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SUMMARY 

 
Optimum placement of multiple traditional piezoceramic actuators is determined for 
active structural acoustic control of flat panels.  The structural acoustic response is 
determined using acoustic radiation filters and structural surface vibration characteristics.  
Linear Quadratic Regulator (LQR) control is utilized to determine the optimum state 
feedback gain for active structural acoustic control.  The optimum actuator location is 
determined by minimizing the structural acoustic radiated noise using a modified genetic 
algorithm.  Experimental tests are conducted and compared to analytical results. 
 
Anisotropic piezoceramic actuators exhibit enhanced performance when compared to 
traditional isotropic piezoceramic actuators.  As a result of the inherent isotropy, these 
advanced actuators develop strain along the principal material axis.  The orientation of 
anisotropic actuators is investigated on the effect of structural vibration and acoustic 
control of curved and flat panels.  A fully coupled shallow shell finite element 
formulation is developed to include anisotropic piezoceramic actuators for shell 
structures.



 

 

CHAPTER I 

 
INTRODUCTION 

Background 

The primary objective of this research is to determine the optimum placement of 
traditional piezoceramic actuators to minimize acoustical radiated noise of vibrating flat 
rectangular panels utilizing active structural acoustic control (ASAC).  However, this 
research is based, in part, on contributing to the reduction of interior noise of subsonic 
aircraft.  Therefore, secondary research objectives include active vibration and acoustic 
control of curved panels, radiation filters for curved panels, and advanced actuator 
concepts based on anisotropic piezoceramic materials.  However, active structural 
acoustic control using anisotropic piezoceramic has not been addressed in the literature.  
Therefore, this research develops a coupled finite element shell formulation to evaluate 
the performance of anisotropic piezoceramic actuators for structural acoustic and 
vibration control of curved panels. 
Structurally radiated noise of a flat rectangular panel is dominated by the first structural 
vibration mode which inherently possesses poor coupling to piezoceramic actuators.  
Therefore, to achieve the maximum benefit of ASAC, optimum piezoceramic actuator 
locations becomes an important factor.  Pursuing this objective entails a multi-
disciplinary approach encompassing several aspects of active control of structural 
vibrations and structure-borne radiated noise of flat and curved panels.  To this end, items 
investigated include incorporating advanced anisotropic piezoceramic transducers, 
development of a coupled mixed field finite element formulation of a triangular shallow 
shell element with integral piezoceramic material, development of structural acoustic 
radiation filter design for curved panels, and implementation of a genetic algorithm to 
determine ideal locations of multiple piezoceramic actuators. 
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Literature Survey 

Anisotropic piezoceramic transducers recently appeared in the literature as a method of 
increasing the overall actuator performance of piezoceramic material.1 Furthermore, the 
anisotropic design also provides convenient twist actuation control of structures not 
obtainable with traditional isotropic piezoceramic.2  The research in the literature 
primarily investigates design and manufacturing aspects of active-fiber composites 
(AFC) and macro-fiber composites (MFC) targeting maximum performance.  However, 
applications of AFC and MFC found in the literature have been limited to global torsional 
control of structures utilizing placement of the actuators.2  Smart structure technology 
utilizing AFC or MFC concepts for active vibration control (AVC) and active structural 
acoustic control (ASAC) have not been investigated in the literature.  The general 
anisotropy of polyvinylidine fluoride (PVF2) was considered for active control of plates 
by Miller et al; 3 however, his solution relies on classical plate theory and the coupled 
charge equation developed by Lee4, thereby requiring knowledge of the displacement 
field of the PVF2 lamina. 
The objective of this research is to provide methodologies for transducer placement for 
smart structures during the design stage for ASAC implementation.  ASAC requires a 
robust and accurate structural dynamic plant model suitable for candidate control strategy 
that may be applied.  If a physical structure exists, system identification is often 
performed to estimate the structural dynamic characteristics, which supports physical 
realization of the control implementation.  Typically, however, the physical structure 
does not exist during the design stage; hence, the finite element method affords an 
efficient and flexible approach to obtain a structural dynamic plant model.  The finite 
element model can also readily support additional structural modifications and 
subsequent plant dynamics. 
Many finite element formulations incorporating the piezoelectric effect appear in the 
literature since its introduction in 1970.5  Initial modeling of piezoceramic structures 
utilized hexahedral (solid) finite elements thereby treating the piezoceramic as a complete 
structure in and of itself.  Tzou describes this approach in great detail for plates, shells, 
and spherical geometries.6  Given the computational effort and modeling difficulties of 
implementing hexahedral elements for smart structures, where piezoceramic transducers 
represent a relatively small portion of the structure, Tseng introduced Guyan reduction to 
reduce the total degrees of freedom (DOF) of a solid piezoceramic element.7  Hwang and 
Park8 developed a modified piezoelectric plate element with one electric DOF per 
element further increasing computational efficiency.  A modified, high precision 
composite, fully coupled rectangular plate element was used by Zhou9 to suppress 
nonlinear panel flutter using piezoceramic transducers.  The same element was further 
developed and experimentally validated by Bevan10 to include piezoelectric coupling due 
to moderately large structural displacements. 
Researchers successfully applied finite element analysis of smart structures with 
piezoceramic transducers for flat surfaces, though literature results for curved or shell 
structures remain limited in number.  Tzou and Ye developed a laminated quadratic Co 
piezo-elastic six-node triangular shell finite element.11  This formulation, based on a 
layerwise constant shear angle theory, applies to shell structures in which the 
piezoceramic lamina remains continuous and not segmented.  Tzou et al. investigates 
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segmented piezoceramic transducers applied to laminated cylindrical shells; however, 
this formulation is based on piezo-elastic shell lamination theory.12  Saravanos developed 
a new theory for piezoelectric laminates that combines linear displacement fields through 
the thickness of the laminate for inplane displacements with layer-wise electric potential 
field through the laminate.13  By combining, or mixing, layer-wise potential and first-
order shear theory, Saravanos accurately and efficiently models both thin and moderately 
thick laminated piezoelectric shells.  However, since Saravanos uses an eight-node 
element with bi-quadratic shape functions, this element will not support the anisotropic 
requirements of arbitrarily placement of AFC or MFC transducers on a curved panel. 
Since this research is concerned with the reduction of acoustic radiation of vibrating 
structures, the physics of the radiated acoustic field must also be modeled.  Sound and 
structural vibration encompasses a broad and complex discipline.  In general, the 
vibrating structure and surrounding medium behave as a coupled system.  More 
specifically, the properties of the surrounding medium can affect the dynamic behavior of 
the structure by adding mass, damping, and stiffness.  Furthermore, the audible sound 
spectrum perceivable by humans extends from 20 Hz to 20 kHz, which corresponds to 
acoustic wavelengths in air from 17 m to 17 mm respectively.  Hence, the physical 
dimensions of the corresponding structural system dictates the choice of the mathematical 
model used to characterize the associated acoustics, since resonances occur when 
dynamic wavelengths and physical structural dimensions coincide.  For example, if the 
structural dimensions are much less than the maximum acoustic wavelength, then it is 
common to use approximations that greatly simplify the governing equations.   
Another geometric consideration when formulating the structural acoustic problem 
entails modeling of the prescribed radiation field.  For example, radiation into free space 
requires a different model than radiation within an enclosed volume.  This research 
considers the free space, far field radiation of a vibrating structure for frequencies no 
greater than 500 Hz. 
To characterize the corresponding acoustic radiation of a vibrating structure, this research 
utilizes the concept of acoustic radiation filters.  The radiation filter provides an estimate 
of radiated acoustic power derived from structural vibration characteristics such as 
discrete surface velocities.  The modal approach, or spatial filtering, for analysis of 
exterior radiation problems have been recently developed by Borgiotti,14,15,16  Photiadis,17 
Sarkissian,18 Cunefare,19,20,21 Cunefare and Currey,22 and Elliott and Johnson.49  This 
approach exploits the inherent structural modal interaction that produces the acoustic 
radiation.  Researchers have determined that the structural vibration modes do not radiate 
independently; in fact, a strong coupling exists between the structural vibration modes 
and the radiated acoustic field.  Due to this strong dependence, it is possible to reduce the 
vibration of a dominant vibration mode while having little or no effect on the overall 
radiated sound.  Formulation of the radiation filter requires a radiation operator 
dependent on frequency and structural geometry. The radiation operator characterizes the 
coupling of structural and acoustic modes and can be derived to incorporate desired 
pertinent acoustic properties.  For example, a radiation operator for three-dimensional 
structures requires the use of Helmholtz integral while for planar structures the use of 
Rayleigh’s integral is required to develop a radiation operator.  Researchers have applied 
several techniques to extract radiation information from the radiation operator including 
singular value decomposition14 and wave-vector filtering.17  Eigenvalue decomposition of 
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the radiation, or coupling operator, yields a set of frequency dependent orthogonal 
eigenvectors, which represent acoustic radiation modes and corresponding eigenvalues 
proportional to their radiation efficiencies.  The acoustic radiation modes should not be 
confused with either structural vibration modes or acoustic modes of enclosed volumes.  
The radiation modes can be considered as orthogonal basis functions spanning the 
radiation domain space.  The associated radiation efficiencies provide a means of ranking 
the dominant radiation modes, thus indicating significant offending radiation modes that 
can be targeted utilizing ASAC for noise reduction. 
Baumann et al.23 implemented linear quadratic regulator (LQR) feedback control to 
minimize the radiated power of a vibrating beam by augmenting the state space system 
with radiation filters.  Hence, he achieved structural acoustic control by targeting 
offending radiation modes for the vibrating beam.  Recently, Gibbs et al.24 developed the 
radiation modal expansion (RME) method to efficiently approximate radiation filters for 
real time digital signal processing applications. 
As previously discussed the objective of this research involves determining the best 
piezoceramic actuator locations for the reduction of radiated noise during the design 
process of a typical smart structure.  Not only does the finite element method provide 
accuracy and modeling flexibility, it also provides element nodal sensor information that 
can be utilized in full state feedback control.  One disadvantage of full state feedback 
control is that all states must be available.  Due to physical constraints and practical 
limitations on the number of sensors available, full state feedback may not be achievable 
for real structures.  In practice, this leads to implementing state estimators, which 
provides the requisite feedback information.  Furthermore, real control applications 
contain inherent noise contamination from sensors that limit control performance.  In 
effect, the controller is unable to distinguish between erroneous noise and the desired 
sensor signal.  One application used frequently for reasonable modal density is the linear 
quadratic gaussian (LQG) control law, which includes a state estimator and exogenous 
noise contribution to both sensors and actuators.  Implementing LQR requires full state 
feedback and provides optimal gains that prescribe an upper bound, or limit, to 
achievable performance.25  Thus, this research implements LQR control to determine the 
best location of piezoceramic actuators to achieve the theoretical upper limit of ASAC 
performance.  Furthermore, since prediction of the absolute noise reduction is not an 
objective, the optimum actuator locations are validated by experiments and compared to 
the upper bound predictions.  
Piezoceramic actuator placement is determined by prescribing an actuator size that is 
commonly available and applying a genetic algorithm based search method to evaluate 
the best locations.  The goal of this research is not to develop an optimization method but 
to implement a proven method.  The genetic algorithm (GA), or evolutionary algorithm 
(EA), is a search method derived from the mechanics of natural selection and genetics.  
The algorithm is a structured random search method utilizing survival of the fittest 
information of previous iterations.  Hence, they exploit historic information to speculate 
on potential search points.  Salient GA characteristics that distinguish them from 
traditional optimization techniques include26 
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• GAs work with a coding of the parameter set, not the parameters themselves. 
• GAs search from a population of points, not a single point. 
• GAs use payoff (objective function) information, not derivatives or other 

auxiliary knowledge. 
• GAs use probabilistic transition rules, not deterministic rules. 

 
Many optimization problems have been successfully solved using the GA.  Ryou et al.27 
determined the piezoelectric electrode shape for modal control of a cantilevered beam 
using a genetic algorithm.  Simpson and Hansen28 implemented GA to determine 
optimum actuator locations for active noise control (ANC) for enclosed spaces.  Yao et 
al. implemented GA to determine senor locations of large space structures for modal 
identification.29  Tsao30 determined sacrificial anode locations for optimum cathodic 
protection of submerged structures using the GA.  The above references indicate research 
that is closely related to the work described herein, thereby demonstrating the ability of 
GA to be applied to this current research. 
The GA was selected since the literature demonstrated its ability to successfully handle 
similar optimization problems and that it is applicable to many problems with little or no 
modifications.  This research utilizes the reduction in overall structural radiated power as 
the GA performance index, or cost function, to search for the optimum actuator locations.  
The LQR feedback control determines the theoretical maximum achievable reduction in 
sound power for the given actuator location. 
 

Outline 

Considerable research for each of the individual topics discussed herein can be found in 
the literature, so this research applies a multi-disciplinary approach to achieve maximum 
benefits of ASAC from optimum piezoceramic transducer placement.  This dissertation is 
organized as follows.  Chapter II introduces the piezoceramic phenomena including 
anisotropic piezoceramics.  Chapter III presents a triangular shell finite element 
formulation that includes anisotropic piezoceramic lamina.  An effort has been made to 
develop a generalized formulation to handle arbitrary double curved shallow shell 
geometry applicable to laminated composites.  Chapter IV pertains to structural acoustics 
aspects using the radiation filter concept, including the formulation of radiation filters for 
curved panels.  The resulting radiation filters are amenable to ASAC methodologies.  
Chapter V discusses feedback control and genetic algorithm optimization techniques.  
Combining finite element analysis, acoustic radiation filters, LQR feedback control, and a 
genetic algorithm yields a complete analytical model.  Chapter VI discusses experimental 
test results compared to numerical analysis for actuator placement.  Several test panels 
with various actuator locations are tested and modeled and their results are compared.  
The test panels are subjected to an acoustic disturbance and the acoustic reduction of 
acoustic radiated noise is used as a measure of actuator performance.  Chapter VII 
provides concluding remarks and future recommendations. 
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CHAPTER II 

PIEZOELECTRICITY 

Introduction 

The phenomena of piezoelectricity describes a material that generates electrical charge 
due to applied mechanical stress or conversely, one that undergoes deformation due to an 
induced strain when subjected to an external electric field.  Literature indicates that 
researchers have studied piezoelectric materials since their discovery by Pierre and 
Jacques Curie circa 1880.  The piezoelectric discovery directly resulted from Pierre 
Curie's research between crystal symmetry and so-called pyroelectricity.31  The term 
piezoelectricity, proposed by Hankel, describes the well-known interaction between 
electrical and mechanical systems. 
 

