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Abstract When compared with traditional factor-of-safety

The effects of uncertainties on the strength of a{nethods, both probabilistic and possibilistic methods
single lap shear joint are explained. Probabilistic andfauire additional mpyts but_prowde more and higher
possibilistic methods are used to account forquallt.y.outputs. _Varlables in these methoc'zls can be
uncertainties. Linear and geometrically nonlinear finiteCIaSbS'I)'_El},d as el';]hedr cehrtaln or qncertglrllo.l For
element analyses are used in the studies. To evaludikopabilistic methods, 't e uncert.aln variables are
the strength of the joint, fracture in the adhesive anc?ssumed to have a probability density function. In turn,

material strength failure in the strap are considerecPrOb"J‘b'l'StIC methods provide a probability density

The study shows that linear analyses yield cons;ervativféfmctlon for the response quantities.  Similarly,

predictions for failure loads. The possibilistic approachprfJSSIbIIIStIC methods require a merrc}berhsmp functl%n for
for treating uncertainties appears to be viable fofne gncﬁrtim pare;me;ers, and they _provide -a
preliminary design, but with several qualifications. membership function for the response quantities.

Introduction The general objective of this paper is to study the
differences betweerprobabilistic and possibilistic

In the final stages of the design of future advancegnethods by exploring their application to a simple and
aerospace vehicles, the design procedures need y@t commonly encountered structural component. The
account for uncertainties by calculating the risk orselected component is a single lap shear joint. The
reliability. These calculations will involve probabilistic specific objective of the paper is to study how
analysis. While probabilistic methods may be requiredincertainties affect the strength of a single lap shear
in the final Stages of dESign, methods that merely bounﬂ)int_ The Study considers two ways to account for
a response quantity and provide the most likely valugincertainties (probabilistic and possibilistic), examines
may be adequate for early stages of design. Sude effect of a geometrically nonlinear analysis, shows
methods, referred to herein as possibilistic methodshe effect of two failure modes (fracture in the adhesive
have the potential for allowing a large number of desigrand material strength failure in the strap), and illustrates
options to be evaluated rapidly during the conceptuateveral computational techniques.
and preliminary design stages when there may be little
data and little need for precision. Description of Problem

The single lap shear joint consists of lap and strap
"Aerospace Engineer, Analytical and Computational Methodsadherends bonded with an adhesive as shown in
Brﬁ/r;c“'se”'or '\éem_ber' A'AAA Mtical and Computational Method Figure 1. This configuration has been analyzed
erospace kengineer, nalytical an omputationa ethoas . . . .
Branch, Member AIAA extens_lvely in Refergnces 1-5. The strap is subjected to
a tensile load- that is reacted at the=0 plane. The

Copyright © 2001 by the American Institute of Aeronautics and gdhesive is assumed to contain a crack of lergth
Astronautics, Inc. No copyright is asserted in the United States under.

Title 17, U.S. Code. The U.S. Government has a royalty-free Iicensé'tuated centrally within the adhesive. Boundary
to exercise all rights under the copyright claimed herein forconditions at the left end of the joint ar,y) = 0 and

Governmental Purposes. All other rights are reserved by the copyrigq;(o 0) =0 These boundary conditions represent
owner. ! ’
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1)/, v rate calculations. Linear and geometrically nonlinear
l2 s analyses were carried out. The nonlinear analysis was

ﬂ Lap Crack carried out to study the effects of eccentricity of the
@ Stap ZAdhesiveE,l F loading and the resulting rotation of the joint.
ta —
L | | Xu
| 1 | ,_Crack lengthc_
.-I_ |
Figure 1 Single lap shear joint. PStrTsj
check
symmetry conditions. Boundary conditions at the right a) Overall model

end of the strap are(l,,y) = constant and(l,,0) = 0.
These boundary conditions correspond to zero rotatiol
of the face of the strap at the right end and approximat
the restraints provided by the grips in a testing machine
Various configurational and material properties that
define the single lap shear joint analyzed in this paper b) Overall model with thickness enlarged to show finite
are given in Table 1. The lap and strap adherends are element mesh

taken to be 2024 T3 aluminum.

The ABAQUS finite element structural analysis
program (Ref. 6) was used to analyze the joint. The
two-dimensional finite element model of the joint
(Fig. 2) had 1692 plane strain, 8-node, biquadratic
elements (denoted CPE8) with 5331 nodes. These
CPE8 elements were used throughout the model,
including at and near the crack tip. Near the crack tip,
fine mesh modeling is used (Fig. 2(c)), and equal size
elements with aspect ratios 1 are maintained on either
side of the crack tip to facilitate strain energy release  Figure 2. Finite element model of single lap shear joint.

