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Introductory Remarks

—We present a nonintrusive method of
detecting modes radiated from ducted
fans by acoustic measurements in the
far field

— A mode detection method is used to
reduce engine noise or to help the
designers to specify liners or active
control

— Currently the only other mode detection
method utilizes a rotating microphone
rake which produces a wake at the inlet
Interacting with fan blades
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Mode Detection Theory
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Mode Detection Theory
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Mode Detection Theory

We will show that the acoustic pressure in
the far field satisfies the following relation

kR, |
e AE W)elocB(Qt—G )
RO

P’(X, 1) o<

The information about mode amplitudes

are hidden in the term A(0’, v). Note

Independence from rotor speed in this
term.

k = aBQ/c, B fan blade no., oo multiple of BPF
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Mode Detection Theory

The acoustic pressure at the inlet plane
for V vanes and B fan blades is

pr. 0, x ) =e %o 0y
_iqv
% % an m[k (m, n)rje

m = oB + gV circumferential mode no.,n
radial mode no., g = o, +1, +2,... an indexfor

circumferential mode no., ka axial wave
number,k radial wave number
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Mode Detection Theory

Radiation model: piston in the wall

PalLU]
Amp’(X, 1) = j 0" retys
. R
|N| et
al ea

In the far field R= Ry—rsinycos(6-6"),and
using dS = rdrd6, u(m,n) = ik, (m, n)p’(m,n)/p,,

we can integrate the above integral in 6
and find the acoustic pressure in the far

field as follows.
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Mode Detection Theory
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Mode Detection Theory

Let p'(X, ®) be the temporal Fourier transform
of p’(x,t), define
P(x, aBQ) =-2i Rof)’(x, oBQ) x
eiocB(QRO/C+ 0" —1/2)

The spatial Fourier transform of this in
azimuthal direction is

iqVve’

~ 1 ¢nm ,
Pq= = jo P(x, aBQ)e 1 do
_ imqV/2 _ imgV/2
= e %C(m, n, y)k,(m, n)Aqn = e Dq
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Mode Detection Theory

This means that for any fixed axial
position of the array, I.e., for a fixed vy, we
have one linear relation between the
amplitudes of all radial modes associated

with a given circum. mode m = aB+qgV.
This linear relation is

Dq = %C(m, n, y)k,(m, n)Aqn

Changing the angle y gives us more
eqguations to form a system of linear
eqgquations for the mode amplitudes.
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lII-Posedness and Remedy

We have an overdetermined system of linear
equations

GACI = dq
where G is a | X n matrix such that | >n,
_ T
AOI = (Aql, qu, ey Aqn) and

dy = (Dg(Wy): Dg(Wy). -... Dg(w)'

This system of equations iIs not compatible
because of measurement and numerical
errors. The problem of mode detection is ill-

posed because the matrix G has very small
singular values.
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lII-Posedness and Remedy

To find meaningful solution for the
amplitudes, we must use a regularization
technigue such as singular value
decomposition (SVD) or Tikhonov
regularization. We have selected
Tikhonov regularization. The solution
minimizes the following cost function

||GAq—dq||Y+ “T”Aq”x’ where o is a

parameter of the order of the square of
the smallest nonzero singular values.

See:Rainer Kress: Numerical Analysis, Springer, 1998
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Some Results From aTest

B =16, r,=01524 m(61in), M = 0.605,

V = 20,RPM = 16, 900 (BPF = 4506 hz),

a = 0912 m (3 ft), No. of microphone
measurements over a half-circle = 360,
Number of axial stations measured = 10

Possible interaction modes:

BPF: (-4,1) to (-4,4)

2BPF: (-28,1), (-8,1) to (-8,7), (12,1) to (12,5)

3BPF: (-32,1) to (-32,3), (-12,1) to (-12,10), (8,1)
to (8,12), (28,1) to (28,4)
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Some Results From aTest

An indication of ill-posedness of mode
detection problem: Singular values of

the matrix G for circumferential mode -12
at 3BPF

Wi 4 42FE-4 3.63E-4, 2.98E-4, 2.37E-4
2.10E-4, 1.73E-4, 5.58E-5, 9.89E-7
3.44FE-9, 1.52E-12

The matrix G*G used to solve for mode
amplitude is highly ill-conditioned. We use

Tikhonov regularization with o, = 10E-10.
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Some Results From aTest
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Some Results From aTest
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Some Results From aTest
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Concluding Remarks

— Our mode detection technique
IS highly suitable for finding the
amplitudes of radiated modes
from a ducted fan

— Amplitudes of modes near cut
off can be found by more
measurements near inlet

— Many improvements are
possible
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