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An irreversible constitutive law is postulated for the formulation of interface elements to predict initiation
and progression of delamination in composite structures. An exponential function is used for the constitutive
law such that it satisfies a multi-axial stress criterion for the onset of delamination, and satisfies a mixed mode
fracture criterion for the progression of delamination. A damage parameter is included to prevent the restoration
of the previous cohesive state between the interfacial surfaces. To demonstrate the irreversibility capability of
the constitutive law, steady-state crack growth is simulated for quasi-static loading-unloading cycle of various
fracture test specimens.

INTRODUCTION countered in linear elastic fracture mechanics. The softening
Delamination in composite structures usually originateéjortion of the constitutive law models the degradation of the

from geometric discontinuities and material defects such a@?te”al ahegd 9f the crack-tip. . For laminated composites
free edges, dropped plies, re-entrant corners, notches afiys degradation includes nucleation, growth and coalescence

transverse matrix cracks. Recently, significant progress had microcavities. Hilleborg developed the first comprehen--
been made in the development of tools to predict intralamSiVe interface finite element model and applied this method in

inar damage, which often precedes the onset of delaminO"Crete cracking. Later, Needlerfiateveloped a cohesive-

tion. Delamination can be a major failure mode in Compos_decohes;ive formulation to simulate dynamic crack growth in
ites structures and can lead to significant loss of structurdPCtropic elastic solids.

integrity. The virtual crack closure technique (VCCGP®) The exact mathematical form of the interfacial constitu-
has been successfully used in the prediction of delaminatiofive law is less important than its capability to represent the

growth. However, an initial delaminated area must be predemaximum interfacial strength and critical fracture energy.
fined and a self-similar crack growth is assumed. Functions with continuous derivatives have a numerical ad-

To overcome the limitations associated with the VCCT vantage over functions with discontinuous derivatives when

interface elements can be located between composite lanS€d With Newton-Raphson method because the tangent stiff-
ina to simulate initiation of delamination and non-self-similar €SS is smooth. A smooth tangent stiffness as a function of
growth of delamination cracks without specifying an initial € relative opening displacement has been found to mitigate
crack. Delamination is initiated when the interlaminar trac-the numerical oscillations encountered in using a softening
tion attains the maximum interfacial strength, and the de_constitutive relation and to eliminate oscillatory convergence

lamination front is advanced when the local surface fracturéj'ﬁ'cumeS?'
energy is consumed. A softening constitutive law that relates The exponential function for the softening constitutive law
tractions to the relative displacements is generally used to foiS Smooth and mimics the physics involved in the separation
mulate interface elements. The softening constitutive law i®f two atoms initially bondetl This form of the constitutive
based on the Dugdalend Barenblattcohesive zone model law has been used in the analysis of crack initiation, dynamic
to expunge the singular stress field ahead of the crack-tip efgrowth, branching, and arrest in homogeneous matérials
Shahwan and Wa#$sused it to study delamination of com-
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nential constitutive law to account for such irreversibilities. Criterion for Progression of Delamination

A limitation of this model is that the critical energy release Delamination propagates when the energy release rate
rates and the maximum interfacial strengths associated Wit@quals its critical value under pure Mode I, Mode II, or
Mode I, Mode II, and Mode Il fracture cannot be specified e Mode 11 fracture. Generally, delamination growth oc-
separately. curs under mixed-mode loading. Under this type of load-
The present work aims at the establishment of an exponefing, delamination growth might occur before any of the en-
tial softening constitutive law that satisfies empirical mixed-ergy release rate components attains its individual critical

mode delamination failure criteria for the onset and progresyalue. The power law criterion based on the one proposed
sion of delamination. An internal state variable is includedpy Whitcomb8 is

in the constitutive law to permanently damage the internal

surfaces that have exceeded maximum strength during the de- G\ G\ G \°?

formation process. The paper is structured as follows: (i) <G10> (GUC) ( ) =1 (2
mixed-mode fracture criteria, (i) mechanics of interfacial sur-

faces, (ii) interface finite element, (iii) finite element results,whereG; is the energy release rate under Modfracture,

Grrre

and (iv) concluding remarks. and G,. is the single-mode critical energy release rate for
j = 1,1I,1I1. The material parameter defines the shape
MIXED-MODE FAILURE CRITERIA of the failure locus. Fowx = 1, one recovers the linear

