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Abstract

The 
ow over the zero-pressure-gradient So-Mellor
convex curved wall is simulated using the Navier-
Stokes equations. An inviscid e�ective outer wall
shape, undocumented in the experiment, is obtained
by using an adjoint optimization method with the
desired pressure distribution on the inner wall as the
cost function. Using this wall shape with a Navier-
Stokes method, the abilities of various turbulence
models to simulate the e�ects of curvature without
the complicating factor of streamwise pressure gra-
dient can be evaluated. The one-equation Spalart-
Allmaras turbulence model overpredicts eddy viscos-
ity, and its boundary layer pro�les are too full. A
curvature-corrected version of this model improves
results, which are sensitive to the choice of a particu-
lar constant. An explicit algebraic stress model does
a reasonable job predicting this 
ow �eld. However,
results can be slightly improved by modifying the as-
sumption on anisotropy equilibrium in the model's
derivation. The resulting curvature-corrected ex-
plicit algebraic stress model possesses no heuristic
functions or additional constants. It lowers slightly
the computed skin friction coe�cient and the turbu-
lent stress levels for this case (in better agreement
with experiment), but the e�ect on computed veloc-
ity pro�les is very small.

1 Introduction

It has long been recognized that many turbulence
models in use today are incapable of producing cor-
rect physical behavior near curved surfaces. Much
of this information comes from the use of boundary-
layer codes (e.g., see Wilcox1) applied to curved
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ows with near-zero pressure gradient (e.g., So and
Mellor,2 Gillis and Johnston3). The few applica-
tions of Navier-Stokes codes to curved wall-bounded

ows have generally been for cases with substan-
tial pressure gradients, such as the U-duct test case
of Monson and Seegmiller.4 The use of a test case
with pressure gradient can complicate the analysis
by making it di�cult to isolate the e�ects of curva-
ture from the e�ects of pressure gradient. Also, in
the Monson and Seegmiller case, one must contend
with boundary layer separation and consequently a
loss of two-dimensionality.

The reason why Navier-Stokes codes have not
been applied to zero-pressure-gradient cases (such as
the So and Mellor case) is that in these experiments
the outer wall shape has not been explicitly docu-
mented. The only information recorded is that the
outer wall was manually adjusted during the exper-
iment to yield the desired (near-zero) pressure gra-
dient along the inner curved wall. Additionally, in
the case of So and Mellor, a local tangential jet was
used at the outer wall near the start of the curve to
maintain attached 
ow on this wall; while in the case
of Gillis and Johnston, local boundary layer bleed-
ing accomplished the same thing. From the stand-
point of boundary layer methods, this information
was adequate. However, these issues produce a sig-
ni�cant challenge for the modeling of the entire two-
wall setup, as is required in a Navier-Stokes simula-
tion, and preclude a large amount of experimental
data from being utilized.

Today, with advances made in optimization meth-
ods in CFD, it is now possible to �nd an outer wall
shape that yields a speci�ed pressure distribution
on the inner wall. As a result, Navier-Stokes simu-
lations can be relatively easily accomplished on test
cases for which boundary layer codes were the only
viable option in the past.

In previous work,5 three turbulence models were
used to investigate the U-duct 
ow of Monson and
Seegmiller. The three models employed were the
one-equation Spalart-Allmaras (SA),6 two-equation
Menter shear-stress transport (SST),7 and two-
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equation explicit algebraic stress model (EASM).8

All models behaved similarly in the curved region,
and all failed to predict the suppression of the tur-
bulent shear stress caused by the convex curvature.
Overall, the EASM was judged to be superior to the
other two models for this 
ow �eld. However, as
mentioned above, it is di�cult to isolate the e�ects
of curvature from other e�ects in the Monson and
Seegmiller case.

In the present study, we employ two of the above
turbulence models (SA and EASM) to the So and
Mellor case, which removes the complications of
pressure gradient and boundary layer separation
from consideration. Both of these turbulence mod-
els include recently-developed curvature corrections,
and can be run both with and without the correc-
tions in place. We �rst describe an optimization
method used to determine the outer wall shape,
given the So and Mellor experimental inner wall
pressure distribution. We then apply a Navier-
Stokes code to the case. We attempt to answer the
following questions regarding the isolated e�ect of
curvature in zero-pressure-gradient 
ow: (1) how
well do existing models without curvature correc-
tion handle convexly-curved wall-bounded 
ow? (2)
what aspects of the 
ow are missed, and how signif-
icant are the missed e�ects? (3) how much improve-
ment is gained by employing curvature correction
terms to the turbulence models?

