparent re
ectance (albedo) approximation (Eq. 18) for constant initial re
ectances of �(�) = 0:1, 0.4, and

0.7, over the set of permissible spectral bands f�ig, as functions of the solar zenith angle and the visibility.

This purely 1-D spectral simulation complements Fig. 14 which illustrates a spatial cut-through at the

spectral band of � = 0:5�m. The recovery processes have no a priori knowledge of the initial re
ectance,

and assume a constant spectral re
ectance of �(�) = 0:4. Results show that the accuracy for all the

recovery techniques increases with increased re
ectance, improved visibility, and decreased optical depth

(decreased solar zenith angle). Bowker's technique performs well only for a priori known initial re
ectances,

as demonstrated by the recovery of the �(�) = 0:4 case. For unknown initial re
ectance, however, this

estimate deteriorates, particularly in the visible and near-IR range. By contrast, Richter's technique

performs consistently better for the whole range of re
ectances, visibility conditions, and solar zenith

angles, a robustness that is also a�rmed by simulation results summarized in Appendix A.1, Tables A.1{

A.3.

5.2 Spatio-Spectral Assessment

Figure 17 illustrates the recovered hyper-spectral cube illustrated in Fig. 12 and 13(a), after the iden-

ti�cation process from the albedo, Bowker, and Richter approximations, respectively. The simulation

parameters range from high visibility of 23km to low visibility of 5km, and from solar zenith angle of 0� to

45�. Adjacency blurring is simulated with a spatial spread scale factor of s = 3. The recovery techniques

assume a constant spectral re
ectance of �(�) = 0:4. For each pixel, the recovered spectral signature is

identi�ed by the process described in Section 4.3, in which each recovered signature is compared to the bank

of re
ectance signatures listed in Table 2. The closest signature in the minimum rmse sense is classi�ed

as the pixel's re
ectance, and is assigned the gray level associated with that re
ectance, while unidenti�ed

pixels are marked in white. The identi�cation threshold for the rmse in these simulations was set to 1.5.

The global rmse is marked on each recovered image. Tables A.4{A.6 in Appendix A.1 summarize the

identi�cation process for each re
ectance selected for Fig. 13.
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Figure 16: 1-D recovery of the 0.1, 0.4, and 0.7 re
ectances, using the apparent re
ectance (albedo),

Bowker and Richter techniques.
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Visibility 5km, Solar zenith 45

Visibility 15km, Solar zenith 30

Visibility 23km, Solar zenith 0

(a) Albedo (b) Bowker (c) Richter (spectral) (d)  Richter (spatial)

0.78 3.44 0.17 0.07

0.51 1.13 0.11 0.06

0.45 0.80 0.08 0.05

Figure 17: Recovery of the polygon test target using the (a) apparent re
ectance (albedo) (b) Bowker, (c)

Richter and (d) spatial correction to Richter with w = 9. The global rmse is marked on each image.
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Figure 18: Location of the misidenti�ed pixels after Richter's spectral (top) and spatial (bottom) recoveries

for visibilities of (a) V = 23km, (b) V = 15km, and (c) V = 5km. The global fraction of mismatched

pixels is marked on each image.
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Assessment of the spatio-spectral deterministic simulation by Tables A.4{A.6 and by Fig. 17 shows that

the classi�cation process that follows the apparent re
ectance approximation correctly identi�es only two

re
ectances and misidenti�es twelve, independent of the acquisition conditions. The identi�ed signatures,

gypsum sand and silicon sand, cover 40% of the target. Classi�cation from Bowker re
ectance estimates

correctly adds potatoes and wet red clay to the identi�cation process for visibilities of 23km and 15km,

despite their relatively small area in the target (a total of 96 and 39 pixels respectively). However, for the

low visibility of 5km, Bowker's technique correctly identi�es only two signatures, misidenti�es nine, and can

not identify the re
ectances of fallow �eld, oats, and Whitley County soil. The spectral Richter recovery

technique correctly identi�es eleven re
ectance signatures, independent of the acquisition conditions, and

misidenti�es potatoes (96 pixels), wet red clay (39 pixels), and water (2 pixels). By contrast to both

the Bowker and the albedo approximations, misidenti�cation in Richter's spectral recovery technique is

centered along the target's edges, as illustrated in the top row of Fig. 18, which depicts the location of

misidenti�ed pixels for the spectral (top) and spatial (bottom) Richter recoveries. As demonstrated by

both the decreasing rmse of the recovery illustrated in Fig. 17, and the decreasing misidenti�cation fraction

whose location is depicted in Fig. 18, the spatial correction by Eq. 28 with w = 9 minimizes the adjacency

e�ects in the identi�cation process, enables a correct identi�cation of all the re
ectances, and reduces the

total fraction of misidenti�ed pixels by a factor of two, as illustrated in the bottom row of Fig. 18. Figs. 17

and 18 also show that the misidenti�cation error for Richter's recovery technique increases with decreased

visibility.

Consequently, these results show that Richter's recovery technique is robust to di�erent acquisition

conditions and performs well for a variety of re
ectances, without a prior knowledge of their re
ectance

signature. By contrast, the apparent re
ectance and Bowker estimates are sensitive to both the acquisition

conditions and the lack of knowledge of the original re
ectance. Inaccuracies in Richter's recovery technique

stem from the adjacency e�ects, while inaccuracies in Bowker's technique stem from inaccuracies in the

estimate of the path radiance component Lp. These results suggest that the performance of both the

albedo approximation and Bowker's recovery technique may worsen for the stochastic case, where random

noise, uncertainties, and perturbations are added to the simulation of the measured radiance.

6 Stochastic Evaluation of the Bowker Technique

The main shortcoming of the Bowker recovery technique lies in the necessity of obtaining a good estimate

of the path radiance response ~Lp(�), a term that is dependent on the actual re
ectance. This section as-
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sesses the sensitivity of Bowker's recovery technique to perturbations and uncertainties when the original

re
ectance is known a priori. Correct identi�cation and robustness of this technique under these conditions

will make it suitable for the detection of irregularities in areas of known re
ectance signatures, and moni-

toring homogeneous areas by locating invading substances. It will not, however, enable the identi�cation

of the invading substances, as it will only verify their existence and monitor their location within each

monitored area.

6.1 End-to-End Stochastic Simulation

The performance of Bowker's technique for known re
ectances is simulated for the set of acquisition condi-

tions identi�ed in this report, namely, solar zenith angles of �z = 0�, 30�, and 45�, for visibility conditions

of V = 5km, 10km, 15km, and 23km. Adjacency blurring e�ects are simulated with 10% perturbation of

the path radiance Lp, and a spatial spread factor of s = 3. Additional stochastic perturbation includes

10% uncertainty in the re
ectance signature, global irradiance perturbations of 10%, and random sensor

noise n
�i

of 5% around the received radiance signal.

Tables A.7{A.9 in Appendix A.2 summarize the performance of this simulation as functions of the

visibility and the solar zenith angle, for the ten re
ectance areas that are larger than 100 pixels in the

target illustrated in Fig 12. Figs. 19 and 20 illustrate the results of the identi�cation process after Bowker's

recovery process and the spatial location of the misidenti�ed re
ectances, respectively. Similar to Fig. 18,

misidenti�ed pixels are marked black in Fig. 20. The global rmse is marked on each recovered image in

Fig. 19, while the global fraction of mismatched pixels is marked on each illustration in Fig. 20. None

of the four re
ectances with areas smaller than 100 pixels were correctly identi�ed. All the remaining

ten re
ectances were correctly identi�ed for visibility of 23km, �ve of which had no mismatched pixels

throughout their respective re
ectance areas. Similarly, all the remaining ten re
ectances were correctly

identi�ed for visibility of 15km, with only a mild increase in the fraction of misidenti�ed pixels in the

remaining �ve re
ectances. This performance deteriorates as the visibility decreases, as is evident by the

increase in the fraction of mismatched pixels. Only three signatures were completely identi�ed with no error

for V = 10km, and only two for V = 5km, where four out of the ten re
ectance signatures are completely

misidenti�ed, and the fraction of misidenti�ed pixels increases. The concentration of misidenti�ed pixels

at the border between re
ectance areas, as illustrated in Fig. 20, shows that the Bowker recovery technique

is sensitive to adjacency e�ects. In addition, these �gures show that for very low visibility, this technique

is also very sensitive to perturbations and random noise. This sensitivity increases with the increase of the

irradiance path components { a result of larger solar zenith angles. However, the identi�cation process for
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Figure 19: Re
ectance recovery of the polygon test target using Bowker's technique with a priori known

re
ectances. The global rmse is marked on each image.
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Figure 20: Spatial location of misidenti�ed re
ectance signatures in Fig. 19. The global fraction of mis-

matched pixels is marked on each image.
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the stochastic process works well as the visibility improves.

7 Stochastic Evaluation of the Richter Technique

This section assesses the sensitivity and robustness of Richter's recovery technique to perturbations in

the measured radiance. Section 7.1 assesses the end-to-end stochastic performance of Richter's recovery

technique. Section 7.2 assesses the sensitivity of Richter's recovery technique to sensor noise. Section 7.3

assesses the sensitivity of Richter's recovery technique to small perturbations of the re
ectance signature.

