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TIME INTEGRATION SCHEMES FOR THE UNSTEADY NAVIER-STOKES

EQUATIONS

Hester Bijl, �Mark H. Carpenter y and Veer N. Vatsay

Abstract

The e�ciency and accuracy of several time inte-
gration schemes are investigated for the unsteady
Navier-Stokes equations. This study focuses on the
e�ciency of higher-order Runge-Kutta schemes in
comparison with the popular Backward Di�erenc-
ing Formulations. For this comparison an unsteady
two-dimensional laminar 
ow problem is chosen, i.e.

ow around a circular cylinder at Re=1200. It is
concluded that for realistic error tolerances (smaller
than 10�1) fourth- and �fth-order Runge Kutta
schemes are the most e�cient. For reasons of robust-
ness and computer storage, the fourth-order Runge-
Kutta method is recommended. The e�ciency of the
fourth-order Runge-Kutta scheme exceeds that of
second-order Backward Di�erence Formula (BDF2)
by a factor of 2:5 at engineering error tolerance lev-
els (10�1-10�2). E�ciency gains are more dramatic
at smaller tolerances.

Introduction

Due to constraints of computing costs, the devel-
opment of numerical techniques for 
uid 
ow simula-
tions in the past has focused mainly on steady state
calculations. However, many physical phenomena
of interest are inherently unsteady; a few examples
being separated 
ows, wake 
ows and bu�et, 
uid
actuators and maneuvering. With the continuous re-
duction of computer costs recently more attention is
devoted to the simulationof these unsteady 
ows 1,4.
However, the need for further reduction of computer
time for unsteady 
ow computations is still appar-
ent. Therefore, in this paper we investigate possible
reductions in computer time due to the choice of
an e�cient time integration scheme from a series of
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schemes ranging from �rst to �fth order. A similar
study was performed for only �rst and second order
time integration methods by Marx 11.
Implicit in any comparison of e�ciency is a precise

error tolerance requirement. Unfortunately, seldom
does a single scheme prove to be optimal over a wide
range of solution error tolerances. It is well known
that high-order schemes (fourth-, �fth-, etc.) out-
perform low order schemes for error tolerances that
are small (� 10�7). For example, Kennedy 8 com-
pares explicit third-, fourth- and �fth-order Runge-
Kutta (RK) schemes on Direct Navier-Stokes simu-
lations (DNS), and determines the optimal order for
a given temporal error tolerance. For DNS it was
found, the fourth-order methods are optimal over a
surprisingly broad range of error tolerances, and are
competitive at large error tolerances as well.
The hallmark of large-scale aerodynamics calcula-

tions is that they seldom require small error toler-
ances. Calculations that are accurate to one or two
signi�cant digits, which translates into an error tol-
erance of (10�1-10�2), are frequently su�cient. For
these aerodynamics calculations, the second-order
accurate BDF2 scheme is currently the method of
choice. There is little question that calculations re-
quiring low error tolerances (10�4-10�5) will be well
suited for fourth-order RK formulations. The cen-
tral question of this study, however, is the feasibility
of using fourth-order RK formulations for simula-
tions requiring error tolerances of (10�1-10�2).
A production aerodynamics solver is needed for

this study. For this, the extensively tested and well
documented solver of Vatsa (TLNS3D) 18 is chosen.
This multi-block structured grid solver is representa-
tive of a broad class of commonly used solvers. The
TLNS3D (Thin-Layer Navier-Stokes 3-Dimensions)
code utilizes a special form of the unsteady thin-
layer Navier-Stokes equations. The spatial terms
are discretized using a conventional cell-centered �-
nite volume scheme with arti�cial dissipation added
for stability. Time is discretized in a fully implicit
sense using both multistep BDF and multistage RK
schemes. The resultant nonlinear algebraic equa-
tions are solved iteratively in pseudo-time with a
multi-grid acceleration used to speed up the conver-
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gence to (pseudo-time) steady-state.
In this paper, �rst, the governing 
ow equations

and the space discretization are given. Thereafter,
the time discretization techniques employed, i.e.
several multi step Backward Di�erencing Formula-
tions and multistage Runge-Kutta schemes, are ex-
tensively discussed. This is followed by a description
of the solution algorithm. That is, the implicit time
integration of the 
ow equations and the iterative al-
gorithm for solving the resulting non-linear implicit
equation. Through a pseudo-time stability analysis
the exact nature of the pseudo-time sub-iterations is
analyzed. After validation of the space-time method
for unsteady laminar 
ow around a circular cylin-
der, accuracy and e�ciency of the time integration
schemes is discussed.