2 The Optimization Method

The optimization method is described in Ander-
son and Bonhaus9 and Nielsen and Anderson.10

In summary, a fully discrete adjoint approach is
used in an unstructured-grid framework to com-
pute design sensitivities using either the Euler or
the Navier-Stokes equations. The adjoint method
includes the e�ects of the interior mesh sensitivities.
A quasi-Newton optimization technique, referred to
as KSOPT,11 is currently employed.

In the adjoint approach for design optimization,
a cost function is de�ned and augmented with the

ow equations as constraints. In the present case,
the cost function to be minimized is the pressure
distribution on the inner wall, which is taken from
experimental data. The shape of the outer wall is pa-
rameterized with 28 design variables. To avoid hav-
ing to contend with boundary layer separation along
the outer wall, the optimization is conducted using
the Euler equations and the method is run until the
cost function reaches a suitable level of convergence.

3 Numerical Method and Turbulence Models

The Navier-Stokes CFD code used in the current
investigation is CFL3D,12 a widely-used structured-
grid upwind �nite-volume method. Details about
the code can be found in the User's Manual refer-
enced.
The two turbulence models used are the one-

equation Spalart-Allmaras (SA) model6 and the two-
equation explicit algebraic stress model (EASM).5

However, note that the EASM has an additional mi-
nor modi�cation, described in Gatski and Rumsey.13

Equation (4) in Ref. 5 is replaced by:

g =

�

�0
P

"
+ 
�1

��1

; (1)

where

�0 = 
0 � 1 (2)

and


�1 = 
1 + 1 +

�
C"2 � C"1

C"1 � 1

�
: (3)

Gatski and Rumsey13 showed that a source of er-
ror in the EASM for curved 
ows was caused by the
assumption of anisotropy equilibrium in the Carte-
sian frame of reference in the derivation of the model
directly from the full Reynolds stress model:

Dbij
Dt

= 0; (4)

where bij = �ij=(2K) � �ij=3 and K = �nn=2 is the
turbulent kinetic energy.
In the study of non-Newtonian constitutive rela-

tions (e.g., Schunk and Scriven,14 Souza Mendes et
al.15), a measure of relative rotation rate is based on
the principal axes of the strain rate tensor. By as-
suming a transformed form of Eq. (4) to hold in this
principal axes frame, a new form of the EASM can
be derived that takes into account the 
ow �eld cur-
vature. This new form is termed EASM curvature-
corrected (EASMCC).
In the transformed coordinate frame, the following

equation holds:
Dbij
Dt

= 0; (5)

where bij is the transformed anisotropy tensor.
Written in the Cartesian frame, Eq. (5) becomes:

Dbij
Dt

= bik
kj � 
ikbkj: (6)

The 
ij tensor is related to the rate of rotation be-
tween the principal axes (barred) system and the
Cartesian (unbarred) system.
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The method for implementation of EASMCC in
2-D is as follows. The rotation rate tensor Wij =
(@ui=@xj � @uj=@xi)=2 in the model is replaced
by an \e�ective" W �

ij = Wij � 
ij=a2, where the
constant a2 is de�ned by the pressure-strain cor-
relation model. For the SSG model16 used here,
a2 = (2 � C4)=2 and C4 = 0:4. The tensor 
ij is
given by


ij =

"
0 D�=Dt

�D�=Dt 0

#
; (7)

and D�=Dt is the Lagrangian derivative of the
strain-tensor principal axes, given by

D�

Dt
=

D

Dt

 
tan�1

"p
S211 + S212 � S11

S12

#!
; (8)

where Sij = (@ui=@xj+@uj=@xi)=2. This expression
can be reduced to (see Ref. 17)

D�

Dt
=

1

2(S211 + S212)

�
S11

DS12
Dt

� S12
DS11
Dt

�
: (9)

