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Abstract 
This report documents recent improvements to the acoustic and thermal control systems of the Thermal 
Acoustic Fatigue Apparatus (TAFA), a progressive wave tube test facility at the NASA Langley Research 
Center, Hampton, Virginia.  A brief summary of past acoustic performance is given first to serve as a 
basis for comparison with the new performance data using a multiple-input, closed-loop, narrow-band 
controller.  Performance data in the form of test section acoustic power spectral densities and coherence 
are presented in three of six facility configurations for a variety of input spectra.  Tested spectra include 
uniform, two cases of pink noise, three cases of narrow-band random, a simulated launch payload bay 
environment for an expendable launch vehicle, and a simulated external acoustic load for the aft section 
of a reusable launch vehicle.  In addition, a new closed-loop temperature controller and thermocouple 
data acquisition system are described. 
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1. Facility History 

The progressive wave tube (PWT) facility at NASA Langley Research Center, known as the Thermal 
Acoustic Fatigue Apparatus (TAFA), is used to test structures for dynamic response and sonic fatigue due 
to combined, high-intensity thermal acoustic environments.  Prior to 1994, it was used to support 
development of the thermal protection system for the Space Shuttle and the National Aerospace Plane, 
and various generic hypersonic vehicle structures [1-3].  During the period 1994-1995, the facility 
underwent significant modifications through the NASA minor Construction of Facilities program to 
improve its performance.  These are briefly described in Section 1.2 of this report.  Following these 
enhancements, the facility was used for sonic fatigue studies of the wing strake subcomponents on the 
High Speed Civil Transport.  Most recently, and the subject of this report, are enhancements to the 
acoustic and thermal control systems.  A description of these systems and their characteristics are 
provided in Sections 2 and 3. 

 

1.1. Pre-1995 Facility Performance 
The capabilities of the TAFA facility prior to the 1995 modifications were previously documented by 
Clevenson and Daniels [4].  A schematic of the facility is shown in Figure 1.  The system was driven by 
two Wyle WAS 3000 airstream modulators, which provided an overall sound pressure level range of 125 
to 165 dB overall sound pressure level (OASPL) and a useful frequency range of 50-200 Hz.  Manual 
control of the acoustic level was performed by adjusting the output of a white noise signal generator and 
gain on the amplifiers driving the air modulators.  Typically, there were no attempts to adjust the acoustic 
spectrum shape in the test section.  A 360 kW quartz lamp bank provided radiant heat with a peak heat 
flux of 54 W/cm2.  The lamp bank consisted of ten-36kW lamps units, each having six-6kW quartz lamps 
behind a 2.54 cm thick quartz window, as shown in Figure 2.  A closed-loop temperature controller 
having a single reference thermocouple was used to control the resulting test article temperature, with all 
lamp units receiving the same power. 

A typical test section acoustic pressure power spectral density (PSD) is shown in Figure 3 for a 160 dB 
OASPL.  Also shown in this and in subsequent  PSD plots are the specified narrow-band spectrum levels 
(            ), ± 1.5 dB levels (                ) , and ± 6 dB levels (                          ).  A plot of coherence in 
Figure 4 helps to explain the quoted useful frequency range. 

 

 

Figure 1:  Schematic of the pre-1995 TAFA facility. 
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Figure 2:  Photograph of the quartz lamp bank of the TAFA facility. 

 

Figure 3:  Test section acoustic pressure PSD of the pre-1995 TAFA facility. 
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Figure 4:  Test section coherence of the pre-1995 TAFA facility. 

 

