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ABSTRACT

The problem of the determination of the subcritical
aer oelastic response and flutter instability of nonlinear
two-dimensional lifting surfaces in an incompressible
flow-field via Volterra series approach is addressed.
The related aeroelastic governing equations are based
upon the inclusion of structural nonlinearities, of the
linear unsteady aerodynamics and consideration of an
arbitrary time-dependent external pressure pulse.
Unsteady aeroelastic nonlinear kernels are
determined, and based on these, frequency and time
histories of the subcritical aeroelastic response are
obtained, and in this context the influence of
geometric nonlinearities is emphasized. Conclusions
and results displaying the implications of the
consider ed effects are supplied.

NOMENCLATURE

a Dimensionlesselastic axis position measured

from the midchord, positive &t

C Chord length of 2-D lifting surface 2b

G, C,i Ky, K, Damping and stiffness coefficients in
plungng and pitching (i=1,2,3 linea,
quadratic, cubic), respedively

C, Liftcurvesope

C(k), F (k) G(k)Theodorsen'sfunction and itsred and
imaginary counterparts, respedively

h,& Plungng displacenent and its dimensionless
counterpart, (h/ b), respedively
h,H. nth order Volterra kernel in time, and its

n n

Laplacetransformed counterpart, respedively
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Massmoment of inertia per unit wingspan and

the dimensionlessradius of gyration,

(|a/mb2)”2, respedively

|,,m  Dimensionless agodynamic lift and moment,
(Lb/mu2) and (M ,b2/1,U2), respedively

L,,» M_Tota lift and moment per unit span

I, r,

a

L,.l, Overpresare signature of the N-wave shock
pulse and its dimensionlesscounterpart,
(L,b/mu 2), respedively

m,u  Airfoil massper unit length and reduced mass
ratio, (m/mpb? ), respedively

N Load fador, 1+h"/g

PO, Pex refleded pressure amplitude and its
dimensionlesscounterpart, (p,b/mu?),
respedively

r Shock pulse length fador

S, ZL Laplace transform variable ad Laplace
operator, respedively, s, =ik;;i* =-1

S, x, Staticunbalance dout the dastic ais and its

dimensionlesscounterpart, S, /mb,
respedively

t, 7y, T Timevariablesand dmensionlesscounterpart,
(U.t/b), respedively

t,,7, Postive phase duration, measured from the

prtp
time of the ariva of the pulse, and its
dimensionlessvalue, respedively
TF Transfer function
U, .V Freetream speal and its dimensionless

counterpart, (U, /bw, )
Time-dependent external pulse (traveling gusts

and wake blast waves)
Response of the mnsidered degree of freedom

(pitch a and/or plunge h)
a Twist angle aout the pitch axis
{,,{, Structural damping ratios in plungng

(Ch/zmwh)' and ptChlng (Ca/2|awa)’
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respedively

P Air density

ot), () Wagner and Kiissner's functions in the time
domain, respedively

w,k  Circular and reduced frequencies, (wb/U ),
respedively

wy,,w, Uncoupled frequencies in plungng and
pitching, (k. /m)“ and (K, /1, )%
respedively

w Plungng-pitching frequency ratio, (e, /e, )

Superscript

( . ) Variablesin Laplacetransformed space

(), (- ) Derivatives with resped to thetime t , and the
dimensionlesstimer , respedively

INTRODUCTION

t is a well - known fad that within the lineaized

approach of the aeoelagticity discipline, it is posgble
to oltain the divergence ad the flutter instability
boundaries, and aso to get the lineaized subcriticd
agoelastic response of flying wehicle exposed to time-
dependent external pulses. On the other hand, in
addition to the @ove mentioned items, the nonlinea
approach of the problem can provide important
information about the nature of the instability boundary,
i.e. benign or caastrophic one, and on the influence of
the onsidered nonlineaities on the subcriticd
aegoelastic response. In other words, such an approac
gives the posshility of determining in what conditions
the flutter speed can be excealed without the occurrence
of a cdastrophic failure of the lifting surfaces, in which
case the flutter is benign, as well as the conditions in
which urdamped oscill ations may appea at velocities
below the flutter velocity, in which case the flutter is
catastrophic. Due to the strong implicaions of various
nonlineaities on the highly flexible lifting surfaces,
their related aegoelastic phenomena canot longer be
analyzed solely within the standard lineaized
agoelasticity theory. Aircraft wing structures often
exhibit nonlineaities, which affed their aegoeastic
behavior and performance daraderistics and flutter
boundaries. In order to investigate the aeoelastic
behavior of the drcraft in the subcriticd flight speed
range, and in the vicinity of the flutter boundary, the
agoelastic governing equations have to be wnsidered in
nonlinea form.
This investigation concerns the time and frequency
formulations of nonlinea two-dimensiona lifting
surfaces exposed to an incompresshle flow field and
subjeded to an external presaure pulse™>.
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Based on Volterra's functional series approach™®
important information about the dfeds of nonlineaities
on either the aeoelastic response in the subcriticd flight
speal regime, and their implicaion on the benign or
caastrophic charader of the flutter boundary are
supplied.