Section 7.4 assesses the sensitivity of Richter's recovery technique to small perturbations of the irradi-

ance. Finally, Section 7.5 assesses the robustness of Richter's recovery technique to wrong acquisition

assumptions.

7.1 End-to-End Stochastic Simulation

This section assesses the general performance of Richter's re
ectance recovery from a hyper-spectral mea-

sured radiance cube simulated by the stochastic process given by Eq. 22. The simulation for this section

assumes acquisition with solar zenith angles of �z = 0�, 30�, and 45�, and visibility conditions of V = 5km,

10km, 15km, and 23km. Spatial background scattering is simulated with 10% perturbation of the path

radiance Lp, and a spatial spread factor of s = 3. Additional stochastic perturbation includes 10% uncer-

tainty in the re
ectance signature, irradiance perturbations of 10%, and random sensor noise n
�i

of 5%

around the received radiance signal.

Figure 21 illustrates results of the identi�cation process for the simulated measured radiance after

Richter's recovery technique. The widths w used for this recovery match the optimal widths determined

in Section 4.2 for the deterministic case, namely, widths of 5, 9, 11, and 13 pixels for visibilities of 5,

10, 15, and 23km respectively. The recovery global rmse is marked on each illustrated recovery. Fig. 22

illustrates the location of the respective mismatched pixels, where the global fraction of mismatched pixels

is marked on each image. Quantitative performance assessment for �z = 30� and for all the major identi�ed

re
ectance signatures for each re
ectance area, as a function of their relative fraction, is summarized in

Appendix A.3, Table A.10. Results show that for the high-visibility conditions of V = 15km, and 23km,

the identi�cation process identi�es all 14 re
ectances of the target illustrated in Fig. 12, including the

two pixels of water. Moreover, a comparison between this stochastic simulation and the deterministic case

illustrated in Figs. 17 and 18 shows improvement near the edges for the stochastic recovery, probably due
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Figure 21: Re
ectance recovery of the polygon test target using the spatio-spectral Richter. The global

rmse is marked on each image.
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Figure 22: Spatial location of misidenti�ed re
ectance signatures in Fig. 21. The global fraction of mis-

matched pixels is marked on each image.
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to a wider w parameter. Inaccuracies, which constitute only 2-4% of the target, are centered around a

few edges, where the spatial correction fails to completely correct for the adjacency blurring e�ect. This

performance deteriorates with decreased visibility and increased path length (higher solar zenith angle),

when noise sources combined with low visibility decrease the ability of Richter's technique to accurately

identify the correct re
ectance. Moreover, recovered images for V = 10km and 5km show Mach-bands

around most of the target's transitions.

7.2 Sensitivity to Sensor Noise

This section assesses the sensitivity of Richter's spectral and spatial recovery techniques to sensor noise.

The simulation assumes acquisition with a solar zenith angle of 30�, and visibility conditions of V = 5km,

10km, 15km, and 23km. The adjacency e�ects are simulated by 10% perturbation of the path radiance

Lp, and a spatial spread factor of s = 3. To simulate sensor noise levels of 5% and 10%, the stochastic

process perturbs the deterministic hyper-spectral radiance cube LT (x; y; �i) at each (x; y) location with a

random additive noise of uniform distribution in the range [�n%; n%]LT(x; y; �i), where n = 5, and 10,

respectively. The case with no sensor noise serves as a performance benchmark.

Figures 23 and 24 assess the sensitivity of Richter's spectral recovery by Eq. 27 to sensor noise n
�i

as

a function of the visibility for the above simulation parameters. Figs. 25 and 26 assess the corresponding

performance of the spatial correction by Eq. 28. Consistent with Fig. 21, the width w used for the spatial

correction as a function of the visibility is 5, 9, 11, and 13 pixels for visibilities of 5, 10, 15, and 23km

respectively. The �rst column in each �gure, illustrating the performance without sensor noise, serves

as a benchmark for the stochastic optimal performance in presence of adjacency e�ects. Fig. 26 shows

an average improvement by a factor of two in the fraction of misidenti�ed pixels relative to the fractions

in Fig. 24. Fig. 25 also shows the creation of Mach bands for the 5km visibility compared to Fig. 23.

Consistent with Fig. 14(d), however, spatial correction in presence of random sensor noise boosts the

noise elements by di�erentiating noise elements instead of re
ectance transitions, thereby impeding the

identi�cation process. Therefore, the spatial correction improves the identi�cation process near the edges

at the cost of increased misidenti�ed pixels within each re
ectance area. Moreover, the spatial recovery

technique completely fails for very low visibility, where the fraction of misidenti�ed pixels reaches 57%.

However, for reasonable visibility conditions above 10km, and reasonable sensors with noise levels that do

not exceed 5% of the received signal, Richter's spatial technique improves the performance of Richter's

spectral recovery.
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Figure 23: Richter's spectral re
ectance recovery as a function of a sensor random noise. The global rmse

is marked on each recovered image.
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Figure 24: Location of misidenti�ed re
ectance signatures in Fig. 23. The global fraction of mismatched

pixels is marked on each recovered image.
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Figure 25: Richter's spatial re
ectance recovery as a function of sensor random noise. The global rmse is

marked on each recovered image.
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Figure 26: Location of misidenti�ed re
ectance signatures in Fig. 25. The global fraction of mismatched

pixels is marked on each recovered image.
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Figure 27: Location of misidenti�ed re
ectance signatures after applying Richter's spatial correction in a

simulation that includes an optical blur of a camera. The global fraction of mismatched pixels is marked

on each image.
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Figure 27 assesses the e�ects of the camera's optical blur on the performance of Richter's spatial

recovery. The simulation adds a camera with an optical-index of �g(�i) = 0:6 and an electronic noise with

a signal-to-noise ratio (SNR) of 64 across the spectral bands. This relatively high SNR ensures that the

sensor noise remains the main noise source for this simulation. A comparison of this �gure to Figs. 24 and

26 shows that optical blur stabilizes the performance of the spatial Richter correction by attenuating the

sensor noise, thereby enabling Richter's spatial correction to improve the identi�cation near the re
ectance

transitions without increasing the misidenti�ed pixels within each re
ectance area. Signi�cant improvement

is observed, especially for low visibility, where the fraction of misidenti�ed pixels decreased from 29% and

57% to 11% for sensor noise levels of 5% and 10% around the received radiance signal, respectively.

7.3 Perturbation of the Initial Re
ectance Signature

This section evaluates the sensitivity of the Richter technique to uncertainties in the database of re
ectance

signatures, as well as natural non-uniformities, when measuring a single re
ectance area under the same

atmospheric conditions. The uncertainty in the re
ectance signature database is typically about 10%

around the signature's mean [4]. To simulate 5%, 10%, and 15% uncertainties, the stochastic process

perturbs the deterministic hyper-spectral re
ectance cube �(x; y; �), illustrated in Fig. 12, at each (x; y)

location with a random additive noise of uniform distribution in the range [�n%; n%]�(x; y; �), where n = 5,

10, and 15, respectively. The simulation then uses the perturbed cube to recalculate Ls(x; y; �) (Eq. 8) and

substitutes the result in Eqs. 10 and 11 to recalculate LT (x; y; �) (Eq. 19). Other simulation components,

such as the irradiance and transmittance components, remain the unperturbed deterministic components,

as extracted from the MODTRAN simulations for the deterministic case. While not completely accurate,

this simulation is a practical approximation to a complete MODTRAN simulation of each perturbed pixel

under each atmospheric condition.

Figs. 28 and 29 compare the sensitivity of Richter's spatial recovery techniques to uncertainties in

the initial re
ectance signatures, with and without the simulation of a camera, by depicting the spatial

location of misidenti�ed re
ectance signatures. The adjacency e�ects are simulated with 10% perturbation

of the path radiance Lp, and a spatial spread factor of s = 3, and the sensor noise level is set to 2%

around the measured radiance. Camera parameters are �g(�i) = 0:6 and electronic SNR of 64 across the

spectral bands. The low level of electronic and sensor noise sources ensure that the dominant source of

error remains the perturbations in the initial re
ectance signature. Results show that the Richter recovery

technique is robust to uncertainties in the initial re
ectance signature. The fraction of unidenti�ed pixels

for 5% perturbation in Figs. 28 and 29 is similar to the fraction of unidenti�ed pixels for the stochastic case
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Figure 28: Location of misidenti�ed re
ectance signatures after Richter's spatial re
ectance recovery for

initial re
ectance perturbations of 5%, 10% and 15%, for �z = 30�. The global fraction of mismatched

pixels is marked on each image.
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Figure 29: Location of misidenti�ed re
ectance signatures after Richter's spatial re
ectance recovery for

initial re
ectance perturbations of (a) 5%, (b) 10% and (c) 15%, for �z = 30�, �g(�i) = 0:6 and electronic

SNR of 64 across the spectral bands. The global fraction of mismatched pixels is marked on each image.
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with no sensor noise, illustrated in Figs. 26 and 27 respectively. The addition of optics to the simulations

illustrated in Fig. 29 reduces the fraction of misidenti�ed pixels within each re
ectance area, where optical

blur is the dominant camera degradation, and increases the fraction of these pixels near the re
ectance

transitions, where optical aliasing is the dominant camera degradation. Nevertheless, both simulations

demonstrate that this technique is relatively robust to uncertainties up to 15% in the initial re
ectance

signature for a wide range of visibility conditions.