1.2. Post-1995 Facility Performance 
In order to meet future testing requirements, extensive modifications were made to the sound generation 
system and to the wave tube itself. The quartz lamp bank and its control system were left unchanged.  A 
theoretical increase of 6 dB OASPL was projected by designing the system to utilize eight WAS 3000 air 
modulators compared to the two used in the previous system. A further increase of nearly 5 dB was 
expected by designing the test section to accommodate removable water-cooled insert channels, which 
reduced its cross-sectional area from 1.9m x 0.33m to 0.66m x 0.33m. The frequency range was increased 
through the use of a longer horn design with a lower (15 Hz vs. 27 Hz in the old facility) cut-off 
frequency, use of insert channels in the test section to shift the frequency of significant standing waves 
above 500 Hz, and design of facility sidewall structures with resonances above 1000 Hz.  The uniformity 
of the sound pressure field in the test section was improved through several means.  A new, smooth 
exponential horn was designed to avoid the impedance mismatches of the old design. To minimize the 
effect of uncorrelated, broadband noise (which develops as a byproduct of the sound generation system), 
a unique design was adopted which allows for the use of either two-, four-, or eight-modulators.  When 
testing at the lower excitation levels for example, a two-modulator configuration might be used to achieve 
a lower background level over that of the four- or eight-modulator configurations. In doing so, the 
dynamic range is extended. Lastly, a catenoidal design for the termination section was used to smoothly 
expand from the test section.  A photograph of the facility following the modifications is shown in Figure 
5.  Schematics of the three reduced-test-section configurations are shown in Figure 6 - Figure 8.  These 
configurations were used to benchmark the performance of the new acoustic controller. 
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Figure 5:  Photograph of the post-1995 TAFA facility in the four-modulator reduced configuration. 

 

 

Figure 6:  Schematic of the TAFA facility in the two-modulator reduced configuration. 
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Figure 7:  Schematic of the TAFA facility in the four-modulator reduced configuration. 

 

 

 

Figure 8:  Schematic of the TAFA facility in the eight-modulator reduced configuration. 
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The only substantial change to the acoustic control system was the addition of a bank of four 1/3 -octave 
band equalizers in series between the output of the white noise signal generator and amplifiers driving the 
air modulators.  Level control was still performed by manually adjusting the output of the signal generator 
and gain on the amplifiers.  The process of adjusting the test section spectrum shape was both time 
consuming and error prone.  The effect of adjusting the level of a single 1/3-octave band was carried over 
to the neighboring 1/3-octave bands within one equalizer, and within the same band across equalizers.  
Thus, a non-unique and iterative process was required to provide a flat spectrum.  The time required to 
adjust the equalizers could be on the order of 10-15 minutes; too long for testing a high levels where 
fatigue life may be short.  In such cases, settings were established apriori using a dummy panel, but were 
still subject to day-to-day changes.  Narrow-band control was not possible using this approach.  Lastly, 
spectrum shaping was based on the spectrum at one point in the test section (typically at the upstream 
microphone).  There was thus no way to control the spectrum across the extent of the test article.  Even 
with all of these limitations, a reasonably flat and coherent spectrum could still be achieved with some 
effort. 

The performance of the facility in all of its configurations was previously documented by Rizzi and 
Turner [5].  The modifications indicated above resulted in an increase in the maximum OASPL by over 6 
dB relative to the pre-1995 performance and an expansion of the frequency range to 40-480Hz for the 
reduced configurations.  A few results are included in this report to assist in the performance evaluation of 
the new acoustic controller.   The average test section PSD in the eight-modulator reduced configuration 
is shown in Figure 9, for a 170 dB OASPL.  In this case, the upstream test section pressure was used for 
control, as shown in Figure 10.  A relatively flat spectrum was achieved up to about 400 Hz.  The 
pressure at the downstream test section location is approximately 1.5 dB or more lower than the upstream 
location across the frequency range, as shown in Figure 11.  The coherence between upstream and 
downstream locations, shown in Figure 12, is nearly unity to about 460 Hz. 

 



 1-7

Figure 9:  Average test section pressure PSD of post-1995 TAFA facility in the eight-modulator reduced 
configuration. 

Figure 10:  Upstream pressure PSD of post-1995 TAFA facility in the eight-modulator reduced 
configuration. 
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Figure 11:  Downsteam pressure PSD of the post-1995 TAFA facility in the eight-modulator reduced 
configuration. 

Figure 12:  Coherence between the upstream and downsteam pressures of the post-1995 TAFA facility in 
the eight-modulator reduced configuration. 
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2. Narrow Band Acoustic Control 

2.1. Controller Description 

During the fiscal year 2000, a new acoustic control system was installed and tested to enhance the 
capabilities of TAFA and to prepare the facility for future testing.  Of paramount importance was the need 
to have an automated means of shaping a wide variety of spectrum shapes in a fast and efficient manner.  
An existing closed-loop shaker control system was selected and modified to allow its use in acoustic 
environments having high background noise levels.  The system procured was the M+P International 
“Vib2000 VibControl System,” heretofore referred to as the VibControl system [6].  The features of the 
baseline system include: 

• Narrow band closed-loop random control 

• Multiple control transducers (limited by the number of input channels) in either averaged, 
maximal, or minimal control strategies 