The avantage of the technique based on Volterra's
series and indicial function (Lomax®, Bisplinghoff'®
Marzocca ¢ a.'™'? consists, among others, on the
posshility to investigate, within a rigorous theoreticd
basis, the aeoelastic systems feauring a wide dass of
structural nonli neaities.

First of all, based upon the first order Volterra kernel
the study of the aeoelastic stability of the systems can
be caried out. Moreover, this methoddogy can
encompassthe cae of an arbitrary number of degrees of
freedom and at the same time is conceptualy cleaer,
computationally simpler and can provide more acarate
and redistic results as compared to the conventional
techniques used in nonlinea agoelastic systems based
on perturbation and multi ple scd e methods.

Toward the end of determining the nonlinea unstealy
agoelastic kernels, the harmonic probing algorithm,
referred to as the method d growing exponentials
advanced by Bedrosian and Rice®, and the
multi dimensional Laplacetransform will be used.

In addition to the agoelastic response and determination
of the flutter instability boundary, Volterra Series will
be used to study the mnditions rendering the flutter
boundary a benign or a caastrophic one (Librescu**).
Moreover, when the dosed-loop d/namic response of
adively controlled lifting surfaceis analyzed, aso the
feadbad control forces and moments will be included
(Librescu®, Librescu and Gern'®, Librescu and Na'’,
Van Trees'®, Chua and Ng*).

The Volterra's sries approach provides a firm basis of
nonlinea subcriticd agoelastic response, in the sense
that it supplies an explicit relationship between the input
(any kind of time-dependent external pulses, i.e. blast
load, sonic-boam, gust loads) and its response.

With the so-cdled Volterra Kernel identificaion
scheme the modeling of an agoelastic system using this
approach becomes feasible. However, this methoddogy
requires determination for eadv spedfic flight
conditions of the gpropriate nonlinear kernel of the
Volterra's ries. For this reason, in order to define the
appropriate aeodynamic loads, the recent interest in the
modeling of unsteady nonlinea aeodynamics by this
approach has been focused on the identification of
Volterra's kernels in the time domain (Silva?®?®), and in
the frequency domain (Marzocca & a.*?, Tromp and

Jenkins™.
A number of fundamental contributions related with
Volterra's  sries, developed by  outstanding

mathematicians (Volterra®, Wiener®) and used mainly in
eledricd engineaing®®, are drealy avail able.
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The original studies on functional series by Volterra’,
have been continued in the works by Volterra himself,
of those of famous physicists and mathematicians as
Rugh’, Schetzen, Boyd®. These mncepts have been
used in nonlinea system theory, in general, and in the
modeling of nonlinea aeoelastic systems, in particular
(Silva®). Very few applicaions of this method have
been done in the agoelasticity discipline.

Originally, the method d Volterra series and Volterra
kernel identificaion were developed to identify the
nonlinea behavior in eledricd circuits. In the agospace
field, the fundamental contributions were brought by
Silva, who has iown that the method is also applicable
to aegoelastic systems (agodynamic readions and
forced structural model).

Silva's pioneging work?®?® in this area has opened a
very promising way of modeling and approacing
nonlinea agoelastic systems.

BASIC CONCEPTSAND LIMITATIONS
OF THISAPPROACH

Having in view the fad that for nonlinea systems the
superpasition principle is not applicable, and having in
view the different types of responses induced by
unsteady agodynamic loads and the external excitation,
a ombination of transfer functions is used. These
transfer functions for the nonlinea agoelastic systems
and the time-histories response in time and frequency
domains are determined by taking the multi-dimensional
Laplacetransform of the Volterra kernels of the related
agoelastic system via aMathematica’ code developed
by these aithors™.

Our approach intended to address the subcriticd
response of the nonlinea aeoelastic governing
equations, is based on its exad representation as an
infinite sum of multidimensional convolution integrals,
the first one, (i.e. the linea kernel) being the analogous
to the linea indicial aegoelastic function. The full
nonlinea aeoelastic response will be cmposed of
additional higher-order contributions. In the frequency
domain, if the nonlinea function governing a system is
" smoth' , then for small inputs the system must be
asymptoticaly linea®. One of the key iswes is to
determine, corresponding to the mnsidered type of
structural and agaodynamic nonlineaities, the pertinent
Volterra' s kernels. When also the adive ontrolis
implemented the corresponding Volterra's kernel should
also be derived.