7.4 Perturbations in the Atmospheric Conditions

This section evaluates the sensitivity of Richter's recovery technique to perturbations in the irradiance

E(�), which simulate inaccuracies and local perturbations in the assumed atmospheric conditions, such

as visibility, and aerosol types and densities. These perturbations do not simulate shadowing e�ects. To

simulate 5%, 10%, and 15% inaccuracies, a stochastic process perturbs the deterministic hyper-spectral

total irradiance E(x; y; �) at each (x; y) location with a random additive noise of uniform distribution

in the range [�n%; n%]E(x; y; �), where n = 5, 10, and 15, respectively. The simulation then uses the

perturbed cube to recalculate Ls(x; y; �) (Eq. 8) and substitutes the result in Eqs. 10 and 11 to recalculate

LT (x; y; �) (Eq. 19).

Figures 30 and 31 assess the sensitivity of the identi�cation process to uncertainties in the irradiance

at acquisition time, with and without the simulation of a camera, by depicting the spatial location of

misidenti�ed re
ectance signatures. The adjacency e�ects are simulated with 10% perturbation of the

path radiance Lp, and a spatial spread factor of s = 3, the sensor noise level is set to 2% around the

measured radiance, and re
ectance perturbations are set to 5% around the initial re
ectance signature.

Camera parameters are �g(�i) = 0:6 and electronic SNR of 64 across the spectral bands. The low level

electronic and sensor noise sources and low re
ectance perturbation level ensure that the dominant source

of error is due to perturbations in the total irradiance. Results show that the Richter recovery technique

is robust to uncertainties in the atmospheric acquisition conditions, as the fraction of unidenti�ed pixels

remains almost unchanged as the perturbation level increases from 5% to 15%. This fraction is also similar

to the fraction of unidenti�ed pixels for the stochastic case with no sensor noise illustrated in Figs. 26 and

27. The addition of optics to the simulation, illustrated in Fig. 31, reduces the fraction of misidenti�ed

pixels within each re
ectance area, where optical blur is the main source of error, and increases the fraction

of these pixels near the re
ectance transitions, where spatial aliasing becomes the main source of error.

Nevertheless, both simulations demonstrate that Richter's recovery technique is robust to atmospheric

uncertainties, i.e., perturbations in the surface irradiance of up to 15%, for a wide range of visibility
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Figure 30: Location of misidenti�ed re
ectance signatures after applying Richter re
ectance recovery from

radiance acquired with perturbations of the total irradiance of 5%, 10% and 15%, for �z = 30�. The global

fraction of mismatched pixels is marked on each image.
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Figure 31: Location of misidenti�ed re
ectance signatures after applying Richter re
ectance recovery from

radiance acquired with perturbations of the total irradiance of 5%, 10% and 15%, for �z = 30�, �g(�i) = 0:6,

and electronic SNR of 64 across the spectral bands. The global fraction of mismatched pixels is marked

on each image.
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 5km 10km 15km 23km
Assumed
visibility:

Actual visibility: 15km

0.41 0.22 0.21 0.23

0.41 0.05 0.07 0.17

Figure 32: Image of the recovered re
ectance (top) and the location of misidenti�ed pixels (bottom) after

Richter's re
ectance recovery. The global rmse is marked on the top row, and the global fraction of

mismatched pixels is marked on the bottom row.

conditions, provided that the sensor noise is relatively low.

7.5 Incorrect Acquisition Assumptions

This section evaluates the robustness of Richter's recovery technique to wrong acquisition assumptions.

Figure 32 shows the identi�cation results of simulations with Richter's recovery from radiance measurements

with an actual visibility of 15km, when the recovery process incorrectly assumes visibilities of 5km, 10km,

and 23km, respectively. Table A.11 in Appendix A.3 summarizes the local performance of the identi�cation

of each re
ectance area in the target. The hyper-spectral radiance target is acquired with �z = 30�, 10%

uncertainty in the re
ectance signature �, 10% perturbations of the irradiance E, 10% perturbation of the

path radiance Lp, adjacency e�ects with s = 3, sensor noise of 5%, and camera parameters characterized

by �g(�i) = 0:6 and electronic noise with SNR of 64 across the spectral bands. As before, the hyper-

spectral re
ectance cube is visualized by assigning the pre-designated gray level to each recovered spectral

signature, where the global rmse is marked on each recovery (Fig. 32 top). The identi�cation process is

visualized by assigning a black level to misidenti�ed pixels, where the global fraction of misidenti�ed pixels
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is marked on each visualization (Fig. 32 bottom).

Results show a misidenti�cation error of 7% for correct visibility assumption, where the location of

most of the misidenti�ed pixels is at the borders between re
ectance signatures. Oats is completely

misidenti�ed when assuming a slightly worse visibility condition of 10km instead of the actual visibility

of 15km (Table A.11). However, the global misidenti�cation fraction slightly decreases from 7% to 5%,

mainly at the borders between re
ectance areas, and probably because of the change in w from 11 to

9 pixels. Assuming a slightly better visibility condition of 23km instead of the actual 15km increases

the fraction of misidenti�ed pixels to 17%, where barley is mainly identi�ed as oats (64%), burr oak

as sycamore (59%), multi-mineral soil sample as wet sand (52%), and misidenti�cation at the borders

increases. Incorrect assumption of V = 5km results in a sharp decrease in the identi�cation accuracy, where

the misidenti�ed fraction increases to 41%. Assessment of the local identi�cation errors in Table A.11 shows

only three correctly-identi�ed re
ectance signatures: gypsum sand, silicon sand, and the Whitley county

soil sample signatures, and a partial identi�cation of 26% and 22% for the wheat and multi-mineral soil

sample signatures respectively. Consequently, these results indicate that the Richter correction technique

is robust to slight di�erences between the actual and assumed visibilities, but is increasingly sensitive to

larger di�erences between the two.

Figures 33 and 34 show simulations of Richter's recovery from radiance measurements with an assumed

visibility of 15km and 5km respectively, when the actual visibility is 5km, 10km, 15km, and 23km, respec-

tively. Tables A.12 and A.13 in Appendix A.3 summarize the local performance of the identi�cation of

each re
ectance area in the target. All the other simulation parameters remain the same as in Fig. 32.

Results indicate a misidenti�cation error of 7% and 11% for correct visibility assumption of 15km and 5km

respectively, where the location of most of the misidenti�ed pixels is at the borders between re
ectance

signatures. A comparison between Fig. 32 for assumed visibility of 5km and actual visibility of 15km, and

Fig. 34 for actual visibility of 15km and assumed visibility of 15 shows similar performance. A comparison

between Fig. 33 and 34 shows that Richter's recovery technique is extremely sensitive to the mismatched

visibility conditions particularly when the assumed visibility is lower than the actual visibility.

Figure 33 shows that the global identi�cation error for actual visibility of 5km and assumed visibility

of 15km increases from 11% (correct visibility assumption) to 59%, where only gypsum sand and silicon

sand are correctly identi�ed. The identi�cation error decreases as the actual visibility increases. The

misidenti�cation fraction in Fig. 33 decreases from 59% to 31% when the actual visibility increases from

5km to 10km. The process in this case correctly identi�es oats, wheat, silver maple, gypsum sand, silicon

sand and the Whitely county soil re
ectance signatures. The identi�cation near the edges for an actual
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 5km 10km 15km 23km
Actual
visibility:

Assumed visibility: 15km

0.45 0.30 0.24 0.21

0.59 0.31 0.07 0.04

Figure 33: Image of the recovered re
ectance (top) and the location of misidenti�ed pixels (bottom) after

Richter's re
ectance recovery. The global rmse is marked on each recovered image (top), and the global

fraction of mismatched pixels is marked on location image (bottom).
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 5km 10km 15km 23km
Actual
visibility:

Assumed visibility: 5km

0.32 0.37 0.46 0.56

0.11 0.51 0.42 0.48

Figure 34: Image of the recovered re
ectance (top) and the location of misidenti�ed pixels (bottom) after

Richter's re
ectance recovery. The global rmse is marked on each recovered image (top), and the global

fraction of mismatched pixels is marked on location image (bottom).
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visibility of 23km is more accurate, but the process misidenti�es oats as barley. The further decrease in the

misidenti�cation fraction from 7% (correct assumptions) to 4% is probably due to the change of the width

parameter w from 11 to 13 pixels. This case demonstrates that the recovery and identi�cation processes

are robust to the assumption of a slightly lower visibility than the actual one.

The global identi�cation error in Fig. 34 increases from 11% to 51%, 42%, and 48%, when the actual

visibility increases to 10, 15, and 23km respectively, and the assumed visibility remains 5km. As indicated

from Table A.13, only gypsum sand and silicon sand are correctly identi�ed when the actual visibility is

10km; only gypsum sand, silicon sand, and Whitley county soil are correctly identi�ed when the actual

visibility is 15km; and only gypsum sand, silicon sand, and wheat are correctly identi�ed when the actual

visibility further increases to 23km. Consistent with previous results, these �gures and the corresponding

assessment tables re-emphasize that more than any other parameter, the Richter recovery technique is

sensitive to incorrect estimates of the actual visibility during acquisition.