• Test spectrum specification with up to 99 breakpoints, sigma clipping (1.42-8), low and high 
alarm and abort limits for each frequency range 

• Automated measurement and level scheduling 

• Runs on a host PC computer under Windows NT 

• Watchdog channels to limit the drive signal on an overall basis (in the tolerance mode) or on a 
narrow-band basis (in the notch/tolerance mode)   

The watchdog feature is useful in PWT testing to ensure the integrity of the facility and test article.  In the 
tolerance mode, it can be used to limit amplifier output to less than 12 amperes RMS, as required for the 
Wyle WAS 3000 air modulators.  It can also be used to limit test article structural response in either an 
RMS (tolerance mode) or narrow-band (notch/tolerance mode) basis. 

As with any other feedback controller, the VibControl software compares the specified level with the 
actual level (referred to as the control signal) and adjusts the drive signal to minimize the error between 
the two.  The manner in which the control signal is computed has some bearing on the responsiveness of 
the control.  This is briefly summarized here.  For each control loop i and control channel, an averaged 
PSD is computed from several instantaneous PSDs using the usual formula 

 
( )

1

1

K
i

jK
j

PSD PSD
=

� �  

where K  is the number of averages per control loop.  For example,  
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Note that no overlap is used in computing the averaged PSD. The control signal PSD is built by using a 
weighted average of the averaged PSDs as 
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where N is the average weighting factor.  It is clear from the above equation that it takes two loops to get 
the controller going.  For example, 
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If more than one channel is used for control, then the total control signal PSD is either the average, 
maximum, or minimum of the individual control PSDs depending on the control strategy selected.  Note 
that while not a feature of the VibControl software, a weighted average in which some control channels 
are more important than others can be made possible by scaling the input sensitivities of the control 
channels.  The reader is referred to [6] for additional information. 

Several changes were specified by the author and were made to the baseline VibControl software by M+P 
International to facilitate its use in PWT testing.  These included: 

•= Modification of the “open channel” algorithm to allow for low signal/noise ratios during the start 
of a test 

•= Specification of test spectrum breakpoints in Pa2/Hz, and display of RMS levels in dB 

•= A “last drive” capability, which allows the use of a pre-stored drive signal to enable quick start up 
and equalization of a test that has previously been run.  This feature allows, for example, the 
simulation of blast or launch loads 

•= Retention of support for both the Hewlett-Packard 3565S and VXI front-ends 

The modifications were implemented in the standard software package so that new features would be 
available in subsequent releases of the software. 

The particular implementation in TAFA is a dual-processor PC running Windows NT 4.0, an HP 3565S 
front-end with 32 input channels, and up to 8 watchdog channels for each of the amplifier outputs.  The 
control channels typically consist of two fluctuating pressure measurements in the test section located 
upstream and downstream of the test article. Note that an averaged control strategy of this type is best for 
PWT testing as is ensures a good acoustic spectra across the test article.  It does come, however, at the 
expense of the ability to maintain the specified spectra for any particular channel.  The same drive signal 
served as input to each of up to 8 air modulators, as it was the aggregate test section acoustic environment 
being controlled as opposed to the noise being generated by each modulator individually. 

In the following cases, acoustic pressure was controlled using two Kulite model MIC-190-HT pressure 
transducers in the “averaged” control strategy across the facility frequency range of 40-500 Hz. The 
transducers were flush mounted in a rigid panel and were located 0.3048m upstream and 0.3048m 
downstream of the test section vertical centerline, along the horizontal centerline.  In the VibControl 
software, the following parameters were set: 

•= A frequency resolution of 1 Hz 

•= Sigma clipping set to three 

•= High and low alarm limits set to ±1.5 dB for each frequency range 

•= High and low abort limits set to ±6 dB for each frequency range.  Note that for each test case, the 
high and low abort limits were never exceeded.  Thus, these limits could probably be tightened 
considerably. 
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•= Averages per loop (K) of 5 and average weighting factor (N) of 5  

Simultaneous with the control data acquisition, time history data was acquired and processed on a 
separate computer (running MTS IDEAS Master Series 7 data acquisition software with an HP VXI front-
end) for each of the control channels to measure coherence.  

2.2. Uniform Spectra Results 

For response validation testing, it is desirable to have as flat an input spectrum as possible, so that the 
shape of structural response spectra are attributable to the structural dynamics and not a reflection of the 
input loading condition.  This is particularly true when testing in the nonlinear structural response range.  
Flat input spectra were specified for the two, four, and eight-modulator reduced configurations from an 
OASPL of 140dB to near the configuration maximum in 6 dB increments.  