THE THEORY

In an attempt to make the paper as slf-contained as
possble, several elements aswociated with Volterra's
series as applied to agoeastic system, as well as with
theindicial functions will be supplied here.
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Indicial Theory and Aerodynamic L oads

Using the aerodynamic indicial  functions
corresponding to transient agodynamic readion to a
step pulse, the aeodynamic forces and moments
induced in any maneuver and any flight regime can be
determined. Aerodynamic forces and moments ading
on a rapidly maneuvering aircraft are, in genera,
nonlinea functions of the motion variables, their time
rate of change, and the history of the maneuvering
(Tobak & Chapman®). However, in this gudy, the
linea agodynamic theory is adopted.
Once the response of the system to a step change in one
of the disturbing variables (i.e. the indicial response) is
known, the indicial method permits the determination of
the response of a system to an arbitrary schedule of
disturbances. Thereis a aiticd value of the flight speed
above which the steady motion becomes unstable. In a
nonlinea aeoelastic system the flutter phenomenon
corresponds to the instability known as the Hopf
bifurcaion, resulting in finite anplitude oscill ations, in
the cae of supercritical Hopf bifurcation, and in
oscillations with increasing amplitudes, even if the
system operates before reading the flutter speed, in the
case of the subcritical Hopf bifurcation®”°.
We need to mention that a nonlinear indicial theory®,
as®rts that the response of a nonlinear system to an
arbitrary input can be mnstructed by integrating a
nonlinea functional, that involves the knowledge of the
time-dependent input and the kernel response. Wheress,
within the linea indicial theory the linea kernel or
linea impulse response can be wnvolved with the input
to predict the output of a linear system, the nonlinea
indicial theory congtitutes a generdizaion of this
concept. It can also be shown that the traditional
Volterra-Wiener theory of nonlinea systems constitutes
a subset of nonlinea indicia theory. It should also be
mentioned that the nonlinea unsteady aeodynamics
vaid throughout the subsonic incompressble/
compressble, transonic and supersonic flight speed
regimes can be used and determined via the use of
nonlinea indicial functions™ in conjunction with the
Volterra's ries approach.

Volterra Functional Series Theory
As it was sown (Rugl, Schetzen’) within Volterra's
series approach the full response in the time domain,
y(t), of the nonlinea systems with memory can be cat
as.

y(t):Zyk t): (1

where, y, (t) isexpressed as:
w0= [ ATt @

By a dhange of variables, it is possble to express Eq.
(2) in contraded form as:
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It is assumed that x(t)=0 for T <0 implying that the
systemiscausal.

With this restriction, al the integrals in the subsequent
discussons are different from zero over the time range
(0,). Restricting the development of Eqg. (3) to the
first threeterms one obtains:

=[ h(z)x(t - 7.)dr,
* J]’hz(l'l, Tz)x(t - Tl)x(t - T2)dT1dT2

+J]’J-Q(T11 Ty T3)X(t - Tl)x(t -T )X(t - TS)dTldTZdTS

o (4)
On the other hand, the response of the system can be
expressed also in the frequency domain.
The Volterra series is essntidly a poynomial
approximation of the system, extension of Taylor series
to systems with memory, while Volterra's kernels
h, (si) are adired extension of the impulse response

concept of the linea system theory to multiple
dimensions (Volterra®, Rugt’, Schetzen’, Boyd®).
Consequently, a multidimensional analogue of the
impulse reaponse can be used to charaderize anonlinea
system (Silva®®%).

Having in view that the a@oelastic systems memory is
not infinite and, at the same time, the time-dependent
external excitations, such as impulse, gust, blast and
sonic-boam presaure signatures are non persistent but
their effed will diminish as time unfolds, it is possble
to charaderize a nonlinea aegoelastic system via
Volterra series. This fad is refleded in the
interpretation of the Volterra kernels as higher order
impulse response functions, i.e. h(r,---,1,) -0 &

Tl"“’

We will use the definition of the nonlinear transfer
function or higher-order impulse response functions

Tn—>00.

namely
Sl S, J’J‘ J’h Ty, Ty, T
e e ™ ... 'S"lr"ldrldrz w1, 4(5)
aswell as of itsinverted counterpart:
U"+I°° T,y +ioo Ulﬂoo
hn(Tl'TZ'”'Tn EQ”DJ;" i J;z I°°J:71 oo S.l SZ' AR n)

e¥e¥2...e¥dgds, -ds,.  (6)

Once the Volterra's kernels are known the response of
the nonlinea aeoelastic system can fully be identified.
As demonstrate in the Schetzen works’, without loss of
generdlity, the kernels will be taken as symmetric.