8 Summary

This report assessed the performance of four re
ectance-recovery techniques in the context of a controlled

spatio-spectral simulation that mimics the remote-sensing acquisition of hyper-spectral data. The database

of re
ectance signatures included 27 signatures from �ve di�erent categories. The random hyper-spectral

cube target consisted of 14 randomly-selected signatures from that database. Simulations included spectral

and spatio-spectral deterministic evaluation of each recovery technique, and a comprehensive stochastic

spatio-spectral set of simulations which assessed the sensitivity and robustness of these techniques to typical

uncertainties encountered in real acquisition scenarios.

The tight control on all the simulation parameters, from re
ectance, to measured radiance, to recovered

signatures, enabled a close and controlled assessment of each recovery technique. Results for the albedo

estimate show that albedo estimates are too high for low re
ectances, and too low for high re
ectances. As

a result, the identi�cation process based on albedo estimates performs poorly. Bowker's recovery technique

performs well when the original re
ectance is known a priori, but performs poorly when this re
ectance

has to be estimated. Its performance for an a priori known re
ectance signature is sensitive to decreased

visibility, and is suitable for detecting irregularities in areas of known re
ectance signatures.

Comparison between Richter's spectral and spatial recoveries show that the spatial recovery technique

is sensitive to noise, and boosts small perturbations in its attempt to deblur the spatial scattering blur.

This technique is particularly sensitive to sensor noise. Results show high identi�cation errors for sensor
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noise above 5%, particularly for low visibility conditions. However, simulation results also suggest two ways

to enhance the identi�cation process in case of dominant sensor noise. The identi�cation process improves

when applied on Richter's spectral recovery, without any spatial correction. Identi�cation results improve

even further with optical blur, provided that the electronic noise is relatively low. Richter's technique is

also sensitive to large inaccuracies in the estimation of the actual visibility.

In general though, results strongly indicate that Richter's re
ectance recovery technique is robust and

relatively insensitive to stochastic noise, perturbations, and minor uncertainties in the atmospheric condi-

tions. Identi�cation results remained remarkably stable for up to 15% uncertainties in the initial re
ectance

signatures, and 15% perturbations in the assumed atmospheric conditions, when the sensor noise is low and

the location of misidenti�ed pixels remained centered at the re
ectance boundaries. Misidenti�cation after

Richter's recovery has more to do with the particular geometry and size of each individual re
ectance area

than with the ability of the recovery technique to identify the re
ectance signature. Therefore, these results

suggest that this recovery technique performs well for applications that require re
ectance identi�cation

from remote-sensing measurements.
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A Appendix:

Assessment Tables

A.1 Deterministic Recovery Summary

Tables A.1{A.3 summarize the rmse of recovered re
ectance signatures by the albedo, Bowker, and Richter

recovery techniques, respectively, relative to the database of signatures. Both the Bowker and Richter

techniques are carried out with an assumed constant initial re
ectance of �(�) = 0:4. The results con�rm

that this assumption does not a�ect the performance of the Richter recovery technique, as it performs well

almost independent of the visibility and solar zenith angle conditions. By contrast, the assumption of a
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constant initial re
ectance of �(�) = 0:4 reduces the accuracy of the Bowker technique over its performance

for known re
ectances, particularly for low visibility, while it performs relatively better for high visibility

of 23km.

Tables A.4{A.6 summarize the quantitative assessment of the deterministic recovery and identi�cation

process for three di�erent atmospheric acquisition conditions. These tables summarize the rmse of the

albedo, Bowker, and Richter recovery techniques for an assumed initial re
ectance of �(�) = 0:4. The

value of F indicates the fraction of the mainly identi�ed re
ectance within the area of each re
ectance

in the spatio-spectral random polygon cube. For example, F = :99 for the barley category in Table A.4

indicates that 99% of the barley area in the spatio-spectral random polygon cube was identi�ed as basalt,

while F = 0:94 for the burr oak category indicates that 94% of the oak area in the spatio-spectral random

polygon cube was identi�ed as American elm. No F value is assigned in cases where a particular re
ectance

is completely unidenti�ed. The global rmse, and the global fraction of correctly identi�ed pixels F is

summarized under \Global". These tables show that the albedo approximation correctly identi�es only

two re
ectance signatures and misidenti�es 60% of the cube, while the Bowker recovery technique correctly

identi�es only four spectral signatures. For the same conditions, the spectral Richter technique correctly

identi�es all the spectral signatures, while the spatial correction with w = 9 decreases the number of

misidenti�ed pixels by a factor of two. Some of the inaccuracy can be attributed to the adjacency blurring

e�ects, particularly for re
ectance signatures with few pixels and narrow geometrical areas. However,

Richter's spatial correction techniques minimizes these defects.

A.2 Bowker Recovery with Known Re
ectance Signatures

Tables A.7{A.9 summarize the performance of a stochastic simulation with Bowker's recovery tech-

niques, assuming known re
ectances. The performance of Bowker's technique is simulated for the set of

acquisition conditions identi�ed in this report, namely, solar zenith angle of �z = 0�, 30�, and 45�, for

visibility conditions of V = 5km, 10km, 15km, and 23km. Adjacency e�ects are simulated by 10% pertur-

bation of the path radiance Lp, and a spatial spread factor of s = 3. Additional stochastic perturbations

include 10% uncertainty in the re
ectance signature, irradiance perturbations of 10%, and a random sensor

noise of 5% of the received radiance signal.

The tables summarize the rmse for each re
ectance in the the hyper-spectral cube, and lists the two

main identi�ed re
ectances for each category, together with their local fraction F within that category, and

the global misidenti�cation fraction Fm. Finally, the global information summarizes the global rmse for
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�z = 0� �z = 30� �z = 45�

Category

5km 10km 15km 23km 5km 10km 15km 23km 5km 10km 15km 23km

Barley 1.322 1.046 0.932 0.849 1.342 1.045 0.926 0.842 1.489 1.145 1.003 0.902

Beans 0.981 0.739 0.640 0.568 0.987 0.729 0.627 0.555 1.105 0.802 0.680 0.595

Oats 0.838 0.640 0.560 0.501 0.840 0.629 0.546 0.488 0.937 0.689 0.590 0.520

Potatoes 0.575 0.392 0.317 0.263 0.563 0.371 0.297 0.246 0.638 0.410 0.322 0.262

Soybeans 1.008 0.813 0.733 0.674 1.023 0.813 0.728 0.668 1.130 0.886 0.785 0.71

Tobacco 1.451 1.142 1.015 0.922 1.475 1.143 1.010 0.915 1.639 1.254 1.095 0.982

Wheat 0.876 0.696 0.623 0.569 0.884 0.691 0.614 0.561 0.979 0.754 0.662 0.597

Fallow �eld 1.113 0.901 0.813 0.748 1.131 0.902 0.809 0.744 1.249 0.984 0.874 0.795

American Elm 0.382 0.258 0.209 0.173 0.370 0.242 0.194 0.161 0.419 0.266 0.209 0.171

Silver Maple 0.326 0.220 0.179 0.149 0.317 0.207 0.167 0.140 0.359 0.229 0.181 0.149

Burr Oak 2.331 1.847 1.646 1.500 2.380 1.859 1.649 1.499 2.642 2.042 1.792 1.613

Ponderosa Pine 1.201 0.963 0.864 0.793 1.220 0.963 0.860 0.788 1.349 1.052 0.930 0.843

Sycamore 1.308 1.035 0.923 0.841 1.328 1.035 0.917 0.835 1.474 1.134 0.993 0.894

Blue Grass 4.086 3.219 2.861 2.599 4.183 3.253 2.877 2.609 4.651 3.582 3.136 2.816

Basalt 0.286 0.234 0.214 0.200 0.278 0.224 0.204 0.190 0.305 0.239 0.214 0.197

Dry Red Clay 0.277 0.208 0.180 0.159 0.282 0.207 0.178 0.157 0.317 0.229 0.194 0.170

Wet Red Clay 0.642 0.466 0.393 0.340 0.644 0.456 0.382 0.330 0.725 0.505 0.417 0.355

Gypsum Sand 0.140 0.111 0.098 0.089 0.169 0.133 0.116 0.103 0.195 0.155 0.135 0.120

Silicon Sand 0.169 0.128 0.112 0.099 0.198 0.150 0.129 0.113 0.228 0.175 0.150 0.130

Multi-Mineral 1.045 0.710 0.573 0.472 1.030 0.679 0.543 0.448 1.168 0.756 0.594 0.482

Whitley County 0.345 0.237 0.194 0.163 0.333 0.222 0.181 0.153 0.375 0.244 0.194 0.162

Powell Grassland 0.164 0.126 0.111 0.101 0.167 0.127 0.112 0.102 0.187 0.140 0.123 0.110

