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Abstract

Given measurement data, a nominal model and a linear fractional transformation uncer-

tainty structure with an allowance on unknown but bounded exogenous disturbances, easily

computable tests for the existence of a model validating uncertainty set are given. Under

mild conditions, these tests are necessary and su�cient for the case of complex, nonre-

peated, block-diagonal structure. For the more general case which includes repeated and/or

real scalar uncertainties, the tests are only necessary but become su�cient if a collinearity

condition is also satis�ed. With the satisfaction of these tests, it is shown that a parame-

terization of all model validating sets of plant models is possible. The new parameterization

is used as a basis for a systematic way to construct or perform uncertainty tradeo� with

model validating uncertainty sets which have speci�c linear fractional transformation struc-

ture for use in robust control design and analysis. An illustrative example which includes a

comparison of candidate model validating sets is given.

1 Introduction

In applying multivariable robust control analysis and synthesis techniques to linear, time-

invariant systems, a particular set of plant models described by a nominal model, uncertainty
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structure, and norm bounds on the model uncertainty and exogenous inputs is required a

priori [1, 2]. In a typical setting, a controls engineer selects or develops a best possible model

either from �rst principles and/or from system identi�cation or parameter estimation. In

situations where the physical conditions are not accurately known nor reliable, the engineer

selects a model uncertainty structure around a best possible nominal model in order to rep-

resent a set of plant models so that robustness of the system can be analyzed and optimized

through feedback control. In many instances where measurements are available, the engineer

can check to see if the given set of plants is consistent with the available measurement data.

Speci�cally [3]-[4], given a robust control design model, does a plant exist within this set

which will reproduce a given input and output measurements, i.e., is the given set of plants

model validating (or more accurately cannot be invalidated) with respect to available data?

There exists a wealth of literature related to model validation, uncertainty modeling and

identi�cation for control (see, for example [5]). Although there have been several successful

methodology validation tests reported recently as in [6]-[10], it appears that there is not a

systematic methodology that can be demonstrated to work for a signi�cant class of problems.

Indeed, this study addresses a variant model validation problem originally formulated in

[3]. In [3], a smallest level of exogenous disturbance that satis�es model validation given a

�xed level of model uncertainty bound is sought whereas in this paper, we seek a smallest

model uncertainty bound that satis�es model validation given an allowance on the exogenous

disturbance. Furthermore, exogenous noise signals of the type B`(2) is assumed in [3] while

we assume that the exogenous noise is a colored white noise signal whose power spectrum is

a known constant over a wideband frequency, i.e. belongs to B`(1).

The model validation question has a binary outcome which can be viewed as a check

on two properties. First, the postulated parameteric and nonparametric uncertainties and

their corresponding interconnections leading to a Linear Fractional Transformation (LFT)

structure is required to be su�ciently rich to admit a perturbed model that will faithfully

reproduce the measured input/output data. In the seminal work in [3], this property is
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referred to as a feasible set. Second, assuming feasibility, the postulated norm bound on the

uncertainties must be su�ciently large to admit a model validating plant. The viewpoint

taken in this paper with regards to model validation is to focus on the �rst property, namely

whether an a priori given LFT structure for an uncertainty model can lead to a model

validating set given some allowance in exogenous disturbance. The rationales for the above

viewpoint are: (i) feasibility question is simpler to address, (ii) if feasibility is not satis�ed,

there is no point in checking the second property, (iii) once feasibility is satis�ed, a model

validating set can almost always be constructed, using the results in this paper. The above

viewpoint suggests a slight adjustment in the model validation paradigm, namely, it is not

of prime signi�cance whether a particular set satis�es model validation since if feasibility is

satis�ed, model validating sets are highly non-unique.

For brevity, we highlight only closely related earlier work to our approach. In an early

attempt to obtain a simpler problem formulation and solution than the approach taken by [3]

to [6], [8] considered a special case where all exogenous inputs are either known or are very

small and occur only at the output. This attempt was subsequently applied to an experi-

mental testbed with encouraging results [9]. Although the approach taken in [8], [9] appears

to work reasonably well for problems with an arbitrary number of structured full complex

blocks only, it became clear through applications that problems with parametric (and often

real repeated) uncertainties gave unsatisfactory results. This was somewhat expected be-

cause the additional structure in the repeated scalar uncertainties was not incorporated in

the original problem formulation. Hence, the most recent work reported in [11] extends the

previous approach to include repeated and/or real scalar parametric uncertainties along with

an arbitrary number of full complex blocks. This paper provides the detailed proofs omitted

in [11], expands the uncertainty set to include unknown but bounded output noise and/or

disturbance to the plant, and ultimately parameterize all model validating sets for a �xed

LFT structure. We also discuss and provide a means to cope with the issue of determin-

ing non-parametric uncertainty bounds in the presence of constant parametric uncertainties.
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The formulation in this paper is for a closed loop system and the open loop con�guration is

obtained as a special case.

In Section 2, a problem de�nition is given whereby uncertainty bounds are viewed as

bounds on �ctitious uncertainty signals which satisfy P � � transmission conditions while

resulting in zero output errors. In Section 3 we derive existence conditions for a model vali-

dating set followed by a parameterization of all model validating sets and associated signals.

In Section 4, we outline possibilities in utilizing the parameterizations given in Section 3. A

smallest set formulation is discussed in which allowances are given to parametric uncertain-

ties similar to the treatment of bounded but unknown exogenous random disturbances. A

smallest set refers to a smallest normed set of non-parametric uncertainties, i.e., unmodeled

dynamics. An illustrative example is given in section 5 which includes the computation and

comparison of three model validating sets. Section 6 concludes the paper.