Crack Location

c) Detailnear the crack tip

Table 1. Values of quantities that define the single lap shear joint

Probabilistic Analysis
Variable Symbol | (normal distributions) |Possibilistic Analysisi=0
Standard Lower Upper

Mean Deviation Bound Bound
Thickness, strap — in. t, 0.121 0.00p 0.11 0.14
Thickness, lap — in. t, 0.121 0.00p 0.11 0.14
Length, strap — in. I, 12.0 ( 12 1p
Length, lap —in. I, 10.0 0.16 9.52 10.48
Thickness, adhesive — in. t, 0.0050 0.0005 0.0035 0.0065
Length, crack — in. c 4.0( 0.08 3.76 4.24
Modulus, metallic adherends - psi E, 10,500,00pD 105,000 10,185,000 10,815|000
Poisson's ratio, metallic adherends Vm 0.312% D 0.3125 0.3125
Modulus, adhesive - psi E, 336,000 16,800 285,600 386,400
Poisson's ratio, adhesive Va 0.44 @ 0.4 0@
Critical value of G (total) — in. Ib/iR. G, 5.5( 0.66 3.52 7.48
Yield stress 2024 T3 - psi Oyield 44,000 88D 41,360 46,640
Crack Growth Increment — in. Ac 0.00125 D 0.00125 0.00125
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To study the effect of uncertainties, nine of thewith the most likely value (MLV in Fig. 3) equal to the
guantities in Table 1 were taken to be independentnean value given in Table 1. The most likely value
random variables with normal distributions and withcorresponds tar = 1.0. The absolute upper and lower
specified means and standard deviations. Two failuréounds (UB and LB in Fig. 3) are equal to thean
modes were considered — fracture in the adhesive due t@lue plus/minus three standard deviations. The
an existing crack and material strength failure due t@absolute upper and lower bounds corresporal £00.0.

yielding in the strap. A brief discussion of membership functions together
with an example that illustrates techniques for
Analysis Approach calculating with membership functions are presented in

This section describes the two approaches tha,%\ppe.n_d.ix.B. Comparisons bgtween probabilistic and
were used to treat uncertainty and the two approaché’soss'bIIIStIC methods are given in Reference 11.
that were used to evaluate failure. Probabilistic and
possibilistic approaches were used to treat uncertainty. 1.0
The two failure modes that were used are fracture in the
adhesive caused by an existing crack and material
strength failure caused by yield in the strap.

Accounting for Uncertainties a

In the probabilistic approach for accounting for
uncertainties, nine quantities were assumed to be
random variables with normal distributions. The
random variables and their statistics are given in

0
Table 1. With these nine random variables, Monte LB MLV uB
Carlo simulations (Refs. 7, 8) were used to calculate the Variable
probability of failure of the joint for various values of
the loadF. (A brief description of the Monte Carlo Figure 3. Example of membership function.

method is given in Appendix A.) Convergence of the . .

Monte Carlo calculations was evaluated by using 100fracture in the Adhesive
1000, and 5000 trials and by comparing results from a
Monte Carlo simulation with results from a first order ..o growth are used to evaluate fracture in the

reliability method (FORM, Ref. 7). The probabilistic gjqhesive due to an existing crack. The evaluation

analysis code ProFES (Ref. 9) was used for all thesgynists of calculating values of the total strain energy

calculations. release rat&st and comparing these values with the
o experimentally determined value of the critical strain
In the possibilistic approach (Refs. 10, 11), gnergy release rat6c (Refs. 17, 18). Failure is
membership functions were assigned to the ningggmed to occur when the total strain energy release

random variables indicated in Table 1. An example of¢q i equal to or greater than the critical strain energy
a membership function is shown in Figure 3. Thegease rate. ie.

parametern indicates the possibility of an uncertain

guantity taking on a given value. The objective is to Gr 2 Ge
use the membership functions of the input parameters

(e.g., d|m§n3|on§) to determine the corregpondln%or this joint configuration, the total strain energy
membership functions for the response quantities (e'grelease rateGr is given by

stress, buckling load). Techniques for calculating with
membership functions are given in Reference 10. The
membership functions for the response quantities are
then compared with the membership functions of the .
allowable responses to determine the possibility ofvhere G, and G, are the strain energy release rates for
failure. In this paper, the membership functions for thenodel and modeH failures, respectively. The critical

nine random variables are taken to be isosceles triangl€§€rgy release rate in equation (1) for mixed-mode
fracture is dependant on the mode-mixity (Refs. 17,