Piezoelectricity and Electric Polarization 

To understand piezoelectricity, first consider the concept of dielectric polarization.  A 
dielectric, or insulator, describes a material that does not support electrical conduction 
and restricts or completely impedes charge motion within the material when subjected to 
an external electric field.  This class of materials is in contrast to electrical conductors 
where charges migrate freely when exposed to a similar electric field yielding electric 
current.  An important distinction between these two materials is the presence of an 
internal electric field within the dielectric and the absence of an electric field within the 
conductor.  The presence of this internal electric field results in an electrical polarization 
of the dielectric.  The phenomenon of polarization describes the net, or macroscopic, 
electric field resulting from deformed, or altered, microscopic electric fields of individual 
atoms or molecules.  The linear artificial dielectric model helps illustrate the polarization 
phenomena. 
Before examining dielectrics a review of free space electrostatics is beneficial.  Figure 
2.1 shows two parallel conductors in free space with a constant voltage source. 

++ + + +

------q

+q

E V d

 
Figure 2.1 Parallel Plate Capacitor 

 
The electric field between the conductors is simply 

V
d

=E   (2.1) 
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The total charge on the upper conductor, obtained from Gauss’ law, is  

o
A

q dA A= =∫ �D E   (2.2) 

The capacitance describes a linear relation between the charge and voltage as 
o Aq V CV
d

= ≡�   (2.3) 

where o�  is the free space permittivity.  In terms of field quantities, a linear constitutive 
relation is defined for the electric flux density as 

o=D E�   (2.4) 

These relations are restricted to free space, and if any other dielectric material is placed 
between the conductors both the charge and field will differ from the above results. 
For example, inserting a dielectric material between the conductors as shown in Figure 
2.2 produces interesting results.   

d

++ + + +

------q

+q

V

 
Figure 2.2 Parallel Plate Capacitor with Dielectric 

 
The charge per unit area of the conductors in free space becomes 

o
q V
A d

= = �Q   (2.5) 

While maintaining a constant voltage the surface charge increases due to the inclusion of 
the dielectric and becomes 

o r
V
d

′ = � �Q   (2.6) 

Thus, the increase in charge due to polarization becomes 

   o r o
V V
d d

′= −

= −

P Q Q

� � �
  (2.7) 

resulting in the following normalized charge distribution 
o= +�D E P   (2.8) 

where 
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( )1
   

o r

oχ
= −
=
� �
�

P E

E
  (2.9) 

and the dielectric susceptibility is defined as 1rχ = −� . 

The electromagnetic constitutive relation indicated in Eq. (2.4) is applicable to free-space 
only.  However, substituting Eq. (2.9) into Eq.(2.8), yields the following linear dielectric 
constitutive relation 

= �D E   (2.10) 

where the dielectric permittivity is defined as o r=� � � , r�  denotes the relative 
permittivity of the material and describes the charge storage capability of the material 
through polarization. 
Linear dielectric polarization characterized by electromagnetic field theory as described 
above, is based on macroscopic observations and does not provide any insight to the 
mechanism responsible for the polarization.  Further insight to polarization necessitates a 
microscopic approach at the molecular, or atomic level.  Specifically, atomic reaction 
external electric fields must be examined.  Atoms have a positive charged nucleus 
surrounded by a cloud of electrons that statistically remain electrically neutral.  When an 
atom is subjected to an electric field the equilibrium charge distribution is shifted 
resulting in a dipole moment as 

qµ δ=   (2.11) 

where q is the total charge and δ is the separation distance.  Since the centroid of electron 
charge volume moves a distance δ, the total charge volume becomes Sδ for area S.  The 
surface charge per unit area of the macroscopic dielectric becomes 

Nqδ=Q   (2.12) 

for N molecules per unit volume.  Substituting Eq.(2.11) into Eq.(2.12) yields 
Nµ=Q   (2.13) 

which describes the polarized surface charge density and is equivalent to P  derived 
under the macroscopic electromagnetic field theory. 
The macroscopic theory identifies the external field sufficiently for analysis; however, it 
is unable to characterize the internal, or effective, field behavior.  To examine the internal 
field of a polarized dielectric in a uniform field, a simplified method used by Lorentz is 
very useful.32  Consider an infinitesimal volume described by surface A within the 
dielectric shown in Figure 2.3.  
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Figure 2.3 Effective Electric Field 

 
The dielectric external to A is considered as a continuum while inside A is assumed to be 
on an atomic scale.  The internal field can be expressed as the sum of the following 
fields: 

in d p a= − + +E E E E E  (2.14) 

where E  is the external field, dE  the depolarizing field on the external surface of the 
dielectric, pE  the polarizing field of the charges on surface A, and aE  is the field of the 
dipoles enclosed in surface A.  The internal field is a manifestation of the interaction of 
physical lattice structure of the material and will be discussed subsequently.  Although 
internal fields cannot be readily measured, they are important for understanding nonlinear 
ferroelectric behavior.  The internal and total field effects of piezoelectric materials were 
investigated by Main et al. to develop high precision position actuators.33 
Dielectric polarization results from the formation of dipoles, however various mechanism 
are responsible for several types of polarization.  Electronic polarization results from the 
formation of dipoles due to an electron cloud.  Molecular polarization stems from dipoles 
resulting from the deformation of ionic molecular bonds.  Polar fluids exhibit 
orientational polarization when the polar molecules align in a field. 
Dielectrics exhibiting spontaneous electric polarization are categorized as pyroelectric.  
The term ‘spontaneous’ implies polarization exist in the absence of an external field and 
is sometimes called remnant polarization.  Furthermore, linear polarization theory fails to 
describe materials that exhibit hysteresis between the electric field (E ) and the electric 
flux density (D ), as shown in Figure 2.4, which are referred to as ferroelectric materials 
in the literature. 
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Figure 2.4 Electric Polarization Hysteresis 

 
All ferroelectric material exhibits this nonlinear behavior and most dielectrics are 
ferroelectric.  However, in solving field problems small variations about a quiescent point 
suffices, thus any point on the hysteresis loop can be assumed linear.34  A ferroelectric 
material refers to a sub-class of pyroelectrics and is characterized by their mobility of the 
spontaneous electric polarization.  Hence, the physical direction of the polarization can be 
manipulated, or oriented, by applying an external field of sufficient strength.  Since 
ferroelectric is a sub-class of pyroelectric they also follow temperature dependency.  The 
most significant of which is a temperature where polarization ceases and the material is 
said to be paraelectric.  The Curie point defines the temperature at which the spontaneous 
polarization ceases. 
Piezoelectric is a sub-class of ferroelectric and is characterized by deformation yielding a 
change in polarization.  Hence, piezoelectric material is a ferroelectric characterized by 
an electric polarization that can be altered by an external field of sufficient strength.  
Furthermore, they also possess temperature dependant properties.  Hence, piezoelectric 
materials can be manufactured using ferroelectric ceramics and their polarization can be 
manipulated through poling.  The poling process establishes the ferroelectric axis by 
aligning the dipoles between electrodes that apply a field of sufficient strength.  It is 
common that during the manufacturing process of advanced transducers the piezoceramic 
may be exposed to temperatures exceeding the Curie point thus destroying any 
polarization.  However, the specimen can be re-poled to create the desired polarization.  
The piezoelectric phenomenon is observed in many materials such as natural quartz and 
Rochelle salt, polycrystalline ceramic, and semi-crystalline polymer. 
 

Piezoceramics 

Piezoelectric crystals proved ideal for certain transducer designs and discrete circuit 
devices operating in both on and off resonant conditions.  However, crystallography 
dictates the polarization axes and thus limits selected applications.  These restrictions are 
greatly relaxed due to manufacturing of piezoceramic.  The manufacturing process for 
piezoceramic consists of combining a mixture of oxides with a binder that can be formed 
into the desired geometric shape.  For example, readily available piezoceramic devices 
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include planar monolithic wafers, disks, rings, rods, and shells.  This “green” specimen is 
then sintered, yielding a polycrystalline ceramic with inter-granular bonds sufficient to 
facilitate the polling process. 
The most common piezoceramic shape utilized in smart structure technology is the thin 
planar monolithic wafer shown in Figure 2.5. 

 

+V

3

2

1

Electrode Surface

Piezoceramic  
Figure 2.5 Traditional Piezoceramic Wafer 

 
The planar surface area consists of plated electrodes that facilitate uniform poling through 
the piezoceramic thickness.  The poling process establishes domain structure realignment 
resulting in the prescribed piezoelectric effect.  The resulting wafer exhibits plane strain 
when subjected to an electric potential across the electrodes.  Since the electrode ensures 
an equipotential surface and the ceramic is homogeneous in both the 1 and 2 directions 
the induced strain is equal along the 1 and 2 directions.  The piezoelectric charge 
coefficients describe the resulting induced strain, or the applied stress and the charge 
applied or charge generated, respectively.  The piezoelectric charge coefficients for a 
general wafer is denoted as 

[ ]
15

15

31 32 33

0 0 0 0 0
0 0 0 0 0

0 0 0

d
d d

d d d

 
 =  
  

 (2.15) 

where subscript ij indicates the poling direction is along the i axis yielding strain along 
the j axis.  For the thin monolithic wafer, d31=d32 and d33=d15=0.  The piezoelectric 
charge constants [ ]d describe the effectiveness of the piezoelectric performance.  For 
example, if sensing is desirable, piezoceramics characterized by large dij constants exhibit 
increased sensitivity to the applied state of stress, thus generating sufficient charge to 
enhance the signal-to-noise ratio.  Such piezoceramics are referred to as high sensitivity 
‘soft’ materials and include lead zirconate titanate (PZT) -5A, -5B, and -5H among 
others.  Conversely, high power ‘hard’ materials, such as PZT-4, -4D, and -8 can 
withstand substantial electrical excitation while producing large strains.  Hard 
piezoceramics typically have smaller dij constants to maximize larger applied fields. 
 

Anisotropic Piezoceramics 

Traditional piezoceramic devices are homogeneous and isotropic resulting in a uniform 
electric field distribution as previously described.  Recently, advanced anisotropic 
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piezoceramic transducer concepts have appeared in the literature.  For example, Active 
Fiber Composites (AFC) introduced by Bent and Hagood1 and Macro Fiber Composites 
(MFC) introduced by Wilkie35 are two such examples of anisotropic piezoceramic 
materials.  A typical AFC package with interdigital electrodes is shown in Figure 2.6. 

1

3

2

PZT Fiber

Electrodes

 
Figure 2.6 AFC Package 

 
The MFC transducer concept is similar to the AFC transducer except that the fibers are 
rectangular and have a much greater cross section.  For example, the AFC transducer 
constructed by Bent uses circular fibers with a diameter of 129 mµ ,1 where as the MFC 
transducer produced by Wilkie has rectangular fibers with a thickness 254.07 mµ .35  A 
typical MFC transducer is shown in Figure 2.7. 

1

3

2
 

Figure 2.7 MFC Transducer 
 
The research presented herein utilizes the MFC concept.  However, the formulation 
presented is equally applicable to both AFC and MFC concepts.  For clarity the acronym 
MFC will be used to describe general anisotropic piezoceramic actuators. 
The obvious benefit of MFC is an additional geometric design parameter allowing 
actuation authority along a preferred direction. Although the MFC package resembles the 
conventional monolithic wafer, the applied field delivered by the interdigital electrode is 
along the 1 direction as opposed to the 3 direction.  The electric field established in the 
MFC by the interdigital electrodes yields a comparable effect of a rod with end cap 
electrodes characterized by the d33 charge constant as shown in Figure 2.8.  Thus, when 
referring to MFC transducers, d11 and d12 are synonymous to d31 and d32 of traditional 
monolithic configurations. 
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Figure 2.8 Equivalent MFC Interdigital Electrode Model 

 
Readily available piezoceramic materials exhibit a larger piezoelectric constant if the 
strain and polarization axis coincide, compared to the condition when the strain is 
transverse to the polarization axis or applied field.  Hence, traditional monolithic 
piezoceramic patches have inherently lower performance operating in plane strain since 
d31 is less than d33.  However, the MFC concept yields plane strain while exploiting the     
d33 polarization along the principal strain direction.  Hence, the intrinsic benefit of the 
anisotropic design.  Furthermore, each piezoceramic layer may have an arbitrary 
orientation angle producing inplane shear strains capable of inducing complex traction 
forces.  Hence, the host structure now may experience twisting as opposed to pure 
bending and membrane strain commonly associated with traditional piezoelectric 
actuators. 
The inherent electrical and mechanical anisotropy of MFC transducers requires a more 
complex model than traditional PZT to accurately characterize its behavior.  The 
difficulty arises since the applied field is no longer uniform throughout the ceramic as in 
the conventional monolithic wafer.  The field established by the interdigital electrode is 
piece-wise continuous along the 1 principal direction as shown in Figure 2.6.  The field 
non-uniformity along the 2 direction results from anisotropy characterized by matrix 
dielectric.  For example, the fiber may be circular or rectangular, thereby producing a 
non-uniform field in the piezoceramic.  Bent developed macroscopic property models 
along with detailed finite element analyses of the AFC transducer and concluded that 
field non-uniformity effects are negligible.36  The inherent anisotropy further complicates 
the model since the matrix permittivity differs from that of the PZT ceramic.  This 
dielectric mismatch can impede the applied electric field from reaching the PZT.  A large 
dielectric mismatch can lead to a complete dielectric breakdown.  This phenomenon 
results in a large electric field gradient producing a fault current between electrodes, thus 
completely diverting the electric field away from the ceramic, which renders the actuator 
ineffective.  This effect was observed mainly when the matrix was doped to enhance 
dielectric performance.  Recently, Janos and Hagood achieved improved dielectric 
performance by including magnetic particles within the matrix.37   
Furthermore, the geometry of the MFC device provides some interesting observations.  
Recall that traditional piezoceramics maintained isotropy and a uniform electric field, 
which followed the linear piezoelectric theory.38  The first feature of the MFC concept is 
the electric field distribution due to the interdigital electrodes and fibers.  The MFC 
device is symmetric along the mid-plane axis thus the top and bottom interdigital 
electrode establishes a symmetric field distribution.  Recall that the traditional PZT wafer 
yields a uniform field distribution.  This uniform field distribution conveniently defines 
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the field strength as the applied voltage per distance between the opposing electrodes.  
However, if we refer to electromagnetic field theory, the electric field strength is defined 
as the negative gradient of the applied electric potential, for example 