Dry Sand 0.149 0.116 0.104 0.095 0.155 0.120 0.107 0.097 0.174 0.133 0.118 0.107

Wet Sand 0.613 0.440 0.369 0.319 0.602 0.420 0.351 0.303 0.677 0.462 0.378 0.322

Water 2.749 2.029 1.732 1.514 2.785 2.017 1.711 1.494 3.134 2.240 1.876 1.618

Table A.1: The rmse between the original re
ectance signature and its albedo recovery.
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�z = 0� �z = 30� �z = 45�

Category

5km 10km 15km 23km 5km 10km 15km 23km 5km 10km 15km 50km

Barley 9.655 4.444 2.975 2.067 9.376 4.363 2.933 2.044 8.889 4.218 2.857 2.001

Beans 7.139 3.329 2.222 1.528 6.970 3.278 2.196 1.540 6.652 3.185 2.151 1.490

Oats 6.218 2.891 1.932 1.331 6.065 2.846 1.908 1.320 5.784 2.765 1.869 1.350

Potatoes 4.452 2.129 1.419 0.962 4.367 2.104 1.407 0.957 4.211 2.058 1.386 0.946

Soybeans 7.445 3.411 2.288 1.596 7.220 3.346 2.254 1.578 6.829 3.227 2.192 1.544

Tobacco 10.486 4.832 3.236 2.245 10.188 4.745 3.189 2.221 9.663 4.590 3.108 2.174

Wheat 6.487 2.986 2.001 1.391 6.303 2.933 1.974 1.377 5.979 2.837 1.923 1.350

Fallow �eld 8.230 3.767 2.527 1.764 7.979 3.694 2.489 1.744 7.541 3.561 2.419 1.705

American Elm 3.013 1.447 0.966 0.655 2.957 1.432 0.958 0.652 2.857 1.403 0.946 0.645

Silver Maple 2.546 1.227 0.819 0.555 2.501 1.214 0.813 0.553 2.418 1.190 0.803 0.548

Burr Oak 16.777 7.710 5.164 3.590 16.278 7.563 5.086 3.548 15.407 7.299 4.947 3.469

Ponderosa Pine 8.852 4.063 2.725 1.899 8.587 3.986 2.685 1.877 8.124 3.846 2.611 1.836

Sycamore 9.509 4.377 2.932 2.037 9.234 4.298 2.890 2.016 8.752 4.155 2.815 1.973

Blue Grass 29.159 13.417 8.985 6.241 28.290 13.160 8.847 6.164 26.769 12.695 8.602 6.024

Basalt 2.353 1.089 0.730 0.508 2.292 1.072 0.722 0.504 2.185 1.041 0.707 0.497

Dry red clay 2.028 0.949 0.632 0.433 1.985 0.937 0.626 0.430 1.906 0.914 0.616 0.425

Wet red clay 4.793 2.250 1.497 1.020 4.688 2.218 1.481 1.013 4.500 2.162 1.453 1.037

Gypsum sand 0.117 0.060 0.040 0.026 0.116 0.059 0.040 0.027 0.115 0.059 0.040 0.027

Silicon sand 0.262 0.130 0.089 0.062 0.260 0.130 0.090 0.063 0.256 0.131 0.091 0.065

Multi-mineral 7.770 3.721 2.479 1.679 7.617 3.677 2.457 1.668 7.343 3.594 2.417 1.646

Whitley County 2.938 1.401 0.933 0.633 2.881 1.386 0.926 0.630 2.779 1.356 0.913 0.623

Powell Grassland 1.366 0.645 0.430 0.294 1.340 0.638 0.427 0.293 1.292 0.624 0.422 0.290

Dry sand 1.193 0.563 0.376 0.257 1.171 0.557 0.373 0.256 1.129 0.545 0.368 0.254

Wet sand 4.762 2.251 1.501 1.023 4.661 2.223 1.487 1.016 4.480 2.169 1.462 1.003

Water 19.343 9.052 6.035 4.131 18.885 8.913 5.962 4.092 18.048 8.665 5.837 4.02

Table A.2: The rmse between the original re
ectance signature and its Bowker recovery.
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�z = 0� �z = 30� �z = 45�

Category

5km 10km 15km 23km 5km 10km 15km 23km 5km 10km 15km 23km

Barley 0.021 0.017 0.017 0.017 0.024 0.019 0.019 0.019 0.028 0.023 0.022 0.022

Beans 0.019 0.016 0.015 0.015 0.021 0.018 0.017 0.017 0.025 0.021 0.021 0.020

Oats 0.018 0.015 0.014 0.014 0.021 0.017 0.016 0.016 0.025 0.020 0.020 0.020

Potatoes 0.015 0.013 0.013 0.013 0.018 0.015 0.015 0.015 0.021 0.018 0.018 0.017

Soybeans 0.020 0.016 0.016 0.016 0.022 0.018 0.018 0.018 0.027 0.022 0.021 0.021

Tobacco 0.021 0.017 0.017 0.017 0.024 0.020 0.019 0.019 0.029 0.024 0.023 0.023

Wheat 0.020 0.016 0.016 0.016 0.023 0.019 0.018 0.018 0.027 0.022 0.022 0.022

Fallow �eld 0.020 0.016 0.016 0.016 0.023 0.018 0.018 0.018 0.027 0.022 0.021 0.021

American Elm 0.014 0.013 0.013 0.013 0.017 0.015 0.014 0.014 0.020 0.017 0.017 0.017

Silver Maple 0.014 0.013 0.013 0.013 0.016 0.015 0.015 0.015 0.019 0.017 0.017 0.017

Burr Oak 0.025 0.021 0.020 0.020 0.029 0.023 0.022 0.022 0.034 0.028 0.027 0.027

Ponderosa Pine 0.021 0.018 0.017 0.017 0.024 0.020 0.020 0.020 0.029 0.024 0.023 0.023

Sycamore 0.021 0.018 0.017 0.017 0.024 0.020 0.020 0.020 0.029 0.024 0.023 0.023

Blue Grass 0.028 0.023 0.023 0.022 0.031 0.026 0.025 0.025 0.036 0.030 0.029 0.029

Basalt 0.015 0.013 0.013 0.013 0.017 0.014 0.014 0.015 0.020 0.017 0.017 0.017

Dry red clay 0.012 0.012 0.012 0.012 0.014 0.013 0.013 0.013 0.016 0.015 0.015 0.016

Wet red clay 0.014 0.013 0.013 0.013 0.017 0.014 0.014 0.014 0.020 0.017 0.017 0.017

Gypsum sand 0.008 0.009 0.010 0.011 0.009 0.010 0.011 0.012 0.009 0.011 0.012 0.013

Silicon sand 0.011 0.011 0.011 0.012 0.013 0.012 0.013 0.013 0.015 0.015 0.015 0.015

Multi-mineral 0.016 0.014 0.013 0.013 0.019 0.016 0.015 0.015 0.023 0.019 0.018 0.017

Whitley County 0.014 0.012 0.012 0.012 0.016 0.014 0.014 0.014 0.019 0.016 0.016 0.016

Powell Grassland 0.012 0.011 0.011 0.012 0.013 0.012 0.013 0.013 0.016 0.014 0.015 0.015

Dry sand 0.011 0.011 0.011 0.012 0.013 0.012 0.012 0.013 0.015 0.014 0.014 0.015

Wet sand 0.017 0.014 0.013 0.013 0.019 0.016 0.015 0.015 0.023 0.019 0.018 0.018

Water 0.022 0.017 0.016 0.016 0.025 0.020 0.018 0.018 0.030 0.024 0.023 0.022

Table A.3: The rmse between the original re
ectance signature and its Richter recovery.
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Albedo Bowker Richter (spectral) Richter (spatial)

(Eq. 18) (Eq. 26) (Eq. 27) (Eq. 28)

Identi�ed Identi�ed Identi�ed Identi�ed

Category " mainly as F " mainly as F " mainly as F " mainly as F

Barley 0.49 Basalt 0.99 1.04 Gypsum 1.0 0.04 Barley 0.84 0.02 Barley 0.89

Beans 0.51 Elm 0.50 1.03 Gypsum 1.0 0.04 Beans 0.84 0.02 Beans 0.91

Oats 0.44 Basalt 1.0 1.06 Gypsum 1.0 0.02 Oats 1.0 0.01 Oats 1.0

Potatoes 0.83 D. sand 0.74 0.20 Potatoes 0.70 0.54 D. sand 0.62 0.09 Potatoes 1.0

Wheat 0.54 D. sand 0.97 0.95 Silicon 1.0 0.04 Wheat 0.98 0.02 Wheat 1.0

Fallow �eld 0.42 Basalt 1.0 1.06 Silicon 1.0 0.05 Fallow 1.0 0.05 Fallow 1.0

Silver Maple 0.51 D. sand 0.98 0.96 Silicon 1.0 0.02 Maple 1.0 0.02 Maple 1.0

Burr Oak 0.73 Elm 0.94 1.02 Silicon 0.89 0.09 Oak 0.93 0.04 Oak 1.0

Wet Red Clay 0.91 Basalt 1.0 0.21 W R Clay 0.69 0.60 Powell 0.97 0.05 W R Clay 1.0