2.2.1. Two-Modulator Reduced Configuration 

Control, upstream and downstream pressure spectra are shown in Figure 13 – Figure 15, respectively, at 
the maximum OASPL of 165 dB.  As is seen in these results, the control pressure spectrum exhibits only 
a few points outside the ±1.5 dB alarm limits.  Note that the spectrum is much better than previously 
obtained (see Figure 26 of reference [5]) where significant reductions were observed beyond about 400 
Hz.  Adherence to the specified spectra is considered very good for the upstream and downstream 
locations, even though no effort is being made to control these individually.  It is, in fact, much better 
than previous manual control with 1/3-octave band equalizers, particularly at the high frequencies as 
noted above.  Preliminary runs made using a single pressure transducer for control exhibited a much 
tighter control PSD than shown in Figure 13.  Because this is not the normal operating mode of the 
facility, these results were not included in this report.  Coherence is nearly unity across between the two 
locations (see Figure 16) for the entire frequency range. This represents an improvement over the 1997 
data (see Figure 29 of reference [5]), which shows good coherence to about 460 Hz, effectively increasing 
the frequency range of the facility to 40-500 Hz.   The drive signal PSD, shown in Figure 17, is meant to 
convey the distribution of energy required to maintain the desired spectrum, and the difficulty with which 
it would be to generate the signal using the previous 1/3-octave band equalizer approach.  Finally, a range 
of spectra at OASPLs from 140 to the maximum of 164.8 dB are shown in Figure 18, with some low 
frequency background noise noted in the 140 dB data.  The maximum level is slightly increased from the 
previous maximum level of 164.3 dB [5]. 

2.2.2. Four-Modulator Reduced Configuration 

Similar performance characteristics are noted for the four-modulator reduced configuration as shown in 
Figure 19 – Figure 24.  Again, near unity coherence is seen in Figure 22 and an increase in the maximum 
level (168.8 dB) is noted over the previous value of 167.9 dB [5]. 

2.2.3. Eight-Modulator Reduced Configuration 

Finally, performance in the eight-modulator reduced configuration is shown in Figure 25 – Figure 30.   
During the maximum level test run, one of the eight modulators failed giving a maximum level of 171.2 
dB.  Coincidentally, one of eight modulators failed during the 1997 tests and the pressures were scaled by 
8/7 to arrive at the quoted 171.7 dB maximum value [5].  A similar scaling of pressure increases the 
present maximum level to 172.4, an increase of about 0.7 dB over the previous maximum level. 
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Figure 13:  Control pressure PSD for two-modulator reduced configuration at 165 dB. 

 

Figure 14:  Upstream pressure PSD for two-modulator reduced configuration at 165 dB. 
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Figure 15:  Downstream pressure PSD for two-modulator reduced configuration at 165 dB. 

 

Figure 16:  Coherence between upstream and downstream locations for two-modulator reduced 
configuration at 165 dB. 
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Figure 17:  Drive signal PSD for two-modulator reduced configuration at 165 dB. 

 

Figure 18:  Comparison of control spectra at various levels for two-modulator reduced configuration. 
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Figure 19:  Control pressure PSD for four-modulator reduced configuration at 169 dB. 

 

Figure 20:  Upstream pressure PSD for four-modulator reduced configuration at 169 dB. 
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Figure 21:  Downstream pressure PSD for four-modulator reduced configuration at 169 dB. 

 

Figure 22:  Coherence between upstream and downstream locations for four-modulator reduced 
configuration at 169 dB. 
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Figure 23:  Drive signal PSD for four-modulator reduced configuration at 169 dB. 

 

Figure 24:  Comparison of control spectra at various levels for four-modulator reduced configuration. 
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Figure 25:  Control pressure PSD for eight-modulator reduced configuration at 171 dB. 

 

Figure 26:  Upstream pressure PSD for eight-modulator reduced configuration at 171 dB. 
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Figure 27:  Downstream pressure PSD for eight-modulator reduced configuration at 171 dB. 

 

Figure 28:  Coherence between upstream and downstream locations for eight-modulator reduced 
configuration at 171 dB. 
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Figure 29:  Drive signal PSD for eight-modulator reduced configuration at 171 dB. 