 { } V= −∇E  (2.16) 

Thus, the electric field is a function of the geometry of the given potential difference.  
Furthermore, the boundary condition of a conductor specifies that the tangential electric 
field must be zero and only a normal field component exists.  Therefore, the geometry of 
parallel conducting plates, analogous to a traditional PZT wafer, yields a uniform field 
normal to the conductors as shown in Figure 2.9(a).  However, if the same potential is 
prescribed between a conducting plane and vertex, then the field strength is characterized 
by the gradient of the potential as described in Eq.(2.16) and shown graphically in Figure 
2.9(b). 
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Figure 2.9 Electric Field Potential Gradient 
 

Therefore, a significantly large non-uniform electric field distribution exists due to the 
gradient of the applied voltage present on the interdigital electrodes of an MFC wafer as 
shown in Figure 2.10. 
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Figure 2.10 Non-uniform Electric Field Distribution of MFC 

 
Within the area directly under the interdigital electrode, the piezoceramic experiences 
high field gradients of opposing directions; thus, the linear piezoelectric theory 
approximations may be exceeded.  Bent36 analyzed this effect using ANSYS finite 
element analysis code; however, Bent assumed that the piezoceramic was uniformly 
poled along the length of the fiber, which is in contrast to the current MFC manufacturing 
process where the fiber is polled in situ and is therefore non-uniform along the fiber 
length. 
Consistent with composite laminate theory, the local or principal material coordinates are 
independent of the global coordinates and are related through a geometrical 
transformation.  The geometric orientation of an AFC patch is shown in Figure 2.11. 
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Figure 2.11 Principal and Global Coordinate Relation 

 
The piezoceramic charge constants are proportional to strain and therefore follow the 
strain transformation found in composite mechanics.39  Thus, the global charge constants 
can be determined from the material principal constants as 
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 (2.17) 

The piezoelectric charge constants d11 and d12 are being used to describe the MFC 
transducer pursuant to subsequent finite element analyses.  When referring to traditional 
PZT transducers, charge constants d11 and d12 are equivalent to d31 and d32, respectively. 



 

 

 

16

CHAPTER III 

FINITE ELEMENT FORMULATION 

Introduction 

The three-node MIN6 shallow shell element developed by Tessler40 is modified to 
include the addition of piezoceramic electrical nodal DOF, cylindrical curvature, and 
membrane displacement field.  The triangular element consists of fifteen structural nodal 
DOF to describe bending, rotation, and extensional displacement fields.  The element 
formulation employees an anisoparametric interpolation scheme since quadratic 
interpolation polynomials approximate the deflection, while linear polynomials 
approximate the rotation and membrane displacement.  This modeling is in contrast with 
isoparametric formulation where identical degree polynomials interpolate each of the 
primary variables.  Using a quadratic polynomial for displacements requires six nodes per 
element; however, Tessler constrains the mid-edge nodes thereby achieving a reduction 
in element nodes.  The MIN6 element is an enhanced version of Tessler’s MIN341 
triangular Mindlin plate element.  Subsequently, Chen demonstrated the ability of MIN3 
to perform well under cylindrical curvature since he determined nonlinear post-buckling 
response with incremental structural deflections.42  This research further enhances the 
MIN6 element capability by including anisotropic piezoceramic materials in conjunction 
with first order shear deformation theory resulting in a fully coupled electrical-structural 
composite shallow cylindrical shell finite element. 
 

Element Displacement Functions 

The element displacement field components ux, uy, and uw, consistent with Mindlin 
theory, are described as 

),,(
),,(),,(

),,(),,(

tyxwu
tyxztyxvu
tyxztyxuu

w

xy

yx

=

+=

+=

θ
θ

 (3.1) 

where u, v, w represent the mid-surface membrane (inplane) and transverse (out-of-plane) 
displacements; bending rotations of the normal about the x and y axes are given by θx and 
θy respectively.  The element geometry is shown in Figure 3.1.  The arbitrary shallow 
shell shape is described by ho(x,y) and is related to the z-axis as ( )yxhzz o ,−= .  The 
cylindrical shape chosen for this research resulted by limiting the curvature to one 
direction; however, the formulation presented herein applies equally to geometry 
described by a double curvature. 
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Figure 3.1 Shell Element Geometry 

 
The element nodal displacement vectors are defined as 

{ } { }T
b mw w w wφθ  =               (3.2) 

{ } 1 2 3
T

bw w w w=     (3.3) 

{ } 1 2 3 1 2 3
T

x x x y y yθ θ θ θ θ θ θ =    (3.4) 

{ } 1 2 3 1 2 3
T

mw u u u v v v=     (3.5) 

where each electrical DOF is the coupled electric potential of each piezoceramic layer.  
For example, considering np piezoceramic layers, the electric potential DOF is given by 

{ }  np
T VVw 1=φ  (3.6) 

The electrical DOF follows traditional finite element assembly method where the electric 
boundary condition stipulates an equipotential across interelement boundaries for each 
continuous piezoceramic transducer.  If more than one piezoceramic transducer is used, 
each is prescribed by an independent electrical DOF. 
Given that the piezoelectric constitutive relation includes inherent two-way coupling 
between strain and charge, the electrical DOF must also account for the coupled fields.  
Hence, the intrinsic electrical DOF simultaneously describes both the self-generated 
charge, or sensor voltage, and the externally applied charge, or actuation voltage.  The 
applied voltage and charge are linearly related through the piezoceramic capacitance as 
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shown in Eq. (2.3).  Further examination of the piezoelectric constitutive relation is 
discussed in greater detail in the subsequent Constitutive Relations section. 
The displacement field throughout the element is determined by interpolating the nodal 
displacement as 

( )  { }  { }
 { }  { }θξξξ

θθ

321321321              
,,

MMMLLLw
HwHtyxw

b

wbw

+=
+=

 (3.7) 

( )  { }  { }θξξξθθ θ 000,, 321== xx Htyx  (3.8) 

( ) { } { }1 2 3, , 0 0 0y yx y t Hθθ θ ξ ξ ξ θ = =      (3.9) 

( ) { } { }1 2 3, , 0 0 0u m mu x y t H w wξ ξ ξ= =        (3.10) 

( ) { } { }1 2 3, , 0 0 0v m mv x y t H w wξ ξ ξ= =        (3.11) 

where ξi are the area coordinates and Li and Mi the quadratic interpolation polynomials.  
Area, or natural coordinates commonly used to describe triangles, refer simply to area 
ratios as shown in Figure 3.2.   
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Figure 3.2 Element Area Coordinates 

 
These area or natural coordinates 321 ,, ξξξ  are related to the geometric coordinates by 
utilizing the following transformation relations 
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where ( )ii yx ,  designate the ith nodal coordinate, and the triangular area A is given by 

( )( ) ( )( )( )121313122
1 yyxxyyxxA −−−−−= .  The interpolation functions are defined as 

follows: 
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Strain Displacement Functions 

The strain-displacement relation is expressed by including the membrane strain and 
curvature as 

{ } { } { }
x

o
y

xy

z
ε

ε ε ε κ
γ

 
 = = + 
 
 

 (3.14) 

The Margurre membrane strain-displacement relations for a thin shallow shell are defined 
as 

{ }
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 (3.15) 

For notational compactness, the subscript comma is used to denote partial differentiation 

with respect to the coordinate variable, therefore ( ),
,x

u x y
u

x
∂

≡
∂

.  Tessler40 discusses an 

important inherent difference in the transverse displacement variables defined in 
Reissner-Mindlin and Marguerre theories that must be addressed when the two theories 
are merged.  The Reissner-Mindlin theory includes shear deformation; therefore, the 
transverse variable is a weighted average transverse displacement through the thickness, 
whereas Marguerre theory assumes mid-plane transverse displacement as a consequence 
of neglecting shear deformation using the Kirchhoff theory.  Enforcing the Kirchhoff 
thinness assumption yields 
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Thus, the membrane strain in Eq. (3.15) becomes 
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 (3.17) 

For a cylindrical shell formulation , 0o xh =  and the remaining slope of the curvature is 
determined from 
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− + −
    (3.18) 

where b is the length of the cylindrical panel along the local y coordinate and r is the 
radius of curvature, as shown in Figure 3.3. 
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Figure 3.3 Shell Curvature Geometry 

 

Furthermore, the curvature and shear strain are defined as 
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The strain interpolation matrices result from completing the required differentiation 
indicated by the strain-displacement relations on the displacement interpolation functions.  
The defined strain interpolation matrices are summarized as follows: 
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Constitutive Relations 

The kth layer of the laminate specifies either structural or piezoceramic properties and is 
characterized by the following coupled constitutive relations 

{ } { } { }( )k ik kk
Q dσ ε = −  E  (3.26) 

{ }

{ }

44 45

45 55

      

yz yz
k

xz xzk k

s k

Q Q
Q Q

Q

τ γ
τ

τ γ

γ

    
= =    
    

 =  

 (3.27) 

{ } { } { }( )3
T

k ik iik ikk kk
d Q d σε = − + D E E�  (3.28) 



 

 

 

22

where i=1 or 3 for MFC or traditional PZT transducers, respectively.  The electric field is 
related to the electric potential DOF as 
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and hi describes the electrode spacing, either through the thickness for conventional 
piezoceramics or the electrode spacing of the interdigital electrodes for MFC transducers. 
The constitutive relations describe the fundamental behavior of electrical and mechanical 
properties used throughout the rest of the formulation.  The electric flux density D  
describes the electric field E  independent of dielectric used as shown in Eq. (2.10).  
However, the inherent two-way coupling between stress and electric field is clearly 
indicated in Eqs. (3.26) and  (3.28).  Interestingly, the electric field and subsequent flux 
density is a function of strain, which is related to the state of stress.  Therefore, the 
electric field intrinsically depends on strain, which is a function of the electric field.  This 
coupling must be accounted for whether the piezoceramic is a sensor or actuator. 
Laminated composite theory provides a convenient modeling procedure even if an 
isotropic plate with bonded piezoceramic layers is considered, since the piezoceramic 
constitutes a lamina.  Hence, lamina reduced stiffness components are determined from 
the principal material properties as 
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,            ,                
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ν ν ν ν ν ν

= = =
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= = =
 (3.30) 

The ability to accurately model piezoceramic anisotropy supports current research trends 
in advanced transducer development.  For anisotropic piezoceramic material, such as an 
MFC transducer, the principal mechanical properties are included at the constitutive 
level. 

Force and Moment Resultant 

Analysis of laminated composites maintains distinct lamina stresses; therefore, utilizing 
stress resultants is imperative.  The stress resultants, or force and moment per unit length, 
are defined as 
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Utilizing Eqs.(3.31) and (3.32), it is useful to define the stress resultants as follows: 
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where the extension, extension-bending, bending, and shear stiffness matrices are defined 
as 
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Considering the kth piezoceramic layer and the coupled constitutive relations the 
piezoceramic force and moment vectors are given by 
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Equations of Motion 

Finite element equations of motion for the laminated composite shell with fully coupled 
electrical-structural properties are derived utilizing the generalized Hamilton's principle43 
to obtain 
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t meδ  (3.39) 

where T and U are the kinetic energy and strain energy of the system, eW  is the electrical 
energy, mW  is the magnetic energy, and W is the work done due to external forces and 
applied electric field.  The magnetic energy is negligible for piezoceramic materials if no 
external magnetic fields are located near the specimen. 
The kinetic energy of the shallow shell finite element is defined as 
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where w , u , and v  are the transverse and membrane velocity components and ρ  is the 
mass per unit volume, and V  is the volume of the element.  The potential and electrical 
energy are defined as 

{ } { } { } { }( )1
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T T
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U dVε σ γ τ= +∫  (3.41) 
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and the work done on the element by external sources is defined as 
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where { }bF  is the body force vector, { }sF  is the surface traction vector, { }cF  is the 
concentrated loading vector, S1 is the surface area of the applied traction, S2  is the surface 
area of the piezoelectric material, V is the voltage applied to the piezoceramic layer, and 
ρcs  is the total electrical charge due to self-generated piezoelectricity in addition to the 
applied actuation voltage.  Recall that a voltage applied to a capacitor yields an 
accumulation of charges on its conductors.  Thus, the actuation voltage produces charges 
across the intrinsic piezoceramic capacitance.  In Hamilton's principle, all variations must 
vanish at the time t t= 1 and t t= 2 .  The Hamilton's variational statement may be written 
as 
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Evaluation of Eq. (3.44) leads to the development of the finite element matrices and the 
elemental equations of motion.  Employing the stress resultants, the variational potential 
and electrical energy may be described as 
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where the shear correction factor for the MIN6 element is defined as 
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with ( )tr kγθ and ( )tr kθ denoting the trace or summation of diagonal terms of the coupled 
shear-bending and bending element stiffness matrices respectively.  Tessler provides a 
more complete derivation for the shear correction factor along with an enhanced higher 
order membrane interpolation scheme.40 
The finite element equations can be determined by completing the variational work 
statement in terms of the nodal values.  Writing the stress resultants described in 
Eq.(3.45) in the nodal quantities yields 
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{ } [ ] { } [ ] { }s b b sR A C w A Cγ γθ θ   = +     (3.49) 

The variation of the electrical energy term in Eq.(3.45) is expanded by including the 
piezoelectric constitutive relation in Eq.(3.28).  Since the piezoceramic layers are 
separated by general lamina, integration through the thickness must be carried out for the 
np piezoceramic layers only.  Hence, the variational electric energy becomes 
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Completing the integration with respect to z  yields 
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Before continuing, we can further expand the definitions of the piezoelectric force and 
moment vectors.  The force vector may be expressed as 
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Similarly, the piezoelectric moment vector follows as 
{ } [ ] { }MM P B wφ φ φ = −    (3.53) 
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Equation (3.51) can be recast in matrix form using the above definitions as 
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Thus, by completing the necessary substitutions the variational energy statement becomes 
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Expanding Eq.(3.57) term by term yields expressions leading to the element stiffness 
matrices 
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Completing the generalized Hamilton’s principle considering nodal DOF yields inertia, 
external mechanical loading, and piezoceramic actuation quantities 
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Evaluating the potential and electrical energies of the variational work statement yields 
the finite element inertial and stiffness matrices.  Succinctly expanding Eqs.(3.58)-(3.78) 
using typical finite element notation clearly indicates element stiffness matrices including 
fully coupled electrical-structural shallow shell element and element inertial matrices.  
Each element stiffness matrix contribution is summarized as follows: 
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The following element stiffness matrices represent geometric stiffness due to the shallow 
shell geometry: 
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The following element stiffness matrices represent the shear strain effect: 
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The following element stiffness matrices represents coupled piezoelectric-structural 
stiffness: 
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The following element matrices represent inertial matrices and load vectors from the 
potential energy and external work indicated in Eq. (3.78): 

[ ] [ ] [ ]T
b w w

A

m H H dAρ= ∫  (3.99) 
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w w
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m u u u u
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( ){ } [ ] ( ), ,T
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( ){ } [ ] ( ), ,T
w

A

p t H p x y t dAθ θ= ∫  (3.105) 

( ){ } cs
A

p t dAφ ρ= −∫  (3.106) 

Furthermore, using matrix equation notation yields the following finite element equations 
of motion: 
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Once the element mass and stiffness matrices are determined, they can be applied to 
specific structural configurations by prescribing boundary conditions, and associated 
loading.  By following conventional finite element assembly procedures a global system 
of equations can be determined to represent the structure.  Assembly can be carried out 
for various loading and boundary conditions without calculating the element level 
matrices. 
 