In practice, a term is added to the denominator of
Eq. (9) to avoid division by zero as well as to avoid
spurious 
uctuations in D�=Dt in regions of very
low gradient. Note that for a simple 2-D azimuthal

ow with only a u� component of velocity (a function
of radius), the following relation can be derived:

D�

Dt
=

1

2
(S �W )sign(W12); (10)

where S =
p
2SijSij and W =

p
2WijWij . This

analytical function can be shown to hold in general
only for R2 very close to 1, where R2 is de�ned by

R2 = �
fW2g

fS2g
(11)

and fg represents the trace:
�
W2

	
= WijWji =

�WijWij and
�
S2
	
= SijSji = SijSij . Eq. (10)

has proved to be useful as a check (in regions where
R2 � 1) on the more complicated numerics required
to obtain D�=Dt exactly, but it is of limited use in
general. We use the exact D�=Dt term given by
Eq. (9) for all the results in this paper.
A curvature correction for the SA model has been

developed by Spalart and Shur,17 and applied to a
variety of 
ows in Shur et al.18 This correction,
Spalart-Allmaras for Rotation/Curvature (SARC)
was similarly derived based on the rate of change
of the principal axes of the strain rate tensor, but it
also includes a heuristic function fr1 (that multiplies

the model's production term), which is not present
in the EASMCC.
In the current implementation of the SARC

model, cb1[1� ft2]W ~�, a portion of the SA model's
production term, is replaced by cb1[fr1 � ft2]W ~�,
where

fr1 = (1 + cr1)
2r�

(1 + r�)

�
1� cr3tan

�1(cr2~r)
�
� cr1;

(12)
and cr1 = 1, cr2 = 12. The constant cr3 has been as-
signed to be both 1:0 and 0:6 in Ref. 17, and Spalart
and Shur admit that they are still experimenting
with the function fr1. In the current study, we use
both values, and show that cr3 = 0:6 is the more
appropriate choice for this case. The function r� is
given by r� = S=W . The ~r term is computed using

~r = 2WikSjk

�
DSij
Dt

+ (�imnSjn + �jmnSin)
m

�
=D4;

(13)
where the 
m term represents the system rotation,
and D =

p
0:5(S2 +W 2). For 2-D 
ows and no

system rotation, the expression for ~r reduces to

~r = �

�
D�

Dt

�
8W12(S

2
11 + S212)

D4
; (14)

with D�=Dt given by Eq. (9).

4 Results

In the experiment of So and Mellor,2 the curved-
wall tunnel had an aspect ratio of 8 (depth of 48 in.)
and the 
ow along the tunnel centerline was nomi-
nally 2-D. Thus, 2-D computations are expected to
adequately represent the 
ow �eld. The inner wall
shape is de�ned by a series of 9 arc segments of vary-
ing angle and radius. The initial radius of curvature
is 10 in., and the �nal radius of curvature is 13.86
in. The curved wall turns through a total of 150�.
A detailed description of the inner wall shape can
be found in So and Mellor.2 The channel width
is 6 in. at the inlet. An outer wall shape was ob-
tained from the optimization program, which was
run in Euler mode to obtain a shape such that the
inner wall pressure distribution matched experiment
throughout most of the curved region. A list of re-
sulting outer wall points is given in Table 1. Inner
wall points are given also, for reference.
The grid employed in the Navier-Stokes computa-

tions is shown in Fig. 1. The grid size is 257� 161,
with a minimum normal spacing at the convex wall
of 0.00015 in. This corresponds with a spacing in
wall coordinates of approximately y+ = 0:3. The
grid extends from 24 in. upstream of the curved wall
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to approximately 18 in. downstream of the end of
curvature. The Reynolds number per inch is taken
as 3:6417� 104, and the nominal Mach number at
the inlet is M = 0:063. At the in
ow boundary, the
u-velocity pro�le is set based on the experimentally-
measured skin friction and boundary layer thickness.
The turbulence quantities are set to match the ex-
perimental levels at the same location. At the out-

ow boundary, pressure is speci�ed at p=pref = 1,
and all other quantities are extrapolated from the
interior of the grid. Additional details concerning
the boundary condition speci�cations can be found
in Rumsey et al.5

Slip-wall boundary conditions are applied at the
outer wall in the CFD simulation. This boundary
condition is consistent with the assumption used in
the optimization method, and allows the simulation
to be run without the complication of having to con-
tend with tangential jet or bleed boundary condi-
tions. At the inner wall, standard no-slip adiabatic
solid wall boundary conditions are employed.