. . ] . _interaction criterio®’. The shape of the failure locus is a tri-

A quadratic failure Crl'Fenon based on mt_erlamlnar t_ractlons‘.jmgmar surface. The shape of the failure surface approaches
has been used to predict onset of delaminatioMo simu- 5 1/8_cybe surface asincreases from 2. Reed€revaluated
!ate the brogression of delamination under mlxed-mOQe I_Oaddifferent fracture criteria for mixed-mode delamination in a
ing conditions, the power law form of the fracture criterion p i graphite/epoxy composite, a toughened graphite/epoxy

that includes Mode I, Mode Il and Mode IIl interaction has o mnosite, and a tough graphite/thermoplastic composite us-
been successfully used with a bilinear constitutive! e . ing the mixed-mode bending (MMB) test specimen. The
Dévila and Camanti6 developed a bilinear constitutive law power law criterion was a reasonable fit to the test data for
that can be used with any mixed-mode failure critefforfo  the three different materials. Thus, the failure criterion in
the authors’ knowledge, no work has been found incorporatgqyation (2) is incorporated into the constitutive law of the
ing empirical failure criteria into the exponential softening ;arface material.

constitutive law. A brief description of the failure criteria

used in this paper is presented next. MECHANICS OF THE INTERFACIAL SURFACES

Criterion for the Onset of Delamination Interfacial surfaces consists of an upper surfaceand
Under pure Mode 1, Mode II, or pure Mode Il loading, the lower surfaceS—. The upper surface corresponds to the up-

onset of delamination occurs when the corresponding inte®" Pulk material, and the Iowe;gsiurface corresponds to the
laminar traction exceeds its respective maximum interfacialoWer bulk material. The surfaces™ are coincident with a

strength. However, under mixed-mode loading, delaminatiofiéference surfacé® in the undeformed configuration as is

onset may occur before each traction component reaches ig}own in Figurel. Thus, it is said th_at the interface .material
f zero thickness. The surfacé$ independently displace

maximum interfacial strength. An expression that considers$S ©

the interaction between the traction components under mixec@d stretch, and are connected by a continuous distribution
mode loading is the multi-axial stress criterion given as of nonlinear springs that act to resist the Mode | opening or
Mode Il and Mode lll sliding of the upper and lower surface.

a a a\ 1/a It is convenient to define a mid-surfas&* where the trac-
[ I g (Ts) = i d relative displ luated hi
T + Te + 7o =1 (1) tions and relative displacements are evaluated. For this pur-
1 2 3

pose, let us consider any two poins™ and P~ contained

e —

whereT} is the interlaminar traction component associatec{
with the j-direction, 77 is the maximum interlaminar trac-
tion, and(¢) = ¢, if £ > 0, otherwise it is zero. This function

n ST and.S— and coincident in the undeformed configura-
ion. The locus of the midpoint®™ of the line joining P

and P~ define the mid-surfac8™ of the interface material.
.Refer to Figure. The normal and tangential components of
Yffe traction and relative displacement vector are determined
‘by the local orientation of the mid-surfacg™. The virtual
é/vork done by the cohesive-decohesive tractions is given by

tractionTs does not contribute to the onset of delamination
In Equation 27, is an effective normalized traction, and
a > 2 is a real number that determines the shape of th
tri-dimensional failure surface. The quadratic delamination ,

interaction is recovered from Equation (1) with= 2. The OWint = / . 00, T dS™ @)
failure surface fory = 2 is a convex semi-sphere in the space 5

of normalized tractiond’;/T¢, j = 1,2,3. As the value of for any kinematically admissible relative displacemefits

ais increased, the failure surface approaches a half-cube suvhereT); are the interlaminar traction components acting on
face. a unit deformed area conjugate to the relative displacements,
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X2, %2, Uz
Undeformed Deformed
X1, X1, Ug Configuration Configuration
Fig. 1 Interface material deformation.
D, T where UiﬂE are displacement quantities with respect to the
P* '3 fixed Cartesian coordinate system. The coordinafgs=
s _ ™ (m,n2),7 = 1,2, 3 define the mid-surfacé™ given by
I3 / D21 T2
1 _ 1 _
i, PP i §($j+xi):Xi+§(Ui_‘—+Ui) )
A D, Ty
The surfaceS™ is coincident withS° in the undeformed
s X3 configuration. As mentioned earlier, the components of the
relative displacement vector are evaluated at the mid-surface
p- S™. Therefore, the local orientation of normal and tangential
s %o unit vectors to the surfacg€™ is required. This is,
oxm ox OxP) T
% rlz{X1aX27X3} (6)
87}1 87]1 8771
Fig. 2 Interface material mid-surface. T
i - . , oxy oxy* Oxy
and S™ is the surface area. The resistive tractions that are ry, = s e D @)
associated to the relative displacements at the pefftare _772_ 2 N2
shown in Figure2. The interlaminar normal traction is de- and the normal vector is simply
notedT3; and the tangential tractions are dendlgdandT5. ,
rs =Tq X Iy (8)