Global Equations of Motion 

Following standard finite element assembly procedures, the system equations of motion 
can be expressed as 

0 0
0 0 0 0

w w ws

w

K K W W PWM K
K K W W PW

φ

φ φ φ φ φφ

             + + =           
            

 (3.108) 

Assembly accounts for both the number of piezoceramic layers and multiple transducer 
patches.  To facilitate the solution process, it is convenient to manipulate Eq. (3.108) to 
account for the coupled field properties previously discussed.  First, Eq. (3.108) is 
partitioned into the following two equations 

[ ]{ } [ ] [ ]( ){ } { } { }w s w wM W K K W K W Pφ φ + + + =   (3.109) 

and 

{ } { } { }1 1

wW K P K K Wφ φ φ φ φ
− −

     = −       (3.110) 

Equations (3.109) and (3.110) resemble the actuator and sensor equations found in the 
literature; however, since the electrical DOF { }Wφ  is a primary variable and is inherently 

coupled to the applied voltage and structural displacement { }W further simplification is 
required.  Given the inherent coupling Eq. (3.110) must be substituted into (3.109) 
resulting in 

[ ]{ } [ ] [ ]( ){ } { } { }1 1

w s w w w wM W K K K K K W P K K Pφ φ φ φ φ φ
− −

         + + − = −           (3.111) 

Now, Eq. (3.111) represents the true actuator equation since the secondary variables 
contain nodal forces and applied actuator voltages.  The solution of Eq. (3.111) yields 
structural deformation due to applied nodal forces and actuation voltages.  However, if 
the piezoceramic is used for structural sensing only, then the applied actuation voltage, 
the secondary variable, { }Pφ , is zero, leaving the primary nodal variable, { }Wφ , (the 
electrical nodal DOF) intact, resulting in the following coupled equations: 

[ ]{ } [ ] [ ]( ){ } { }1

w s w w wM W K K K K K W Pφ φ φ
−

     + + + =       (3.112) 

and 
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{ } { }1

wW K K Wφ φ φ
−

   = −      (3.113) 

The sensor equation shown in Eq. (3.113) provides the nodal voltage due to the structural 
response given the nodal structural loading of Eq.(3.112).  Therefore, the actuator and 
sensor equations maintain the fully coupled mixed field formulation since the structural 
properties of the piezoceramic are retained.  The global equations of motion of may be 
solved simultaneously by maintaining that the electrical nodal DOF represents a sensor 
and actuator signal.  The simultaneous sensing-actuation signal was exploited by and 
analog circuit developed by Dosch44 et al. and through adaptive digital signal processing 
by Cole and Clark.45 
 

Finite Element Validation 

The finite element natural frequencies for a completely clamped aluminum shell panel are 
compared to the Donnell-Mushtari46 shell equations.  The shell was 11 5/8” long with a 
radius of curvature R=96” and a curved length of 9 5/8” with a thickness of 0.032”.  
Mesh refinement was carried out to verify convergence to the analytical solution and are 
shown in Table 3.1.  The Donnell-Mushtari natural frequency for the first mode is 314.4 
Hz., and the finite element analysis converges to 316.5 Hz., which is in error of less than 
0.5 %. 

Table 3.1 Finite Element Convergence 

 

Finite Element Analysis 

Mesh Frequency of Mode 1 (Hz) 

10x10x2 328.9 

12x12x2 323.3 

14x14x2 319.9 

16x16x2 317.9 

18x18x2 316.5 

 

Numerical Examples of a Curved Panel With MFC 

The triangular shell element facilitates arbitrary placement of anisotropic MFC 
piezoceramic transducers on the structure.  For example, not only does the transducer 
location become important, the rotation angle of the MFC principal axes also becomes a 
factor.  The finite element model incorporates the MFC transducer concept utilizing 
rectangular PZT-5A fiber properties.  Figure 3.4 indicates the placement of the MFC 
transducer on a curved panel modeled with triangular shell elements. 
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Figure 3.4 MFC Finite Element Mesh 

 
 

To investigate the effect of the angle of orientation of the MFC actuator on structural 
vibration control, an aluminum 10”x14”x0.040” curved panel with radius of curvature 
R=96” and a 2”x4”x0.010” MFC actuator located at the panel center was modeled with 
144 triangular elements for several orientation angles and compared to a similar panel 
using a traditional 2”x4”x0.010” PZT-5A actuator.  The finite element mesh is shown in 
Figure 3.4.  The triangular elements are arranged with eight rectangles in the x direction 
and ten rectangles in the y as shown in Figure 3.5.  The finite element mesh is adaptively 
updated for each orientation angle α. 

 
Figure 3.5 MFC Curved Finite Element Mesh 

 
The electrical and mechanical material properties for the piezoceramic used are shown in 
Table 3.2.  The MFC properties were provided by NASA Langley Research Center.47  
Note that the PZT-5A uses d31 values in lieu of d11 as previously described.  The 
mechanical properties of the MFC transducer were determined using micromechanical 
analysis using representative volume fractions since it has not been extensively tested to 
determine all of the mechanical properties.  However, the piezoceramic strain coefficients 
were experimentally determined using actual MFC actuators.  
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Table 3.2 Piezoceramic Properties 

 
 MFC PZT-5A 

d11 (m/V) 450e-12 171e-12 
d12 (m/V) -210e-12 171e-12 
E1 (N/m2) 36.5e9 69e9 
E2(N/m2) 7.5e9 69e9 
ρh(Kg/m2) 1.937 1.96 

 
 

To evaluate the MFC actuator compared to traditional PZT-5A, an LQR feedback 
controller was developed using the finite element model as the dynamic plant and a single 
piezoceramic actuator to minimize the curved panel vibration.  The actuator was placed at 
the center of a cylindrical shell structure, as shown in Figure 3.4.  The open and closed 
loop transfer function of velocity per force at a point located at the center of the panel 
were determined for orientation angles of 5, 15, 25, 35, 45, 55, 65, and 75 degrees for a 
traditional PZT and a MFC actuator.  Even though a voltage is applied to the actuator, a 
force is applied to the structure as shown in the right hand side of the coupled finite 
element actuator equation in Eq. (3.111).  Figures 3.6-3.13 provide the velocity per force 
transfer function for each angle comparing the MFC and traditional actuators. 
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Figure 3.6 MFC and PZT for 5o  

The MFC actuator provides better control authority for both 5 and 15 degrees, as shown 
in Figures 3.6 and 3.7.  However, the structural dynamics of the shell are influenced due 
to the inherent anisotropic material properties of the MFC actuator. 
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Figure 3.7 MFC and PZT for 15o 

 
Similarly, MFC performs better than the traditional PZT for 25 and 35 degree rotation 
angle, as shown in Figures 3.8 and 3.9.  Both the PZT and MFC actuator were 0.010” 
thick.   
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Figure 3.8 MFC and PZT for 25o  
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Figure 3.9 MFC and PZT for 35 o 

 
The structural dynamics of the MFC curved panel were significantly different than that of 
PZT curved panel for the 45 degree angle.  However, the PZT actuator performs better 
than the MFC, especially for higher modes, as shown in Figure 3.10. 
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Figure 3.10 MFC and PZT for 45o 

 
The MFC actuator performs better than the PZT for 55, 65, and 75 degrees, as shown in 
Figures 3.11-3.13.  Since the dynamics differ significantly in some cases, this evaluation 
may not provide a fair evaluation.  However, the comparison does provide significant 
insight into the benefits of using MFC actuators for structural vibration control. 
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Figure 3.11 MFC and PZT for 55o 
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Figure 3.12 MFC and PZT for 65o 
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Figure 3.13 MFC and PZT for 75o 

 
The analytical results presented for MFC actuators suggest that enhanced control 
performance is achievable over traditional PZT actuators.  However, the results also 
indicate that the structural dynamics may be modified significantly by including the 
anisotropic actuator material properties.  Therefore, to obtain optimum performance, 
increased control authority, placement, and orientation angle must be considered when 
designing smart structures.  By introducing multiple actuators with different orientation 
angles, the performance may be greatly enhanced.  Furthermore, it is recommended that 
experimental mechanical properties be obtained for representative MFC transducers to 
ensure accurate modeling. 
In any event, the transfer functions shown may not provide sufficient information to 
evaluate MFC actuators regarding structural acoustic control.  To this end, additional 
analytical simulation results are provided in APPENDIX A for curved and flat panel.  
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CHAPTER IV 

STRUCTURAL ACOUSTICS 

Introduction 

The concept of active structural acoustic control (ASAC) emphasizes control of selected 
structural surface vibrations that contribute directly to the far field radiated acoustic 
energy.  In contrast, active vibration control (AVC) solely addresses reduction of surface 
vibration regardless of acoustic implications.  Hence, identifying structural vibration 
characteristics that contribute directly to the acoustic radiation becomes prudent.   
An arbitrarily vibrating structure consists of an infinite sum of the natural vibration mode 
shapes corresponding natural frequencies.  Upon examination, the mode shapes exhibit 
characteristics that relate their importance to acoustic radiation efficiency.  Intuitively, 
this concept can be visualized by considering mode shapes of a baffled plate structure.  
Boundary conditions only affect the absolute natural frequencies and specific mode 
shapes but not the conceptual argument. 
Suffice it to say that, relative to the acoustic wavelength, the geometry yields an infinite 
baffled planar structure.  The fundamental mode shape yields a domed shape, whereas the 
second mode approximately represents a sine wave along the major axis and a sine along 
the minor axis.  If we visualize the behavior of a fluidic medium immediately in front of 
the vibrating surface, for the two distinct modes, radiation efficiency becomes evident.  
The fluid reacts quite differently to each mode shape.  For example, in the case of the 
second mode, it is apparent that the fluid simply sloshes back and forth between each 
oscillating trough of the sine shape.  The fundamental mode, however, displaces the fluid 
outward virtually in-phase across the entire surface of the plate.  Hence, fluid particles 
immediately in front of the plate will be transported farther away from the plate given 
sufficient time.  The net fluid motion of the second mode remains transverse and never 
propagates far from the planar surface regardless of the amount of time.  Thus, the 
fundamental mode efficiently transfers the surface vibration throughout the surrounding 
medium, while the second mode is a very inefficient mechanism to facilitate propagation 
of the surface vibration. 
This example demonstrates the concept of radiation efficiency for single mode shapes; 
however, in general, structural modes do not radiate independently.  In fact, the strong 
dependence on inter-modal coupling between structural modes affects the radiated power 
such that reducing dominant structural vibration modes may have little effect on the 
radiated sound power.  In fact, by the reducing dominant structural vibration modes the 
radiated sound power may actually increase. 
Pursuant to identifying structural acoustic radiation characteristics, researchers developed 
the concept of surface velocity filters, or acoustic radiation filters.  Acoustic radiation 
filters describe radiated power in terms of discrete surface velocities and the surface 
radiation resistance as shown by Cunefare.48  However, this concept can be described as a 
modal approach for characterizing acoustic radiation from vibrating structures.  The term 
“modal” here refers to acoustic radiation modes and are independent of structural 
vibration modes.  Furthermore, radiation modes should not be confused with acoustic 
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cavity modes.  Borgiotti and Jones16 first introduced a modal representation using 
Singular Value Decomposition (SVD) to represent radiation efficiencies and singular 
velocity patterns.  Since the introduction of the modal description, many researchers have 
investigated various aspects of radiation modes.  For instance, Baumann, Saunders, and 
Robertshaw23 implemented feedback control by using radiation filters in frequency 
weighted cost functions to minimize the most efficient radiating modes.  Elliot and 
Johnson49 implemented feedforward control of beams and plates using radiation filters.  
Gibbs24 et al. developed a Radiation Modal Expansion technique, exploiting the acoustic 
radiation bounding properties, thereby reducing computational effort of radiation filters 
for real time digital signal processing applications. 
In essence, the radiation filter concept is an orthogonal vector decomposition performed 
on a discretized radiation operator, dependant solely on the frequency range of interest 
and structural geometry.  The acoustic radiation of a structure can be described by a 
functional, or radiation operator, which can be derived to incorporate the desired acoustic 
radiation physics.  Radiation modes produced by orthogonal decomposition can best be 
described as a radiation space transformation, and the modes do not directly correspond 
to the more common structural vibration modes, nor should they be confused with 
traditional acoustic modes for enclosed volumes. 
 