2 Problem De�nition

For a given approximately linear and time-invariant physical system, suppose a controller,

K, is known to be internally stabilizing and we can measure its inputs, u, command inputs, r,

and the outputs, y, as shown in Figure 1. The exogenous disturbances consist of measurement

noise at the output and exogenous disturbances either through the control input channel or

through a separate path. To accommodate this, a noise �lter, V , and a disturbance �lter

imbedded in the augmented nominal plant, P are assumed. Both �lters are assumed driven

by unknown but bounded independent random signals. The closed loop output of the plant

model, ~y, is a sum of responses due to �ltered noise, �, and disturbances, �, known input

signal, r, all subject to feedback between a known controller, K, and a plant which belongs

to a set de�ned by an upper LFT model,

Fu(P;�) := [P22; P23] + P21�(I � P11�)
�1[P12; P13]

where the structured uncertainty is de�ned by � 2 D, where

D := f� 2 Cm�n : � = diag(�1In1; : : : ; �rInr ;�r+1; : : : ;�� ); �i 2 Fi;�i 2 Cmi�nig (1)
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and � denotes the number of uncertainty blocks and Fi is either the �eld R of real numbers

or the �eld C of complex numbers at the designer's choosing. A corresponding set of bounded

structured uncertainty is de�ned by

DW := f� 2 D : � = �BW; ��(�B) � 1g (2)

where the elements of the diagonal matrix, W := diag(w1In1; : : : ; w�In� ), denotes the scaling

radii applied to the blocks of the structured uncertainty unit ball as de�ned by ��(�B) � 1.

For convenience, combine both exogenous disturbances � and � into a single disturbance

vector

� :=

(
�
�

)
(3)

The model in a canonical form is shown in Figure 1. For an open loop problem, G(P;K; V ) =

G(P; 0; V ), and r = u, and all the remaining developments remain the same. Of course

the coupling e�ects of the noise and disturbances with the model uncertainties are more

complicated due to feedback. Note also that since r and K are assumed known, as is

typical in many applications, if the output error, ey := y � ~y = 0, then the input error,

eu := u� ~u = 0. This means that it is su�cient to impose ey = 0 only.

Suppose the measurements are taken in the discrete-time domain and consider a dis-

crete frequency domain formulation, so called Constant Matrix case in [3]. For simplicity,

we assume that a discrete Fourier transform has been performed and do not consider the

additional a�ects of realistic signal conditioning operations typically performed on the raw

discrete-time signals. Since ��(�) = maxi ��(�i) and we are primarily concerned with the

size of the uncertainty blocks, it is of interest to note that uncertainty bound in terms of its

maximum singular value can be written as a ratio of norms

��(�i) := sup
�0i

k�i�
0
ik

k�0ik
� k�ik
k�ik 1 � i � � (4)

where col(�1; � � � ; ��) and col(�1; � � � ; �� ) are the partitioning of the vectors � and � which

conform to the block diagonal partition of � in Equation (1). Of course �ctitious signals � and

� cannot be measured nor are they arbitrary so that it is necessary to look at their dependence
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on real signals u and y and their transmission through a postulated system G(P;K; V ) at

each frequency. The signals, � and �, whose norm ratios determine the uncertainty sizes,

must be consistent with their transmission through the nominal plant model and uncertainty

structure. The signals must also reproduce the measured inputs and outputs with some help

from simulated exogenous disturbances which are assumed unknown but bounded by known

bounds.

The output error is given by

ey := y � ~y = eoy �G21� �G22� (5)

where eoy := y � G23r denotes the nominal output error due to the nominal plant in closed

loop. The terms G21� and G22� in Equation (5) represent the uncertainty freedoms in an

attempt to negate the nominal output error. The �rst term corresponds to the uncertainty

freedom in an LFT structured uncertainty model, and the second term is an allowance given

to unknown but bounded exogenous noise and disturbances in the system.

De�nition (Model Validation) [3]:

Given measurements of the input signal, r, output signal, y, and noise �lter, V , an

augmented nominal plant model, P , with a disturbance �lter, a controller, K, and a set of

bounded structured uncertainty, DW . The set of plants (robust control design models)

PW := fFu(P;�);� 2 DWg

is said to be a model validating set if it contains an uncertainty model � 2 DW such that

there exists exogenous disturbance signals, �, � with jj�jj � 1 for which

y = Fu(G(P;K; V );�)
8><
>:
�
�
r

9>=
>; :

In short, a set of plants is model validating if it can reproduce the given measurements

while subject to a priori constraints, but of course, as noted earlier [3]-[6], one can never

really \validate" a model since fresh data could potentially invalidate it. Notice that the

assumption in the exogenous signal is di�erent from the original problem de�nition in [3].
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A comment is in order about the combining of the two exogenous disturbance vectors

� and � into the single vector �. They are applied at dissimilar points of the plant model,

and in many ways it would seem natural to keep them separate and, perhaps, de�ne model

validating set in terms of independent bounds on the two signals; typically, k�k � 1 and

k�k � 1. However, the mathematics used in Lemma 2 in deriving the parameterization of

model validating signals requires that � be bounded in the `(2) (Euclidean) norm, and the

argument would not work if, instead, � were bounded by the hybrid `(1)=`(2) norm which

would be equivalent to the individual bounds on � and �. However, the two conditions are

fairly close to each other:

k�k � 1 ) k�k � 1 and k�k � 1 ) k�k �
p
2

In the case that one or the other of � and � is negligible, then k�k is approximately equal

to the norm of the other, and even in the general case, the discrepancy between the two

bounding paradigms is only
p
2, independent of the dimensions of � and �.

In this paper, we characterize model validation in a way that will allow a convenient pa-

rameterization of all model validating uncertainty sets with respect to available input/output

measurement for a given LFT structure. The idea is that the engineer will ultimately select

a particulat set of model validating uncertainty weights based on the particular application.

To this end, we �rst investigate a feasibility condition (or necessary condition) for model

validation: at each frequency, is there a pair (�; �) subject to k�k � 1 which makes the out-

put error in Equation (5) zero? Note that once G, r, �, and � are speci�ed, � is completely

determined. The next step is to incorporate the constraints due to a priori structure in the

uncertainties which may limit the feasible (�; �) signals. This leads to necessary and su�-

cient conditions for model validation. The �nal step is to parameterize all model validating

sets of plant models.

It is clear that if the noise vector � is not restricted by a �xed bound, then any output

residual can be zeroed out (without any help from � and/or �) if the noise �lter V is

non-singular. In this paper we assume that the noise �lter V is given (as part of the a
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priori model assumption or a reasonable model determined from earlier system identi�cation

experiments) and the noise vector at each frequency is norm bounded by 1. This output

noise model can be viewed as a model of a broad band exogenous noise typi�ed by sensor

noise. Of course when judicisouly chosen, V can re
ect a priori bounds on the noise intensity

or power spectrum of the unknown exogenous signal over a bandwidth of interest. The input

vector, �, is meant to denote unknown but bounded exogenous disturbances on the physical

system. As an example, in aeroservoelasticity applications, � will denote white noise input

to a gust �lter imbedded in P12 and P22.