If we focdize the dtention on the linea system, the
Laplacetransform £ of the first term of EqQ. (4) yields
the famili ar Laplacedomain expresson v (s)= H (s)x (s)
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where Y(s),H(s), X(s) are the Laplace transforms of
y(r),h(r), x(r), respedively, and H(s) is the transfer
function of the system; either the first transfer function
or the first kernel in time h(r) encode dl the

information about the aeoelastic system, that is, of
course, exad only for the linea system. Moreover, asis
well known, if the system is linea, i.e. superposition
principle holds valid, and is time invariant, the external
load is uniquely related to the response by a convolution
integral. With the use of functional series, i.e. the
Volterra series, this functional representation can be
extended to nonlinear systems. The cmparison between
the prediction of the linea aeoelastic responses of 2-D
lifting surfacein incompressble flow field based on the
Volterra's sries approach (using Theodasen's
function) and on the ead solution, based on
convolution integrals (using Wagner's function) is
presented in Fig. 1.

0.075 ~ Linear Response via Convolution Integral

~< Linear Response with First Volterra Kernel
005

0.0

o m
>
>]/
>]/’
—
—
|
—

y(t)

-0.025

-0.06 -

-0.075

Time [sec]

Fig. 1 Aeroelastic response time-history of lifting
surfacein incompressble flight speed regime to Dirac
delta impulse, as represented in inset. Comparison of
prediction of responses based on the first Volterra
kernel and the exad solution.

The excdlent agreement of these two predictions siown
here, asessboth the acaragy of the aeoelastic model
and also the power of the methoddogy that combines
Volterra's eriesand indicia function.

MATHEMATICAL FORMULATION

General theory for 2-D lifting surfaces
including structural nonlinearities
The aeoelastic governing equation of motion for 1
and 2 DOF including structura nonlineaities that
include the damping and the stiffnesses can be analyzed
in the following way. Two systems will be aalyzed
here: a1 DOF lifting surface(i.e. plungngonly) and a 2
DOF lifting surface feduring structural and
agodynamic couplingin plungng h and pitching a . As
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previously mentioned, the unsteady aeodynamic is
considered linea. A harmonic time dependent external
concentrated load is also applied. This configuration for
example, can be cnsidered to correspond to an engine
mounted on an aircraft wing. As a result, a harmonic
type loading due to the engine oscill ations has to impac
the motion of the wing.
As a daraderistic of this approadh, the transfer
functions of the system would exist and be the same for
any excitations®***, (namely for random, sine, impulse).
This is due to the fad that transfer functions are a
charaderistic of the system itself and are independent of
the input to the system.
As a reminder, the validity of this method is based on
the use of continuous polynomial type nonli neaities.
For nonlinea ordinary differential systems, there ae in
general, an infinite number of Volterra kernels. In
pradice one can handle only afinite number of termsin
the series, which leals to the problem of truncaion
acaracy. However, Wiener suggest that the first terms
of the series may be sufficient to represent the output of
a nonlinea system if the nonlineaities are not too
strong.
The use of the multidimensional Laplacetransform as a
function of several variables is a tod useful in
stationary nonlinea system theory. The multivariable
convolutions can be represented in terms of products of
Laplacetransforms.
It is well known that the nonlinea aeroelastic systems
cannot be described by a simple transfer function for
two main reasons: @) the response has different trends as
compared to the unsteady aerodynamic loads and the
external excitation and, b) in the nonlinea case the
superpasition principle is not applicable. It is aso well
known that any time-dependent external excitation, i.e.
periodic or otherwise, can be represented, to an arbitrary
degree of acaragy, by a sum of sinusoidal waves®. In
this context, if the external load is expressed in term of
multiple sinusoidal form (for example traveling gust
loads) this is easily convertible in the exponential form,
i.e.:

u(t) = Acoqw,t)+ Bcogwst)

U= A e ) e ).

For clarity of exposition, it is convenient to adopt this
approach for a system with one degree of freedom
(1 DOF). These results have more general beaing and
can be etended for systems with multi-degree of
freedom (MDOF). In fad, by using the dasdcd
approach of the one dimensional frequency response
function, it is possble to derive an analyticd form of
the  multi dimensional  frequency response
charaderistics of nonlinea systems. The systems based
on 1 DOF (plungng h) and 2 DOF, pitching a and
plungng h, will be mnsidered in the next sedions.
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Pure Plunging Airfail
The nonlinea equation of motion of an airfoil
feauring plungng motion can be expressd as:
)+ 3 6 k() - L 0=
=

where ky;, €, M are the stiffness damping and mass
parameters, respedively.