The strain energy release rates for self-similar

1

Gr =G +Gy )
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18). The critical energy release rate used in this paper «——C———
is for FM-300 adhesive tested in mixed-mode |¢
conditions with a mode-mixity, / G;; = 0.3 (Ref. 5). AC
h/\_//'\_/\
The “virtual crack closure technique” (VCCT) is 6‘ \

d e Crack

used to evaluat€&, and G, using the crack tip forces
and the opening and sliding displacements of the cra
faces (Refs. 12-16). Due to large rotations of the mode

in the vicinity of the crack tip, a nonlinear formulation

of the VCCT that utilizes a locat-y' system (see

Fig. 4) is used (Refs. 2, 15). The displacements of the\—/\/\—/
crack-tip node and the node ahead of the crack tip are
used to determine a locad axis of the rotated
coordinate system. The expressions @rand Gy, in

the local coordinate system can be written using the
notation shown in figure 4 as:

G :_ZLAC%{%/}“ —v'm*)+Yj'(v; -V‘I*)E 3)

a) Undeformed shape

Gy :_ZiAcéq‘ B,lm —u'm*)+xlj(ui —u;*)g 4) VL
X

where

b) Deformed shape

Ac is the crack growth increment, and is equal to the
width of the elements at the crack tip, Figure 4. Model and notation used in virtual crack

X;,Y, are the nodal forces at nodeevaluated using closure technique.

the elements | and J in the and y directions
respectively, region examined for stress failure, the bending stress is
ijj are the nodal forces at nodeevaluated using small compared. with the extgnsional st.ress. '(!:or
the element inthex andy directions respectively example, by using a geometn(_:ally nonlinear f|n|t.e

' element analysis it was determined that the bending
u'm,u'm* ulul are displacements in the direction at  stress is less than 1% of the extensional stress 40
in., less than 2% at=11 in., and less than 6% at
x=11.5in. The loadF is applied atx=12 in.)

Vm,V_+,V,V . are displacements in thg direction at ~ Therefore, after setting to unity the depth of the strap,
m the streswy is taken to be

* * .
nodesmm ,l, and| respectively, and

* * .
nodesmm ,l, and| respectively.

The values of the forces and displacements on the right o= E 5)
hand sides of equations (3) and (4) are extracted from a X 4]

finite element analysis.
Note that the calculation afy does not require a finite
element analysis.
Failure in the strap is assumed to occur when the
stress in the strap exceeds the yield stress of the Results and Discussion

material.“ The stress"\{vas'examined in the region  Resyits of deterministic analyses obtained using
denoted “Stress Check” in Figure 2. That region doeghe mean values of the variables are presented first.

not include the loaded end, where the boundaryrhen results showing the effects of uncertainties are
conditions may cause local stress perturbations. In th&resented.

Material Strength Failure in the Strap
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Deterministic Analyses solution in detail. The results shown in Figures 7 and 8
Iprovide the explanation.

The deformed shape of the finite element model fo
a load of 6000 |b is shown in Figure 5. In the figure,
deflections are scaled up by a factor of 10 for

visualization purposes. The joint undergoes significanfthe_Sloloe in Fig. 6) is plotted as a function of the
bending. applied loadF. Note that for the linear case the

derivative is a constant, while for the nonlinear case the

derivative is not a constant. The derivatives for the
A linear case and nonlinear case are the sarke 8t but
the derivatives differ for other values Bf Figure 8

rovides a more dramatic contrast between the linear

Figu.re 2. peformed shgpe of the lap shgar J.Oingnd nonlinear analyses. In this figure, the second
obtained using a geometrically nonlinear analysis. derivative of G with respect toF2 is plotted as a

. . . function of the applied loaH. For the linear case, the
The manner in which the total strain energy releas%econd derivative is zero for all values of the Iéad