Acoustic Radiation Filters 

The acoustic radiation filter concept can be understood by considering basic structural 
acoustic concepts.  The Kirchhoff-Helmholtz integral equation describes sound radiation 
due to vibrating bodies.  Pierce50 derives this equation, and for simple harmonic motion, 
the acoustic pressure is as follows: 

( ) ( )1( )
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kR kR
t t

s o n s
S

e ep r e e p r v r dS
n R R

ω ω ωρ
π
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∫

j jj jj jj j
j jj jj jj j jjjj  (4.1) 

where ( )p r  is the acoustic pressure at the vector position r , ( )sp r  is the pressure near 

the surface at vector position sr , sR r r= − , the normal surface velocity is ( )n sv r , and 
the fluid density is oρ .  Clearly, the acoustic pressure is due to both the pressure and 
velocity of the vibrating surface. 
For typical vibrating structures, the solution of Eq. (4.1) is difficult and is usually 
approached using numerical methods.  However, by considering a vibrating planar 
surface bounded by an infinite half-space, a more tractable solution exists, as shown by 
Fahy51.  The acoustic pressure from a vibrating planar surface within an infinite half-
space is described by 
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Thus, the vibrating surface can be considered as a differential area representing a point 
source of strength 2 ndSν .  Expressing the planar vibration response in modal coordinates, 
Eq. (4.2) becomes 
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where nv  and ( ),n x yϕ  are the velocity and mode shape of the nth mode.  By introducing 
the definition of acoustic radiation efficiency, further insight may be gained and applied 
to the development of the acoustic radiation filters. 
The ratio of the average acoustic power radiated due to surface vibration to that of an 
equivalent piston defines radiation efficiency.  The piston infers that the radiating area is 
small relative to the acoustic wavelength and that the velocity is uniform across its 
surface.  Hence, radiation efficiency is expressed as 

2
ˆ

o n

P
c v

σ
ρ

=
S

 (4.4) 

where 2
nv  is the averaged mean-square normal velocity, P  is the time averaged power, 

and S represents surface area, c velocity of sound in the medium. 
Next, recall the acoustic intensity is defined as the product of pressure and velocity hence 
the time averaged intensity can be expressed as 
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where ( ), ,r θ φ  represents the spherical coordinates of a field point within an infinite half-
space.  In the far field, the surface integral of the intensity represents the time averaged 
radiated power and is expressed as 
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Since the pressure and velocity of a plane wave are related through the characteristic 

impedance as ( )
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= , the intensity in Eq. (4.5) can be expressed in terms of 

the pressure only.  The average power in Eq. (4.6) now becomes 
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The modal formulation for the pressure shown in Eq. (4.3) can be substituted into the 
radiated power expression of Eq. (4.7).  Utilizing the far field assumption 

sin cos sin cosR r x yθ φ θ φ≈ − − , Eq. (4.3) may be simplified as 
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Furthermore, the squared pressure in terms of the velocity and structural mode shapes can 
be expressed as 

( ) ( ) ( )
2 2
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where ( ) ( ) sin cos sin cos

0 0

, , ,
a b

k x k yH v x y e dxdyθ φ θ φθ φ ω ϕ += ∫ ∫ j jj jj jj j .  Substituting Eq. (4.9) into Eq. 

(4.7) produces an expression for the far field radiated power of a vibrating structure as a 
function its surface velocity.  Thus, the radiated power is expressed as 
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Comparing Eqs. (4.4) and (4.10), we note that the frequency dependant radiation matrix 
[ ]M  is proportional to the radiation efficiency and describes the structural acoustic 
interaction of the structural modes.52  Specifically, the diagonal terms represent the self-
radiation efficiencies and the off diagonal terms indicate mutual radiation efficiencies.  
Hence, the [ ]M  matrix is termed the coupling matrix since it provides information on the 
structural modal coupling to the acoustic radiation modes.  An important result of the 
above derivation is that the far field radiated acoustic power can be determined from the 
modal velocities and radiation matrix [ ]M , thus eliminating the field pressure from the 

power expression.  Furthermore, the radiation matrix [ ]M , or acoustic impedance is 
positive definite and Hermitian.  In general, this matrix operator can be determined using 
the Helmholtz integral for three-dimensional bodies, or by Rayleigh’s integral for planar 
baffled structures. 
 

Planar Radiation Resistance 

Elliott and Johnson49 derived the radiation resistance matrix of a planar baffled structure 
comprised of elemental radiators.  It is assumed that the acoustic pressure and normal 
surface velocity are constant over each elemental radiator.  This requires that the size of 
the elemental radiator be much less than the acoustic wavelength.  Furthermore, it is 
assumed that the structure is radiating into free-space.  The acoustic transfer impedance 
from an infinite baffled radiator is given by50 
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−= =z jjjjjjjj S  (4.12) 



 

 

 

43

where k cω=  is the wave number and S  the elemental area.  The element of the 
corresponding radiation resistance matrix [ ]M  in Eq. (4.11), is determined by applying 
Eulers identity to Eq. (4.12) yielding 

( )
2 2 2 sinRe , sin

2 4 4
o o krx y kr
r c kr

ωρ ω ρ
π π
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z S SS  (4.13) 

For an array of n radiator elements the radiation matrix becomes 
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where ijr  is the distance between the ith and jth radiator elements.  Notice that the radiation 
resistance matrix is dependant on frequency and geometry only.  The radiation resistance 
matrix of Eq. (4.14) is valid for flat planar structures of arbitrary shape.  
 

Curved Panel Radiation Operator 

So far, only planar baffled structures were considered for acoustic radiation filter 
development using the Rayleigh integral; however, since a cylindrical shell is of 
particular interest in this research, the Helmholtz integral equation will be investigated.  
To develop radiation filters for shell configurations, the surface radiation impedance 
formulation is developed for a vibrating structure of arbitrary shape radiating into free-
space.  The formulation utilizes a discretization of Kirchhoff-Helmholtz integral as 
developed by Koopman and Benner53 to determine radiated sound power of machines. 
Consider an arbitrary radiating closed surface as shown in Figure 4.1 the pressure at point 
R  can be expressed with the following Kirchoff-Helmholtz integral equation54 
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where or R R= −  is the distance between the two points on the surface S . 
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Figure 4.1 Vibrating Surface Geometry 

 
If the surface S  is approximated by n planar elements then the three-dimensional 
arbitrary surface integration reduces to integration over a two-dimensional element 
surface.  The requisite number of elements may be determined such that the pressure and 
velocity be uniform over each element.  For convenience, the Kirchoff-Helmholtz 
integral in Eq. (4.15) may be expressed in non-dimensional form as 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 cos
2 2
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L L
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where cv w w=  is a dimensionless surface velocity normalized to an arbitrary constant 

cw , or R R= −  is the magnitude of the distance between two radiating elements on the 

structure, 2a S= L  is the dimensionless element area, L  represents an element length, 
and o cp p cwρ=  is the dimensionless acoustic pressure.  Assuming a finite element 
discretization is applied to a radiating surface S, resulting in n planar elements, Eq. (4.16) 
can be expressed in indicial form as 

( ) ( ) ( )i j ij j ijp R p R D u R M= +  (4.17) 

The dipole coefficient, or mutual pressure interaction between the ith and jth elements is 
given as 
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The relationship between the normal velocity of the jth element and pressure on the ith 
element is coupled by a monopole coefficient defined as 

( )2
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k eM da
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 (4.19) 

where rij is the magnitude of the vector from the reference point of element i to element j, 
ijγ  is the angle between the outward normal of element j and rij.  Note that for a planar 
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radiating structure the dipole coefficient 0ijD =  since 2ijγ π= .  Furthermore, Eq. (4.19) 

becomes 
2

ijkr
ij

ij

SM e
cr
ω

π
−−= jjjjjjjj  which upon substitution into Eq. (4.17) yields 

2
ijkri o

j ij

p S e
v r

ωρ
π

−= jjjjjjjj  (4.20) 

Thus, Eq. (4.20) is identically equal to the radiation impedance of the planar radiator 
defined in Eq. (4.12).  The surface pressure may be determined by the solution of the 
following system of nxn linear inhomogeneous equations 

[ ] [ ]( ){ } [ ]{ }I D p M v− =  (4.21) 

In Eq. (4.21), the terms in the dipole matrix will reduce to zero if the structure is planar.  
However, for a non-planar surface Eq. (4.21) may be written as 

{ } [ ] [ ]{ }1p A M v−=  (4.22) 

where [ ] [ ] [ ]( )A I D= − .  Thus, the matrix product of [ ] [ ]1A M−  represents the Helmholtz 
surface radiation impedance.  In order to determine the radiation resistance, or the real 
part of the impedance, the monopole and dipole coefficients may be simplified as 
follows.  The monopole coefficient shown in Eq. (4.19) may be expanded by using 
Euler’s formula yielding 
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Similarly, the dipole coefficient shown in Eq.(4.18) may be expanded yielding 
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In matrix equation notation, the radiation matrix can be noted as 

[ ] [ ] [ ]( ) [ ]1
R I D M

−
= −  (4.25) 

where the dipole and monopole matrices are defined as 
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Thus, the radiated power of a curved surface can be determined from the surface 
velocities by substituting the radiation resistance matrix of Eq. (4.25) into Eq. (4.10).  A 
curved panel meshed with triangular finite elements representing discrete radiating piston 
at the element centroids is shown in Figure 4.2. 
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Figure 4.2 Curved Panel Finite Element Geometry 

 
The panel radiates into an infinite free half-space from the convex side, and it is 
considered to be infinitely baffled.  Since the most significant radiation modes are of 
concern for ASAC, edge constraints at the boundaries have little effect55.  The radiation 
efficiencies demonstrate a linear relationship for long wavelengths ( )1k >L  when 
plotted on a logarithmic scale with dependence on wavenumber to even integer powers.56 
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The approximate dominant radiation efficiencies obtained using radiation modal 
expansion24 are shown in Figure 4.3 for a 10”x14” rectangular curved panel with radius 
of curvature R=40” along the major axis.  Note that the singular points shown in Figure 
4.3 arise from Eq. (4.26).  When i=j, then cos 0iiγ =  and Dij=0, while the monopole 
coefficients become 

 

2

2  
2

0  
ij

a for i jM c
for i j

ω
π


== 

 ≠

L
 (4.28) 

However, when the source and receiving radiators are near each other the dipole 
coefficients approach zero, resulting in an ill-conditioned matrix inversion while the 
monopole coefficient matrix remains valid. 
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Figure 4.3 Curved Panel Using Triangular Acoustic Radiators 

 
The approximate dominate radiation efficiencies for a flat panel with the same 
dimensions (R=∞) are shown in Figure 4.4.  The grouping characteristics of the 
dominant radiation modes follow the same trend for both the flat and curved panels, as 
expected since both represent the approximate radiation in to an infinite half-space. 
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Figure 4.4 Flat Panel Using Triangular Acoustic Radiators 

 
Furthermore, to validate the discrete triangular acoustic radiator approach the estimated 
radiation efficiencies were calculated using rectangular radiators following Gibbs.24  
Figure 4.5 indicates excellent agreement between the two methods. 
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Figure 4.5 Flat panel Using Rectangular Acoustic Radiators 

 
If the dominant radiation efficiencies are plotted as magnitude versus frequency then the 
frequency dependant amplitude becomes apparent.  The radiation efficiency of the 
dominant radiation modes of the curved panel is shown in Figure 4.6.  For comparison 
the dominant radiation efficiencies of a flat panel are shown in Figure 4.7.  The curved 
panel exhibits lower radiation efficiencies for the radiation modes above 150 Hz., as 
expected, given increased panel stiffness due to the curvature. 
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Figure 4.6 Curved Panel With Triangular Acoustic Radiators 
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Figure 4.7 Flat Panel With Triangular Acoustic Radiators 
 

The radiation filters developed will be implemented in the state-space representation and 
included in the analytical model to compute the structurally radiated sound power.  They 
are also implemented within the real time DSP control algorithm to compute the 
structurally radiated sound power using discrete panel acceleration measurements.  By 
implementing radiation filters a causal system exist since the acoustic radiated power is 
determined from structural vibration measurements. 



 

 

 

50

CHAPTER V 

FEEDBACK CONTROL AND PIEZOCERAMIC 

ACTUATOR PLACEMENT 

Introduction 

Feedback control uses dynamic signal information obtained from sensors located on the 
structure for utilization by the controller to generate a signal that is applied to the 
structure through actuators.  Controller design is based on minimizing a specified 
performance criterion, or cost function.  The cost functional may include a control effort 
penalty, structural vibration state, an acoustic sound field condition, or as in this research 
structurally radiated noise levels.  The feedback control method implemented in this 
research is the linear quadratic regulator (LQR) augmented to include acoustic radiation 
filters, thus yielding a cost function that minimizes structurally radiated power. 
 

Finite Element State-Space Representation 

The dynamic plant model used to represent the structure is determined from the finite 
element model.  Thus, the finite element actuator equation shown in Eq. (3.111) can be 
written in modal coordinates as 

22 rr
r r r r r

r r

ffq q q
m m

φζ ω ω+ + = −  (5.1) 

where the modal coordinate transformation is defined as { } [ ]{ }W q= Φ , and , ,r r rq ω ζ  
are the rth modal coordinate, natural frequency, and damping ratio, respectively.  The 
modal mass, modal stiffness, and modal forces are obtained from 

{ } [ ] [ ]( ){ } ( )
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T
w rr
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φ φ φ
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−

−

Φ Φ =

     = −      

Φ =

   Φ =   

 (5.2) 

Equation (3.111) does not include a damping matrix.  However, the damping values 
shown in Eq. (5.1) were determined experimentally.10 
By defining a state vector as { } Tx q q=    , the modal equations can be cast in state-
space form as 
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{ } [ ]{ } [ ]{ }
{ } [ ]{ } [ ]{ }

x A x B u

y C x D u

= +

= +
 (5.3) 

The plant dynamic matrix [ ]A  is defined as 

[ ] [ ] [ ] [ ] [ ]1 1

0 I

m k m c− −

 
=  

− −  
A  (5.4) 

The feedback matrix [ ]B  is defined as 

[ ] [ ] [ ] [ ] [ ] 11 1

0 0
T T

wm m K Kφ φ
−− −

 
=  

   Φ Φ     
B  (5.5) 

The output equation can be formulated by selecting an appropriate output matrix [ ]C .   