In the next section, the components of the relative displace-
ments are Obtained in terms Of the displacement fleld W|th'|'he tangentia' Vectorsl7r/2 may not be perpendicu'ar in a
respect to the undeformed configuration. Next, the consticyrvilinear coordinate system so that,
tutive equations that relate the relative displacements to the

traction field are presented. The kinematics and the con- ro =rg XTIy 9)
stitutive modeling fully describe the mechanics of interface ] ]
debonding. Fori = 1,2,3, the normal and tangential unit vectors to the

surfaceS™ at a pointP™ € S™ are
Kinematics of the Interface Material

Ty

The fundamental problem introduced by the interface ma- i = (10)
terial is the question of how to express the virtual relative

displacements between the surfacss in terms of virtual These unit vectors define the local orthogonal coordinate
displacements. As shown in Figute consider a three- System ats™ and is related to the fixed coordinate system
dimensional space with Cartesian coordinatesi = 1,2,3,  through the rotation matrix

and let there be surfacest coincident withS° defined in
this space byX; = X;(n1,72), wheren,, 7, are curvilinear
coordinates on the surfac®.

s

R = [f1, 2, 5 (11)

The normal and tangential components of the relative dis-

Let the Cartesian coordinates = ;" (n1,m2),i=1,2,3  placement vector expressed in terms of the displacement field
describe motion of the upper and lower surfaéesin the s,

deformed configuration. Any point ofi* in the deformed N; = Rﬁ(l»;r —z;) =Ry (Uf - Uj_) (12)

configuration is related to the same pointgfhthrough . . .
whereR;; are components of the rotation matrix. Singe

xzi =X; + UilL (4) depends on the displacemerlifs*, the rotation matrix also
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depends on. Therefore, the virtual relative displacement 1 7T
are expressed in terms of the virtual displacements as follows,

0.8 ,
ORy; _ORy; _ “,f"'/' \ A\
00 = | Rji + U SUF — | Rji+ Uy ——= | 0U; / VA
( j k 3(]}“) J ( 3 k oU; ) J 06 //:, 'I.‘ \
50 = Q10U — Qj,0U; @ T /’.’ \‘- b=1
0.4 !
Equation (13) is substituted into Equation (3) to obtain the / \ '
expression of the internal virtual work in terms of the virtual ! "\ b =22
displacements. This form of the internal virtual work is con- 02 \ N
venient for the finite element formulation. In addition, the / b =54, N
differential surface area of the mid-surfa€8™ in the de- 0 e
formed configuration is expressed in the form, 0 1 2 5 3 4 5
D/
dS™ = MdSs° (14)

Fig. 3 Traction-Stretching curve of spring as a function of3

where)M is a function of the displacement field", andd.S°

is the differential undeformed surface area. a high spring stiffness maintains the points together. Under

isothermal conditions, the tractidfi that acts to resist the
Constitutive Equations for the Interface Material stretching/ of the spring is expressed as

The stress singularities at the crack-tip in the linear elas- _ 1-A
ticity solutions, stemming from the sharp slit approximation, T(A) =TcAexp ( 3 > (15)
cannot be reconciled with any realistic local rupture pro-
cess. From the molecular theory of strength it is known thatwhereA = A /A, andT* is the maximum bonding strength
there exists stress limits for which molecular bond rupturethat occurs at the critical stretching valdé. The parameter
occurs. The softening-type of cohesive zone model is ins with 3 > 1 and$ € Rt defines the stretching range for
tended to represent the degradation of the material ahead @fich the bond is weakened before complete rupture occurs.
the crack-tip. It captures strength-based bond weakening, anglis in this range, that damage accumulates. In Figutae
fracture-based bond rupture. The mechanics of the delamraction-stretching curve is shown for different values of the
ination process comprises three interrelated phases: (i) thgarameters. The work of debonding per unit areé., is
initiation of delamination, (ii) the evolution of the degrada- given by the area under the traction-stretching curve, or,
tion zone, (iii) and the delamination growth. The first phase
that takes place is the initiation of delamination, and it is G, /°° T(A)dA (16)
based on a stress limit determined experimentally. A stress ] 0