In Eg. (8) the related unsteady aeodynamic lift is
represented as a function of the plungng degree of
freedom h, only:

L, (T) =-C,pU ozoI; (p(T —Ty )h"dro _% PCU 020 h" . (9)
The non-circulatory component present in Eqg. (9) has
been represented in term of convolution integral of the
indicial Wagner’s function.

In order to explain how this methoddogy works, let us
to determine, in terms of Volterra series, how a system

responds to a harmonic or periodic time-dependent load.
Let consider a periodic external excitation in the form:

L,(t)= le e (10)

As is well known, the information aaquired by the cae
of the response to a harmonicdly time-dependent load
can be used to oltain the response to any time-
dependent excitation. In fad, considering the case of a
concentrated load arbitrarily located in the x, y plane of
the wing, we have:

u(x y,t) = AS(x=x,, y = o )& (11)
where 3 %o, Yo, A w denote Dirac s distribution,

locaion of the load, its amplitude axd excitation
frequency, respedively. Once determined the transfer
function (labeled as TF) corresponding to a given
excitation frequency, its counterpart in the time domain

(8)

n

can be obtained as the inverse Laplacetransform £ ™*:
TF(x, y,t)=£ HTF(x,y,s)} = %Jj:WTF (x,y,s)e%ds
In addition to the dired role in the determining of the
response, the transfer function TF has then the role in
determining the response to arbitrary time-dependent
external excitations.
The general procedure to identify the aeoelastic kernels
of various order (ﬁ) is to consider a general input in
the form of Eq. (10) and to equate wefficients of
X, X, X, g& sk As an  example, the first

agoelastic Volterra's kernels that describes the linea
system in the agoelastic governing equations, obtained
by negleding the nonlinea terms, is obtained by
considering the input load as L, (t)= X% (which in

dimensionlessform is expressed as |, (t)= (b/mUj)Xlesl‘)i
the response of the system is postulated in the form
h{t)=H,(s)X,e* + hot. Substituting h(t) and its
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derivatives in the governing equation of motion, one
determines the coefficient of X e* .

In alinea aeoelastic system, the system is completely
charaderized by a transfer function Hy(s;) that contains
the a@odynamic term as foll ow:

H,(5)= (kn +ms” +c,y5, +5,0C,,bU.Cl-isb/U., ]

_____________ (12
Herein the Theodarsen's function C, conneaed with the
Wagrer's indicial function ¢r) via the Laplaces

transform as C(—is): SJ“’ (p(r)e-STdT, has been included
0

in the formulation. The terms underscored by the solid
line correspond to the unsteady aeodynamic loads
component (circulatory term), while the dotted line
identifies the terms corresponding to the dfed of the
added mass When the a€odynamic loads are negleded
and for s = iw, this result coincides with that of the
linead FRF, derived via the @nventiona Modal
Analysis.

For purely medianicd systems, in the frequency
domain, the response analyses via Volterra series have
been carried out by several authors. In the present study
an dternative procedure, based on the multivariable
kernel transforms referred to as Higher-order Transfer
Functions (HTFs) is pursued. The two above mentioned
approaches can be orrelated ead other, and this is
shown aso in this work. Asauming zero initia
condition, the frequency response functions (FRFs) are
obtained from the transfer functions TFs, by repladng
the Laplacetransform variable s with jo where wis the
frequency of the excitation, (Worden et al.*).

In the present nonlinea agoelastic system, toward the
estimation of higher order frequency response functions
(HO FRFs) that are defined as the multi-dimensional
Fourier Transform (MDFT) of the Volterra's kernels, a
sequence of transfer functions are employed. The
concept of higher order of FRFs, independent of the
input to the system, defined from the Volterra series,
will also be included.

By the use of the linea frequency-response-function
Hy(s) the behavior of the linea system is easly

determined. It will be necessary to find a complete set
of Volterra kernel transforms H (s,s,,-5) for

nonlinea systems and for this, in pradice, we will use a
convergent truncaed series.

However, probing the system with a single harmonic
yields only the information about the value of the
transfer functions terms on the diagonal li ne of the plane
S1, S, in the Laplacetransformed space where s, = s,.
However, in order to obtain information elsewhere in
this gace one should use multi -frequency excitations.