Governing Equations

In the present work, a modi�ed version of the thin-
layer Navier-Stokes equations is used to model the

ow. The equation set is obtained from the com-
plete Navier-Stokes equations by retaining only the
viscous di�usion terms normal to the solid surfaces.
For a body-�tted coordinate system (�; �; �) �xed in
time, these equations can be written in the conser-
vative form as:

@(U)

@t
+

@(F� Fv)

@�
+

@(G�Gv)

@�
+

@(H �Hv)

@�
= 0; (1)

whereU represents a combination of the transforma-
tion Jacobian J and the conserved variable vector.
The vectors F,G,H, and Fv,Gv,Hv represent the
convective and di�usive 
uxes in the three trans-
formed coordinate directions, respectively. These
equations represent a generalized form of the classi-
cal thin-Layer Navier-Stokes equations and include
all normal components of the viscous stress terms.
The TLNS3D computer code, is used in this study
to solve equation (1). Many references exist detail-
ing the discretization and implementational issues of
TLNS3D. We include only a brief summary of the
general features, and refer to the work of Vatsa 18

for further details.

Space Discretization

The spatial terms in Equation (1) are discretized
using a standard cell-centered �nite volume scheme.
The convection terms are discretized with second-
order central di�erences with scalar/matrix arti�-
cial dissipation (second- and fourth- di�erence dissi-
pation) added to suppress the odd-even decoupling

and oscillations in the vicinity of shock waves and
stagnation points 18. The viscous terms are cen-
tral di�erenced with second-order formulas. The
turbulence models used are Baldwin-Lomax 2, and
Spalart-Allmaras 15.

Time Discretization

Consider the integration of the system of ordi-
nary di�erential equations (ODE's) represented by
the equation

dU

dt
= S(t;U(t)) :

The vector S in our case, results from the semi-
discretization of the equations of 
uid mechanics
plus a suitable turbulence model. Inclusion of the
turbulence model enables the simulation of high
Reynolds number 
ows in excess of 107, but indi-
rectly introduces extremely �ne length-scales in the
near-wall regions. Near wall sti�ness in the range of
103 � 104 is not uncommon in practical engineering
problems, and increases with Reynolds number. It
is imperative that any e�cient solver of these equa-
tions be able to maintain stability at arbitrarily large
time steps, thus allowing the potential to \step over"
unimportant boundary layer time scales.
The term \sti�ness" is di�cult to de�ne. A prac-

tical de�nition for the purpose of this work, com-
pares an implicit timestep �tI with a baseline ex-
plicit timestep �tE . The implicit timestep is the
maximum allowed by accuracy considerations, and
the baseline explicit timestep is obtained from sta-
bility consideration. All other variables are identi-
cal in the comparison. The sti�ness is the ratio of
the two timesteps. The implicit scheme is capable of
stepping over large negative eigenvalues that are not
important for solution accuracy, while the explicit
scheme must bound them in the �nite stability en-
velop.
There are two mathematical properties that all

candidate numerical integrators should possess. The
�rst (and most important) is the \A-stability" prop-
erty which guarantees that all eigenvalues lying in
the left half of the complex plane (LHP) will have
an ampli�cation of no more than 1, independent of
the chosen step size. The only restriction on the
time-step with an A-stable scheme is the consider-
ation of solution accuracy. The second is the \L-
stability" property which guarantees that eigenval-
ues approaching �1 are damped in one time-step.
These spurious eigenvalues are generated by high fre-
quency information in the spatial discretization, and
by incomplete solution of the non-linear system at
each time-step. (The nonlinear system is never con-
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verged to the levels of machine precision). If these
spurious modes are not strongly damped they can
build up and cause instability.
Most numerical methods suitable for these compu-

tations can be categorized into two broad classes: 1)
multistep, and 2) multistage, each having its advan-
tages and disadvantages. The current \methods of
choice" in the computation of large scale engineering

ows are the multistep BDF formulas, and in par-
ticular the BDF2 scheme. These schemes achieve
great e�ciency because they solve only one non-
linear set of equations per time-step. They suf-
fer, however, from not being self-starting, are dif-
�cult to use with variable time steps, and are not
A-stable beyond second-order temporal accuracy.
Multi-stage Runge-Kutta schemes require multiple
nonlinear solves per time-step, but are self start-
ing, are easily implemented in variable time-stepping
mode, and can be designed with A- and L-stability
properties for any temporal order.
Practical experience indicates that large scale en-

gineering computations are seldom stable if run with
BDF4 12. The BDF3 scheme is often stable, but di-
verges for certain problems and some spatial opera-
tors. These failures result from portions of the Left
Half Plane that are not stable for arbitrarily large
timesteps. Thus, a reasonable practitioner uses the
BDF2 scheme exclusively for large scale computa-
tions. The essential question this paper seeks to
address is whether high-order RK schemes can be
designed which are more e�cient than the BDF2
schemes, and if so, what is the optimal order of the
RK scheme.
The general formula for a k-step BDF scheme can

be written as

U(n+k) = �

k�1X

i=0

�iU
(n+i) + (�t)�kS

(n+k):(2)

The BDF formulas involve at each time-step the
storage of k + 1 levels of the solution vector U, and
the implicit solution of one set of nonlinear equa-
tions. The BDF schemes are subject to the famous
Dahlquist barrier, which proves that A-stability is
impossible for linear multistep schemes beyond sec-
ond order. Table (1) presents the stability prop-
erties and diagonal contribution �k of several BDF
schemes.