Radiation Filter State-Space Representation 

The frequency response information of the radiation filters can be exploited by curve 
fitting each radiation transfer function and including this information in the state-space 
model.  The radiation-coupling matrix defined in Eqs. (4.14) and (4.25) provide 
amplitude-weighting coefficients proportional to the radiated power as a function of 
frequency.  Using the radiation modal expansion technique24, the approximate radiated 
power coefficients can be determined from  

( ){ } ( ){ } ( ) ( ){ }2 H
i ij jj

u R uψ ω ω ω ω =  jjjj  (5.6) 

where iω  represents the single prescribed modal expansion frequency used to compute 
the radiation mode shapes.  The approximate radiation modal expansion coefficients 

( ){ }2ψ ω are curve fitted as frequency response functions to represent the input-output 
relationship of an analog filter for each radiating mode.  The constructed radiation filter 
includes the first three acoustic radiation modes.  However, an eighth order polynomial 
was used to fit the six dominant acoustic radiation modes to validate the curve fit 
accuracy and are shown in Figure 5.1. 
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Figure 5.1 Approximate and Exact Radiation Efficiency 

 
The polynomial coefficients are transformed into the filter zeros and poles and 
subsequently transformed into a state-space filter model for each desired acoustic 
radiation mode.  Each radiation filter can be expressed in state-space form as 

{ } { } { }
{ } { } { }

f f

f f

r A r B v

z C r D v

   = +   
   = +   

 (5.7) 

where { }r represents the radiation state vector and { }z corresponds to the acoustic 

radiated power due to the elemental radiator velocity{ }v .  Note that the filter input is the 
structural velocity and not the disturbance applied directly to the structure.  The singular 
velocity vectors, or radiation mode shapes, are contained in the fD    matrix.  By 
incorporating radiation filters, an inherent state weighting is included for both the 
radiation and modal velocity states.  Inclusion of the radiation filter is achieved by 
augmenting the structural state-space model with the radiation filter state-space model.  
 

Structural Acoustic State-Space Representation 

The state-space formulation easily permits construction of complex system models by 
specifying combinations of inputs, outputs, and state variables.  Since the radiation filters 
derive their input from the structural response, an augmented state-space model 
represents the overall structural acoustic system.  The augmented state-space system with 
acoustic radiated power as the output can be represented as 

{ } { }
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0
0 0

d

f f

f f

Ax x B B
u w

B Ar r

x
z D C

r

        
= + +        

        
 

 =   
 

 (5.8) 
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where { }w  represents an acoustic disturbance, and the augmented state vector 
T

x r          consists of the modal states { } { }Tx q q=  and the radiation states { }r .  
Recall that the radiation filter formulation assumes a constant normal velocity for each 
elemental radiator.  Therefore, the velocity vector { }v  in Eq. (5.7) is in physical 
coordinates and not in modal coordinates.  Since the finite element formulation uses a 4-
node rectangular plate element, the modal coordinate transformation must be interpolated 
to obtain corresponding values at the center of each element.  The fD    and fB    
matrices are determined from 

ˆ

ˆ
f f

f f

D D

B B

    = Φ     
    = Φ     

  (5.9) 

where ˆ Φ   is the interpolated mode shapes at the center of each element.  The radiated 

acoustic power{ }z , shown in Eq.(5.8), includes contributions from both the modal 
velocity states and the radiation filter states.  
To minimize the structural acoustic radiated power the following output-based functional 
was selected 

{ } { } { } [ ]{ }( )
0

T T
radJ z z u R u dt

∞

= +∫  (5.10) 

where [ ]R  is a control effort penalty matrix and the acoustic radiated power incorporates 
the inherent frequency weighting of the radiation filters.  Thus, minimizing the cost 
function achieves a trade off between the radiated power and control effort.  If [ ]R  
approaches zero then the cost function approaches the integral squared radiated power. 
The standard linear quadratic state-based cost function includes a state weighting matrix 
[ ]Q  and is indicated as 

 { } [ ]{ } { } [ ]{ }( )
0

T TJ R dt
∞

= +∫ X X U UQ  (5.11) 

By expanding the first term in Eq.(5.10), it can be demonstrated that the radiation filters 
inherently define a state-weighting matrix as 

 

{ } { } { }
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f fT
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f fT
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D C
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   
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  
 

 ≡    
 

Q

 (5.12) 

Thus, the state weighting is equivalent to scaling both the modal velocity and the 
radiation state through the individual plant matrices fC    and fD   . 
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The state-space system defined in Eq. (5.8) is in the form of a standard linear quadratic 
regulator (LQR).  The optimal control law is a linear time invariant state-feedback given 
as 

{ } [ ] x
u K

r
 = −  
 

 (5.13) 

The feedback gain matrix [ ]K  is determined by solving the algebraic Riccati equation.  
However, since MATLAB® is used, the optimal gain matrix is determined using the 
LQRY command since it identically solves Eq. (5.10).  Thus, a complete system utilizing 
the finite element model and acoustic radiation filters results in minimizing the structural 
acoustic radiation. 
 

Genetic Algorithm Optimization 

Pursuant to the objective of selecting optimum placement of two piezoceramic actuators 
to minimize structural radiated noise, an analytical model consisting of a coupled 
dynamic finite element model with, acoustic radiation filters, and LQR feedback control, 
is constructed and embedded within a genetic algorithm.  Since the experiments 
conducted are performed on flat rectangular panels, the finite element formulation used a 
modified high precision rectangular plate element.10  The original primary objective of 
this research focused on ASAC of curved panels.  However, the funding agent, NASA 
Langley Research Center, supporting this research identified a need to address 
piezoceramic actuator placement on flat panels for ASAC.   
Two traditional PZT-5A piezoceramic actuators of predetermined size are modeled with 
multiple finite elements and constrained from overlapping.  If each piezoceramic actuator 
is placed on opposite sides of the panel, the overlapping constraint can be relaxed.  
However, this arrangement is not consistent with typical aerospace structures. 
Each piezoceramic actuator location is indexed with integer values corresponding to the 
finite element mesh.  A modified genetic algorithm with stochastic coding was selected 
since integer coding corresponds to the discrete actuator locations.  The FT3PAK® and 
FlexGA® genetic algorithm by Flexible Intelligence Group57 is used and operates in the 
MATLAB® environment.  The genetic algorithm selects potential actuator locations that 
are subsequently used as input variables by the coupled finite element model to determine 
the closed loop acoustic radiation attenuation.  The genetic algorithm can be configured 
to either minimize or maximize the performance index.  Since the acoustic attenuation is 
defined as the actuator placement performance index, a maximization procedure is 
selected.  Note that the genetic algorithm performance index is not the same cost function 
identified for determining the optimal feedback gains.  For the genetic algorithm search, 
the performance index is identified as the overall structurally radiated sound power, 
which is to be reduced to a maximum extent. 
The genetic algorithm search invokes an iterative process involving several steps.  First, 
the finite element model is solved to provide a coupled dynamic plant model for the 
current actuator locations.  Next, the optimal feedback gain is determined based on the 
acoustic radiation filters.  Finally, the dynamic plant model is subjected to a uniform 
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random acoustic plane wave disturbance source, indicated by { }w in Eq. (5.8), and the 
structurally radiated sound power is calculated for both open and closed loop conditions.   
The structurally radiated power is determined by computing the power spectrum density 
for the system output indicated in Eq. (5.8).  For the open loop condition the control input 
{ }u vector in Eq. (5.8) is identically zero.  The reduction in structurally radiated noise is 
determined by computing the difference of the real part of the open and closed loop 
power spectra.  The iterative genetic algorithm process continues until a maximum 
acoustic radiation attenuation is achieved indicating the best actuator location. 
To maximize computational efficiency several genetic algorithm models are constructed 
to determine actuator placement.  These results are analyzed and then further studied 
using a refined finite element mesh without the genetic algorithm to determine the 
optimum actuator locations.  Initially, a uniform 10x14 finite element mesh is used with 
the genetic algorithm to select actuator placement.  Various actuator sizes considered 
included 1”x2”, 1”x3”, 2”x2”, and 2”x3”.  Since 1”x3” piezoceramics were available for 
experimental testing, subsequent analysis was limited to this size. 
A typical genetic algorithm graphical user display is shown in Figure 5.2 and portrays the 
fitness value, or performance index, versus number of functions evaluated along with the 
best, worst, and average fitness value versus the number of generations.  Each generation 
provides the numerical location index for each actuator location. 
The optimum actuator locations for 1”x2”, 2”x2”, 2”x3”, and 1”x3” as determined from 
the genetic algorithm are shown in Figure 5.3 (a)-(d), respectively.  The finite element 
mesh used for these iterations is 10x14, which yields an element resolution of 1”x1”.  
The 10x14 mesh provides reasonable computational efficiency; however, it does not 
facilitate symmetric actuator placement.   



 

 

 

56

5 10 15 20 25 30 35 40 45 50
10

10.2

10.4

10.6
black = average,         = best,             = worst

Number of Function Evaluations

20 40 60 80 100

20
40
60
80

100
120

x=P1

y=P2

0 2 4 6
0

5

10

15

# of Gens  
 

Figure 5.2 Genetic Algorithm Output 
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Figure 5.3 GA Actuator Placement 

 
A non-uniform meshing scheme would over come this obstacle; however, it requires an 
adaptive meshing routine. The adaptive meshing scheme is not included since it 
introduces another level of optimization.  Even though adaptive mesh refinement 
techniques have been successfully applied to stress recovery problems, it would be 
computationally extensive for this application.  In lieu of adaptive mesh refinement, the 
initial genetic algorithm results are further evaluated using a 20x28 finite element mesh 
yielding an element resolution of ½”x½”.  Hence, each 1”x3” piezoceramic actuator is 
modeled with a 2x6 mesh.  The optimum actuator locations depicted in Figure 5.3(d) 
were enhanced using the refined mesh, resulting in the locations shown in Figure 5.4. 
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Figure 5.4  Refined Optimum Actuator Locations 
 

The actuator locations shown in Figure 5.4 are used to design the panel used in 
experiments to validate the analytical design method.  Two other panels are also 
manufactured with different actuator locations to establish comparable performance data.  
The non-optimum panels were also modeled using the finite element program to provide 
corresponding analysis for comparison.  Details describing the non-optimum test panels 
are presented in Chapter VI. 
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CHAPTER VI 

EXPERIMENTAL AND NUMERICAL RESULTS 

Introduction   

Several flat panels with various piezoceramic actuators locations are experimentally 
tested to ensure the accuracy of the analytical method presented.  The experimental 
results suggested that the analytical model be improved to include a transmission path 
representing the disturbance to radiated sound power, which is consistent with the 
experimental data.  A brief description of acoustic measurements is included, followed by 
details of the data acquisition system and control method implemented is provided before 
discussing the experimental results.  The analytical data presented include results from 
both the initial analysis and the improved model.  The accuracy of the improved model is 
established since the analytical data agrees well with the experimental data.  Evaluating 
the sound transmission loss characteristics of a panel using active structural acoustic 
control determines the effectiveness of the piezoceramic actuator locations. 
A sound transmission loss (STL) suite facilitated the experiments by providing the 
opportunity to evaluate various panels subjected to an acoustic disturbance.  The STL 
suite provides a window between two adjacent rooms, one anechocic and the other 
reverberant.  The window between the adjacent rooms facilitates the test panel and 
provides excessive sound transmission loss, thereby providing a convenient means of 
evaluating the sound transmission of the test specimen.  The anechoic chamber provides a 
non-reverberant environment that supports acoustical measurements of the radiated sound 
through the test specimen.  The source room, or reverberant chamber, contains a 
loudspeaker sound source that provides structural acoustic disturbance.  To characterize 
the STL suite, a baseline panel without piezoceramic actuators is inserted between the 
two rooms and the structurally radiated noise is measured due to a broadband random 
excitation.  The structurally radiated sound pressure is measured in the receiving room 
while the loudspeaker provides an acoustic disturbance in the source room.  The 
receiving room microphones and source room loudspeaker configuration is shown in 
Figure 6.1. 
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Figure 6.1 STL Instrumentation Layout 

 
A traditional STL suite provides a highly reverberant source room devoid of standing 
waves.  Such a source room provides a statistically uniform sound field impinging upon 
the test specimen characterized by the sound power of a known calibrated source.  On the 
other hand, the receiving room provides a free-field environment suitable for measuring 
sound pressure levels using conventional microphones to support sound power 
calculations.  By measuring the free field acoustic pressure over a hemispherical surface, 
it is possible to measure the radiated sound power.  The estimated sound power may be 
determined by 

10 10 1010 20 10m

o o o

pP Slog log log
P p S

     
= +     

     
 (6.1) 

where P is the estimated sound power, 1210oP W−= , pm is the mean measured sound 
pressure, 20op Paµ= , S is the hemisphere surface area, and So is 1m2.  Figure 6.2 shows 
a typical sound power spectrum of the sound source measured 20 inches away from the 
center of a baseline test panel and the corresponding sound power in the receiving room. 
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Figure 6.2 Source and Receiving Room Sound Power 

 
The sound transmission loss of the specimen can be calculated simply by subtracting the 
source and measured sound power.  The baseline test panel is identical to subsequent 
panels tested, but is not fitted with piezoceramic actuators. 
 

Data Acquisition and Control 

To validate the accuracy of the analytical model, several real time control experiments 
tests are conducted.  Real time control of the radiated structure-borne noise was achieved 
by utilizing a control system implemented on a Texas Instruments TMS320C40 digital 
signal processor (DSP).  An Intel Pentium personal computer hosted the DSP and 
MATLAB was used to design a state-space controller and subsequently download this 
controller to the DSP board.  The DSP program codes and supporting MATLAB files 
were developed by NASA Langley Research Center resulting in a real-time turnkey 
active structural acoustic control system.58  Originally, NASA implemented a general 
predictive control algorithm59 (GPC); however, LQR control was utilized for these 
experiments to be consistent with the analytical results. 
Following the analytical format, radiation filters were included to calculate the structural 
radiated noise.  Hence, the traditional sound power measurement technique described 
above was not employed.  Instead, the structural radiated noise was calculated using the 
measured panel surface accelerations and corresponding radiation filters based on the 
radiation modal expansion technique.  The radiation filter concept ensures a causal 
system since it relies on the structural surface velocity to calculate the far field radiated 
sound power.  Since microphones must be located in the far field, an inherent propagation 
delay exists between the surface velocity and the measured sound pressure.  Therefore, 
causality is not guaranteed.   
The plant dynamic characteristics were determined by system identification using an 
observer/Kalman filter identification algorithm.  The OKID60 system identification 



 

 

 

62

algorithm performs modal parameter identification by applying a disturbance to the 
piezoceramic actuators and measuring the response of panel vibrations using 
accelerometers.  The accelerometers provide sensor information, used to calculate the 
radiated sound power, during the closed loop experiments.  Two actuators and fifteen 
accelerometers were used in each of the panels tested.  The locations of the actuators 
varied for each test; however, the locations of the accelerometers remained fixed.  The 
fifteen-accelerometer locations are shown in Figure 6.3.  Each accelerometer represents a 
discrete acoustic radiator as previously described in the Radiation Filter section. 
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Figure 6.3 Accelerometer Locations 

 

A state-space LQR controller was designed using the experimental modal parameters 
determined from the system identification data using MATLAB.  The controller 
includes the acoustic radiation filters of the first three dominant acoustic radiation modes 
and subsequently downloaded to the DSP board to support real-time control.  The control 
effort penalty, determined through trial and error, remained constant for each panel 
tested.  Prescribed experimental parameters include a sampling frequency of 1.5 kHz, 
bandwidth of 500 Hz, three acoustic radiation modes, and 35,000 data samples.  For each 
experiment, the panel is exposed to broadband random noise with a flat response to 800 
Hz.  
 