3 Parameterization of Model Validating Sets

In this section, we develop a theory to e�ectively parameterize all model validating uncer-

tainty sets which satisfy a priori assumptions on the LFT structure and exogenous distur-

bances. We begin by �rst addressing the question: when does there exist a norm bounded

combined exogenous disturbance � with k�k � 1 and a � 2 Cn� such that ey = 0? At this

point, notice that � is not required to be limited by any given bound or structure. To answer

the above question we �rst state a lemma, set some notation, and make some observations.

Lemma 1:

Let A be a matrix whose singular value decomposition (SVD) is

A =
h
U1 U2

i " �1 0
0 0

# "
V H
1

V H
2

#
; (6)

where U = [U1 U2] and V = [V1 V2] are unitary, �1 is diagonal and nonsingular, and the block

matrix partitionings are conformal. Let b be a vector and c a non-negative real constant.

Then the inequality

kAx+ bk � c (7)

has a solution x if and only if

kUH
2 bk � c: (8)
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Then the general solution to the inequality (7) is parameterized by

x = V1y + V2z (9)

y = ��11 (w � UH
1 b) (10)

where z is arbitrary, and w is any vector with

kwk �
q
c2 � kUH

2 bk2: (11)

Remark:

One or both of two special circumstances may apply to the SVD of A: A might be of

full row [column] rank in which case the U2 [V2] matrix is missing from the SVD, as is the

bottom row [right column] of zeros in the diagonal matrix of singular values. The following

modi�cations make Lemma 1 and its proof remain correct under any combination of these

circumstances. If A is of full row rank, then consider kUH
2 bk to be 0 and remove the U2 lines

from Equations (12) and (13). If A is of full column rank, then remove any reference to z

and V2 and realize that w subject to the inequality (11) is the only free parameter in the

parameterization of solutions to the inequality (7). The necessary and su�cient condition in

equation (8) is saying that the norm of the projection error of b onto U2 must be less than

or equal to the given inequality bound.

Proof of Lemma 1:

Note that x can always be written as V1y+V2z by taking y = V H
1 x and z = V H

2 x. Now,

from the SVD of A, AV2z = 0, and AV1y = U1�1y. Therefore, for arbitrary y and z, if

x = V1y + V2z then kAx + bk2 � c2 if and only if kU1�1y + bk2 � c2. Since U is unitary,

multiplying by UH preserves norm, so the last inequality is equivalent to





"
UH
1

UH
2

#
U1�1y +

"
UH
1

UH
2

#
b







2

� c2: (12)

In its turn, this is equivalent to 




 �1y + UH
1 b

UH
2 b







2

� c2: (13)
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This can be rewritten as

k�1y + UH
1 bk2 � c2 � kUH

2 bk2: (14)

So on the one hand, if inequality (7) has a solution, then that solution �ts the param-

eterization given in Equations (9) { (11) and condition (8) is satis�ed. On the other hand,

if condition (8) is satis�ed and �rst w and z and then y and �nally x are picked according

to the parameterization given in Equations (9) { (11), then this x provides a solution to

inequality (7). 2

3.1 Constant Matrix Test

If we set M := [G21; G22], then the condition ey = 0 can be written as

M

(
�
�

)
= eoy: (15)

This provides the �rst necessary condition for the existence of � with k�k � 1 and � for

which ey = 0; namely:

eoy 2 Im(M) (16)

Observe that if V is invertible, then condition (16) is true, since M has full row rank.

Physically, this means that if the noise model at output is allowed to in
uence all output

channels, then any output signal can be validated (without any help from � and/or �) if the

noise is not constrained by a bound. Also, condition (16) is necessary and su�cient for the

existence of � 2 Cn�+n� and � for which ey = 0. The remainder of this discussion is aimed

at �nding a condition to insure that k�k � 1.

If condition (16) is satis�ed, then Equation (15) is solvable, and a complete parameteri-

zation of the solutions is given by

(
�
�

)
=M+eoy +NM�; (17)

where NM is a matrix whose columns form a basis for Ker(M), and the parameter � is

arbitrary. The notation (�)+ denotes the Moore-Penrose pseudo-inverse of (�).
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Notation: Let a be a vector de�ned by an equation of the form a = Ax+By+ � � �, and let
b be a subvector of a. Then by (A)b, (B)b, etc., we are referring to those submatrices of A, B,

etc., containing the complete rows of the respective matrices so that b = (A)bx+(B)by+ � � �.
Equation (17) then implies that

� = (M+)�e
o
y + (NM)�� (18)

and the problem is to characterize those � for which k�k � 1.

This can be done by a direct application of Lemma 1. First perform an SVD of (NM)�

as in Lemma 1:

(NM)� =
h
T1 T2

i " �1 0
0 0

# "
UH
1

UH
2

#
(19)

Then, by Lemma 1, Equation (18) can be solved for � with k�k � 1 if and only if

kTH2 (M+)�e
o
yk � 1: (20)

Then, the general solution to k�k � 1 subject to Equation (18) is given by

� = U1
 + U2 (21)


 = ��11 (�� TH1 (M+)�e
o
y) (22)

where  2 Cn is arbitrary, and � 2 Cn� is any vector with

k�k � bo :=
q
1� kTH2 (M+)�eoyk2: (23)

In light of the de�nition in Equation (23), the necessary condition in (20) implies bo � 0.

Lemma 2 (Constant Matrix Test):

With the context and notation established in the previous paragraphs, the following are

equivalent:

1. There exists (�; �), k�k � 1 such that y = G21� +G22� +G23r.

2. Conditions (16) and (20) hold.
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If these conditions are satis�ed, then all such triples (�; �; �) are given by the parameterization(
�
�

)
=

(
�o
�o

)
+ 


(
�
 

)
(24)

where


 := NMU

"
��11 0
0 I


#
(
�o
�o

)
:=

h
M+ �NM((NM)�)

+(M+)�
i
eoy

and where  is arbitrary, and � satis�es inequality (23).