For the remainder of the paper, we adopt a co-
ordinate system with s measured along the inner
wall in the 
ow direction and d measured normal
to the inner wall. Thus, s represents the surface co-
ordinates, or length measured along the inner wall
surface. The boundary layer thickness at the in
ow
(s = 24 in.) is approximately 0.55 in., whereas at
the start of the curvature (s = 48 in.) it is approxi-
mately 0.95 in. Thus, at the start of curvature, the
parameter �=R is roughly 0.095. According to Pa-
tel and Sotiropoulos,19 �=R < 0:01 represents very
mild curvature, whereas 0:1 < �=R < 1 represents
moderate to strong curvature. Therefore, the cur-
vature for this case can probably be categorized as
\moderate," whereas the Monson and Seegmiller U-
duct case (with �=R = 0:5) can be categorized as
\strong."4,5

In the experiment, the outer wall shape was set
to allow a small pressure drop near the start of cur-
vature, followed by a region of nearly constant pres-
sure all the way to the end of the curved surface, at
s = 79:43 in. Surface pressure coe�cients are shown
in Fig. 2 using two di�erent turbulence models. The
pressures match experiment very well over most of
the inlet and curved wall segments.

The e�ect of grid density on a typical solution is
shown in Figs. 3 and 4. In these �gures, the \�ne"
level is the full 257 � 161 grid, \medium" has ev-
ery other grid point removed in both directions, and
\coarse" has every other grid point removed again.
For this 
ow, the skin friction shows about a 3 -
5% di�erence between the coarse grid and �ne grid
solutions in the curved region, and roughly 1% dif-

ference (or less) between results on the medium and
�ne grids. The turbulent shear stress shows a di�er-
ence between the coarse and medium levels, but no
di�erence at all between the medium and �ne lev-
els. For all the remaining results in the paper, the
medium level grid is employed.
The e�ect of the SARC model constant cr3 is

shown in Fig. 5. Note that the cf levels are ref-
erenced to the nominal velocity at the inlet, rather
than the local \potential 
ow velocity at the wall,"
as reported in Ref. 2. The experimental levels have
been adjusted accordingly. The original SA model
yields high cf levels over most of the curved-wall
region. When SARC with cr3 = 0:6 is used, cf
levels agree well with experiment, but SARC with
cr3 = 1:0 predicts cf levels that are too low. Unless
otherwise noted, for all remaining SARC results, a
value for the constant cr3 = 0:6 is used.
Surface skin friction results using all four versions

of the turbulence models are shown in Fig. 6. EASM
and EASMCC are both low near the beginning of
curvature but are relatively close to experimental
levels over much of the curved-wall region beyond
s � 55 in.; EASMCC reduces the cf levels from that
of EASM by only a modest amount. Overall, SARC,
EASM, and EASMCC produce similar cf levels over
most of the curved region in reasonable agreement
with experiment.
Velocity pro�les in the bend are plotted in Fig. 7.

In addition to results in the curved region, pro�les
are shown at the inlet (s = 24 in. station), although
experimental data is not available at this location.
As mentioned earlier, the velocity pro�le is set at the
in
ow to match the experimental cf , �, and nominal
velocity using law-of-the-wall relations. As seen in
the �gure, initial pro�les at the inlet are essentially
identical for all four models. In the curved region,
the results begin to di�er. The three models SARC,
EASM, and EASMCC are very close to each other
and are in good agreement with experiment. How-
ever, the SA model predicts higher velocity levels
over the �rst 20% of the boundary layer at all three
stations.
Turbulent shear stress pro�les are plotted in Fig. 8

for SA and SARC and in Fig. 9 for EASM and
EASMCC. All shear and normal stress pro�les, to
be given below, are in the local body/normal coor-
dinate system. Stresses in this frame are related to
those in the Cartesian frame by the following rela-
tions:

u0v0 =
1

2
(v0v0c � u0u0c)sin(2�) + u0v0ccos(2�) (15)

u0u0 = u0u0ccos
2�+ v0v0csin

2�+ u0v0csin(2�) (16)
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v0v0 = v0v0ccos
2�+u0u0csin