Method Steps Order L(�) �k
BDF1 1 1 L(90o) 1

BDF2 2 2 L(90o) 2
3

BDF3 3 3 L(86:03o) 6
11

BDF4 4 4 L(73:35o) 12
25

BDF5 5 5 L(51:84o) 60
137

BDF6 6 6 L(17:84o) 60
147

Table 1. Properties of the BDF methods.

The BDF1 and BDF2 schemes are L-stable for eigen-
values anywhere in the left half of the complex plane.
Beyond second order the BDF schemes are L(�)-
stable, with the � being de�ned in Table (1). This
de�nition of stability implies that the schemes will
be stable for eigenvalues lying in the wedge bounded
above and below by the complex lines ��. For fur-
ther details see the work of Hairer 6.
The

Runge-Kutta methods are multistage schemes and
are implemented as

Uk = Un + (�t)
kX

j=1

aijS (U
j) ; k = 1; s

Un+1 = Un + (�t)
sX

j=1

bjS (U
j) (3)

Ûn+1 = Un + (�t)
sX

j=1

b̂jS (U
j);

where s is the number of stages and aij and bj are
the Butcher coe�cients of the scheme. The vectors
U, and Û are the pth-order and (p � 1)th-order so-
lutions at time level n + 1. The vector Û is used
solely for estimating error and is obtained with little
additional computational overhead. In this work we
choose to focus on the ESDIRK class of RK schemes,
which refers to the Explicit �rst stage, Single diag-
onal coe�cient, Diagonally Implicit Runge-Kutta.
The Butcher tableau for these schemes (here repre-
sented with s = 5) takes the form

0 0 0 0 0 0
c2 a21 akk 0 0 0
c3 a31 a32 akk 0 0
c4 a41 a42 a43 akk 0
1 b1 b2 b3 b4 akk

b1 b2 b3 b4 akk
b̂1 b̂2 b̂3 b̂4 b̂5

where ci denotes the point in the time interval
t! t+�t where the intermediate stage is evaluated,
and b̂j are the coe�cients used for the embedded er-
ror predictor. The fully implicit RK schemes are not
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pursued owing to the complexity of their implemen-
tation in our general aerodynamics solver TLNS3D.
The ESDIRK schemes are used rather than the stan-
dard SDIRK schemes (ai1 = 0, see Hairer 7) be-
cause the ESDIRK schemes can achieve stage or-
der 2 (each stage is at least second-order accurate),
and the extra column of nonzero Butcher coe�cients
(a11) allows more 
exibility when designing new
schemes. For all schemes, the \sti�y-accurate" as-
sumption (asj = bj) is enforced, which automatically
extends A-stability into L-stability. In addition, it
eliminates the potentially damaging explicit update
Un+1 = Un+�t

Ps

j=1 bjS
j from the algorithm, and

replaces it with the condition Un+1 = U s.
Numerous ESDIRK schemes were developed and

tested in this study. Three schemes, one each of
third-, fourth-, and �fth-order accuracy were chosen
as being representative of each of these orders. No
claim is made as to their optimality. Henceforth,
they are referred to as ESDIRK3, ESDIRK4, and
ESDIRK5, respectively. All three schemes are pre-
sented in Kennedy 9. The coe�cients for the recom-
mended ESDIRK4 scheme are included in the Ap-
pendix.

Solution Algorithm

Discretizing equation (1) with an s-stage ESDIRK
scheme represented in equation (4) yields for stage
k, the expression

Uk �Un

�t
+

kX

j=1

akjS
j = 0 ; k = 1; s (4)

with

Sj =
@(�F + Fv)

@�
+

@(�G +Gv)

@�

+
@(�H +Hv)

@�
:

The vector Uk is the solution at stage k, Un is the
solution at the previous time level n, and akj are
the Butcher parameters for the RK-method used.
Again note that in our case the last stage gives the
solution at the new time level, that is Un+1 = Us.
Advancing the solution vector Uk from time level
n ! n + 1, requires solving the sequential set of
s nonlinear algebraic equations de�ned in equation
(4).