) R, .
.rate;;Tvar.les \,NlthF (the squ?refof tge Epplll?d oyl q For the nonlinear case, the second derivative is
IS shown 1n Figure 6 Results or oth a linear an %Iatively large neaF = 0, then drops by three orders of
geometrically nonlinear analysis are shown. Formagnitude neaiE = 2000 Ib The computational

perspective, the bounds for the two failure modes +echniques used for calculating derivativesGsf are
fracture of the adhesive and yield of the strap — are als&scussed in Appendix C

shown. The value of2 corresponding to yield of the

In Figure 7, the derivative @&t with respect td-2

strap is given byt{ oyieig)2. A discussion of the results x 10°7
from the linear and nonlinear analyses is presented o
below. $TTTTTTmmmsssmsmesso----------
201 ®e ®e
8__ F . ...'°'°'°'Oooooooococooo
racture e N
C GT 2 GC 3 ’ dGT 15
- ’ 2
- 6 . > f// d(F )1.0 L - - - Linear Analysis
< [~~~ Linear L’ * Nonlinear Analysis
= - — Nonlinear .~
c 4r g 5
= Yield
© I 7 F22 (t, X cfyield)z ! ! |
2r 0 1000 2000 3000
[ Applied Load, F, Ib
T R T S R T M |
0 1 22 , 3 4x 10’ Figure 7. Derivative ofs; with respect td-2.
F< Ib
Figure 6. Total strain energy release r&g as a
function of the square of the applied load. Failure x 10713
bounds are also shown. 0 FTTTTLLTCECTC000ooee
Linear analysis.The forces and displacements -2
Y, u’, andV' on the right sides of equations (3) and (4) —e— Nonlinear Analysis

are linear with respect to the applied Idad The total o —4
: : d<G

strain energy release rdB is calculated from the sum T2

of the products of these quantities and hence il(F?) 6

proportional toF2. Thus, the results shown in Figure 6

for the linear case are expected.

-8
Nonlinear analysis At first glance, the nonlinear 0 I | |
alnalys:js_f;:urvet |fn Flgl:;e 6|a|0peafrst kt]o lie a line V\Inth' a 0 1000 000 00
slope different from the slope of the linear analysis Applied Load. F, Ib

curve. Since that is not a reasonable conclusion, further . o .
studies were undertaken to examine the nonlinear Figure 8. Second derivative Gfr with respect td-2.
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Based on the results presented in Figures 7 and &yaluated using 100, 1000, and 5000 trials and by
the nonlinear analysis curve in Figure 6 can becomparing results from a Monte Carlo simulation with
interpreted as follows. AF =0 the slope of the results from a first order reliability method (FORM).
nonlinear analysis curve is equal to the slope of the linResults for 100, 1000, and 5000 trials are given in
for the linear solution. For values Bfbetween zero Table 2. Results are shown for both linear and
and 2000 Ib, the slope of the curve becomes smaller asonlinear finite element analyses. In Table 2, the
the joint straightens and stiffens. The nonlinearapplied load used in the linear analysis was 5000 Ib; for
analysis accounts for that straightening and stiffeningthe nonlinear analysis the applied load was 6000 Ib.
During straighteningGt is not linear with respect to (The loads in Table 2 are different for the linear and
F2. For values of greater than about 3000 IB;; is nonlinear analyses because the objectives of the
nearly linear inF2 with a slope that is smaller than that analysis are to evaluate convergence in the center
calculated from the linear analysis. In summary, theportion of each curve.) Based on these results, MCS
geometrically nonlinear analysis accounts for the jointwith 5000 trials was considered to be adequate for the
rotation, straightening, and stiffening, while the linearstudies presented in this paper. Note that the objective
analysis does not account for these phenomenavas to obtain convergence in the center portion of each
Because of the scale, the progress of the rotatiorgurve. If the emphasis were on an accurate
straightening, and stiffening cannot be seen in Figure gepresentation of data in the tails, a larger number of
but the changes can be seen clearly in Figures 7 and 8. trials would have been required.

Analysis with Uncertainties Probabilistic, Fracture, Linear and Nonlineaks

I ety s e o e e i oo
uncertainties are used — probabilistic and possibilistic

The effects of a geometrically nonlinear analysis andTh atis

the effects of two failure modes — fracture of the
adhesive and yield of the strap — are also considered.
First, the convergence for a Monte Carlo simulation and Iherek is a constant. Also, for the nonlinear cae,
a technique for greatly reducing computational effort

are presented. Then, results are presented for vanoﬂﬁs nearly linear m!:z f(?r large values ofF. This facj[
combinations of probabilistic and possibilistic analysis,Can be used to significantly reduce the computational

linear and nonlinear analysis, and fracture and yielaesources required to produce curves such as those

failure modes. (The headings for each of these sectiorg]OWn in Figure 9. In this figure, the probability of

have the following format: method(s) for handling the allu:e fro][ntr:‘racturle gfl th; ?dh;:stlxe IIS plotteddas a
uncertainties, failure mode(s), type(s) of analysls)umI lon © elapp IeE Oﬁ or both a |rt1)?a.r ag a
Finally, probabilistic and possibilistic results are noniineéar analysis ach curve was obtained using

presented for a nonlinear analysis with a combination o caling of individual trials in a Monte Carlo simulation
both failure modes n = 5000) that was carried out at a single value of the

load F. The details of the scaling technique are
presented in Appendix A. For the linear curve, the
f'smgle value of the loaH was 5000 Ib; for the nonlinear
curve, the single value of the lodd was 6000 Ib.
SResults obtained using FORM are included in this