 

Figure 30:  Comparison of control spectra at various levels for eight-modulator reduced configuration. 
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2.3. Non-uniform Spectra Results 
A series of non-uniform spectra were run in the two-modulator reduced configuration to explore the 
versatility of the new controller.  These included varieties of pink and band-limited random noise, an 
expendable launch vehicle payload bay launch environment, and a simulated reusable launch vehicle 
external lift-off environment. 

2.3.1. Pink Noise Spectra 

Two varieties of pink noise spectra were tested.  One, referred to as constant slope, was based on the pink 
noise definition of broadband noise whose energy content is inversely proportional to frequency (-3 
dB/octave).  This results in constant 1/3-octave band levels. The second variation, referred to as constant 
step, also gives constant 1/3-octave band levels, but additionally specifies a constant narrow-band loading 
within each 1/3-octave band.   These variations were of interest because the added within-band control of 
the constant step implementation may be advantageous in some validation testing where only the 1/3-
octave band levels are specified.  Both variations were run at 155 dB OASPL. 

2.3.1.1 Constant Slope 

Results of the constant slope variation are shown in Figure 31 – Figure 35.  The control pressure PSD 
adheres well to the specified level throughout the frequency range.  The upstream and downstream levels 
appear to cross the ±1.5 dB alarm limit more frequently than the previous uniform case, although this may 
appear accentuated by the choice of a logarithmic frequency scale.  The coherence is nearly unity across 
the frequency range and the drive signal shows less high frequency content than the uniform spectra, as 
expected. 

2.3.1.2 Constant Step 

Figure 36 – Figure 40 shows results from the constant step variation.  The control pressure PSD again 
adheres well to the specified level throughout the frequency range.  The flatness of the control spectrum 
within band is easily observed, particularly at the higher frequencies, and coherence across the frequency 
range is excellent. 



 2-14

Figure 31:  Control pressure PSD for pink noise spectrum with constant slope. 

 

Figure 32:  Upstream pressure PSD for pink noise spectrum with constant slope. 
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Figure 33:  Downstream pressure PSD for pink noise spectrum with constant slope. 

 

Figure 34:  Coherence between upstream and downstream locations for pink noise spectrum with constant 
slope. 
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Figure 35:  Drive signal PSD for pink noise spectrum with constant slope. 

 

Figure 36:  Control pressure PSD for pink noise spectrum with stepwise slope. 
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Figure 37:  Upstream pressure PSD for pink noise spectrum with stepwise slope. 

 

Figure 38:  Downstream pressure PSD for pink noise spectrum with stepwise slope. 
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Figure 39:  Coherence between upstream and downstream locations for pink noise spectrum with stepwise 
slope. 

 

Figure 40:  Drive signal PSD for pink noise spectrum with stepwise slope. 
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2.3.2. Band-Limited Random Spectra 

In order to excite resonant behavior without wasting acoustic power, one technique successfully 
employed on shakers is the application of band-limited random spectrum across a frequency range 
spanning resonant peaks.  This is particularly advantageous when testing at high levels as it can increase 
the total power within the band compared with an otherwise uniform spectrum. Three variations are 
considered below:  a baseline case with +6 dB levels between 100-150 and 300-350 Hz, a modified 
baseline with a sloped notch, and a modified baseline with a sharp notch.  

2.3.2.1 Baseline Band-Limited Random 

The baseline case results for a 155 dB OASPL are shown in Figure 41 – Figure 45.  Note the ability to hit 
the ±6 dB jumps without overshoot.  This is clearly the result of the drop in drive signal at the jumps, as 
shown in Figure 45 and would not be possible using 1/3-octave band equalizers. 

2.3.2.2 Band-Limited Random with Sloped Notch 

Results for the case with a sloped notch are shown in Figure 46 – Figure 50.  Particularly noteworthy is 
the ability of the control to achieve the specified 12 dB drop at 150 Hz.  Similar characteristics are 
exhibited by the drive signal, as shown in Figure 50. 

2.3.2.3 Band-Limited Random with Sharp Notch 

The last band-limited case, shown in Figure 51 – Figure 55, was a variation of the baseline with a sharp 
10-Hz notch between 200-210 Hz.  This notch was manually specified in the control signal.  In an actual 
test, it could have also been produced by a watchdog accelerometer on the test article acting on the 
narrow band in the notch/tolerance mode.  This case demonstrates the ability of the controller to control in 
a narrow frequency range. 
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Figure 41:  Control pressure PSD for band limited random spectrum. 