Pseudo-Time Iterative Algorithm

We follow here the work of Melson et al.12

which was originally developed for a BDF algorithm.
Equation (4) can be di�cult to solve in its present

form. Thus, the pseudo-time term @Uk

@�
is added to

each stage k, yielding the expression

@Uk

@�
+
Uk �Un

�t
+

kX

j=1

akjS
j = 0; k = 1; s: (5)

In this form, equation (5) is amenable to all the non-
linear solving machinery available in TLNS3D. Each
nonlinear equation is marched in pseudo-time with
multi-grid acceleration until a predetermined con-
vergence criterion is satis�ed.
Equation (5) can be rewritten in the form

@Uk

@�
+
Uk

�t
+ akkS

k + E = 0; k = 1; s (6)

with

E =
�Un

�t
+

k�1X

j=1

akjS
j;

where E includes all the iteration independent in-
formation at stage k of the RK scheme. Discretiz-
ing equation (6) in the variable � using an Implicit-
Explicit Runge-Kutta (RK� ) scheme, yields

Ukp �Uk0

��
+ �p(

Ukp

�t
+ akkS

k(p�1)

+ E) = 0 (7)

where the p is the stage value of the RK� scheme.
Note that the contribution from the time term is
treated implicitly, the inviscid and viscous 
ux terms
are treated explicitly, and that �rst-order temporal
accuracy is su�cient for this scheme. Adding, sub-
tracting, rearranging terms and accounting for resid-
ual smoothing in equation (7) yields

(1 +
�p��

�t
)Ukp = Uk0 +

�p��

�t
Ukp�1

� �p��L�1irs[
Ukp�1

�t
+ akkS

kp�1

+ E]; (8)

where L�1irs is the implicit residual smoothingmatrix.
Note that the bracketed term in equation (8) is still
the residual of the physical time RK scheme.

Pseudo-Time Stability Analysis

Each grid level of the multi-grid process yields an
equation similar to equation (8), with minor di�er-
ences in the variable E accounting for grid trans-
fer contributions. The pseudo-time sub-iteration
should converge rapidly, and any remaining residual
at the end of the iteration should be devoid of high-
frequency content. A Fourier stability analysis is
used to analyze the exact nature of the pseudo-time
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sub-iteration and to optimize the residual smooth-
ing parameters.
A necessary �rst test for the sub-iteration al-

gorithm is good behavior for the 1-D wave equa-
tion Ut + aUx = 0. Convergence and stability are
strong functions of the discrete spatial operator Ux.
TLNS3D uses spatial discretizations that closely re-
semble an approximation of the form

@U

@x
=

Ui+1 � Ui�1

2�x

+
Ui+2 � 4Ui+1 + 6Ui � 4Ui�1 + Ui�2

32�x
:

The analysis begins by substituting this spatial op-
erator into the 1-D wave equation on a periodic do-
main, discretizing time using the ESDIRK scheme,
and assuming solutions of the form U (x; t) =
û(t)ei (j�). Implementing the pseudo-time sub-
iteration algorithm described in equation (8) then
yields for the pth stage of the RK� operator, the
expression

(1 + �pR)g
p = g0 + �pRg

p�1

� �pL
�1
irs[Rg

p�1 + akk��g
p�1]; (9)

with

� = i sin(�) +
1

2
sin(�=2)4

L�1irs = (1 + 4 
 sin(�=2)2)
�1
;

and

gp =
ûp

û0
; R =

��

�t
; �̂ = akk

a��

�x
:;

The variable E is eliminated from consideration in
the stability analysis because it is constant during
the pseudo-time sub-iteration and therefore has no
in
uence on the stability. The diagonal coe�cient
akk is the same on each stage of an ESDIRK, which
yields an identical stability analysis for each stage.
(A stability analysis for the BDF scheme given by
equation (2) yields a similar result, with the variable
akk replaced by �k.)
Several observations about equation (9) are in-

structive. The independent parameters are 
: the
level of implicit residual smoothing, R: the ratio of
time-steps, and �̂: the CFL condition for the pseudo-
time-stepping scheme multiplied by the diagonal co-
e�cient from the ESDIRK scheme. In general the
parameter R satis�es the condition 0 � R � 1. The
limit R ! 0 or �t ! 1 reduces to the steady
state formulation. The limit R ! 1 corresponds
to a physical time-step for which an explicit method
would be stable, a situation that is unlikely to occur

in high Reynolds number calculations.
An exhaustive study in the parameters 
; R ; �̂

yields the following general conclusions. The resid-
ual smoothing parameter 
 is most productive when
the e�ective stability limit of the sub-iteration is in-
creased by a factor 2 � 3. Parameter values in the
range 1:0 � 
 � 1:5 produce this increase. Figures
(1)-(3) show a comparison of the damping charac-

teristics as a function of �̂, with the value 
 = 1:5.
Shown are the cases R = 0, R = 1