Remark: The number of free parameters (�;  ) as de�ned by Equation (24) is given

by n� + n = dim(Ker(M)), and the dimension of the identity matrix, I
, is n� + n �
rank(NM)�.

Proof of Lemma 2:

The existence of a triple (�; �; �) with the desired properties is equivalent to the solvability

of Equation (15) with k�k � 1. We have already seen that Equation (15) can be solved with

k�k � 1 if and only if conditions (16) and (20) hold, and all such solutions are parameterized

by Equations (21) { (23). When a value of � as given by the parameterization in Equations

(21) { (23) is substituted in Equation (17) to eliminate � and then 
, the expression for the

triple (�; �; �) given Equation (24) results. 2

Lemma 2 gives a test resulting in either a yes or no answer. It is only concerned with

testing the richness of the a priori LFT uncertainty structure and chosen levels of measure-

ment noise and disturbance allowance against a given set of measured input and output data.

Whether such � can be generated through the LFT uncertainty and how large it must be

remains to be seen. If the test in Lemma 2 fails, then the model is invalidated either due to

overly restricted levels of noise and/or disturbance and/or insu�ciently rich uncertainty LFT

structure. What course of action should be taken if the Lemma 2 test fails is not considered

in this paper. Of course, at this point, increasing the magnitude of the LFT uncertainty

bound will not help.
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Suppose the conditions of Lemma 2 are satis�ed. Indeed, Lemma 2 gives a parameteri-

zation of the set of all � that produces zero output error. That � is given by this parameter-

ization provides a necessary condition that � be a signal in a model validated robust control

design model. For su�ciency, � must also satisfy the G�� feedback conditions

� = �� (25)

� = G11� +G12� +G13r (26)

Since � can be readily computed from Equation (26) for a given � and �, we group Equations

(24) and (26) as follows:

(
�
�

)
=

(
�o
�o

)
+

"
G11 G12

In� 0n��(n�+n�)

#



(
�
 

)
(27)

Here,

�o :=
h
G11 G12

i ( �o
�o

)
+G13r;

and the norm of � is subject to condition (23). Equation (27) characterizes the set of all

(�; �) vectors that produces zero output error. Of course, this set may be further constrained

by the uncertainty structure given by Equation (25), which motivates the next lemma.

Consider a basic fact from linear algebra as noted earlier in [8]:

Lemma 3:

If u 2 Cm, v 2 Cn, v 6= 0, then there exists A 2 Cm�n such that Av = u, and ��(A) = kuk
kvk

.

Remark: If Av = u, then kAk = ��(A) � kuk
kvk

, so this lemma is asserting that an A of

the minimal possible norm does exist which maps v onto u. This will �nd application in

this paper in demonstrating the existence of model validating blocks �i of minimal possible

norm.

3.2 Full Complex Blocks Only

We now work toward determining when there exist model validating � 2 D with the implicit

assumption of structured, full complex blocks only for � in this section. To this end, we
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start with uncertainty signals � and � which satisfy Equation (27) and look for � for which

Equation (25) is also satis�ed. Partition � and � into components corresponding to the block

structure of � so that Equation (25) could be written as

�i = �i�i; i = 1; : : : ; � (28)

Since, for each i = 1; : : : ; � , �i = �i�i, one can never have both �i 6= 0 and �i = 0 (cf.

Lemma 3). However, the parameterization in Equation (27) does not guarantee that these

conditions never occur. To have some terminology to use to indicate that we are excluding

this possibility, we make the following de�nition:

De�nition (D-realizable):
A signal pair (�; �) will be called D-realizable if, for each i = 1; : : : ; � , either �i = 0 or

�i 6= 0.

Satisfaction of the test in Lemma 2 allows a cancellation of the nominal output error

by a combination of the �ctitious signals from the uncertainty block and a norm bounded

exogenous disturbance while it will be shown that Lemma 3 guarantees that a structured, full

complex uncertainty always exists for any D-realizable pair (�; �) which satisfy Equation (27).
We state an existence condition and a parameterization of all model validating uncertainty

sets as follows:

Theorem 1 (structured, full complex blocks):

Suppose the conditions given in Lemma 2 are satis�ed. Then, all model validating sets

of plants are given by

PW� := fFu(P;�);� 2 DWg (29)

where  2 Cn , � 2 Cn�, k�k � bo, W := diag(w1In1 ; : : : ; w�In� ) is any diagonal complex

matrix whose diagonal elements satisfy

jwij � k�ik
k�ik ; i = 1; : : : ; �; (30)
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and the (�; �) pair parameterized by � and  as given in Equation (27) is D-realizable.

Proof of Theorem 1:

It is �rst demonstrated that each PW� described in the statement of Theorem 1 is a

model validating set. Since the conditions of Lemma 2 are satis�ed, the � given by Equation

(27) combines with an exogenous disturbance � for which k�k � 1 to produce ey = 0.

Therefore, PW� will be model validating if there exists � 2 DW for which Equation (28)

is satis�ed. We construct this � block by block. If �i = 0, then �i and �Bi may be taken

to be 0 and ��(�Bi) = 0. If �i 6= 0, then since (�; �) is a D-realizable pair, �i 6= 0 and by

Lemma 3, there exists a �i with �i�i = �i and ��(�i) = k�ik=k�ik. This means that if

wi 6= 0 and �Bi := (1=wi)�i, then ��(�Bi) � 1 (if wi = 0, �Bi may be chosen arbitrarily

with ��(�Bi) � 1). It follows that if �B := diag(�B1;�B2; � � � ;�B� ), then ��(�B) � 1. Then

� = �BW 2 DW , so PW� is model validating.

Now let PW be an arbitrary model validating set. Let � 2 DW zero the output error for

some � where k�k � 1. Then there exist signals � and � which satisfy Equations (25) and

(26) such that � zeros out the error with some � where k�k � 1. Then by Lemma 2, there

exist � satisfying condition (23) and  such that � and � are expressed in terms of � and  

by Equation (27). Since �i = �i�i for all i = 1; : : : ; � , the pair (�; �) must be D-realizable,
and k�ik = k�i�ik � ��(�i)k�ik � jwijk�ik, the last inequality holding because � 2 DW .