In the same way, the second order Volterra Kernel can
be determined applying a load depending on two

6

different frequencies expressed as: L, (t) = X,e%' + X,e% .
In this case we can expressthe plungng response in the
form:
h(t) = H, (s.)X,e™ + H,(s, )X %
+H,(s,8)X €™ +H,(s,,5,)X e
+H, (51,5 )X, X578 +H, (s, 5 )X, X,
+hot. (13
Substituting Eq. (13) in Eq. (8) and equating the terms
containing xlxze(51+52)‘ the second order agoelastic

Volterra Kernel in the Laplace transformed space is
obtained:
HZ(Sl,SZ): _(Slszchz + khZ)Hl(Sl)Hl(SZ)Hl(Sl + 52)’(14)
where:
Hl(sl + 52): (khl + (51 + 52)2m+ch1(31 + 52)
+(s,+8,)pC LU Cl-i(s + 5, )p/U. ]

+%pCLa(Sl+SZ)2b2)1 1 (15)
is the first order Volterra Kernel in the Laplace
transformed space & the frequency w+ wy. Following
the same steps, applying the load
L, ()= X,e™ + X,e* + X,e*, equating the terms in the
form x,X,X,e**>)} ; remembering that

Hy(s +s,)= (k1 s +s)Smre(s+s,)
+ (31 + SZ)pCLabUwC[_ i(sl + Sz)b/Uw]
+1p0°C,, (5 +,F )" . (16
His s +s)= (o + (s +s, #s. P meg (s +5, +))
+(s,+s, +5,)pC,bUCl-i(s, +s, +5,)0/U. ]
+3p0°C,, (5, +s,+s,F ) (17)
the expressons for the third arder Volterra Kernel in the
Laplacetransformed space ca be cat as:

2
H3(Sl’ SZ ’ 53): _§(H1(53)(3H1(SI)H1(SZ )(kh3 + Ch3315253)

+2H,(51.8, ki, *+ € (8 +5,)s,))

+2(H, (s,)H, (53,8, Mk + €125, (8, +5,))

- H1(52)H 2(52 ) Ssxkhz + Chzsl(SZ + 53))))/

(Hi(s +s, +s)) (18)
Notice that the constants k , and ¢, multiply the

whole expresson for H,, and this term vanishes if the

qguadratic term is absent in the aeoelastic governing
equation of motion. As one of the general properties of
Volterra's sries, if al nonlinea terms in the equation
of motion for the system are odd pavers of x and y, then
the esociated Volterra series have no even-order
kernels. As a mnsequenceit will possessno even-order
TFs. It is aso a general property of systems that all
higher-order TFs can be expressed interms of H,. The

expressons are function of the system and can be
obtained using the harmonic probing algorithm.
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Plunging-Pitching Airfoil
The governing aegoelastic system of an airfoil
feduring plungng - twisting coupled motion, exposed
to a harmonic time dependent external excitation is:

mh+S,d + En c,h +k,hi)-L, =L, (19
( J J )
£

S,i+16+ Zl(cajai +kyal)-m, =0 (20
&
Following the steps adopted for 1 DOF, applying a load
depending on one frequency L, = XleSlt , and
expressng the plungng and pitching displacements in
terms of transfer functions as:

h(t)=X.H{' (s)e™ + XH] (51,508 + XPHI(s,5,5 )% (2D)
a(t)=XH (s)e™ + X7H3 (5,5 + X7HS (51,5, )% (22)
the relative kernels and the agoelastic responses can be
determined.
The aeoeastic governing system including the blast
presare signatures can be expressd in the Laplace
transformed space &.

sz§+xaszd+25h§sg+é|§§§

+%%&+szf+sz%—aéliéb(s)

+ﬁ52§—ad)+ﬁsd =1y(s) (23
(x, /r2)s% +s% + (27, N )sG +G/V 2
21 5 28 L Q2 _
_%4-6@;?%04-5 5+S% a@?%@
S ol ) L L 1 e (29)
r;Has(f aa)+% a@gugﬂ-SrCfusa 0
Herein ()= £(). 50 &€ =£(()) and d =¢ (o))
Following the same steps, applying the loads

L, ()= X,e + X,e% and L, (t)=X,e% + X,e% + X, e¥,
equating the terms in the forms X, X,e®*=* and
X, X, X g5} the expressons for the second and third

order Volterra Kernel in the Laplacetransformed space
can be obtained.