 

Figure 42:  Upstream pressure PSD for band limited random spectrum. 
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Figure 43:  Downstream pressure PSD for band limited random spectrum. 

 

Figure 44:  Coherence between upstream and downstream locations for band limited random spectrum. 
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Figure 45:  Drive signal PSD for band limited random spectrum. 

 

Figure 46:  Control pressure PSD for band limited random spectrum with sloped notch. 
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Figure 47:  Upstream pressure PSD for band limited random spectrum with sloped notch. 

 

Figure 48:  Downsteam pressure PSD for band limited random spectrum with sloped notch. 
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Figure 49:  Coherence between upstream and downstream locations for band limited random spectrum 
with sloped notch. 

 

Figure 50:  Drive signal PSD for band limited random spectrum with sloped notch. 
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Figure 51:  Control pressure PSD for band limited random spectrum with sharp notch. 

 

Figure 52:  Upstream pressure PSD for band limited random spectrum with sharp notch. 
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Figure 53:  Downstream pressure PSD for band limited random spectrum with sharp notch. 

 

Figure 54:  Coherence between upstream and downstream locations for band limited random spectrum 
with sharp notch. 
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Figure 55:  Drive signal PSD for band limited random spectrum with sharp notch. 
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2.3.3. Expendable Launch Vehicle Payload Bay 

The interior acoustic environment of an expendable launch vehicle payload bay during launch was 
simulated to demonstrate the ability of the controller to generate an actual loading spectrum.   The 
spectrum level was specified on an octave band basis and these levels were converted to narrow band for 
use by the controller.  As is shown in Figure 56 – Figure 60, the controller does a good job of maintaining 
the specified spectra with excellent coherence across the frequency range.  Note again the ability of the 
controller not to overshoot the jumps. 

 

2.3.4. Reusable Launch Vehicle Lift-Off  

Another relevant simulation performed was the external acoustic environment at the aft end of a reusable 
launch vehicle during lift-off.   As seen in Figure 61 – Figure 65, the controller does a good job of 
maintaining the specified spectrum.  Note that even though the spectrum shape does not vary widely 
within the frequency range of the facility, the test demonstrates the ability to simulate the low frequency 
content, which typically drives the low order vibration modes responsible for fatigue.   
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Figure 56:  Control pressure PSD for launch vehicle payload bay spectrum. 

 

Figure 57:  Upstream pressure PSD for launch vehicle payload bay spectrum. 
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Figure 58:  Downstream pressure PSD for launch vehicle payload bay spectrum. 

 

Figure 59:  Coherence between upstream and downstream locations for launch vehicle payload bay 
spectrum. 
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Figure 60:  Drive signal PSD for launch vehicle payload bay spectrum. 

 

Figure 61:  Control pressure PSD for RLV lift-off spectrum. 
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Figure 62:  Upstream pressure PSD for RLV lift-off spectrum. 

 

Figure 63:  Downstream pressure PSD for RLV lift-off spectrum. 
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Figure 64:  Coherence between upstream and downstream locations for RLV lift-off spectrum. 

 

Figure 65:  Drive signal PSD from RLV lift-off spectrum. 
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3. Temperature Control and Thermocouple Data Acquisition 

During the summer of 2000, a new closed-loop temperature controller and thermocouple data acquisition 
system was developed to replace an existing system (see Section 1.1).  The system was installed and 
tested on a dummy test article, but no attempt was made to characterize its performance.  A brief 
description of the system, however, is provided below. 
 

3.1. Hardware Description 
The system hardware is comprised of the following pieces of equipment: 

•= Host PC computer with National Instruments PCI-MIO-16XE-10 I/O board 

•= Dual 4-slot National Instruments SCXI-1000 chassis with (1) SCXI-1346 shielded multi-chassis 
adapter interface, (2) National Instruments SCXI-1102 32-channel thermocouple input modules, 
(1) National Instruments SCXI-1126 8-channel isolated frequency input module, and (2) National 
Instruments SCXI-1124 6-channel isolated analog output modules. 