This establishes that PW = PW� . 2

For practical applications where theD-realizable assumption is typically satis�ed, Lemma

2 can be viewed as a necessary and su�cient condition for the existence of a model validat-

ing set for an LFT with only structured full complex blocks. The issue that remains is how

large must the uncertainty size be for model validation, which is addressed in Theorem 1.

For �xed parameters � and  , the smallest model validating uncertainty set is given by

jwij = k�ik
k�ik

; i = 1; : : : ; � . This is the minimum norm model validating result reported in [8]

and any choice of uncertainty set bounds fwi; i = 1; : : : ; �g for which jwij < inf  ;�
k�k�bo

k�ik
k�ik

for

some i, will not be a model validating set.
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3.3 Repeated Scalar Blocks

For a more general uncertainty structure which includes repeated and/or real scalar blocks,

we assume for convenience, that all repeated scalar blocks are grouped into the �rst r blocks

in � as given in Equation (1). Since � is further restricted, the conditions in Lemma 2

or Theorem 1 becomes only a necessary condition for model validation. So, with repeated

scalar blocks, we ask whether, among all D-realizable pairs (�; �) satisfying Equation (27)

with � subject to the norm condition (23), a pair exists for which a � of the form given in

Equation (1) also exists so that Equation (25) is satis�ed?

First, note that given any such D-realizable pair (�; �), �r+1, : : :, �� always exist by

Lemma 3, so we need to consider only the existence of the �rst r blocks, �1In1 , : : :, �rInr where

�i 2 Fi. Let us denote �n :=
Pr
i=1 ni = �m :=

Pr
i=1mi. A model validating uncertainty set

exists for a system with repeated scalar block if and only if there exists �i 2 Fi, i = 1; : : : ; r,

 , �, k�k � bo such that

�i = �i�i; i = 1; : : : ; r (31)

where from Equation (27):

�i = �o;i + 
i

(
�
 

)
(32)

�i = �o;i + [G11 G12]i


(
�
 

)
(33)

The subscript i indicates that the correct blocks of rows have been selected for Equations

(32) and (33) to make sense in the context of Equation (27) and the decompositions of �

and �.

The condition in Equation (31) can be seen as a collinearity condition in the vector

space Cni with coe�cients from the �eld Fi. Consequently, a measure of distance between

two subspaces can be used (see for example [12])

dist(Fi)(�i; �i) := kP (Fi)
�i

� P (Fi)
�i

k (34)

where P
(Fi)
�i

and P (Fi)
�i

denote orthogonal projections onto the subspaces spanned over the
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�eld Fi by the single vectors �i and �i, respectively. As an illustration, in the case of one

dimensional subspace in R3, the distance measure as given by Equation (34) reduces to the

sine of the angle between the two lines. We summarize our results as follows:

Theorem 2 (with repeated scalar block):

(a) Suppose the conditions in Lemma 2 are satis�ed. Then a model validating set exists

with �i = �iIni; i = 1; : : : ; r; �i 2 Fi if and only if there exists  , and � with k�k � bo such

that the (�; �) pair as given in Equation (27) is D-realizable and for each i = 1; : : : ; r,

either �i = 0 or dist(Fi)(�i; �i) = 0 (35)

where �i and �i are given by Equations (32) and (33).

(b) Furthermore, if a model validating set exists, then all such sets are given by Equation

(29) whereW is any diagonal complex matrix whose diagonal elements satisfy condition (30)

and the (�; �) pair parameterized by � and  as given in Equation (27) is D-realizable and
satis�es condition (35).

In order to prove Theorem 2, we �rst introduce a lemma.

Lemma 4:

For each �xed i, condition (35) holds if and only if there exists a �i 2 Fi such that

�i = �i�i.

Proof of Theorem 2:

First, suppose that there exist  and � with k�k � bo such that the (�; �) pair as given

in Equation (27) is D-realizable and condition (35) holds. Then by Theorem 1, any set

PW� as given in Equation (29) with W satisfying condition (30) is model validating. Let

� 2 DW be a model validating uncertainty model. The key properties of � are that, for

each i = 1; : : : ; � , k�ik � jwij and �i = �i�i. Because of condition (35), Lemma 4 tells

us that we can replace each �i for i = 1; : : : ; r by a matrix of the form �iIni with �i 2 Fi
and still have �i = �i�i. Also, since �i = �i�i and W satis�es condition (30), we still have

k�ik � jwij with this new �i. This establishes the \if" part of Theorem 2(a), and shows
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that every model validating set with the speci�ed repeated scalar blocks has the form shown

in Theorem 2(b).

Now suppose that a model validating set D exists which contains a model validating

uncertainty model � with �i = �iIni; i = 1; : : : ; r; �i 2 Fi. Theorem 1 tells us that D must

satisfy all of the conclusions of Theorem 2(b) except possibly the condition (35). However,

since for each i = 1; : : : ; r, �i = �iIni, it follows from Lemma 4 that condition (35) is satis�ed.

This completes the proof that every model validating set falls under the description given in

Theorem 2(b), and completes the \only if" part of the proof of Theorem 2(a). 2

4 Uncertainty Bound Tradeo�

With the parameterization of all model validating uncertainty sets given by Theorems 1

and 2, a controls engineer still faces the issue of how to utilize the remaining freedom.

Speci�cally, one may ask: can we �nd a smallest set from the given parameterization of

all model validating uncertainty sets? This begs the issue of which \smallest set" for this

underdetermined problem. For a single uncertainty block problem, a smallest-norm model

validating uncertainty appears to be a physically reasonable uncertainty bound based on

Ockham's razor argument in modeling physical systems. However, for problems with a

general LFT uncertainty structure which can be viewed as a multi-objective problem, an

uncertainty bound having a smallest norm may not have any concrete physical justi�cation.

This is because for problems with multiple uncertainty blocks, their relative numerical values

do not necessarily indicate their relative physical signi�cance. For example, in robust stability

[13], the determination of whether a controller guaranteeing robust stability exists or not

may depend more strongly on the distribution of the uncertainty bounds over a given set of

uncertainty components than on the size of largest uncertainty component.