measure that is used as the limiting value, may involve an in- ¢ ne q@—p)/8p | 2 1

teraction of interlaminar stresses such as the equivalent Von = T°A°B r {ﬁ] exp <ﬂ>

Mises stress, or that in Equation (1). The second event is the

development of a zone ahead of the crack-tip that experiencdy:] is the Euler gamma function of, andT'[1/2] = /7.
intense deformation such as plastic deformation in metalBy prescribindgl’*, G, andg3 in Equation (16), the parameter
elongated voids that contains a fibrous structure bridging thé\¢ can be computed. The exponential function in Equation
crack faces in polymers (crazing), and high density of tiny(15) is a suitable representation of a softening constitutive law
cracks in brittle ceramics. The molecular bonds are weakenepecause with increasing stretching of the springthe trac-

and the nonlinear softening behavior is confined in this degration T' increases to a peak vali& and then decreases until
dation zone, or process zone. The third event, is the growtbomplete debonding occurs. Equation (15) is only valid for
of delamination, bond-rupture, and it is based on a fracturenonotonically increasing separation because the consumed
criteria such as Equation (2). The constitutive equations to bdebonding energy can be recovered upon unloading.
developed, mathematically describe these three delamination An internal state variablé that tracks the damage state of
phases. The focus of this section is to develop the constihe spring needs to be included in Equation (15) to account
tutive equation for single-bond rupture based on continuunor irreversible effects. In the following irreversible law an

damage mechanics approach. This particular case is extendgfstic damage model instead of a plastic damage model is
to mixed-mode delamination. The constitutive equations thahssumed,

are postulated in this section, are shown to satisfy the failure
criteria for initiation and progression of delamination pre-
sented in the previous section.

Let assume that the two poinfa™ and P~ contained in
St andS~ as shown in Figure are connected with a spring. Within the framework of continuum damage mechanics, it
The points are coincident when the spring is unstretched, anig possible to impose restrictions @n It must increase as a

17)

T(A) = T°Aexp (2_A[;/J_J>
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3 L In reference to Figure, the components of the normalized
relative displacements betwe&¥ with respect to the orien-
tation of the surfacé&™ at a pointP™ is,

24 V:A1i1+AQiQ+A3i3 (20)

T/TC 16 whereiy, iz, iz are the unit vectors normal and tangent to the
/ /)_\ surfaceS™ at a pointP™. An effective relative displacement
A 5 . )
A is defined by the norm of

il / A= /A2 + A%+ A2 1)

/ We assume that the normalized scalar tracipracts along
1° the direction ofv to resist the effective relative displacement

A . The proposed constitutive law for the interface material is
D/D defined along,

Fig. 4 Traction-stretching curve as a function of the evolution
of damage of the spring withg = 1

T’U(A17A27A3) = )\ Q(A17A27A3) (22)

function of time because thermodynamics requires that the irwhere @ is a decreasing function of any of the normalized
reversible dissipation associated with the debonding proceselative displacement& ;, j = 1,2,3. The components of

remains semi-positive, i.ed,> 0. An equivalent mathemati- the traction acting along, normal and tangent to the mid-
cal expression is surfaceS™ at a pointP™ is

d®) = max (1,d"0, A7), d¥ =1 (18) T=T i —r=5,Q (23)

with ¢; > ;1. If the spring is assumed undamaged at

to, then the initial condition isi*) = 1. Equation (17)is for j = 1,2,3. The function@ is chosen to satisfy the

equivalent to Equation (15) if no damage occuis= 1, or multi-axial stress criterion in Equation 1 for the onset of de-

for monotonic increasing loading, = A”. Unloading does lamination and the mixed-mode fracture criterion in Equation

not occur linearly to the origin, but with an exponential form. 2 and is given by