10 , and R = 1,

with 1 � �̂ � 7 varying on each plot. Plots of
R < 1

10 are virtually indistinguishable from the case
R = 0. The three plots reveal that the pseudo-time
sub-iteration is stable for �̂ � 7 , and has the best
damping characteristics in the �

2 � � � � range for

values of �̂ near the stability limit.
The parametric study yields the following algo-
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Figure 1. Damping characteristics for the case R =
��
�t

= 0, with \CFL" = �̂.

rithm for the pseudo-time sub-iteration. The RK�

scheme is implemented in �ve stages with the co-
e�cients being de�ned by ~� = [1/4,1/6,3/8,1/2,1].
Three evaluations of arti�cial dissipation terms
(computed at the odd stages) are used to obtain a
larger stability bound, which allows a higher CFL
number in the presence of physical di�usion terms.
The stability limit of the numerical method is fur-
ther increased with the use of the implicit residual
smoothing technique that employs grid aspect-ratio-
dependent coe�cients 18 and local time-stepping is
used in each cell. The e�ciency of the solution pro-
cess is signi�cantly enhanced through the use of a
multigrid acceleration technique. For a detailed de-
scription of the resulting iterative method see Vatsa
et al. 18 The same concept for the computation of
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Figure 2. Damping characteristics for the case R =
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�t

= 1
10 , with \CFL" = �̂.

unsteady 
ows is used by other researchers, see for
example Martinelli 10 and Swanson and Turkel 16.

Diagonal Coe�cients

The pseudo-time sub-iteration is strongly in
u-
enced by the diagonal coe�cients akk and �k. In
TLNS3D the pseudo-time sub-iteration is always ad-
vanced with the maximum allowable scaled pseudo-
time-step �̂ = akk� � 7. The rate of relaxation in
non � scaled pseudo-time is therefore, inversely pro-
portional to the diagonal coe�cient akk: the smaller
the value of akk the more rapidly the pseudo-time
sub-iteration progresses. The values akk and �k vary
signi�cantly for di�erent physical time-advancement
schemes. Table (1) presents the diagonal coe�cients
�k for the BDF schemes, where the coe�cients vary
by approximately a factor of 2. Table (2) presents
the diagonal contribution of the ESDIRK schemes,
as well as the number of stages, the implicit stages
and the order. The akk coe�cients vary by ap-
proximately a factor of two, and are generally much
smaller than the BDF �k values.
Unlike the BDF schemes, the ESDIRK schemes

can be optimized to improve their e�ciency. The
important parameters are the diagonal coe�cient
akk and the number of stages s. A fortuitous trend
observed with the ESDIRK schemes is a general de-
crease in the value of akk with increasing stage num-
ber, at a given accuracy and L-stability property.
Increasing the number of implicit stages does not
always decrease the e�ciency of the scheme, and
sometimes yields greater e�ciency. Fifteen ESDIRK
schemes ranging from 3 to 8 stages were investigated
to determine good choices of third-, fourth-, and
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Figure 3. Damping characteristics for the case R =
��
�t

= 1, with \CFL" = �̂.

�fth-order accuracy. The ESDIRK3, ESDIRK4, and
ESDIRK5, used in this study (as well as the work of
Kennedy 9) are representative candidates from this
study of ESDIRK schemes. The value akk = 1

4
in the ESDIRK4 scheme is an example of �ve im-
plicit stages producing a more e�cient fourth-order
scheme than do four. This is consistent with the
�ndings of other investigators (see Hairer 7).

Method Stgs Impl Stgs Order akk
ESDIRK3 4 3 3 0:435
ESDIRK4 6 5 4 0:250
ESDIRK5 7 6 5 0:184

Table 2. Properties of the ESDIRK methods.

Validation of the Space-Time Method

The accuracy of the space-time integration meth-
ods is investigated for an unsteady laminar 
ow test
case. The test problem is laminar 
ow around a two-
dimensional circular cylinder at a Reynolds number
of 1200 and a Mach number of 0.3. The initial 
ow
is symmetric with zero lift. As the wake behind the
cylinder starts to grow, it becomes unstable and be-
gins to shed from alternate sides of the cylinder. De-
tailed numerical and experimental investigations of
this 
ow have been performed by several authors
3; 5; 14; 16. The computational grid of 97 � 65 is
shown in Figure 4. The boundary is a distance of
20 times the diameter of the cylinder away from the
wall, while the distance between the wall and the
�rst grid point is 0.001 times the diameter of the
cylinder. Grid points are clustered in the wake. A
density contour plot is shown in Figure 5 as calcu-
lated on the 97 � 65 grid. Note that the near wall
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vortical structures appear to be su�ciently resolved,
but that resolution is lost as the grid expands in the
far-�eld. In these preliminary calculation, a small
time-step was chosen, so that the dominant compo-
nent of error is the spatial contribution.