Generalization to M ulti Degrees
of Freedoms Systems (M -DOFs)

The method shown for 1-DOF and 2-DOF lifting

surface ca be etended to systems feauring multi
degrees of freedoms, in general, and to a 3-D aircraft
wing, in particular.
The method o deriving the n-th order nonlinea
aegoelastic transfer functions is based upon the fad that
when the agoelastic system described by the response
y(t) (expressed via Volterra series), is excited by a set of
k unit amplitude eponentids a the abitrary
frequencies g, s, . S the output will contain
exponential components of the form:

7

o K
y(t)= Z Z Ho (S Sz S )5(5“+SQ+WSK")t - (29

n=1 m=1

The presence of nonlineaities causes harmonic
excitations and sums of harmonics to appea in the
response of the a@oelastic system. Due to the nonlinea
formulation, different frequencies can be epeded as
well.

From the energetic point of view, we can observe that
H,(s,) produces a single frequency output in response

to the simple input e* . However, because the system is
nonlinea, H,(s,,s,) takes into acount the terms that
produce an output energy corresponding to the sum of
frequencies w, +w,, or in other words to the input
e} Similarly, the third order nonlinea aegoelastic

kernel, will injed a mix of threeinput frequencies into
the total system outpui.

RESULTS AND DISCUSSIONS

To asessthe versatility and provide avalidation of this
methoddogy, a comparison of the predictions of the
agoelastic response of nonlinea 2-D lifting surface
using three gproximations are shown in Figs. 2.

03

/7N

y(t)

01

— — First Approximation
—.— Second Approximation
Third Approximation

-01 _ Exact Response (Num. Int.)
0 05 1 15 2 25 3
(@ Time [sec]
03 \ —— First Approximation
—.— Second Approximation
B S (R — Third Approximation

—— Exact Response (Num. Int.)

y(t) 2

015
01

005

Time [sec]

Fig. 2 Convergence study involving the first three
kernels and comparison with the “exad” nonlinea
agoelastic response to (a) 1-COSINE gust pulse and (b)
to triangular blast load, as iown in the inset

American Ingtitute of Aeronautics and Astronautics



The excdlent agreement of the predictions, assess both
the acaracy of the agoelastic model and also the power
of the methoddogy based on the Volterra series and
indicial function approach. The first, the second and the
third approximations of the aeoelastic response to the
two loads 1-COSINE gust load and trianguar blast load
are plotted for different parameters, together with the
“exad” response of the aeoelastic system as obtained
through digital-computer solution of the nonlinea
agoelastic governing eguations. Both figures reved the
rapid convergence of the @proximation. The
parameters in use for the ssimulations, unless otherwise
spedfied, are dosen as. (m=%a=-02c, =10

(k, =10%;c,, =10k, =10%c,, =10k,, =10";c,, =10k,, =10’;
b=1p=0125U, =04U.;C,, =2m). For the 2-D lifting
surface @compassng pure plungng, the first three
agoelastic kernels in magnitude and phase ae depicted
in Fig. 3 as afunction of the frequency, considering that
w=w =w, =w,, .6. the representation is given along
the diagonal of the plane w,,w,. As is clealy seen, a

reduced influence on the response of the third kernel is
experienced.

Magnitude [10"3]

1 Second Order  Kernel

J— First Oder Kernel ,‘/\
[
Third Order Kernel |

Frequency , wy=0y=0s=0 [H7]
Phase [dedal

First Order Kernel
Second Order  Kernel
Third Order Kernel

Frequency , wy=ay=6x=w, [HZ]

Fig. 3 First three aeoelastic kernels
of 2-D lifting surface pure plungng motion

In Figs. 4 the Volterra's kernels for the lifting surface
feduring plungng - pitching coupled motions are
depicted. Also in this case in the plots include the
magnitude axd phase for the kernels in plungng

H/"and pitching H, in which i identifies the order of
the kernel.

AeroelasticSystem — VolterraKernels

Magnitadel} and B}, (16 Phase [deg]

0 20 40 [ 80 100 O 2 a0 [ 80 100
1= 0= Gyl =0

Fig. 4 First two agoelastic kernels of 2-D lifting
surface plungng - pitching coupled motions

MagaltudeHs w1 03)
S

N

Fig. 5 3-D and contour plots of second
order agoelastic kernel

Magnitude m/N® [10°]

o

Fig. 6 3-D and contour plots of third
order agoelastic kernel
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A 3-D plots of the magnitude and phase of the second
order kernel vs. the two frequencies w, and w, are
displayed in Fig. 5. The contour plots reveas the
symmetry of this kernel respect to the diagona
represented by w, =w,. In a 3-D plot, the third order
Volterra kernel for the case in which w; =w, are
depicted in Figs. 6.