Experimental Results 

Experiments were conducted for three different panels to validate the analytical 
prediction of the optimum actuator placement to achieve the greatest reduction in radiated 
structure-borne noise.  Each panel has two piezoceramic actuators bonded to the same 
side of the panel.  This configuration obviously prohibits overlapping piezoceramic 
actuators; however, it represents realistic aerospace application by restricting the 
actuators to lie within the fuselage interior.  The panels are 6061-T6 aluminum and are 
clamped along all edges.  The overall panel dimensions are 22”x20”x0.040”; however, 
the clamping fixture provides a 14”x10” window exposing the test panel area.  The 
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clamping fixture was constructed of two 6061-T6 aluminum plates ½” thick with 52 bolts 
around the inner perimeter and 8 bolts around the outer perimeter.  The outer bolts were 
used to attach the fixture to the STL window.  The piezoceramic actuators are PZT-5A61 
with dimensions 1”x3”x0.01”.  The three panels tested, designated A, B, and C, are 
shown in Figures 6.4-6.6, respectively. 
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Figure 6.4 Panel A Actuator Placement 
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Figure 6.5 Panel B Actuator Placement 
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Figure 6.6 Panel C Actuator Placement 

 
To evaluate the performance of the piezoceramic actuator locations selected, the open 
and closed loop structure-borne acoustic radiation was determined experimentally for 
each panel subjected to a random acoustical disturbance using the loudspeaker shown in 
Figure 6.1.  The location of the piezoceramic actuator on the panel determines the 
effective structural modal interaction of each actuator.  Thus, optimum actuator locations 
have strong modal coupling with the dominant acoustic radiation modes.  For a 
rectangular panel, the structural modes (1,1), (3,1), (3,2), (1,3), and (2,3), where the (i,j) 
indices indicate the mode shape along the major and minor panel dimensions 
respectively, are dominant acoustic radiators.  As outlined in the section on radiation 
filters, structural vibration mode shapes that do not contribute to the acoustic radiation 
modes are not targeted for effective control.  The experiments indicate that panel C 
provides the best radiated noise reduction, panel B is next best, and finally panel A.   
The radiated noise reduction is determined from the difference between the open and 
closed loop radiated sound power.  The open loop radiated sound power is determined 
while the panel is subjected to an acoustic disturbance without invoking the control 
algorithm.  Similarly, the closed loop structurally radiated sound power is calculated by 
invoking the control algorithm.  Accelerometers provide a convenient means of 
measuring structural vibrations.  However, the radiation filters must be modified to 
calculate radiated sound power due to acceleration in lieu of velocity.   The noise 
reduction, or attenuation, is then determined by the quotient of the sum of the squared 
magnitude of the open and closed loop sound power from 40 to 500 Hertz.   
Table 6.1 summarizes the closed loop sound power attenuation of each mode of concern 
for several closed loop control experiments.  The structurally radiated sound power 
attenuation shown in Table 6.1 is the difference between the open loop panel and a closed 
loop panel with two actuators.  The values in Table 6.1 are obtained from Figures 6.7-6.9 
by converting the decibel levels to the squared magnitudes and taking the difference 
between the open and closed loop data and converting to decibels.  Data is presented for 
several experiments, and the mean is considered for analysis.  The number 1 actuator 
location of panel A had such low control authority that it was unstable for most 
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experimental runs.  The control authority could have been weighted as to limit power to 
actuator 2; however, the results would have been inconsistent with the other panels.  
Furthermore, the analysis predicted that panel A would provide the worst-case 
performance.  The data indicates that control authority is limited for higher order modes, 
namely (1,3) and (2,3) modes.  In fact, the (2,3) mode did not show up in the data for any 
panel and therefore was not included in Table 6.1.  Since the (2,3) mode was not present 
in the open loop data, these results lead to the conclusion that the acoustic disturbance did 
not sufficiently excite this structural mode.  Amplifying the actuation voltage or 
increasing the actuator size may have enhanced control of the higher modes.  Panel C 
obtains the best ranking, due mainly to its ability to control mode (3,1) the best.  Panel C 
has a mean attenuation of –9.98 dB for mode (1,1), as compared to –9.04 dB for panel B 
and –8.64 dB for panel A.  However, for mode (3,1) the attenuation for panel C is 2.9 dB 
greater than panel B. 
 

Table 6.1 Open and Closed Loop Sound Power Attenuation 

 
 Structurally Radiated Noise Attenuation (dB) 
Mode (1,1) (3,1) (3,2) (1,3) 

-8 -6.67 -6 -0.67 Panel A -9.33 -4 -2.67 -2 
Mean -8.64 -5.23 -4.18 -1.31 

-11.67 -8 -7.33 -4.67 
-8.3 -7.59 -6.2 0 Panel B 
-7.67 -9.33 -8.76 -6.67 

Mean -9.04 -8.28 -7.37 -3.31 
-10.67 -9.33 -6.33 -5.33 
-10 -13.33 -10 -3.33 Panel C 
-9.33 -11.33 -9 -3.33 

Mean -9.98 -11.18 -8.30 -3.95 
 
 

The experimentally determined structurally radiated sound power for the open and closed 
loop performance of panels A, B, and C are shown in Figures 6.7-6.9 respectively.  The 
radiated sound power is calculated using the radiation filters and the measured panel 
accelerations.  The open loop data is determined while the panel is subjected to a 
broadband random acoustic disturbance without invoking the control algorithm.  The 
closed loop radiated sound power is calculated with the same disturbance; however, the 
control loop between the radiated sound power and the two actuators is invoked.   
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Figure 6.7 Open and Closed Loop Performance of Panel A 
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Figure 6.8 Open and Closed Loop Performance of Panel B 
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Figure 6.9 Open and Closed Loop Performance of Panel C 

 
Analytical Results 

The refined finite element analysis used to model the experiments utilized a modified 
rectangular high precision plate element with 24 nodal DOF with an additional electrical 
DOF for each actuator.10  The finite element mesh consisted of 20x28 elements for the 
panel.  Each piezoceramic actuator consisted of a 2x6 mesh.  Even though the panel was 
0.040” thick, the small displacement approximation was used since the experimental 
disturbance sound pressure never exceeded 95 dB. 
Panel C represents the predicted optimum actuator locations determined from the GA 
simulation.  Analytical models were also constructed to represent panels A and B to 
further compare analytical results to the experimental data.  Analytical performance is 
evaluated by comparing the radiated power attenuation determined from the open and 
closed loop singular value decomposition of the system frequency response.  The closed 
loop transmission path is from the actuator control signals to the sound power output.  
For a multiple-input, multiple-output system, the singular value decomposition is 
analogous to Bode plots commonly used for single-input, single-output systems.62  
Analytical results for the predicted sound power reduction are summarized in Table 6.2. 

Table 6.2 Open and Closed Loop Predicted Sound Power Attenuation 

 

Attenuation (dB) 
Mode (1,1) (3,1) (3,2) (1,3) (2,3) 

Panel A -7.3733 -21.5816 -1.9749 -0.1426 -2.2925 
Panel B -11.3157 -15.6861 -0.0985 -8.5569 -14.0291 
Panel C -10.2561 -19.3582 -0.4863 -7.6422 -15.7369 
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The data indicates that the analytical results exhibit control authority for the entire 
bandwidth.  This behavior is expected since LQR control does not model extraneous 
signal noise present in the experiments.  The analysis indicates that the performance of 
panel C is slightly better than panel B.   This observation is consistent with the 
experimental results.  The singular values of the open and closed loop sound power from 
actuator control input for each panel are shown in Figures 6.10-6.12.  The analytical data 
is normalized to indicate relative attenuation between each panel for a constant control 
effort penalty.  The open loop dynamic characteristics shown in Figures 6.10-6.12 is 
significantly different for each panel since the data describes the transmission path from 
distinctly different actuator locations of each panel to the radiated sound power.  Thus, 
the data represents the transmission path from the actuators to radiated sound power. 
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Figure 6.10 Panel A Singular Values 

 
 
 
 
 



 

 

 

69

0 50 100 150 200 250 300 350 400 450 500
-70

-60

-50

-40

-30

-20

-10

0

Frequency (Hz)

+ (3,1)

+

+ +(1,1) +

(3,2)

(1,3)

(2,3)

 
Figure 6.11 Panel B Singular Values 
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Figure 6.12 Panel C Singular Values 

 
The analytical predicted results are consistent with the experimental test results.  
However, the predicted level of attenuation was not clearly confirmed by the 
experimental test data.  Therefore, the analytical model is modified to include the 
transmission path represented by the experimental tests.  Thus, the model is modified to 
predict the structurally radiated sound power due to a uniform random acoustical 
disturbance. 
The closed loop path now becomes the structurally radiated power due to the acoustical 
disturbance.  The open loop structurally radiated power is determined for the same 
acoustic disturbance without applying a control signal to the actuators.  The quotient of 
the sum of the squared magnitude of the open and closed loop curve from 40 to 500 Hz. 
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in decibels determines the structurally radiated power attenuation.  This attenuation level 
was then used as the performance index for the genetic algorithm.  Therefore, the GA 
determined the best actuator location by maximizing the attenuation of the structurally 
radiated power.  The acoustic disturbance was modeled as a uniform random plane wave 
and interpolated to the transverse finite element nodes.  The uniform random acoustic 
disturbance had an overall power of 92 dB and the power spectrum density is shown in 
Figure 6.13. 
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Figure 6.13 Uniform Random Simulation Acoustic Disturbance PSD 

 
To validate the simulation model, the open and closed loop structurally radiated power 
was computed for panel configurations B and C and compared to the test results.  The 
attenuation for panel B is –2.415 dB and the predicted structurally radiated sound power 
is shown in Figure 6.14.  The attenuation for panel C is -3.107 dB and the predicted 
structurally radiated power is shown in Figure 6.15. 
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Figure 6.14 Predicted Open and Closed Loop Radiated Power for Panel B 
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Figure 6.15 Predicted Open and Closed Loop Radiated Power for Panel C 

 
The predicted radiated sound power for panels B and C are shown in Figures 6.14 and 
6.15, respectively.  The predicted open loop radiated sound power data shown in Figures 
6.14 and 6.15 agrees well with the corresponding test data shown in Figures 6.8 and 6.9.  
However, the predicted closed loop radiated sound power due to the disturbance is less 
than the corresponding closed loop test data shown in Figures 6.14 and 6.15 and the 
previous analytical data shown in Figures 6.11 and 6.12.  Recall that the closed loop 
analytical results shown in Figures 6.11 and 6.12 do not include a disturbance and that 
the transmission path is from the actuators to the radiated sound power.  Since control 
due to a disturbance is a more difficult problem, the lower performance gains are not 
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unexpected.  However, by increasing the control authority the performance of panels B 
and C, indicated in Figures 6.14 and 6.15, may be improved.  However, the control 
authority specified was carefully selected since the GA searches for a global maximum, 
and many non-optimal actuator locations become unstable for larger values of control 
authority. 
The GA search is modified to define the performance index as the predicted radiated 
sound power attenuation.  Using this new performance index the GA search predicted an 
optimum actuator location previously not considered.  This new optimum location is 
shown in Figure 6.16. 
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Figure 6.16 Revised Optimum Actuator Locations 

 
The calculated attenuation for the revised optimum location is –4.783 dB.  The predicted 
radiated power for the revised optimum panel is shown in Figure 6.17.  The control effort 
penalty is constant for the data shown in Figures 6.14, 6.15 and 6.17.   
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Figure 6.17 Predicted Radiated Power for the Revised Optimum Panel 
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An alternative metric for determining the optimum actuator location was investigated 
using the piezoelectric modal participation.  The piezoelectric modal participation is 
determined by substituting the modal coordinate transformation into Eq. (3.113) resulting 
in 

 { } [ ]1

WK Kφ φ
−

   Λ = Φ        (6.2) 

where [ ]Φ  is a matrix of the normal structural mode shapes.  The coupled stiffness 

matrix WKφ    has dimensions np x ndof, where np is the number of actuators and is 
formed by assembling the coupling stiffness for each element where piezoceramic is 
present.  Therefore, the piezoelectric modal participation represents the effective coupling 
between the actuator and the structural modes.  Table 6.3 presents the piezoelectric modal 
participation for each panel tested. 
 