Gy = kF2 (6)

Convergence and Fracture Failur€he primary
method that was used to study the effect o
uncertainties was Monte Carlo simulation (MCS).
Convergence of the Monte Carlo calculations wa

Table 2. Convergence study of Monte Carlo simulation

Analysis Probability of Failure by Fracture of Adhesive
Type Load, Ib Monte Carlo Simulation
n=100 n=1000 n=5000 FORM
Linear 5000 0.515 0.511 0.483 0.483
Nonlinear 6000 0.772 0.763 0.764 0.756
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1.00 Li Linea Nonlinea
& s —~ Probability o~ Probability
% 751 + Form o —— Posshility -~ Posshility
T . 5 1.00
w Nonlinea =
5 5O —© MCS L
> A Form S 75-
= 2
] 25| =
8 ‘w50
o A §
0 ©00000000oAOOEOR0 of 1 1 I | a
3000 4000 5000 6000 7000 2 25
Applied Load/F, Ib §
2 0000 L
Figure 9. Probability of failure by fracture of the DQ_ "'"' 5000 60|00 70|00
adhesive. Applied Load,F, Ib

figure to confirm the accuracy of the scaling techniqueFigure 11. Possibility and probability of failure caused

Excellent agreement is obtained between the two sets bfy fracture of the adhesive for both a linear and a
results. nonlinear analysis.

. Possibilistic_and Probapiliigtic, Fraciure, I__i.near shifted to the right. For a nonlinear analysis with
F|gure 10 shc_)vys the possibility and probz?\blllty ofpf = 0.50, the loadF is 5709 Ib. Recall from the
failure of the joint by fracture of the adhesive for 5,‘previous section that the linear analysis predicts a value

linear finite element analysis. Here and elsewhere N 5015 Ib. According to these results and the results

tfrs paper, for ahglver? Ioadbthbgl_pos?;bl'lllty of falulure ISpresented in Figure 6, a nonlinear analysis predicts that
a:}wa);s grhe.atert anht € pro'béll' : I'[nyf 'Ial ure. Also nhOtethe joint can carry more load than a linear analysis —
that, for this case, the possibility of failure is 1.00 w €Mie. a linear analysis is more conservative. Further

]tchﬁ probablhtyhof fgllg(r)e F(f% IS ?HSOII ;ge ggolb;tl)t')“tyl of studies carried out in this paper are based on a nonlinear
alure pr reacnes ©.50 when he loads - M finite element analysis.

the next section, this value is compared with the value

obtained using a nonlinear analysis. Possibilistic and Probabilistic, Material Strength
Figure 12 shows the possibility and probability of

(&)

é 1.00- 3 failure of the joint by material strength failure of the
ks —e— Probability strap (streswy greater than yield stresgjiei). These

B 75 |~ Possbility results are based on equation (5) and do not require a
= finite element analysis. Fg; = 0.50, the value of the
E 50 1 load F is 5500 Ib, which is less than the value of
a2 -

g

2 251 1.00~

% —e— Probability

T Deser v — Posshili ty

& 30007 °4000 5000 6000 7000 751

Applied Load/F, Ib
.50
Figure 10. Possibility and probability of failure by
fracture of the adhesive for a linear analysis.

Possibilistic and Probabilistic, Fracture, Linear and
Nonlinear Figure 11 shows the possibility and ;9600 24000 5000 6000 7000
probability of failure of the joint caused by fracture of Applied LoadF, Ib
the adhesive using both linear and nonlinear finite
element analyses. Compared with the curves for theigure 12.Possibility and probability of material
linear analysis, the curves for the nonlinear analysis arstrength failure of the strap.