2��u0v0csin(2�); (17)

where the subscript c indicates Cartesian frame, and
� is the angle that the body tangent vector makes
with the x-axis. In Fig. 8, the SA model signi�cantly
overpredicts the �u0v0 levels in the curved region,
whereas SARC agrees much better with experiment.
The di�erences between EASM and EASMCC in
Fig. 9 are much less marked. However, EASMCC
is generally in better agreement with experiment,
particularly for d=� > 0:3, where the turbulence is
suppressed to near-zero levels.
The turbulent normal stresses are plotted for

EASM and EASMCC in Figs. 10 and 11. Because
EASM and EASMCC are nonlinear models, they can
predict the normal stress di�erences between u0u0

and v0v0. Results are in good agreement with exper-
iment at the in
ow and throughout the curvature
region. The curvature correction in EASMCC has
the e�ect of lowering the normal stress levels slightly
from those of EASM. The u0u0 and v0v0 for SA and
SARC are not shown. Linear eddy viscosity mod-
els cannot predict the normal stress di�erences, al-
though the ability to predict these di�erences is gen-
erally not considered necessary for most thin shear

ow applications.
Finally, the velocity pro�les are shown using wall

coordinates in Figs. 12 - 14. The theoretical log-law
curve plotted in these �gures is due to Spalding.20 In
the experimental results of Fig. 12, it is noted that
the e�ect of curvature is primarily in the \wake" re-
gion beyond the log layer, where the u+ levels are in-
creased at successive stations downstream. The log
layer itself remains una�ected by curvature. The
SARC model overall re
ects the correct trend, in-
creasing u+ in the wake region with downstream dis-
tance in the curve. However, the e�ect is excessive
when cr3 = 1:0, and even the log layer itself is af-
fected by the curvature correction and loses the cor-
rect slope. When cr3 = 0:6, a portion of the log layer
retains the correct slope and only the region beyond
y+ � 100 is altered. The EASMCC model shows
somewhat elevated wake levels of u+, similar in char-
acter to the experiment, even with no curvature cor-
rection. These levels are raised slightly through the
use of the curvature correction in EASMCC. In both
EASM and EASMCC, the log layer remains in good
agreement with the theoretical slope.
It is also instructive to return to check the original

assumption made in the derivation of the EASMCC
model. We already know from previous studies (e.g.,
Rumsey et al.5) that the assumption Eq. (4) is not
valid in regions of high curvature. We would now like
to investigate the validity of the transformed equa-
tion, Eq. (6). We do this by computing its actual

value (the quantity uj@bik=@xj) at various locations
in the converged solution, and comparing it to the
quantity bik
kj �
ikbkj.
Results are shown in Figs. 15 and 16 for Db11=Dt

and Db12=Dt, respectively. The three successive
curves in each �gure represent results at the three
stations in the curved region. It is shown in these
�gures that the assumption Eq. (6) is indeed valid
in the curvature region, and is nearly exact in the
lower part of the boundary layer.

5 Conclusions

This numerical study has yielded the following
conclusions. The standard SA model (with no cur-
vature correction) does not do a good job modeling
the 
ow �eld with convex curvature. Eddy viscos-
ity levels are signi�cantly overpredicted, and velocity
pro�les are somewhat too full. The skin friction co-
e�cient in the curved region is overpredicted. The
curvature correction in SARC signi�cantly improves
results, lowering eddy viscosity levels and bringing
velocity pro�les into better agreement with experi-
ment. The best choice for the model constant cr3 is
0:6 for this test case. A value of cr3 = 1:0 lowers the
skin friction coe�cient too much, and the log layers
of the velocity pro�les are signi�cantly altered.
The EASM and EASMCC models both do a

reasonably good job predicting this 
ow �eld.
EASMCC has an advantage over SARC in that there
are no heuristic functions and no additional con-
stants necessary. The model is derived by assum-
ing anisotropy equilibrium in the reference frame
de�ned by the principal axes of the strain rate ten-
sor, rather than in the Cartesian frame for standard
EASM. The modi�ed assumption on the anisotropy
tensor is shown to be valid in the curved region of
the 
ow �eld. However, the resulting curvature cor-
rection in EASMCC has only a minor e�ect for this
case, slightly lowering the turbulent stress levels (in
better agreement with experiment) and lowering the
skin friction coe�cient by a small amount. The ef-
fect on computed velocity pro�les is very small.
Therefore it appears that some aspect of the