Figure 4. The 97 � 65 O-Grid used in the circular

cylinder study.

Figure 6 shows a comparison of the lift history for
one shedding cycle as calculated on the 97� 65 and
193 � 129 grids. The 193 � 129 data is shifted so
that the �rst zero in lift coincides on both curves.
The Strouhal number in each case was 0.2489, and
0.2459 as calculated on the 97 � 65 and 193 � 129
grids, respectively. Small di�erences in the lift are
seen near the peaks of the cycle. These values are
larger than 0.21, reported from experiments 4; 14.
As Mittal and Balachander report 13 this might be
caused by the onset of three- dimensional e�ects,
not captured in our two- dimensional computations.
Two-dimensional computations performed by other
researchers 5; 17 resulted in larger Strouhal numbers
too, in the range of 0.23-0.24. This study and a more
exhaustive study of inviscid vortex propagation sup-
port the conclusion that the space-time operator is
working properly, and that the spatial operator con-
verges at the design spatial accuracy. The coarse
grid (97 � 65) provides adequate spatial resolution
to capture the relevant large scales features in the
shedding process. As such, the 97 � 65 grid is cho-
sen as the basis of most of the temporal re�nement
studies presented in this work.

Figure 5. The density contours as calculated on the

97� 65 O-Grid.

Temporal Accuracy

A temporal re�nement study is performed to as-
sess the accuracy of various ESDIRK and BDF
schemes. The initial condition for the study was
obtained by simulating the limit cycle behavior of
the 
ow for approximately 20 shedding cycles, with
a relatively small time-step (�t = 1

2). After 20
cycles, the solution was stored in a restart �le for
use as the initial condition in the subsequent stud-
ies. A classical temporal study was then performed
from this initial condition. A typical practitioner is
interested in lift, drag, pitching moment, skin fric-
tion, and the frequency spectrum over several cy-
cles. Thus, the time interval of the study includes
approximately 114 shedding cycles. This interval is
su�cient in length to allow accumulation of tempo-
ral error during the shedding cycle. No exact solu-
tion is know for this problem, so a \numerical exact"
solution was obtained using a small time-step and
a small iteration tolerance on the non-linear solves.
The \exact" time-step used was �t = 0:05, and a
stopping criterion for the iterative solve of the im-
plicit equations, was max(residual) < 10�6. The
\exact" solution is accurate to approximately 6 sig-
ni�cant digits in the lift.
The lift on the body is used as the representative

measure of error in all calculations. Other integral
measures including drag, skin friction, total drag,
pitching moment, as well as L2 and L1 norms over
the domain were studied. All integral measures yield
nearly the same quantitative conclusions, although
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Figure 6. Comparison of lift over one shedding cycle

between coarse and �ne grids

the qualitative errors are di�erent for each case. A
detailed investigation of the location of the maxi-
mum temporal error revealed that the vortex gen-
eration process in the near-wall regions is the most
temporal demanding portion of the cycle. It is not
surprising, therefore, that the lift integral is a good
measure of total error in the calculation.
Detailed results from the study are now presented.

Figure 7 shows a detailed re�nement study with an
ESDIRK4 scheme. Shown are the solution errors in
the lift, viscous drag, total drag, and pitching mo-
ment, as a function of logarithm of time-step. In
all cases, the nonlinear system is solved to strict
tolerances to eliminate \iteration" error as a con-
taminating variable in the study. At coarse time-
steps the solution accuracy deteriorates away from
design accuracy. For su�ciently small time-steps,
design accuracy is clearly demonstrated in all vari-
ables. For example, a least-squares �t of the �nest
four data points on each curve reveals that the con-
vergence rates for [lift, drag V, drag T, pitch] are
[3.9628, 4.0257, 4.0478, 4.0251]. The coarsest data
point corresponds to a time-step of �t = 2, for which
twelve points resolve the shedding cycle. Note that
15 � 20 points are needed to resolve the cycle be-
fore the fourth-order scheme converges with design
accuracy. This resolution is consistent with conven-
tional estimates of \points-per-wavelength" needed
to resolve a periodic wave.