In this section, we outline two algorithms based on constrained nonlinear optimization

to determine a smallest uncertainty set. One starting point for an optimization would be

for the designer to select an augmented nominal plant model, P , a noise allowance �lter, V ,
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and a matrix, W , of desired levels of uncertainty in the blocks. The important feature of

W is that the relative sizes of the wi re
ect the designer's wishes as to the relative size of

the uncertainty levels in the di�erent blocks. A smallest uncertainty set search algorithm is

outlined as follows:

1. select (P;D; V )

2. test feasibility of (P;D; V ) against (r; y).

3. select W

4. �nd smallest x such that P(xW ) is model validating

If the feasibility test in Step 2 fails, redo Step 1 until it passes. For uncertainty structure

with only full complex blocks, Step 2 is simply a constant matrix test given in Section 3.1,

otherwise, Step 2 can be included as a constraint in Step 4 (see Remark in Section 4.3). Using

P(xW ) from Step 4 and a chosen performance weight, a robust controller can be obtained

by � synthesis. If the closed loop system is determined to be unsatisfactory or suspected to

be unrealistic, a new model validating set can be obtained by reselecting the weights W in

Step 3 and repeating Step 4. In Step 4, if the chosen W is a desired set of weights and the

computed smallest x is less than 1, then the postulated robust control design model, PW
can be considered to be model validating.

As a prelude to trying to optimize uncertainty levels during a tradeo�, the necessary

conditions (16) and (20) for the existence of model validating sets, should be checked. If all

of the output channels are being modeled as having noise in them, so that the V matrix is

non-singular, then the matrix M is of full rank, and condition (16) always holds. However,

if the diagonal matrix V does have zeros on the diagonal (or, for the general case V � 0

for fully populated V ), then a check on condition (16) can be made by �rst performing an

SVD on M : M = UM�MV
H
M where UM and VM are unitary and �M is a non-negative real

diagonal matrix of the same shape as M whose diagonal elements are in decreasing order.

Condition (16) also holds if M is full rank which is equivalent to �M having no zero rows.
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If M is rank de�cient, then partition UM = [UM1; UM2] where the block UM1 corresponds to

the non-zero rows of �M and the block UM2 corresponds to the zero rows of �M . Then a

necessary and su�cient condition in the case of rank de�cient M for condition (16) to hold

is that UM2e
o
y = 0. To verify condition (20), the SVD of M is computed in the form:

M =
h
UM1 UM2

i " �M1 0
0 0

# "
V H
M1

V H
M2

#
(36)

In this decomposition, U = [UM1 UM2] and V = [VM1 VM2] are unitary, �M1 is diagonal

and nonsingular, and the block matrix partitionings are conformal. Then, in Equation (17),

M+ = VM1�
�1
M1U

H
M1 and NM can be taken to be VM2. Then, (NM)� is decomposed as in

Equation (19), and all of the components are at hand to execute the test in condition (20).

4.1 Full Complex Blocks

The idea is to normalize all uncertainties using desired levels of uncertainty in the uncertainty

blocks, and then seek the smallest model validating scaled set. Speci�cally, we propose using

nonlinear constrained optimization with  and � as the design parameters to �nd a minimal

positive x such that P(xW ) is a model validating set.

By Theorem 1, P(xW ) is a model validating set if there exist  and � with k�k � bo such

that

xjwij � k�ik
k�ik ; i = 1; : : : ; � (37)

where the vectors � and � calculated from  and � in Equation (27) form a D-realizable
pair. This implies that P(xW ) = P(xW ) �. By squaring and clearing fractions, the previous

inequality can be combined with the D-realizability condition in the single inequality in

Equation (39). This also has the advantage of being a polynomial in x and the components

of � and �. The optimization problem can now be stated:

A Smallest Set (Full Complex Blocks):

min
 ;�;x

x (38)
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subject to

k�ik2 � x2jwij2k�ik2 � 0; i = 1; : : : ; � (39)

x � 0 (40)

k�k � bo (41)

where �i and �i are given by Equations (32) and (33).

For the special case where the noise is known or given, the parameter � is unbounded

and Equation (41) is no longer needed. This is the case derived earlier as a minimum norm

model validating solution [8]. For the class of problems where the uncertainty structure is

such that all �i's are completely determined by input and output data (for example additive,

multiplicative, additive feedback, etc), a feasible set in the above optimization algorithm

is convex for any given x. Hence for this special class of uncertainty structure, the model

validation test (with x = 1) can be seen as a convex feasibility problem as noted earlier [4].

4.2 Repeated Scalar Blocks

For the case with repeated and/or real scalar blocks, an optimization algorithm similar to

full complex block case but with the additional collinearity condition is proposed. Similarly,

by Theorem 2, P(xW ) is a model validating set if there exist  and � with k�k � bo such that

condition (35) is satis�ed where �i and �i is a D-realizable pair parameterized by Equations

(32) and (33). Instead of using the distance condition in Equation (35) to guarantee existence,

Equation (31) is used. The tradeo� is that Equation (35) leads to a quartic in the design

variables while Equation (31) leads to only a quadratic at the expense of additional variables,

�1,: : :, �r. Note that the collinearity condition for the set of r repeated scalar blocks and the

D-realizability condition leads to a simpli�cation of the �rst r set of inequality constraints

in Equation (39). The optimization problem can now be stated:

A Smallest Set (With Repeated and/or Real Scalar Blocks):
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min
 ;�;�1;:::;�r;x

x (42)

subject to

�i 2 Fi i = 1; : : : ; r (43)

�i = �i�i; i = 1; : : : ; r (44)

j�ij2 � x2jwij2 � 0; i = 1; : : : ; r (45)

k�ik2 � x2jwij2k�ik2 � 0; i = r + 1; : : : ; � (46)

x � 0 (47)

k�k � bo (48)

where �i and �i are given by Equations (32) and (33).

Remark: In Section 4 constant matrix tests were given which were necessary, but not

su�cient for the existence of a model validating set for the case that some uncertainty

blocks have repeated scalar blocks. Such a su�cient condition is found by the existence of a

feasible point in the preceding optimization problem. In particular, in order to have a model

validating set in this case, it is necessary to satisfy constraints (43) and (44). The existence

of a feasible point is also su�cient for satisfying D-realizability. Note also that the above

constraints involve polynominals in �;  ; �1; : : : ; �r; x which are at most quartic.