EASM model enables it to perform reasonably well
for this curved-
ow case even without a curvature
correction. Because the EASM is derived directly
from the Reynolds stress model, it retains some
of the invariance properties of the full di�erential
form, even with the incorrect Dbij=Dt = 0 assump-
tion. Thus EASM yields a better physical repre-
sentation of the turbulence than lower-order models
such as SA. By including the curvature correction
(in EASMCC), all the frame-invariance properties
are retained. This modi�cation does improve cer-
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tain details in this 
ow �eld, but overall the e�ects
are relatively minor.
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Figure 1. Grid for So-Mellor case, every other point
of 257� 161 grid shown.

Figure 2. Surface pressure coe�cient, referenced to
inlet conditions.

Figure 3. E�ect of grid size on surface skin friction
coe�cient, EASMCC model.

Figure 4. E�ect of grid size on turbulent shear stress
pro�le at s = 71 in., EASMCC model (�ne and
medium curves are indistinguishable).
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Figure 5. E�ect of SARC model constant on sur-
face skin friction coe�cient, referenced to inlet con-
ditions.

Figure 6. Surface skin friction coe�cient, referenced
to inlet conditions.

Figure 7. Velocity pro�les at s = 24 in., s = 59 in.,
s = 67 in., and s = 71 in., referenced to inlet condi-
tions (origin for each successive station is shifted 0.5
units to the right).

Figure 8. Turbulent shear stress pro�les for the SA
and SARC models at s = 24 in., s = 59 in., s = 67
in., and s = 71 in., referenced to inlet conditions
(origin for each successive station is shifted 0.002
units to the right).
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Figure 9. Turbulent shear stress pro�les for the
EASM and EASMCC models at s = 24 in., s = 59
in., s = 67 in., and s = 71 in., referenced to in-
let conditions (origin for each successive station is
shifted 0.002 units to the right).

Figure 10. u0u0 turbulent normal stress pro�les for
the EASM and EASMCC models at s = 24 in., s =
59 in., s = 67 in., and s = 71 in., referenced to
inlet conditions (origin for each successive station is
shifted 0.005 units to the right).

Figure 11. v0v0 turbulent normal stress pro�les for
the EASM and EASMCC models at s = 24 in., s =
59 in., s = 67 in., and s = 71 in., referenced to
inlet conditions (origin for each successive station is
shifted 0.005 units to the right).

Figure 12. Semi-log plot of the experimental velocity
pro�les.
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Figure 13. Semi-log plot of the velocity pro�les for
SA and SARC (SARC with cr3 = 0:6 is shifted 3
units to the right, and SARC with cr3 = 1:0 is
shifted 6 units to the right).

Figure 14. Semi-log plot of the velocity pro�les for
EASM and EASMCC (EASMCC is shifted 3 units
to the right).

Figure 15. Comparison of actual Db11=Dt with
EASMCC assumption at s = 59 in., s = 67 in.,
and s = 71 in. (origin for each successive station is
shifted 0.004 units to the right).