Responsein Time and Freguency Domains
Determination of subcritical aeroelastic response to any
time-dependent externally applied load is useful in the
design of wing structures and of the associated feedback
control systems. In certain types of nonlinear analysis
we are only interested in the special case considering of
1,=1,=--=1, =7 This case can be represented as:

ot)=h, (1o 1) o - (20
This has a corresponding Laplace transform G(s) (so
called associated transform) in the single-dimensional
Laplace transform space: G(s)=£ [g(r)]. The response
in time can be obtained from H(s,s,,,s,) to find
G(s) first and evaluate the single dimensional inverse
Laplace transform g(r).

This approach is called association of variable*. The
nonlinear aeroelastic response in the time domain is
depicted in Figs. 7 for a 2-D lifting surface featuring the
plunging degree of freedom. In this figure the first plot
represents the linear impulse response that corresponds
to the convolution integral for the linear analysis. The
other three plots represent the components of the
response due to the second and the third order kernels
and the total response as a combination of the three
partial responses. The aeroelastic response will be
presented and validated. The influence of the linear and
nonlinear stiffness and the damping coefficients on the
response, not displayed in this paper, reveas that, an
increase in the damping coefficient contributes to the
decrease of the response amplitude.

An increase of the nonlinear damping or of the stiffness
coefficients contributes to the decrease of the magnitude
of the kernels and consequently, of the response
amplitude. This shows that the nonlinearities in the
stiffness and damping play a beneficia role on the
subcritical aeroelastic response™.

Figure 8 highlights the effect of the speed parameter V
(E U/b %) on the lifting surfaces subjected to sonic-

boom pressure signature as shown in the inset.

NonlinearA eroelasticResponses — Time Domain

Linear Impulse Responsewith onekernel
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80 100

ImpnlseResponse Third Order Kernel

0.01

0.005

Y200
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Fig. 7 Time-history of the nonlinear aeroel astic response

9
American Ingtitute of Aeronautics and Astronautics



05

y(t)

-05

I
\, :
[
;o .
I ! o t O .
W\ A N O
J\. LA A
/\ ’}(\ & ‘(‘A\\QL‘%—/L-\' A /
W ARV o
V=04V, V=10V
—— V=06V e V=12V,
= V=08V:
0 » P ® % .
Time [sec]

Fig. 8 Influence of the flight speed on the nonlinea
agoelastic response to a sonic-boam, as own in the
inset(r | =15secy = 2), evaluated with threekernels.

Herein 1, denotes the positive phase duration of the
pulse measured from the time of impaa of the structure;
r denotes the shock pulse length fador. For r = 2 the N-
shaped pulse degenerates into a symmetric sonic-boam
pulse, in the sense that its paositive phase has the same
charaderistics as its negative one, and for r = 1 a
trianguar pulse that corresponds to an explosive pulseis
obtained. It becomes apparent that the anplitude of the
response time-history (that have been evaluated for
pradicd use with three kernels) increases with the
increase of V . Moreover, in a cetain range of speeds,
as time unfolds, a deca of the anplitude is
experienced, which refleds the fad that in this case the
subcriticd response is involved. However, for the
dimensionless peed parameter V greder then the
flutter speed (this one was determined using the
lineaized aegoelastic system), the response bewmmes
unbounded implying that the occurrence of the flutter
instability is impending. Also in this case the nonlinea
gtiffnessand damping coefficients play a beneficial role
on the subcriti cd agroelastic response.

CONCLUSIONS

Several isales that concern the nonlinea aeoelastic
response via Volterrds sries approach have been
presented. It was also shown that, the method based on
Volterra series opens large oppatunities to approac in
an urified and efficient way problems of nonlinea
agoelastic response and flutter. In addition, following
the same @proach, the carader of the instability
boundary, i.e. benign or caastrophic will aso be
addresed. This analysis will be done by using the
concept of the first Liapunov quantity as developed by
Bautin®®.

10

Moreover, this approach can be extended as to include
also adive mntrol cgpabiliti es. In spite of this, few of
these potentialities have been explored vyet.
Comparisons of results carried out via Volterra seriesin
conjunction with indicial functions approach and
classcd approach have been provided in Fig. 1 for the
lineaized model. It should aso be stressed that
agodynamic indicial functions (for incompressble/
compressble flow fields®®) considered in conjunction
with Volterra s sries approach can be used as a
powerful analyticd too for developing urstealy
aeodynamic models and a unified nonlinea agoelastic
model. To the best of the aithors' knowledge, with the
exception of this paper, the problem of the aeoelastic
response of lifting surfaces to external pulses via
Volterra's series and indicial function approac was not
yet addressed in the literature.
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