Figure 8 presents the error in lift versus the time
step (log-log) for three BDF schemes and three ES-
DIRK schemes. The ESDIRK schemes presented in
this �gure are summarized in table (2). Again, the
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Figure 7. Convergence behavior for lift, drag and

pitching moment as calculated with a fourth-order

ESDIRK scheme.

nonlinear equations at each stage (step) are solved to
tolerances which are small compared with the abso-
lute error in the calculation. There is a dramatic in-
crease in accuracy in going from BDF1 to ESDIRK5.
For example, an error tolerance of 10�1 is achieve
with a time-step of �t = 1 for the ESDIRK4 and
ESDIRK5 schemes, while the BDF1 and BDF2 re-
quire �t = 10�2 and �t = 10�1, respectively.
The BDF3 and the ESDIRK3 schemes have nearly
the same absolute level of error, although the con-
vergence behavior of the BDF3 scheme is sporadic.
No explanation of this behavior was identi�ed, al-
though a possible explanation is the schemes lack of
A-stability.
As mentioned previously in this work, the BDF2

scheme is consistently used by practitioners because
of its robustness, simplicity and e�ciency. The re-
sults in Figure 8 clearly show that the ESDIRK4
scheme can be used at time-steps which are a fac-
tor of ten larger than those used in the BDF2, while
achieving similar accuracy. At �ne tolerances, this
di�erence becomes even greater. Figure 8 still can
not be used to conclude that the ESDIRK4 scheme
is more e�cient than the BDF2 scheme. To do so
requires a detailed accounting of the work involved
in each algorithm, and is not a simple task.

Temporal e�ciency

For large computations, the work involved in ad-
vancing the solution from t = T0 to t = Tf is
proportional to the number of non-linear solves re-
quired over that interval, but also depends strongly
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on how quickly each non-linear solve converges. The
number of non-linear solves is simplyNL =

Tf�T0
�t

Is,
where Is is the number of implicit stages per time-
step. (An explicit stage is virtually \free": hence the
use of the ESDIRK instead of the SDIRK schemes.)
For the BDF schemes Is = 1. A much more dif-
�cult aspect to predict, however, is how rapidly a
nonlinear solve will converge. Smaller physical time-
steps provide a much better initial guess for the non-
linear iteration, which implies an advantage for the
BDF schemes. The ESDIRK schemes, however, have
a much smaller diagonal coe�cient akk which in-
creases the asymptotic convergence rate of the multi-
grid process.
Figure 9 presents the convergence of the six

schemes as a function of the required work. Three
accuracy levels are chosen, [10�1; 10�2; 10�3] as
representative of desired engineering accuracy lev-
els. The appropriate values of �t needed for each
method are obtained from Figure 8. An iteration
tolerance a factor of 200 times smaller than the de-
sired error level, is used for the nonlinear iteration,
with the error based on the L1 norm of the resid-
ual. For example, if the desired error is 10�2 then at
each stage (step) the nonlinear system is solved until

the maximum residual is 10�2

200 . The work from each
method is measured as the total number of multi-
grid cycles used in the entire time interval.
An obvious conclusion from the study presented

in Figure 9 is that the BDF1 scheme (Euler Implicit)
will never compete with the higher-order schemes in
terms of e�ciency. Similarly, the BDF2 scheme is
only competitive with the third-, fourth- and �fth-
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Figure 9. Convergence as a function of work for

BDF and ESDIRK schemes.

order scheme at extremely coarse tolerances. For
example, the BDF2 is 2:5 times less e�cient than
the ESDIRK4 scheme at an error tolerance of 10%
(one signi�cant digit in the solution accuracy). As
the error tolerance becomes more strict, the high-
order schemes easily outperform the BDF1 and the
BDF2 scheme. For a desired temporal error of 1% in
lift the fourth-order integration method ESDIRK4,
only requires 1.5% of the work required by BDF1,
an e�ciency increase with a factor 70. For a tem-
poral error of 0.1% solution ESDIRK4 requires 10%
of the work of BDF2, an e�ciency increase with a
factor 10. Note again that the BDF3 scheme shows
an irregular behavior. Perhaps this is due to the fact
that the BDF3 solution oscillates around the exact
solution for di�erent time-steps, and sometimes by
coincidence yields unusually low levels of error.
It is interesting to note that the fourth- and

�fth-order ESDIRK schemes have exactly the same
accuracy-work ratio, and that their convergence be-
havior appears to be logarithmic in nature. Both
have di�erent time-steps, stages, and diagonal coef-
�cients akk, and there is no reason why they should
lie on the same line, or have logarithmic convergence
behavior. Though both have the same e�ciency, the
ESDIRK5 scheme requires more storage and is less
robust than the ESDIRK4 scheme (internal stabil-
ity problems at huge time-steps). Therefore, for an
e�cient and robust solution in time the ESDIRK4
scheme is recommended.