Gypsum sand 0.28 Gypsum 1.0 0.19 Gypsum 1.0 0.05 Gypsum 1.0 0.03 Gypsum 1.0

Silicon sand 0.53 Silicon 1.0 0.21 Silicon 1.0 0.08 Silicon 1.0 0.05 Silicon 1.0

Multi-mineral 0.54 Basalt 1.0 1.01 Silicon 1.0 0.09 M. mineral 0.66 0.06 M. mineral 0.67

Whitley soil 0.43 Basalt 1.0 1.04 Gypsum 1.0 0.02 Whitley 1.0 0.01 Whitley 1.0

Water 0.77 Basalt 1.0 0.64 Silicon 0.5 0.39 W. sand 1.0 0.02 Water 1.0

Global 0.45 0.4 0.80 0.4 0.09 0.94 0.04 0.96

Table A.4: Performance assessment of the identi�cation process for �z = 0� and V = 23km.
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Albedo Bowker Richter (spectral) Richter (spatial)

(Eq. 18) (Eq. 26) (Eq. 27) (Eq. 28)

Identi�ed Identi�ed Identi�ed Identi�ed

Category " mainly as F " mainly as F " mainly as F " mainly as F

Barley 0.54 Basalt 1.0 1.48 Silicon 1.0 0.04 Barley 0.83 0.03 Barley 0.88

Beans 0.56 Powell 1.0 1.47 Silicon 1.0 0.05 Beans 0.83 0.03 Beans 0.89

Oats 0.48 Basalt 1.0 1.50 Silicon 1.0 0.02 Oats 1.0 0.02 Oats 1.0

Potatoes 0.92 Gypsum 0.60 0.28 Potatoes 0.60 0.67 D. sand 0.80 0.11 Potatoes 1.0

Wheat 0.61 D. sand 0.93 1.36 Silicon 1.0 0.05 Wheat 0.95 0.03 Wheat 1.0

Fallow �eld 0.45 Basalt 1.0 1.50 Silicon 1.0 0.07 Fallow 1.0 0.07 Fallow 1.0

Silver Maple 0.56 D. sand 0.97 1.37 Silicon 1.0 0.03 Maple 1.0 0.02 Maple 1.0

Burr Oak 0.83 Elm 0.66 1.45 Silicon 1.0 0.11 Oak 0.89 0.05 Oak 1.0

Wet Red Clay 1.01 Basalt 0.54 1.30 W R Clay 0.59 0.75 Powell 0.49 0.07 W R Clay 0.69

Gypsum sand 0.34 Gypsum 1.0 0.27 Gypsum 1.0 0.06 Gypsum 1.0 0.03 Gypsum 1.0

Silicon sand 0.65 Silicon 1.0 0.31 Silicon 1.0 0.10 Silicon 1.0 0.06 Silicon 1.0

Multi-mineral 0.60 Basalt 1.0 1.44 Silicon 1.0 0.11 M. mineral 0.62 0.08 M. mineral 0.64

Whitley soil 0.47 Basalt 1.0 1.48 Silicon 1.0 0.02 Whitley 1.0 0.01 Whitley 1.0

Water 0.86 Basalt 1.0 0.91 Silicon 1.0 0.49 Whitley 1.0 0.03 Water 1.0

Global 0.50 0.4 1.13 0.4 0.10 0.93 0.05 0.96

Table A.5: Performance assessment of the identi�cation process for �z = 30� and V = 15km.

65



Albedo Bowker Richter (spectral) Richter (spatial)

(Eq. 18) (Eq. 26) (Eq. 27) (Eq. 28)

Identi�ed Identi�ed Identi�ed Identi�ed

Category " mainly as F " mainly as F " mainly as F " mainly as F

Barley 0.84 Basalt 0.99 4.49 Silicon 1.0 0.07 Barley 0.81 0.14 Barley 0.89

Beans 0.87 Basalt 0.97 4.50 Silicon 1.0 0.07 Beans 0.80 0.06 Beans 0.89

Oats 0.77 Basalt 1.0 4.55 0.03 Oats 1.0 0.04 Oats 1.0

Potatoes 1.25 Gypsum 1.0 0.82 Wheat 0.27 1.12 Gypsum 0.80 3.00 Elm 0.57

Wheat 0.94 D. sand 0.99 4.13 Silicon 0.89 0.09 Wheat 0.89 0.12 Wheat 0.99

Fallow �eld 0.71 Basalt 1.0 4.55 0.12 Fallow 1.0 0.12 Fallow 1.0

Silver Maple 0.87 D. sand 1.0 4.15 Silicon 0.98 0.05 Maple 0.97 0.22 Maple 0.99

Burr Oak 1.27 D. sand 1.0 4.43 Silicon 0.99 0.20 Oak 0.62 1.52 Oak 0.99

Wet Red Clay 1.37 Gypsum 0.95 0.87 Silicon 0.26 1.23 Gypsum 0.64 2.92 Fallow 0.85

Gypsum sand 0.52 Gypsum 1.0 0.87 Gypsum 1.0 0.09 Gypsum 1.0 0.04 Gypsum 1.0

Silicon sand 1.01 Silicon 1.0 0.93 Silicon 1.0 0.16 Silicon 1.0 0.35 Silicon 1.0

Multi-mineral 0.94 Basalt 1.0 4.39 Silicon 0.93 0.18 M. mineral 0.58 0.11 M. mineral 0.62

Whitley soil 0.75 Basalt 1.0 4.48 0.04 Whitley 0.96 0.03 Whitley 0.99

Water 1.27 Basalt 1.0 2.78 Silicon 0.5 0.84 Basalt 1.0 5.34 Water 1.0

Global 0.78 0.4 3.44 0.43 0.17 0.91 0.07 0.96

Table A.6: Performance assessment of the identi�cation process for �z = 45� and V = 5km.
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V = 5km V = 10km V = 15km V = 23km

Identi�ed Identi�ed Identi�ed Identi�ed

Category " mainly as F Fm " mainly as F Fm " mainly as F Fm " mainly as F Fm

Barley 0.41 Oats 0.78 1.0 0.21 Barley 0.65 0.35 0.16 Barley 0.76 0.24 0.13 Barley 0.78 0.22

Powell 0.09 Oats 0.21 Oats 0.13 Oats 0.13

Beans 0.43 Elm 0.39 0.99 0.22 Beans 0.62 0.38 0.17 Beans 0.72 0.28 0.14 Beans 0.77 0.23

Oats 0.37 Oats 0.15 Elm 0.11 Elm 0.11

Oats 0.25 Oats 1.0 0.0 0.13 Oats 1.0 0.0 0.11 Oats 1.0 0.0 0.10 Oats 1.0 0.0

Wheat 0.47 Wheat 0.66 0.34 0.26 Wheat 0.79 0.21 0.21 Wheat 0.84 0.16 0.18 Wheat 0.90 0.10

D. sand 0.15 D. sand 0.15 D. sand 0.11 D. sand 0.06

Silver Maple 0.33 Maple 0.86 0.14 0.20 Maple 0.94 0.06 0.17 Maple 0.97 0.03 0.16 Maple 1.0 0.0

D. sand 0.06 D. sand 0.03 D. sand 0.01

Burr Oak 0.68 D R clay 0.58 1.0 0.37 D R clay 0.78 1.0 0.29 Oak 0.21 0.79 0.24 Oak 0.69 0.31

D. sand 0.30 Sycamore 0.17 Sycamore 0.57 Sycamore 0.21

Gypsum sand 0.60 Gypsum 0.99 0.01 0.34 Gypsum 1.0 0.0 0.27 Gypsum 1.0 0.0 0.24 Gypsum 1.0 0.0

Silicon 0.004

Silicon sand 0.91 Silicon 1.0 0.0 0.51 Silicon 1.0 0.0 0.41 Silicon 1.0 0.0 0.35 Silicon 0.0 0.0

Multi-mineral 0.77 W. sand 0.58 1.0 0.36 M. Min 0.44 0.56 0.25 M. Min 0.51 0.49 0.18 M. Min 0.56 0.44

Basalt 0.22 W. sand 0.28 W. sand 0.29 W. sand 0.31

Whitley soil 0.25 Whitley 0.86 0.14 0.13 Whitley 0.96 0.04 0.10 Whitley 0.98 0.02 0.09 Whitley 1.0 0.0

Oats 0.07 Oats 0.03 Oats 0.01

Global 0.71 0.36 0.36 0.16 0.27 0.11 0.22 0.09

Table A.7: Performance assessment of Bowker's recovery for �z = 0�.
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V = 5km V = 10km V = 15km V = 23km

Identi�ed Identi�ed Identi�ed Identi�ed

Category " mainly as F Fm " mainly as F Fm " mainly as F Fm " mainly as F Fm

Barley 0.42 Oats 0.78 1.0 0.21 Barley 0.60 0.39 0.16 Barley 0.76 0.24 0.13 Barley 0.78 0.21

Powell 0.09 Oats 0.25 Oats 0.13 Oats 0.14

Beans 0.43 Elm 0.54 1.0 0.22 Beans 0.61 0.39 0.17 Beans 0.72 0.28 0.14 Beans 0.77 0.22

Oats 0.23 Oats 0.15 Elm 0.11 Elm 0.11

Oats 0.26 Oats 0.98 0.02 0.13 Oats 1.0 0.0 0.11 Oats 1.0 0.0 0.10 Oats 1.0 0.0

Elm 0.02

Wheat 0.47 Wheat 0.64 0.35 0.26 Wheat 0.79 0.21 0.21 Wheat 0.85 0.15 0.18 Wheat 0.90 0.10