The energy of dissipation associated to fatigue is neglected o

in this work. This assumption is valid in the case of a spring O = exp (2 —pPld— d) (24)

that undergoes a small number of loading-unloading cycles. 164

Thus, future work will be aimed at extending the Equation

(18) to incorporate fatigue. with a scalar mixed-mode parametethat couples the nor-
Equations (17) and (18) witl# = 1 are used for the Malized relative displacements for the opening and sliding

traction-stretching curve in Figure The labeld., ..., 6inthis ~ mode - - -

figure, represent the damage evolution of the spring connect- M= (]A1 \a + |A2]a + <A3>“)

ing P*. The spring is unstretched at point 1. With increasing

stretching, a cohesive traction develops to resist the separ

. : : : + .
ton. At point 2, the spring stiffness hold3 togethe_r n _the shape of the failure surface for the onset and progression of
guasi-linear range of the law. The onset of delamination OCyelamination. The internal state variadies given by,

curs at point 3, where the traction attains its maximum value. ' '

As the spring is stretched beyond the onset of delamination
to point 4, damage is accumulated in the spring and the trac-
tion gradually decreases. The spring is partially unstretched o _ . -~ _
from point 4 to point 5, and unloading occurs. The spring is 1 he constitutive equations are slightly modified to take into

stretched again to point 6, and the loading traction-separatiogonsideration the mechanical behavior of the interface mate-

curve is exactly retraced upon unloading. The traction evential under contact conditions. The surface$ are assumed
tually vanishes as the spring is stretched. smooth so that frictional effects can be neglected. When con-

Fct is formed between two smooth surfaces, the equilibrium
£

1/« (25)
where|-| is the absolute value function, ag€) = ¢ if ¢ > 0,
Btherwise it is zero. The material parametedefines the

409 = max (1.d00 ) A9 =1 (26)

Equations (17) and (18) are extended to the mixed-mod
delamination case. To develop the constitutive equations,
is convenient to normalize the relative displacemehjsand
the tractions!; with respect to the critical separation values
A% and the maximum interfacial strengthis,

rgely depends upon the distribution of elastic forces in the
contacting surfaces. Two surfaces are under contact at a point
P™, P™ ¢ S™ if the relative displacement ; betweenP*
is less than zero. Fof\3 < 0, a large repulsive tractioifiz
develops to avoid interpenetration of the surfaesat P™.

Aj=D0j/NS, T =T;/T (19)  The constitutive equations for mixed-mode delamination are
50F12
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obtained from Equations (23) to (26), and summarized as fol/\, = £33 with & andés fixed during the loading history.

lows The terms in Equation (2) are evaluated as follows,
T, yAN - = . a/2
T; - A; exp (2_“6/‘1_d> (27) ( Gr )Q/Q _ foAd T5(Aq1, Do,y Az)dAg /
T3 <A3> B Ic fooo T3(070,A3)dA3
0 ~ |8 a/2
+ 0 exp <M|A3|> ( 2/0{ —+ ¢1(A3)>
(= As) g (1+& +§3
andk, x > 1 is an interpenetration factor to magnify the re- o)2
pulsive forceTs, and chosen arbitrarily. Equations (26) and Gu fOAl Ti (D, D, Az)dAy
(27) reduce to Equations (17) and (18) for single-mode de- <Gn fooo Ty(A,0,0)d0
lamination. o
The empirical parameters governing the constitutive /
equations in (27) are the critical energy release rétes (1+ €2 +§ 2/a +¢2(8s)
Gire, Grr1e; the maximum interfacial strengthy, T, T; 20
and the the critical separation valué$, A5, A§. These may
be specified based on atomistic models of separation or on /2 Do a/2
a phenomenological basis depending whether the separatior( Gr ) - Jo  Ta(Br, B, Bg)dDs
process is governed by ductile void coalescence or a brittle \ G111c Jo " T2(0, Do, 0)d A
cleavage mechanism. By specifying the critical energy ) /2
release rates and the maximum interfacial strengths, one can _ & + ¢3(A3)
obtain the critical separation values. The path independent (1+&+ 55)2/“

integral along a boundary that contains the interface material -

can be used to show that the area under the traction versugheres;(A3), j = 1,2, 3 are exponential decaying functions

separation curve is the work of fracture per unit area. Equawith increasing/\3. The progression of delamination occurs

tion (16) under pure Mode |, Mode Il, or Mode Il fracture, when the functions;(A3) , j = 1,2,3 are virtually zero.