A major contributor to the ine�ciency of implicit
methods is solving the nonlinear systems at each
stage (step) to inappropriate sub-iteration tolerance
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Figure 10. The e�ects of sub-iteration tolerance

on solution accuracy for the BDF3 and ESDIRK4

schemes.

levels. If the nonlinear solve is iterated too many
times, the additional work does not increase the so-
lution accuracy or robustness, but does increase the
cost. If the nonlinear solve is not iterated enough,
then the solution error will be dominated by the er-
rors in the nonlinear solve, robustness will su�er,
and the entire solution will be in jeopardy. The
solution cannot be more accurate than the errors
in the nonlinear equations. Unfortunately, it is not
known a-priori to what levels the nonlinear equa-
tions should be solved. A �nal study is performed,
in which the nonlinear equations are solved to sub-
iteration levels which were [ 1

200 ;
1
20 ;

1
2 ] of the desired

error level. The error tolerances used in the previous
study [10�1; 10�2; 10�3] are again used.
Figure 10 shows a plot of the solution accuracies

for the BDF3 and the ESDIRK4 schemes. Ideally,
increasing the sub-iteration tolerance level, should
move the curves uniformly to smaller values of work,
until at a critical tolerance level the solution accu-
racy begins to deteriorate. The sub-iteration toler-
ances of 1

20
and 1

200
yield essentially the same ac-

curacy levels, but signi�cantly di�er in the amount
of work required. For a sub-iteration tolerance of
1
2 the solution accuracy begins to degrade for both
schemes. Similar results are exhibited with the other
ESDIRK schemes. It is concluded that the nonlin-
ear sub-iteration in TLNS3D should be converged
to a level which is at least 1

10 of the desired solution
accuracy, independent of the temporal integration
method used.
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Temporal error predictor

An e�cient time advancement scheme is capable
of monitoring the solution error, and adjusting the
time-step when needed. The ESDIRK schemes excel
in the variable time-stepping environment because
they are self starting. At each time-step a reliable
measure of solution error is needed, however. All
the ESDIRK schemes used in this study have em-
bedded schemes available to monitor the solution er-
ror. Some norm of the solution error is obtained at
each time-step by comparing the main and embed-
ded solutions U and Û. The main and embedded
solution di�er in accuracy by one order. Thus, the
di�erence between the solutions is the leading order
error term in the temporal Taylor series expansion,
and is proportional to the time-step error. Knowing
the solution error at each time-step, the subsequent
time-step is adjusted to re
ect a desired accuracy
tolerance for the calculation. An additional bene-
�t of the error estimate is that a precise stopping
criterion for the nonlinear sub-iteration can be im-
plemented.
Figure 11 shows the predicted temporal error as

calculated by the ESDIRK4 scheme. The L2 and L1
are presented for the coarse grid case shown in Fig-
ure 6. A �xed time-step of �t = 1

2 was used with a
nonlinear sub-iteration tolerance of 0:5� 10�5. The
temporal error correlates highly with the maximum
and minimum lift. Note that about 1

2
an order vari-

ation in temporal error is observed over the shedding
cycle. Calculations were successfully performed on
this case in variable time-stepping mode using a con-
troller (see Kennedy 9 for details).
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Work continues into automating the time-step
controller. The objective is automation such that
the only temporal input is the time-step error. Many
additional cases must be run in the future, including
fully turbulent 
ows, to calibrate the controller.

Conclusions

The accuracy and e�ciency of several time inte-
gration schemes has been investigated for the un-
steady Navier-Stokes equations. Time is discretized
implicitly, while the spatial discretization is a con-
ventional cell-centered �nite volume scheme with ar-
ti�cial dissipation added for stability. The nonlin-
ear equations are solved at each step with a multi-
grid algorithm. This study focuses on the e�ciency
of higher-order Runge-Kutta schemes in compari-
son with the popular Backward Di�erencing For-
mulations. For this comparison an unsteady two-
dimensional laminar 
ow problem was chosen, i.e.

ow around a circular cylinder at Re=1200. It is
concluded that for all realistic error levels (smaller
than 10�1) fourth- and �fth-order Runge Kutta
schemes are the most e�cient. For reasons of robust-
ness and computer storage, the fourth-order Runge-
Kutta method is recommended. The e�ciency of the
fourth-order Runge-Kutta scheme exceeds that of
second-order Backward Di�erence Formula (BDF2)
by a factor of 2:5 at engineering error tolerance lev-
els (10�1-10�2). E�ciency gains are more dramatic
at smaller tolerances.
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Appendix

The Butcher variables A, B̂, and C for the ES-
DIRK4 scheme are (with a6;j = bj)

a21 a22 a31 a32
a33 a41 a42 a43
a44 a51 a52 a53
a54 a55 a61 a62
a63 a64 a65 a66
b̂1 b̂2 b̂3 b̂4
b̂5 b̂6 c2 c3
c4 c5 c6

1
4

1
4

8611
62500

�1743
31250

1
4

5012029
34652500

�654441
2922500

174375
388108

1
4

15267082809
155376265600

�71443401
120774400

730878875
902184768

2285395
8070912

1
4

82889
524892

0

15625
83664

69875
102672

�2260
8211

1
4

4586570599
29645900160

0
178811875
945068544

814220225
1159782912

�3700637
11593932

61727
225920

1
2

83
250

31
50

17
20

1
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