Table 6.3 Piezoelectric Modal Participation 

Piezoelectric Modal Participation 
Mode (1,1) (3,1) (3,2) (1,3) (2,3) 

Panel A 0.6749 1.0013 0.6760 0.0864 0.1369 
Panel B 1.0569 1.4056 0 1.5147 0.7311 
Panel C 0.7810 1.3226 0.1769 1.0287 0.8538 

 
The piezoelectric modal participation follows the acoustic attenuation shown in Table 
6.3, except for mode (3,1) of panel B and C.  The modal participation shows that panel B 
should have greater control of mode (3,1) when compared to panel C.  Although, the 
modal participation distinctly shows that panels B and C are better than panel A. 
Overall, the analytical method presented agrees well with the experimental test data for 
determining piezoceramic actuator locations for structural acoustic noise reduction.  
However, it was anticipated that the difference between panels B and C would be much 
more pronounced.  The analysis indicates that for the given panel and actuator size, the 
optimum performance margin is narrow.  Furthermore, when the analytical results are 
carried out in real experiments, such narrow performance margins may not be detectable. 
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CHAPTER VII 

CONCLUSION 

By combining coupled finite element analysis, radiation acoustic filters, feedback control 
theory, and optimal actuator placement using a genetic algorithm, a method for predicting 
acoustic radiation control was developed and compared to experimental tests.  Analytical 
results were provided for both flat and curved panels with bonded piezoceramic 
actuators.  However, the formulation provides the ability to accommodate laminated 
composites with embedded piezoceramic actuators and sensors.  Furthermore, the 
triangular shell formulation supports advanced anisotropic piezoceramic transducer 
concepts.  The analytical results show that the coupled finite element formulation is 
imperative since the material properties of the piezoceramic alter the structural dynamic 
response.  This effect was most significant when anisotropic piezoceramics were 
considered.  The data presented clearly demonstrates that the anisotropic piezoceramic 
provides enhanced performance over traditional piezoceramics for structural vibration 
control of curved panels.  The data presented for structural acoustic control of curved 
panels with a single MFC actuator does not demonstrate improved performance when 
compared to a traditional PZT actuator. This result is not unexpected since actuators 
orientation angles of 090± are not considered.   
However, structural acoustic radiated power simulations for flat rectangular panels 
indicate that MFC actuators do not improve the sound power attenuation when compared 
to traditional PZT.  The simulations indicate that MFC actuators may be best suited for 
complex geometric structures requiring induced strain along a preferred direction.  
Anisotropic piezoceramic actuators provide control authority along a principal direction, 
which introduces transducer orientation as an additional design parameter. 
The coupled finite element model formulation developed with MFC is derived from 
linear piezoelectric theory.  However, further research is needed to validate the linear 
piezoelectric assumption since the electric field distribution may in fact be non-uniform 
along the length of the piezoceramic fiber.  The potential non-uniformity arises due to the 
geometry of the interdigital electrodes.  Further research may reveal enhanced transducer 
performance if the interdigital electrode geometry is optimized.  To further enhance the 
analytical models, it is strongly suggested that extensive mechanical testing be conducted 
on MFC specimens to accurately determine their mechanical properties. 
Structural vibration control of a single bonded MFC actuator was determined to provide a 
significant increase in performance when compared to an equivalent traditional 
piezoceramic actuator.  Based on the results of this research, structural control can be 
greatly enhanced by including multiple actuators, each with various orientation angles.  
Such a configuration would result in various twisting actuators.  Furthermore, laminated 
composites panels with embedded MFC transducers should be considered in future 
research efforts.  Since multiple MFC actuators with various orientation angles embedded 
within anti-symmetric laminated composites will provide interesting structural control 
opportunities. 
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By incorporating the acoustic radiation filter concept, the structural acoustic field is 
determined directly from the structural vibration characteristics.  The radiation operator 
utilized by the filters reduces the three-dimensional volume integration to a surface 
integral and when applied to a discretized surface results in individual acoustic radiators.  
The acoustic radiation filter was implemented for both analytical and experimental results 
for the flat panel configuration.  The radiation filter concept ensures a causal system since 
the sound power calculation uses the structural surface velocity.  By incorporating the 
radiation filters directly in the state-space experimental, or analytical, plant model a 
consistent sound power calculation is developed for comparison. 
The experimental test validates the accuracy of the analytical model.  Therefore, the 
analytical model provides a design tool to determine optimal actuator placement in 
advance of structure construction.  Determining the optimal actuator placement using 
only an experimental approach requires an inordinate amount of time and materials since 
the actuators must be permanently bonded to the structure.  Analytical results were 
determined using acoustic radiation filters for curved panels using finite element analysis.  
The radiation modal expansion technique provided an efficient computational method for 
approximating the dominant acoustic radiation modes for both analysis and real time 
control experiments. 
Feedback control is achieved using a linear quadratic regulator (LQR) for both analytical 
predictions and experimental tests.  LQR control provides an optimal performance limit 
achievable for ideal state feedback control without any uncertainties25 and is well 
documented in the literature.  Preliminary experimental tests were conducted using the 
general predictive control (GPC); however, the performance involved optimal parameter 
selection.  Determining the optimum actuator locations might have been obfuscated by 
poor GPC parameter selection. 
The actuator placement optimization search technique selected was a modified genetic 
algorithm.  The genetic algorithm with stochastic coding used binary parameters mapped 
to the actuator locations via the finite element mesh.  The finite element model was 
embedded within the genetic algorithm and the structural acoustic attenuation was 
defined as the performance index.  The GA performance index is the structurally radiated 
noise of the panel due to a broadband random acoustic disturbance.  Acoustic radiation 
filters, using the dynamic solution of the coupled finite element model, compute the 
structurally radiated noise.  Therefore, the analytical simulation is analogous to the real-
time experimental test conducted.  A commercial genetic algorithm code was selected to 
facilitate the research objective of finding the optimum actuator locations. 
The experimental test results agreed with the analytical results.  However, the analytical 
model, based on a transmission path between the actuators and radiated sound power, 
indicates that the attenuation should be greater than indicated by the experiments.  
Therefore, the analytical model was modified to include a transmission path representing 
the disturbance to radiated sound power.  The analytical model now provides dynamic 
simulations that represent the experiments conducted.  The simulations were verified by 
comparing the results to the experimental test data.  Furthermore, an additional genetic 
algorithm search was performed using the disturbance to radiated sound power 
attenuation as the performance index.  The GA determined a new optimum actuator 
location previously not considered.  The experimental results may be improved by 
increasing the actuation voltage signal; however, the signal remained constant for all 
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actuator configurations tested.  Increasing the applied control authority will also enhance 
the analytical predicted attenuation.  However, careful attention was placed on the control 
effort penalty to accommodate a global GA search method.  An adaptive meshing scheme 
would enhance the analytical method by increasing computational efficiency and 
accommodating larger piezoceramic actuators. 
The predicted radiated noise of curved panels presented in Appendix A indicates that the 
inherent anisotropic material properties of the MFC actuator significantly affect the 
overall structural dynamics.  Future research should include experimental test to 
accurately determine material properties of MFC actuators.  Furthermore, future research 
should include experiments to validate the finite element method with MFC actuators. 
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APPENDIX A 

MFC Structural Acoustic Simulation 

Introduction 

The following data is presented to further characterize MFC actuator performance as 
compared to traditional PZT actuators.  The data presented in Chapter III clearly 
demonstrates that MFC actuators can produce results different than that of traditional 
PZT actuators. However, the transfer function between the actuator and a single nodal 
velocity output does not provide sufficient information to accurately quantify MFC 
actuator performance.  Specifically, additional information is required to fairly evaluate 
MFC actuator performance regarding active structural acoustic control.  To this end, the 
following acoustic simulations are provided for curved and flat panels utilizing surface 
bonded MFC and traditional actuators. 
 

Curved Panel Simulation  

The simulation is performed using an aluminum 10”x14”x0.040” curved panel with 
radius of curvature R=96” and a 2”x4”x0.010” actuator located at the panel center.  The 
actuator is modeled first using MFC properties and then repeated using traditional PZT 
properties for comparison.  The triangular finite element mesh of 144 elements shown in 
Figure 3.5 is used.  The simulations follow the procedure outlined for flat panels 
subjected to a random acoustic disturbance presented in Chapter VI. However, the 
radiated sound power is determined by implementing radiation filters for curved panels as 
described in Chapter IV.  The radiation filter is based on the radiation modal expansion 
technique using fifteen discrete acoustic radiators.  The fifteen elemental acoustic 
radiators are selected to correspond to the measured acceleration points used during the 
experimental investigation of flat panels. 
The simulation performed considers actuator orientation angles of 20, 35, 45, 50, 60, and 
70 degrees.  The acoustic disturbance used has an overall sound power level of 92 dB and 
is depicted in Figure 6.13.  The actuator performance is determined by considering the 
reduction in radiated sound power between the open and closed loop conditions as 
described in Chapter VI. 
MFC and PZT results for 20-degree orientation angle are shown in Figures A.1 and A.2, 
respectively.  An overall attenuation of 14.48 dB is achieved for the MFC actuator and 
the PZT actuator achieves 16.72 dB. 
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Figure A.1 Predicted Open and Closed Loop Radiated Power for 20o MFC 
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Figure A.2 Predicted Open and Closed Loop Radiated Power for 20o PZT 

MFC and PZT results for 35-degree orientation angle are shown in Figures A.3 and A.4, 
respectively.  An overall attenuation of 14.72 dB is achieved for the MFC actuator and 
the PZT actuator achieves 23.98 dB. 
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Figure A.3 Predicted Open and Closed Loop Radiated Power for 35o MFC 
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Figure A.4 Predicted Open and Closed Loop Radiated Power for 35o PZT 

 
MFC and PZT results for 45-degree orientation angle are shown in Figures A.5 and A.6, 
respectively.  An overall attenuation of 3.92 dB is achieved for the MFC actuator and the 
PZT actuator achieves 19.27 dB. 
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Figure A.5 Predicted Open and Closed Loop Radiated Power for 45o MFC 
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Figure A.6 Predicted Open and Closed Loop Radiated Power for 45o PZT 

 
MFC and PZT results for 50-degree orientation angle are shown in Figures A.7 and A.8, 
respectively.  An overall attenuation of 9.94 dB is achieved for the MFC actuator and the 
PZT actuator achieves 17.78 dB. 
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Figure A.7 Predicted Open and Closed Loop Radiated Power for 50o MFC 
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Figure A.8 Predicted Open and Closed Loop Radiated Power for 50o PZT 

 
MFC and PZT results for 60-degree orientation angle are shown in Figures A.9 and A.10, 
respectively.  An overall attenuation of 12.83 dB is achieved for the MFC actuator and 
the PZT actuator achieves 16.64 dB. 
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Figure A.9 Predicted Open and Closed Loop Radiated Power for 60o MFC 
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Figure A.10 Predicted Open and Closed Loop Radiated Power for 60o PZT 

 
MFC and PZT results for 70-degree orientation angle are shown in Figures A.11 and 
A.12, respectively.  An overall attenuation of 4.79 dB is achieved for the MFC actuator 
and the PZT actuator achieves 23.21 dB. 
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Figure A.11 Predicted Open and Closed Loop Radiated Power for 70o MFC 
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Figure A.12 Predicted Open and Closed Loop Radiated Power for 70o PZT 

 
The simulation data indicates that the MFC actuator does not perform as well as a 
traditional PZT actuator.  Keep in mind, however, that traditional PZT may not be 
suitable for skewed angle placement on curved panels.  Furthermore, when considering 
active structural noise control a single actuator located at the panel center and skewed is 
not expected to perform well.  To rigorously evaluate MFC actuator performance the 
finite element model should be modified to facilitate arbitrary actuator placement 
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including orientation angles of 090± .  Initially, the research objectives were aimed at 
addressing this concern; however, piezoceramic actuator placement on flat panels became 
the primary objective of the funding agent.  However, to further evaluate MFC 
performance the finite element model utilized in Chapter VI is modified to incorporate 
MFC actuators.  Since the finite element model utilizes rectangular elements, the MFC 
orientation angles are limited to 090± .  Furthermore, the rectangular plate elements do 
not facilitate curved panel structures. 
 

Flat Panel Simulation 

The finite element analysis used to simulate MFC structural acoustic control utilizes a 
modified rectangular high precision plate element with 24 nodal DOF with an electrical 
DOF.  The finite element model is modified to incorporate MFC actuator electrical and 
mechanical properties.  The simulations are repeated using traditional PZT actuators.  
The simulation is conducted using the flat panels in Chapter VI referred to as “B” and 
“revised optimum.”  For clarity, the “revised optimum” panel is referred to as panel E.  
The simulation is identical to the procedure described in Chapter VI for flat panels.  The 
MFC orientation for panels B and E are depicted in Figures A.13 and A.14, respectively. 
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Figure A.13 Panel B MFC Orientation  
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Figure A.14 Panel E MFC Orientation 

 
The open and closed loop sound power for panel B with MFC actuators is shown in 
Figure A.15.  The overall sound power attenuation is 3.96 dB for panel B with MFC.  
However, the overall sound power attenuation is 3.36 dB for panel B with PZT and is 
shown in Figure A.16. 
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Figure A.15 Open and Closed Loop Sound Power of Panel B with MFC 
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Figure A.16 Open and Closed Loop Sound Power of Panel B with PZT 

 
The open and closed loop sound power for panel E with MFC actuators is shown in 
Figure A.17.  The overall sound power attenuation is 4.68 dB for panel E with MFC.  
However, the overall sound power attenuation is 4.62 dB for panel E with PZT and is 
shown in Figure A.18. 
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Figure A.17 Open and Closed Loop Sound Power of Panel E with MFC 
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Figure A.18 Open and Closed Loop Sound Power of Panel E with PZT 

 
 

For flat rectangular panels the two MFC actuators perform slightly better than traditional 
PZT actuators for structural acoustic noise control.    However, a single MFC actuator 
does not perform as well as the traditional PZT actuator for curved panels.  The MFC 
actuator concept provides increased control authority along one of its principal directions.  
Therefore, it is anticipated that the MFC actuator concept is best suited for structures 
requiring induced strains along a particular direction.  The simulations provided do not 
explicitly address structures of this nature.  It is recommended that future research 
address multiple MFC actuators for structural acoustic control of curved panels.  
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APPENDIX B 

Test Instrumentation 

PCB Accelerometers Model U352C65 

Table B.1 Accelerometer List 

Channel Serial Number 
1 19175 
2 20027 
3 15683 
4 20620 
5 19215 
6 15865 
7 15823 
8 17876 
9 18981 
10 19132 
11 18711 
12 19138 
13 19139 
14 19134 
15 19148 

 
 
Modal Shop Microphones Model TMS E130P11 
Modal Shop Microphone Preamplifier Model TMS 130A10 

Table B.2 Microphone List 

Channel Microphone s/n Preamp s/n 
1 5206 5309 
2 5220 5294 
3 5904 5332 
4 5214 5331 
5 5217 5312 
6 2752 5274 
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Accelerometer Amplifier 
 PCB Model 481A s/n 261 
 
Microphone Amplifier 
 PCB Model 583A s/n 898 
 
Piezoelectric Actuator Amplifier 
 PCB/AVC Model 790A01 s/n 238 
 PCB/AVC Model 790A01 s/n 239 
 
Loudspeaker 
 Altec Lansing Model 817A s/n 01549 
 
Audio Power Amplifier 
 Carver Model TFM 42 s/n 91810500007 
 
Audio Equalizer 
 Technics Model SH-8065 s/n mb5402b025 
 
Accelerometer Calibrator 
 PCB Model 394C06 s/n 1856 
 
B&K Signal Analyzer Model 2032 s/n 1123814 
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