Probabili ty/Possbili ty of Failure
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5709 Ib for the nonlinear fracture failure mode given in Probabilistic, Fracture and Material Strength,
the previous section. The results shown in figures 10 Nonlinear Figure 14 shows the probability of failure of
12 are confirmed in figure 6 which shows that, for athe joint by fracture of the adhesive and by material
nonlinear analysis with mean values of the uncertairstrength failure of the strap. Three curves are shown.
parameters, material strength failure occurs at a loweFhe first curve (filled circular symbols) is for failure of
load than fracture failure; for a linear analysis withthe joint by fracture of the adhesive. The second curve
mean values of the uncertain parameters, fracturilled triangular symbols) is for material strength. The
occurs at a lower load than material strength failure.  third curve (open square symbols) is for either of the
two failure modes or both modes — i.e., the third curve
Possibilistic, Fracture and Material Strength,is the union of the two failure events. In the
Nonlinear Figure 13 shows the possibility of failure of probabilistic approach for calculating the probability of
the joint by fracture of the adhesive (solid line) and byfailure caused by a combination of the two failure
material strength failure of the strap (dashed line). Thenodes, both failure modes have an effect on the
possibilistic failure envelope that considers both failureprobability of failure, not just the more critical mode.
modes is the maximum of the possibilities of the twoThis phenomenon can be seen in Figure 14, where the
failure modes. (In the general case, the possibilitythird curve is to the left of either of the two curves for

the individual failure modes — i.e., the third curve
1.00- Cr indicates a higher probability of failure than either of
—e— Fracture the other two curves.
|- Strength

'\,
gl

Posshility of Failure
a
o
T

1.00~
& —o— Fracture
G —— Strength
251 S5 75k Fracture and Strength
T—U
/ LL
0 I A 1 74 1 L 1 L | ‘B 50|
3000 4000 5000 6000 7000 >
Applied Load/F, Ib =
g 25f
Figure 13. Possibility of failure by material strength DQ_ /
and by fracture of the adhesive, plotted individually. g A T gt . ! . |
3000 4000 5000 6000 7000
of failure is the maximum of the possibilities of all the Applied LoadF, Ib

failure modes.) In this case, the possibilistic curve that N ] )
considers both failure modes startsxat 0 (point A) ~ Figure 14. Probability of failure by material strength
with the fracture possibilistic curve — the solid line. |tand fracture, plotted individually and in combination.

follows that line up until the line crosses the strength
possibilistic curve — the dashed line — at alwet 0.75 ) -

(point B). There, the possibilistic curve that considers! "€ effect of two failure modes on the probability of
both failure modes shifts to the strength possibilistic@ilure is indicated mathematically as
curve (line BC) because, for that value of the applied
load F, failure by material strength of the strap has a

higher possibility than failure by fracture of the
adhesive. In a possibi”stic approach for hand“ngWherex indicates failure by the first failure mode avid

uncertainty, if a failure mode does not have theindicates failure by the second failure mode. Finally, if
maximum poss|b|||ty for some value of the app”edthere were additional failure mOdeS, the curve that
load, it has no effect on the possibility of failure. Inaccounts for all modes would shift further to the left.
contrast, in a probab”istic approach for hand“ngThat iS, for a given |Oad, that curve would indicate a
uncertainty, secondary failure modes do affect thdigher probability of failure than the curves for any of
probability of failure, as discussed below. the individual failure modes.

Pe(XOY) =i (X) + 1 (Y) —pr (XnY) (7)

8
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Probabilistic and Possibilistic, Fracture andresult, for multiple failure modes a possibilistic analysis
Material Strength, NonlinearThe results of the study may become unconservative.
are summarized in Figure 15, which shows the
possibility and probability of failure of the joint by Using the same reasoning, a possibilistic approach
fracture of the adhesive and by material strength failureould exhibit unexpected behavior for a structure with
of the strap. Both curves are for a geometricallyredundancies — i.e., a parallel system. The probability
nonlinear analysis. The possibilistic curve shows thef failure of the structural system is reduced as the
change in slope where the maximum possibility shiftsedundancy is increased. In contrast, the possibility of
from fracture of the adhesive to material strength failurdailure of the structural system is equal to the possibility
of the strap. The possibility of failure becomes 1.0 at af failure of the component having the largest
load F of 5500 Ib. The probability of failure at that possibility of failure — regardless of the number of
load is 0.66. (In previous calculations presented in thisedundancies. As a result, for redundant systems a
paper, the possibility of failure becomes 1.0 when theossibilistic approach is conservative. An excellent in-
probability of failure is 0.50. The combination of two depth discussion of probabilistic versus possibilistic
failure modes causes that pattern to change.) Thmethods is presented in Reference 11.
probability of failure is 0.50 at a lod€élof 5405 Ib. For
all values of the loadr, the possibility of failure is Possibilistic approaches for treating uncertainties
greater than the probability of failure. may be viable for early design. But it is not clear that

possibilistic approaches are superior poobabilistic
approaches for early design. For example, whereas the