To summarize, the above optimization algorithm has the following physical signi�cances.

The cost in Equation (42) represents a positive scaling factor of the normalized (by user

provided desirable weights) uncertainty norm bounds for each component. Inequalities (45)

and (46) represent the scaled bounds on r repeated scalar uncertainties and the � � r non-

repeated full complex uncertainty bounds, respectively. A violation of these inequalities

implies that xjwij is not an upper bound on the ratio of signal norms, i.e., it fails as an

uncertainty bound. Clearly, inequalities (45) and (46) will more likely be satis�ed with

larger weights xjwij, which makes intuitive sense. The collinearity condition in Equation

(44) represents the necessary structural constraints due to the repeated scalar uncertainties.
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Inequality (47) is the non-negative condition on the uncertainty scale factor. Note that

x � 1 indicates that the current scaling makes the uncertainty bounds larger or equal to the

a priori target while x < 1 indicates that there exists a smaller (for every component) model

validating set than the a priori target. Finally, inequality (48) represents a noise allowance.

4.2.1 Real Parametric Uncertainties

In the uncertainty optimization algorithm such as Equations (42)-(48), optimistic (to an

unknown degree) levels of non-parametric uncertainty bounds are expected since the uncer-

tain parameters are free to be a function of frequency although subjected to �xed lower and

upper bounds. In � analysis and synthesis, the uncertainty is only restricted to be norm

bounded and stable and therefore will lead to conservative results. The net result is that

an optimistic prediction of non-parametric uncertainty bounds will be compensated to some

unknown degree by the conservative prediction from � analysis and synthesis.

Suppose the repeated and/or real scalar blocks are independent of frequencies, i.e., the

parameter is unknown but constant and we wish to accomodate this by specifying lower

and upper bounds to design for anticipated changes. Of course parameter estimation can

precede the speci�cation of the above bounds. Instead of jointly optimizing a set of uncer-

tain parameters with non-parametric uncertainties as shown in Equations (45) and (46), we

propose solving for the smallest non-parametric uncertainties subject to a priori allowance

in exogenous disturbance/noise and parametric uncertainties. This can be implemented by

eliminating the scale factor x in Equation (45). A practical justi�cation for this approach is

that (physical) parameters are generally better modeled then non-parametric uncertainties

since the latter type typically originates from complex dynamics with many details which

are di�cult and subsequently not explicitly modeled, viz \unmodeled dynamics". There-

fore, to determine a smallest model validating uncertainty set for problems with parametric

uncertainties, we propose (a) introducing su�cient non-parametric uncertainties to satisfy

model validation conditions (constant matrix tests) and then (b) introducing varying levels

of parametric uncertainty allowances to tradeo� with smallest non-parametric uncertainty
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levels.

5 Illustrative Example

5.1 Simulated System and Nominal Model

Consider a simulated (true) system composed of two lumped masses-spring-dashpot with 2

inputs and 2 outputs which are �xed at two ends as given in [7]. For the purpose of this

study, suppose the nominal plant model is chosen to consist of only the �rst mode to re
ect

a reduced order model. The neglected second structural mode re
ects unmodeled dynam-

ics. The nominal plant model consisting of the single mode is assumed to have parametric

uncertainties in the frequency and damping. The two structural resonances corresponds to

approximately 2:9 and 5:0 Hertz with damping ratios of 6 and 10 percents respectively.

Figure 2 shows the Bode plot of the true system, nominal plant model, and their di�er-

ence. Notice that the largest di�erences occur at the structural resonances. The �rst peak

in the di�erence is due to the parametric uncertainty in the �rst mode whereas the second

peak is due to the unmodeled dynamics corresponding to the truncated second mode.

With the chosen nominal plant and the uncertainty structure, the system interconnection

is constructed. The frequency and damping parametric uncertainties are modeled in discrete

time state-space while the non-parametric additive uncertainty is between the control inputs

and plant outputs. The frequency and damping parametric uncertainty in the �rst mode as

represented in the discrete time domain leads to a repeated parametric uncertainty of order

2. A set of 1024 time points are assumed sampled at 50 Hz. The simulated measurement

noise and input test signals are generated by �ltering independent uniform random signals

through two di�erent wideband �lters. The simulated output signal to noise ratio ranged

from 1 to 103 over bandwidth of interest.
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5.2 Parametric Study

Consider the problem of �nding the smallest unmodeled dynamics uncertainty for model

validation subject to bounded noise and parametric uncertainty. A smallest set algorithm

de�ned by Equations (42) - (48) is applied with a modi�cation to Equation (45) as discussed

in Section 4.2.1. Analytical sensitivity formulae were used with a constrained optimization

routine in [14] based on a quasi-Newton algorithm. Since unlimited additive uncertainty is

included, existence conditions given in Lemma 2 are satis�ed. We consider nine cases (see

Table 1) corresponding to a combination of 3 levels of parametric uncertainty allowance and

3 levels of output noise allowance. In the determination of a smallest model validating set,

parametric uncertainties are allowed to be functions of frequency as long as they satisfy a

constant norm bound over frequency. As discussed earlier, this will lead to an optimistic level

of non-parametric model validating uncertainty. However, in the actual design of controllers,

the a priori parametric norm bound is used for the robust control design model, instead of

the smaller converged parametric uncertainty value.

5.2.1 Output Noise Allowance

As shown in Table 1, three levels of the output noise allowance are considered. The peak

2-norm of the true noise spectrum over the bandwidth of interest, 1 to 10 Hz, is denoted by

V̂peak := 0:078I2�2. In Cases 1a, 2a, and 3a, a high noise allowance corresponding to V̂peak is

assumed, while a moderate noise level of V̂rms = diag(:0321; :0332) is assumed in Cases 1b,

2b, and 3b. This root-mean-square over the above bandwidth is computed independently

for each output channel. Finally, a low noise allowance of 1% of V̂peak is assumed in Cases

1c, 2c, and 3c. In the actual model validation computations, since the allowed independent

white noise, �, is bounded by unity, the noise �lter is scaled by a factor of
p
2.