D. sand 0.15 D. sand 0.15 D. sand 0.11 D. sand 0.05

Silver Maple 0.34 Maple 0.87 0.13 0.20 Maple 0.94 0.06 0.17 Maple 0.97 0.02 0.16 Maple 1.0 0.0

D. sand 0.06 D. sand 0.03 D. sand 0.01

Burr Oak 0.67 D R clay 0.61 1.0 0.27 D R clay 0.76 0.99 0.29 Oak 0.22 0.78 0.24 Oak 0.67 0.31

D. sand 0.29 Sycamore 0.19 Sycamore 0.55 Sycamore 0.22

Gypsum sand 0.60 Gypsum 0.99 0.005 0.34 Gypsum 1.0 0.0 0.27 Gypsum 1.0 0.0 0.24 Gypsum 1.0 0.0

Silicon 0.004

Silicon sand 0.90 Silicon 1.0 0.0 0.51 Silicon 1.0 0.0 0.41 Silicon 1.0 0.0 0.35 Silicon 1.0 0.0

Multi-mineral 0.76 W. sand 0.58 1.0 0.36 M. Min 0.43 0.57 0.25 M. Min 0.51 0.49 0.18 M. Min 0.56 0.43

Basalt 0.23 W. sand 0.29 W. sand 0.29 W. sand 0.32

Whitley soil 0.27 Whitley 0.85 0.15 0.13 Whitley 0.96 0.04 0.10 Whitley 0.98 0.02 0.09 Whitley 1.0 0.0

Basalt 0.06 Oats 0.03 Oats 0.01

Global 0.70 0.36 0.36 0.16 0.27 0.11 0.22 0.09

Table A.8: Performance assessment of Bowker's recovery for �z = 30�.
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V = 5km V = 10km V = 15km V = 23km

Identi�ed Identi�ed Identi�ed Identi�ed

Category " mainly as F Fm " mainly as F Fm " mainly as F Fm " mainly as F Fm

Barley 0.44 Oats 0.74 1.0 0.22 Barley 0.42 0.58 0.16 Barley 0.74 0.26 0.13 Barley 0.78 0.22

Powell 0.14 Oats 0.43 Oats 0.15 Oats 0.14

Beans 0.45 Elm 0.74 1.0 0.22 Beans 0.43 0.43 0.17 Beans 0.72 0.28 0.14 Beans 0.77 0.23

Gypsum 0.09 Oats 0.19 Elm 0.11 Elm 0.11

Oats 0.30 Oats 0.72 0.28 0.15 Oats 1.0 0.0 0.11 Oats 1.0 0.0 0.10 Oats 1.0 0.0

Elm 0.26

Wheat 0.49 Wheat 0.56 0.44 0.26 Wheat 0.79 0.21 0.21 Wheat 0.85 0.15 0.18 Wheat 0.90 0.10

D. sand 0.17 D. sand 0.15 D. sand 0.10 D. sand 0.05

Silver Maple 0.37 Maple 0.80 0.20 0.21 Maple 0.95 0.05 0.17 Maple 0.98 0.02 0.16 Maple 1.0 0.0

Elm 0.09 D. sand 0.03 D. sand 0.01

Burr Oak 0.65 D R clay 0.62 1.0 0.36 D R clay 0.75 1.0 0.28 Oak 0.22 0.78 0.24 Oak 0.69 0.31

D. sand 0.26 Sycamore 0.21 Sycamore 0.56 Sycamore 0.11

Gypsum sand 0.62 Gypsum 0.99 0.0 0.34 Gypsum 1.0 0.0 0.28 Gypsum 1.0 0.0 0.24 Gypsum 1.0 0.0

Silicon 0.004

Silicon sand 0.90 Silicon 1.0 0.0 0.51 Silicon 1.0 0.0 0.41 Silicon 1.0 0.0 0.35 Silicon 1.0 0.0

Multi-mineral 0.75 W. sand 0.58 1.0 0.36 M. Min 0.42 0.58 0.25 M. Min 0.50 0.50 0.18 M. Min 0.56 0.44

Basalt 0.24 W. sand 0.08 W. sand 0.30 W. sand 0.32

Whitley soil 0.30 Whitley 0.61 0.39 0.14 Whitley 0.96 0.04 0.11 Whitley 0.98 0.02 0.09 Whitley 1.0 0.0

Basalt 0.34 Oats 0.03 Oats 0.01

Global 0.69 0.41 0.35 0.18 0.27 0.12 0.22 0.09

Table A.9: Performance assessment of Bowker's recovery for �z = 45�.
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V = 5km V = 10km V = 15km V = 23km

Identi�ed Identi�ed Identi�ed Identi�ed

Category " mainly as F Fm " mainly as F Fm " mainly as F Fm " mainly as F Fm

Barley 0.25 Oats 0.81 0.92 0.13 Barley 0.92 0.08 0.11 Barley 0.87 0.13 0.09 Barley 0.78 0.21

Powell 0.10 Oats 0.25 Oats 0.12 Oats 0.08

Beans 0.26 Elm 0.53 0.96 0.14 Beans 0.82 0.18 0.11 Beans 0.90 0.10 0.10 Beans 0.99 0.22

Oats 0.35 Oats 0.13 Oats 0.10 Oats 0.006

Oats 0.21 Oats 1.0 0.0 0.11 Oats 1.0 0.0 0.09 Oats 1.0 0.0 0.08 Oats 1.0 0.0

Wheat 0.29Wheat 0.86 0.14 0.18 Wheat 1.0 0.0 0.16Wheat 1.0 0.0 0.15 Wheat 1.0 0.0

D R clay 0.9

Silver Maple 0.28 Maple 0.98 0.02 0.18 Maple 1.0 0.0 0.16 Maple 1.0 0.0 0.14 Maple 1.0 0.0

D. sand 0.01

Burr Oak 0.33 D R clay 0.74 0.93 0.23 Oak 0.94 0.06 0.21 Oak 1.0 0.0 0.20 Oak 0.67 0.31

Sycamore 0.17 Sycamore 0.05

Gypsum sand 0.44 Gypsum 1.0 0.0 0.27 Gypsum 1.0 0.0 0.23 Gypsum 1.0 0.0 0.21 Gypsum 1.0 0.0

Silicon sand 0.54 Silicon 1.0 0.0 0.36 Silicon 1.0 0.0 0.32 Silicon 1.0 0.0 0.29 Silicon 1.0 0.0

Multi-mineral 0.29W. sand 0.72 0.92 0.15 M. Min 0.57 0.42 0.12 M. Min 0.63 0.37 0.09 M. Min 0.67 0.33

Basalt 0.23 W. sand 0.41 W. sand 0.36 W. sand 0.33

Whitley soil 0.24Whitley 0.97 0.03 0.12 Whitley 1.0 0.0 0.09Whitley 1.0 0.0 0.08 Whitley 1.0 0.0

Oats 0.02

Global 0.36 0.30 0.22 0.07 0.19 0.04 0.17 0.02

Table A.10: Performance assessment of the identi�cation process after Richter recovery for �z = 30�.

the entire cube, and the global fraction of misidenti�ed pixels. This stochastic assessment shows that the

main weakness of the Bowker recovery technique is the necessity to have an accurate knowledge of the path

radiance. With that knowledge, this technique is as robust to perturbations as is the Richter technique. It

also demonstrates that the identi�cation process improves with improved visibility conditions.

A.3 Richter Re
ectance Recovery Summary

Table A.10 summarizes the quantitative performance of Richter's recovery technique for a stochastic

spatio-spectral end-to-end radiance measurement simulation. The atmospheric acquisition conditions are

�z = 30�, and V = 5km, 10km, 15km, and 23km. Adjacency e�ects are simulated by 10% perturbation of
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the path radiance Lp, and a spatial spread factor of s = 3. Additional stochastic perturbation includes a

10% uncertainty in the re
ectance signature, irradiance perturbations of 10%, and a random sensor noise

n
�i

of 5% of the received radiance signal. This table summarizes the rmse of the recovery process for

each re
ectance area in the hyper-spectral polygon, and lists the two main identi�ed re
ectances for each

category in the cube, together with their local fraction F and the global misidenti�cation fraction Fm. The

table excludes the assessment of water, fallow �elds, wet red clay and potatoes, all of which have fewer

than 100 pixels in the hyper spectral cube, and therefore their stochastic assessment is meaningless.