Hardware inputs are comprised of the following: 

•= SCXI-1102 Unit 1:  (32) Type-K thermocouples 

•= SCXI-1102 Unit 2: (31) Type-J thermocouples      
 (1) Lamp bank cooling air pressure  

•= SCXI-1126: (1) Global cooling water flow rate      
 (1) Test section wall upstream cooling water rate   
 (1) Test section wall downstream cooling water rate   
 (1) Lamp bank wall upstream cooling water rate   
 (1) Lamp bank wall downstream cooling water rate   
 (1) Upper test section insert cooling water  rate   
 (1) Lower test section insert cooling water rate    
 (1) Lamp bank cooling water rate 

Hardware outputs are comprised of the following: 

•= SCXI-1124 Unit 1:  (6) 0-5 VDC outputs for each SCR channel providing power to lamp
 banks 1-6 

•= SCXI-1124 Unit 2: (4) 0-5 VDC outputs for each SCR channel providing power to lamp
 banks 7-10       
 (1) 0-5 VDC output for SCR permissive relay 

A detailed description of the electrical wiring, flow and pressure meters, etc. may be found in the facility 
Configuration Management documentation. 

3.2. Software Description 
A customized National Instruments LabView 5.1 application was written for the host PC running the 
Microsoft Windows 98 Second Edition operating system. The functional specification was developed by 
the author and the software was written under contract by Wyle Laboratories, Hampton.  The software 
performs both temperature control and thermocouple data acquisition functions.   
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3.2.1. Thermocouple Data Acquisition 

The data acquisition part of the software has the following features: 
• Data logging for up to 63 measurement thermocouples (32 Type-K, 31 Type-J) to tab delimited 

ASCII data files 
• Automatic logging shutoff upon program exit (to ensure no data loss) 
• Selectable sample rates 
• Selectable units (°F and °C) 
• Temperature displays including eight digital displays for selected measurement channels and one 

evolving temperature time history display for any single measurement channel at a time 
 

3.2.2. Closed-Loop Temperature Control 

The closed-loop temperature control part of the software has the following features:    

• Any 8 of 63 thermocouple channels for control using a weighted average scheme with user-
selectable weights.   The weighted average signal used for the control was computed from the 
relation  

 1
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where i� are the user specified weights 0 1i�� � , ix  are the control thermocouple readings, x  

is the weighted average, and 1 8N� � .  In the case of equal weights, the weighted average 
reduces to the usual non-weighted average.  Note that the previous controller allowed for a single 
control thermocouple. 

• Nine safety interlocks for eight water-cooled segments and one air-cooling segment.  For each 
segment, water flow rates or air pressure must meet a minimum set point level to enable power to 
the lamp banks.  This function was previously performed using a hardware interlock system. 

• Watchdog function on any of the 63 thermocouple channels (including control channels) for high 
and low temperature warnings, and high and low temperature alarms.  In the event either high or 
low temperature alarm conditions are met, an automatic 8-second ramp down occurs.  This is a 
new function. 

• Software emergency stop button to enable 8-second ramp down.  The previous and still existing 
hardware emergency stop button disables power instantaneously and can cause the quartz window 
to shatter due to thermal shock. 

• Interlock/watchdog error logging 

• Software selectable PID parameters for the controller 

• Toggle between closed-loop and manual (percent full scale power) control modes. 

• Slide bars to control the percent of output signal (0-100%) going to each lamp unit.  In this 
manner, the heating distribution may be changed by adjusting the power to the lamp units relative 
to each other.  Previous attempts to alter the heating distribution required an all or nothing 
approach whereby some of the lamp banks could be completed disabled by pulling fuses. 
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4. Summary 

Substantial improvements to the performance of the TAFA progressive wave tube facility were made 
through the addition of new closed-loop acoustic and thermal controllers.  Acoustic control was improved 
in spectrum shaping ability, test section coherence, the addition of multiple inputs to the control, and the 
time required to attain control.  These improvements make possible the generation of a wide variety of 
test spectra, including blast or transient loadings using the “last drive” feature.  In addition, the frequency 
range of the facility was extended to 40-500 Hz from the previous 40-480 Hz and increases of up to 
nearly 1 dB were noted in OASPL.  Facility safety can also be enhanced through the watchdog feature of 
limiting output power to the air modulators, and notching can be utilized to limit energy to the test article 
within specified frequency bands.  Thermal control was improved through the addition of multiple inputs 
to the control system, the ability to change the distribution of power to the individual lamp banks, and 
integrated thermocouple data acquisition.  Safety was improved through the addition of watchdog 
channels with hi/low alarm and abort limits, and a ramp down of power on shutdown to avoid thermal 
shock. 
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