€ 1.00- number of function evaluations for a possibilistic

E —e— Probabili ty analysis may be small compared with a Monte Carlo
5 751 - Posshility simulation, the number of function evaluations may be
> comparable to that required by some probabilistic
S methods such as FORM. These probabilistic methods
2 S0 - can provide more information than possibilistic

@ methods. Furthermore, even though the possibility of
2 25+ failure was always greater than the probability of failure
% for the bonded joint example with two failure modes,

—5 04 the assumption that possibilistic design is conservative
a 3000 4000 5000 6000 7000 is not a valid assumption when there are many failure

Applied LoadF, Ib modes. In many cases, the choice of methods depends
. o - _ upon the availability of data. Finally, the choice of
Figure 15. Possibility and probability of failure by methods depends upon the designer — how familiar he
combined material strength and fracture. is with the characteristics of both the methods and the

design problem.
Discussion of Probabilistic and Possibilistic Methods

Concluding Remarks

Based on the discussions in the previous three
sections, the following contrasts can be drawn between This paper has explored the effects of
probabilistic and possibilistic methods. Suppose &onfigurational and material uncertainties on the
structure has many failure modes any of which carstrength of a single lap shear joint. Finite element
cause the structure to fail — i.e., the structure is a seriemalyses were used to study the joint. Both
system. (The single lap shear joint with two failureprobabilistic and possibilistic approaches for
modes is an example of a series system.) In accounting for uncertainties were studied, and results
probabilistic analysis the probability of failure increasesfrom the two approaches are compared. The effects of
with each failure mode considered. In contrast, in @ geometrically nonlinear analysis and two failure
possibilistic analysis the possibility of failure increasesmodes are presented. A computational technique for
only if a failure mode is introduced that has a largerspeeding the calculation of the probability of fracture
possibility of failure than any other failure mode. Forfailure at various loads is presented.
example, suppose that the structure is a chain of
identical links. The probability of failure increases with Geometrically nonlinear analyses are essential for
increasing chain length. The possibility of failure accurately predicting the response of the single lap
remains the same regardless of chain length. As ghear joint and its fracture failure mode. The joint
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begins to straighten out and stiffen at a low load. This
phenomenon can be predicted with a geometrically
nonlinear analysis, but it cannot be predicted with a
linear analysis. A geometrically nonlinear analysis

predicts that the joint can carry more load than islO.

predicted by a linear analysis.

For a linear analysis, the strain energy release rateksl-

are proportional to the square of the applied load. For a
geometrically nonlinear analysis, the strain energy
release rates are almost proportional to the square of the
applied load for large values of the applied load. These
characteristics make it possible to employ scaling to
substantially reduce computational effort.

Possibilistic approaches for treating uncertainties

may be viable for early design. But it is not clear thaty2.

possibilistic approaches are superior to probabilistic
approaches for early design.
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Appendix A. Monte Carlo Simulation and Scaling of  Appendix B. Calculating with Membership Functions
Strain Energy Release Rate

Let a be a parameter that indicates the possibility
Monte Carlo simulation involves carrying out a of an uncertain quantity taking on a given value. The
large number of numerical experiments, or trials, withparameten takes on values between zero and one. A
random values of the quantities that are selected to bealue of zero indicates no possibility, while a value of
random variables. In the trials, the randomness of eadine indicates maximum possibility. A membership
random variable is guided by the statistics specified fofunction describes the relationship betweemnd the
that variable — e.g., type of distribution, mean, andpossible values of the uncertain quantities. An example
standard deviation. of a membership function is shown in Figure 3. In a
possibilistic analysis, each of the uncertain quantities
In the present study, for each Monte Carlo trial athat contribute to the response is defined in terms of a
statistically independent configuration of the lap joint ismembership function. The objective of the possibilistic
created from the random values of the input variablesanalysis is to determine the corresponding membership
A finite-element model is developed for that function of the response quantities. The membership
configuration and a finite element analysis is performedunctions of the response quantities can then be
to calculate the total strain energy release Egte compared with the membership functions for the
allowable responses to determine the possibility of
In a given trial, if the calculated value &t fajlure.
exceeds the experimentally determined critical value
Gc, the configuration is considered to have “failed”. A simple example is used to illustrate how to
For example, if the total number of trials in a simulationperform calculations using membership functions.
is 5000 and if there are 3000 failures, then theConsider the cantilever beam shown in Figure B1. The

probability of failure is 0.6 for this specific load. tip deflectiond is given by
Suppose the first Monte Carlo simulation is _ pL3
conducted witH- = F. In the general case, in order to T3 (B1)