5.2.2 Eigenvalue Uncertainty Allowance

In Cases 1(a-c), an optimistically small level of parametric uncertainty allowance is assumed,

Cases 2(a-c) represents a realistic or ball park estimate, and �nally Cases 3(a-c) represents
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overly pessimistic levels of the actual parametric uncertainty levels. Given parametric un-

certainty bounds

�(�1; �2) = :913� :348i+ �1 + �2i; j�1j � ��1 j�2j � ��2

where

�true = (:918� :358i; :756� :550i)

�nd smallest model validating additive uncertainty. In other words, given speci�c output

noise allowance, to what extent does speci�ed parametric uncertainty levels contribute in

reducing the additive errors?

5.3 Smallest Model Validating Non-parametric Uncertainty

Figure 3 shows the smallest levels of unmodeled additive dynamics needed for model val-

idation for corresponding levels of parametric uncertainty and noise allowances with the

following observations:

� For Cases 1 (a-c) where a small level of parametric uncertainty allowance is given,

the minimum model validating additive uncertainty levels show two peaks at the reso-

nances. A large level of additive uncertainty is required to cover the parametric error

in the �rst mode.

� In Cases 2 (a-c), a ball park level of parametric uncertainty allowance helps to eliminate

the additive uncertainty peak in the neighborhood of �rst mode.

� An increase in the parametric uncertainty allowance as in Cases 3 (a-c) further reduces

the additive uncertainty in the neighborhood of �rst mode. However, the minimum

levels of additive uncertainty for model validation around the second mode frequencies

did not drop signi�cantly in spite of a large parametric uncertainty allowance. This is

expected from a structural dynamics viewpoint whereby allowing changes in a modal

parameter will not signi�cantly a�ect other well separated structural resonances.
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� Increasing noise allowance (up to the true peak noise value) has a negligible e�ect on

the level of minimum model validating additive uncertainty although a slight drop in

the uncertainty levels are noted. A noise allowance level of at least 100� the peak noise

was necessary to cover the entire output nominal error due to parametric uncertainty

and unmodeled dynamics.

5.4 Robust Performance Comparison

Stable, low-order (up to 4th order) rational functions are used to over bound the model

validating additive uncertainties shown in Figure 3 for the three cases using a routine from [2].

Based on the three sets of �tted additive and corresponding parametric uncertainties, D-K

Iterations with constant D-scales were used to design suboptimal � and skewed-� controllers,

K1
�, K

2
�, and K3

�, and K1
�s
, K2

�s
, and K3

�s
, corresponding to Cases 1 to 3. The skewed-�

controllers were obtained by computing a scaled sequence of � synthesis problems (see for

example, [1], Chapter 8). The performance weight chosen is, Wperf = 2I2�2. All calculated

lower and upper bounds were close which means that the bounds are a good estimate of

the actual values. The skewed-� controller represents the optimal worst case performance

controller over each model validating set. Although the uncertainty parameters are assumed

and computed as real numbers, for simplicity they were assumed to be complex perturbations

in the controller synthesis so that it is biased (larger �) towards Case 2 and more against

Case 3. The performance indices for the controllers are summarized in Table 2. Case 3

appears best (peak �, peak skewed-�), despite the assumption of �i 2 C. All three �peak

occured around the �rst structural mode.

As a �nal comparison, the true closed loop response is computed for all six controllers.

The maximum singular value frequency responses of the simulated (true) closed loop transfer

function matrices are shown in Figure 4. All three � controllers show equal performance

on true model whereas Skewed-� controllers performed di�erently (K2
�s
, K3

�s
show equal

performance while K1
�s

gave poorer performance) Interestingly, this better performance (in
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terms of �, Skewed-�, True response) occurs in spite of the fact that the uncertainty set

used in K2
�s

and K3
�s

were more conservative since parametric uncertainties were treated as

complex in the controller synthesis and K2
�s
andK3

�s
assumes larger parametric uncertainties.

In summary, non-physical model validating sets (Cases 1,3) can produce as good (Case

3) or worse result (Case 1) than a physically correct set (Case 2). In this particular example,

there appears to be a preference of parametric uncertainty over additive uncertainty for

better robust performance. This may be related to the fact that the open loop response

shows a signi�cantly larger �rst mode response than the second mode (see Figure 4) and

the fact that the �rst mode is limited by parametric uncertainty which Case 1 practically

ignores.

6 Conclusions

For models of physical systems where the uncertainty is described by a linear fractional trans-

formation with unknown but bounded exogenous disturbances, conditions for the existence

of a model validating set are derived. For the case with only structured full complex blocks,

this condition is necessary and su�cient and can be readily tested. This test is actually a

test on the richness of the a priori uncertainty structure enhanced by a frequency weighted

unknown but bounded exogenous disturbances and measurement noise allowance. It is sig-

ni�cant that this test applies for an arbitrary number of full complex blocks. For the more

general case when repeated and/or real scalar uncertainties are also present, we have shown

that an additional condition involving a collinearity test is required. Model validating sets

of uncertainties are in general highly nonunique so that a useful design tool should provide

an e�cient way of trading o� parametric, non-parametric and exogenous noise uncertainty

levels. Based on a parametrization of all model validating sets, an optimization algorithm is

proposed which seeks a smallest model validating set of non-parametric uncertainties while

subject to �xed levels of parametric uncertainties and noise allowances.
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Table 1: Parametric uncertainty and noise allowances.

��1 ��2 1=
p
2 � Vnoise

True System .005 .01

Case 1a .001 .001 V̂peak
Case 1b .001 .001 V̂rms
Case 1c .001 .001 :01 � V̂peak
Case 2a .01 .01 V̂peak
Case 2b .01 .01 V̂rms
Case 2c .01 .01 :01 � V̂peak
Case 3a .05 .05 V̂peak
Case 3b .05 .05 V̂rms
Case 3c .05 .05 :01 � V̂peak
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Table 2: Peak values for � and Skewed-� for robust performance.

Case � controller �peak Skewed-� controller Skewed-�peak

1 K1
� 1.57 K1

�s
2.80

2 K2
� 1.49 K2

�s
2.00

3 K3
� 1.35 K3

�s
1.71
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