Figure 16. Comparison of actual Db12=Dt with
EASMCC assumption at s = 59 in., s = 67 in.,
and s = 71 in. (origin for each successive station is
shifted 0.004 units to the right).
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Table 1. Wall points (in.) used for So-Mellor case
xinner yinner xouter youter
.2400E+02 .0000E+00 .2400E+02 .6000E+01
.3350E+02 .0000E+00 .3406E+02 .6000E+01
.3580E+02 .0000E+00 .3668E+02 .6004E+01
.3780E+02 .0000E+00 .3905E+02 .5983E+01
.3957E+02 .0000E+00 .4119E+02 .5969E+01
.4116E+02 .0000E+00 .4315E+02 .5954E+01
.4258E+02 .0000E+00 .4495E+02 .5958E+01
.4388E+02 .0000E+00 .4661E+02 .5978E+01
.4506E+02 .0000E+00 .4815E+02 .6171E+01
.4615E+02 .0000E+00 .4957E+02 .6390E+01
.4716E+02 .1652E-02 .5092E+02 .6508E+01
.4810E+02 -.5451E-02 .5220E+02 .6466E+01
.4898E+02 -.6397E-01 .5339E+02 .6254E+01
.4980E+02 -.1668E+00 .5448E+02 .5904E+01
.5057E+02 -.3273E+00 .5548E+02 .5456E+01
.5128E+02 -.5392E+00 .5639E+02 .4941E+01
.5194E+02 -.7944E+00 .5723E+02 .4379E+01
.5255E+02 -.1081E+01 .5799E+02 .3784E+01
.5313E+02 -.1391E+01 .5870E+02 .3165E+01
.5366E+02 -.1721E+01 .5935E+02 .2530E+01
.5416E+02 -.2067E+01 .5995E+02 .1886E+01
.5462E+02 -.2428E+01 .6051E+02 .1236E+01
.5506E+02 -.2802E+01 .6104E+02 .5848E+00
.5546E+02 -.3189E+01 .6155E+02 -.6808E-01
.5584E+02 -.3588E+01 .6202E+02 -.7222E+00
.5619E+02 -.3999E+01 .6248E+02 -.1379E+01
.5651E+02 -.4419E+01 .6290E+02 -.2040E+01
.5682E+02 -.4849E+01 .6331E+02 -.2707E+01
.5710E+02 -.5288E+01 .6369E+02 -.3382E+01
.5736E+02 -.5737E+01 .6404E+02 -.4069E+01
.5759E+02 -.6195E+01 .6435E+02 -.4768E+01
.5781E+02 -.6663E+01 .6464E+02 -.5480E+01
.5801E+02 -.7142E+01 .6489E+02 -.6209E+01
.5819E+02 -.7631E+01 .6510E+02 -.6953E+01
.5835E+02 -.8133E+01 .6528E+02 -.7713E+01
.5848E+02 -.8646E+01 .6541E+02 -.8490E+01
.5860E+02 -.9173E+01 .6550E+02 -.9282E+01
.5869E+02 -.9714E+01 .6554E+02 -.1009E+02
.5876E+02 -.1027E+02 .6554E+02 -.1091E+02
.5880E+02 -.1084E+02 .6550E+02 -.1175E+02
.5881E+02 -.1143E+02 .6542E+02 -.1261E+02
.5880E+02 -.1204E+02 .6530E+02 -.1348E+02
.5876E+02 -.1266E+02 .6514E+02 -.1438E+02
.5868E+02 -.1331E+02 .6495E+02 -.1529E+02
.5856E+02 -.1398E+02 .6471E+02 -.1623E+02
.5840E+02 -.1467E+02 .6443E+02 -.1720E+02
.5819E+02 -.1538E+02 .6411E+02 -.1820E+02
.5793E+02 -.1612E+02 .6373E+02 -.1923E+02
.5760E+02 -.1688E+02 .6327E+02 -.2028E+02
.5719E+02 -.1766E+02 .6273E+02 -.2136E+02
.5671E+02 -.1847E+02 .6208E+02 -.2246E+02

xinner yinner xouter youter
.5613E+02 -.1929E+02 .6129E+02 -.2356E+02
.5544E+02 -.2014E+02 .6033E+02 -.2464E+02
.5462E+02 -.2099E+02 .5918E+02 -.2567E+02
.5363E+02 -.2182E+02 .5782E+02 -.2663E+02
.5246E+02 -.2263E+02 .5627E+02 -.2756E+02
.5110E+02 -.2345E+02 .5454E+02 -.2846E+02
.4957E+02 -.2433E+02 .5263E+02 -.2944E+02
.4783E+02 -.2533E+02 .5055E+02 -.3056E+02
.4584E+02 -.2647E+02 .4826E+02 -.3185E+02
.4354E+02 -.2780E+02 .4572E+02 -.3332E+02
.4084E+02 -.2935E+02 .4288E+02 -.3505E+02
.3761E+02 -.3122E+02 .3962E+02 -.3699E+02
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