obtain the probability of failure for a different lo&d,
the Monte Carlo simulation would have to be repeated
for the new load value. However, by utilizing the factwhere P is the load at the tipl is the length,E is
that Gt is linear with respect t&2, it is possible to Young’s modulus, and is the moment of inertia.
substantially reduce the computational effort. For eaci\ssume thatL and | are uncertain quantities with
trial, the value ofGy, for all loadsF =F41, can be membership functions similar to that shown in Figure
calculated by scaling the value & calculated for B2. The vertical scale is the possibility, denoted
F = Fo. The scaling is carried out in the following way: Which varies from zero to one. The valuestodnd P
are taken to be I(si and 100 Ib, respectively.
OF, O

_UR
Crle—r, bR H Crle=r, (A1) P =100 Ib
| | _ v
The value ofGr obtained through scaling for each -~ .

trial is compared with the corresponding valueGgf. /; I:l 2in.
The number of failures are counted to calculate the = L =40in. lin.
probability of failure for the current load; = F,.

Hence, it is sufficient to perform the Monte Carlo Figure B1. Cantilever beam example.

simulation only once for an arbitrary load. The
probability of failure for any other load can be
calculated by scalinGr for each specific trial. The membership functions for L and | are isosceles
triangles with upper and lower bounds (UB, LB) shown
In the presentstudy, scaling ofGt is used to in Table B1. The bounds are far= 0.0, 0.5, and 1.0.
calculate the probability of failure for both linear and The objective is to obtain an estimate of the uncertainty
nonlinear finite element analyses. in 0 by calculating its membership function.
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A In general, to calculate the upper and lower bounds on a
response quantity at a given valueooit is necessary to
useseveralcombinations of values of the independent
variables at that same valueaf These values include
both the bounds and values between the bounds. It
cannot be assumed that bounds on the response
guantities can be identified by considering only the
bounds on the independent variables.

1.0

Possibility,a
ol

Appendix C. Computational Techniqgues Used for
Calculating Derivatives dbt

L The data for Figures 7 and 8 were obtained using a

combination of chain rule differentiation and finite
Figure B2. Example membership function for momentdifference approximations. The chain rule
of inertial and lengthL of cantilever beam example. differentiation provided expressions containing
(Filled circles indicate bounds drandL corresponding derivatives ofGt with respect td- rather tharF2. That
toa = 0.0,0.5,and 1.0.). change was made because the valueGefwere
calculated at equal incrementshn(100 |b increments)
rather than equal increments F2. As a result,
multipoint finite difference approximations could be
cI‘nore accurate for derivatives with respecFtthan for
derivatives with respect fé2.

To obtain the upper and lower bounds fbrat
a = 0.0, calculated for various combinations df and|
within theira = 0.0 bounds and select the largest an
smallest values. That is, calculatefor several
combinations ofL and | in the ranges 39.8 L < 40.2
and 0.6458% | < 0.68750. To obtain the upper and
lower bounds fod at a = 0.5, calculate for various
combinations of. and| within theira = 0.5 bounds and
select the largest and smallest values. That is, calculate
o for several combinations df and | in the ranges
39.9< L <40.1 and 0.65625 | < 0.67708. The same
approach is used for other valuesoof To obtain the The values of the derivatives on the right hand side in
most likely value o, which is the value corresponding equation (C1) were calculated using 4- and 5-point
to a = 1.0, use the most likely values bfandl, 40.0
and 0.66667, respectively.

For example, for Figure 8, chain rule
differentiation provides the following expression

d?Gy

2
= )

4F% dF?  4F® dF

2
finite difference approximations. The valuegcilzzi)2
. L at F=70 Ib was calculated with a 2-point central

For this S|mpleex§1mple it iseasy to select the difference formula. The computational technique
values ofl and| that give the upper and Iower. bognds described above was most valuable in calculating
ond. The upper bound odis given by a combination >
of the upper bound oh and the lower bound on The — — 1
lower bound ond is given by a combination of the d(F?)?

lower bound ori and the upper bound on changing rapidly.

for small values of where that derivative is

Table B1. Assumed bounds on independent varidtdadlL and corresponding
calculated bounds for tip deflection of cantilever beam example

a lin4 L in. din.
LB UB LB uB LB UB
0.0 0.64583 | 0.68750 | 39.800 40.200 0.30567 | 0.33530
0.5 0.65625 | 0.67708 | 39.900 40.100 0.31272 | 0.32752
1.0 0.66667 | 0.66667 | 40.000 40.000 0.32000 | 0.32000
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