Tables A.11{A.13 summarize the identi�cation process for incorrect assumptions about the visibility

conditions during acquisition time. The simulation parameters include �z = 30�, 10% perturbation of

�(x; y; �), 10% perturbation of E, 10% perturbation of Lp(x; y; �), a spatial spread factor of s = 3, and

a random sensor noise n
�i

of 5% of the received radiance signal. Camera parameters include an optical

index of �g(�i) = 0:6 and an electronic noise with a SNR of 64 across the spectral bands.
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Assumed V = 5km Assumed V = 10km Assumed V = 15km Assumed V = 23km

Identi�ed Identi�ed Identi�ed Identi�ed

Category " mainly as F Fm " mainly as F Fm " mainly as F Fm " mainly as F Fm

Barley 0.45 Gypsum 0.44 0.92 0.16 Barley 0.95 0.05 0.11 Barley 0.84 0.16 0.14 Oats 0.64 0.72

Powell 0.28 Powell 0.01 Oats 0.10 Barley 0.28

Beans 0.44 Potatoes 0.49 0.89 0.15 Beans 0.95 0.05 0.11 Beans 0.87 0.13 0.14 Beans 0.62 0.38

Gypsum 0.36 Soybeans 0.02 Oats 0.07 Oats 0.31

Oats 0.47 Potatoes 0.80 0.97 0.17 Barley 0.82 0.99 0.11 Oats 0.89 0.11 0.12 Oats 0.95 0.05

Basalt 0.06 Beans 0.10 Barley 0.06 Powell 0.03

Wheat 0.44 Sycamore 0.45 0.74 0.17 Wheat 0.96 0.04 0.15 Wheat 0.96 0.04 0.17 Wheat 0.95 0.05

Tobacco 0.26 D. sand 0.02 D. sand 0.03 D. sand 0.04

Silver Maple 0.45 Oak 0.90 1.0 0.19 Maple 0.89 0.11 0.15 Maple 0.95 0.05 0.17 Maple 0.97 0.03

Elm 0.04 Sycamore 0.08 Wheat 0.04 Wheat 0.02

Burr Oak 0.51 Silicon 0.91 0.95 0.34 Oak 0.96 0.04 0.38 Oak 0.68 0.32 0.44 Sycamore 0.59 0.69

Oak 0.05 Sycamore 0.02 Sycamore 0.30 Oak 0.31

Gypsum sand 0.27 Gypsum 0.996 0.004 0.19 Gypsum 0.997 0.003 0.18 Gypsum 0.997 0.003 0.19 Gypsum 0.997 0.003

D. sand 0.002 D. sand 0.002 D. sand 0.002 D. sand 0.002

Silicon sand 0.50 Silicon 0.998 0.002 0.32 Silicon 0.998 0.002 0.31 Silicon 0.996 0.004 0.34 Silicon 0.995 0.005

D. sand 0.002 D. sand 0.002 D. sand 0.004 D. sand 0.005

Multi-mineral 0.41 Gypsum 0.52 0.78 0.15 M. Min 0.82 0.16 0.14 M. Min 0.60 0.40 0.19 W. sand 0.52 0.61

M. Min 0.22 W. sand 0.10 W. sand 0.32 M. Min 0.39

Whitley soil 0.44 Whitley 0.92 0.08 0.14 Whitley 0.92 0.08 0.08 Whitley 0.94 0.06 0.10 Whitley 0.94 0.06

Oats 0.03 Barley 0.06 Oats 0.04 Oats 0.04

Global 0.41 0.41 0.22 0.05 0.21 0.07 0.23 0.17

Table A.11: The sensitivity of the Richter technique to incorrect visibility assumptions for actual visibility

of 15km.
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True V = 5km True V = 10km True V = 15km True V = 23km

Identi�ed Identi�ed Identi�ed Identi�ed

Category " mainly as F Fm " mainly as F Fm " mainly as F Fm " mainly as F Fm

Barley 0.41 Basalt 0.49 1.0 0.20 Oats 0.89 1.0 0.11 Barley 0.84 0.16 0.14 Barley 0.94 0.06

Powell 0.48 Powell 0.05 Oats 0.10 Powell 0.01

Beans 0.42 Elm 0.69 1.0 0.21 Oats 0.82 0.99 0.11 Beans 0.87 0.13 0.13 Beans 0.95 0.05

Powell 0.26 Elm 0.12 Oats 0.07 Powell 0.01

Oats 0.34 Basalt 0.77 1.0 0.17 Oats 0.95 0.05 0.11 Oats 0.89 0.11 0.15 Barley 0.80 0.92

Powell 0.20 Powell 0.03 Barley 0.06 Beans 0.08

Wheat 0.47 Powell 0.80 1.0 0.26 Wheat 0.95 0.05 0.15 Wheat 0.96 0.04 0.16 Wheat 0.96 0.04

D. sand 0.19 D. sand 0.05 D. sand 0.03 D. sand 0.02

Silver Maple 0.41 Powell 0.72 0.82 0.24 Maple 0.98 0.02 0.15 Maple 0.95 0.05 0.17 Maple 0.90 0.10

Maple 0.18 Wheat 0.01 Wheat 0.04 Wheat 0.05

Burr Oak 0.82 D R clay 0.70 1.0 0.54 Sycamore 0.69 1.0 0.38 Oak 0.68 0.32 0.34 Oak 0.95 0.05

Elm 0.21 Elm 0.13 Sycamore 0.30 Sycamore 0.03

Gypsum sand 0.39 Gypsum 0.998 0.002 0.30 Gypsum 0.997 0.004 0.18 Gypsum 0.997 0.003 0.18 Gypsum 0.997 0.003

Silicon 0.001 D. sand 0.002 D. sand 0.002 D. sand 0.002

Silicon sand 0.69 Silicon 0.99 0.01 0.49 Silicon 0.995 0.005 0.31 Silicon 0.996 0.004 0.31 Silicon 0.998 0.002

D. sand 0.01 D. sand 0.005 D. sand 0.004 D. sand 0.002

Multi-mineral 0.52 W. sand 0.56 1.0 0.26 W. sand 0.84 0.97 0.14 M. Min 0.60 0.40 0.12 M. Min 0.87 0.13

Basalt 0.39 Basalt 0.10 W. sand 0.32 W. sand 0.06

Whitley soil 0.33 Basalt 0.97 1.0 0.14 Whitley 0.94 0.06 0.08 Whitley 0.94 0.06 0.11 Whitley 0.93 0.07

Powell 0.02 Oats 0.03 Oats 0.04 Barley 0.05

Global 0.45 0.59 0.30 0.31 0.21 0.07 0.21 0.04

Table A.12: The sensitivity of the Richter technique to an incorrect visibility assumption of 15km.
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True V = 5km True V = 10km True V = 15km True V = 23km

Identi�ed Identi�ed Identi�ed Identi�ed

Category " mainly as F Fm " mainly as F Fm " mainly as F Fm " mainly as F Fm

Barley 0.19 Barley 0.80 0.20 0.36 Oats 0.73 0.82 0.50 Gypsum 0.49 0.99 0.61 Gypsum 0.89 0.99

Oats 0.09 Barley 0.18 Powell 0.31 Silicon 0.05

Beans 0.20 Beans 0.67 0.23 0.35 Potatoes 0.64 0.69 0.49 Gypsum 054. 0.99 0.61 Gypsum 0.90 0.99

Oats 0.09 Beans 0.31 Potatoes 0.39 Silicon 0.05

Oats 0.17 Oats 0.84 0.16 0.36 Beans 0.77 0.94 0.46 Potatoes 0.75 0.93 0.54 Potatoes 0.70 0.99

Powell 0.20 Barley 0.12 Oats 0.07 Gypsum 0.23

Wheat 0.27 Wheat 0.91 0.09 0.37 Tobacco 0.85 0.92 0.50 Sycamore 0.42 0.59 0.61 Wheat 0.76 0.24

D R clay 0.05 Wheat 0.08 Wheat 0.41 Silicon 0.16

Silver Maple 0.26 Maple 0.94 0.06 0.38 Sycamore 0.68 0.99 0.47 Oak 0.85 0.99 0.54 Oak 0.79 0.98

Wheat 0.05 Oak 0.27 Sycamore 0.06 Elm 0.08

Burr Oak 0.53 Sycamore 0.48 0.56 0.50 Silicon 0.60 0.73 0.62 Silicon 0.98 0.99 0.76 Silicon 0.99 1.0

Oak 0.44 Oak 0.27 Elm 0.01 Wheat 0.005

Gypsum sand 0.34 Gypsum 0.997 0.003 0.31 Gypsum 0.997 0.003 0.34 Gypsum 0.993 0.007 0.39 Gypsum 0.94 0.06

D. sand 0.002 D. sand 0.002 Silicon 0.004 Silicon 0.06

Silicon sand 0.54 Silicon 0.993 0.007 0.53 Silicon 0.997 0.003 0.61 Silicon 0.999 0.001 0.73 Silicon 1.0 0.0

D. sand 0.007 D. sand 0.003 D. sand 0.001

Multi-mineral 0.24 M. Min 0.53 0.47 0.31 Basalt 0.44 0.61 0.48 Gypsum 0.71 0.97 0.62 Gypsum 0.79 0.98

W. sand 0.28 M. Min 0.39 Basalt 0.21 Silicon 0.12

Whitley soil 0.14 Whitley 0.91 0.09 0.34 W R clay 0.95 0.98 0.44 Whitley 0.90 0.10 0.52 Basalt 0.71 0.78

Oats 0.06 Whitley 0.02 W. sand 0.04 Whitley 0.22

Global 0.32 0.11 0.37 0.51 0.46 0.42 0.56 0.48

Table A.13: The sensitivity of the Richter technique to an incorrect visibility assumption of 5km.
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