is used to obtain the critical separation valdes j = 1,2, 3. Adding the last three equations shows that the power criterion
in Equation (2) is satisfiedll

Proof. The _exponentigl constitutive law in Equatiorjs (_26) INTERFACE FINITE ELEMENT
and (27) satisfy Equation (1) for the onset of delamination, _ ] _
and Equation (2) for the progression of delamination. The formulation for the interface element is based on the

work of Beer?!. A non-linear solution procedure is necessary
. ) . . o because of the geometrical nonlinearities and the nonlinear
For simplicity, monotonically increasing loading is as- mechanical behavior of the interface material. The objective
sumed, i.e.d = u”. The effect of interpenetration is also ,¢js section is to obtain the tangent stiffness makéiand

neglected/A; > 0. For the onset of delamination, the com- e internal force vectdi®, required in the nonlinear solution
ponents of the traction vector in Equation (27) are SUbSt'tUte%rocedure

into Equation (1) to obtain the effective tracti, A 2n-noded isoparametric interface element with de-

1 B8\ Ve grees of freedom and applicable to three-dimensional analysis
((A‘f + AS + Ag) exp <a H )) (28) is used. The element consists of an upper and lower surface
g S* with n-nodes each. The natural coordinate system is
— e (1 — uﬁ> andn,. For the surface$*, node; has three translational
3 degrees of freedonf; , 43, ¢3; with the first subscript imply-

ing the associated global direction. The nodal displacement
This equation is analogous to Equation (15) for single-modeectorq is arranged as follows,

delamination. In view of Equation (28), delamination onset

occurs whernu = 1. At this value ofy, the effective traction qa={q",q}T (29)

attains the maximum value of one. The failure criterion in af = [ aE gk, )T

Equation (1) predicts delamination onset at an effective trac- R

tion equal to one. Therefore, with the proposed constitutiveand j denotes the node number= 1, ..., n. The displace-

law in Equation (27) delamination initiates when the criterionment f|e|dU (m,m2), j = 1,2,3 for the surfacesS* are

in Equation (1) is satisfied. mdependent and in terms of the global displacement degrees
For the progression of delamination, proportional strainingof freedomqjg.

is assumed. The relative displacement associated to the slid-

ing Mode Il and Mode IlI are written ag\; = &A; and U5 (m1,7m2) = ¢, Nau(1,72) (30)

T

6 0F12

AMERICAN INSTITUTE OFAERONAUTICS AND ASTRONAUTICSPAPER 2002-1576



whereN,, is the shape function corresponding to théh de-  Material Tangent Stiffness
gree of freedom. Substituting Equation (30) into Equation The components of the material tangent stiffriBsare ob-

(13) gives, tained in the incremental form,
00 = QENLSGE, — QNWOG, 31 T,
d Q]l q]" Qﬂ q]” ( ) 6Tz = 7§A5A] = DijdAj (39)
J

Equation (31) in matrix form is,
First consider the case in which there is no interpenetration,

sA = [QIN,-QIN]éq (32) thatis, forAz > 0. The components dD are obtained by
[B+ —B‘] 5q = Béq differentiation of Equation (27) according to Equation (39),
. T‘f AZA ~ |ja—2
whereN is D;; = Ac ( i~ ﬁ;ua}ﬁ |4 ) Q (40)
N=[NL.J,j=1,.n (33)

whered;; is the Kronecker delta is given by Equation (24),

andI is a3 x 3 identity matrix. Equation (32) relates the and is defined by,

relative displacement to the nodal displacement degrees of Uit de P
freedom. W= { S hae= NB (41)
The internal force vector of the interface element is ob- d it d>p

tained by substituting Equation (32) in (3), ) L o
Now consider the case for which interpenetration is de-

. T T m Tee tected, that is/A3 < 0. The non-zero components bBf are
Wiy, = 09 //Sm B TdS" = oq fiy (34) given by Equation (40) fof, j = 1,2 and the component re-
¢ lated to interpenetration,

whereT is the traction vector acting on the deformed mid- -8
surface anc_j the integration is performed over the deformed Dys — Ko (1 tk ‘Ag}ﬁ) exp <n |A3| ) (42)
element mid-surface. In numerical analyses, the internal 16
force vector needs to be computed accurately, and the tan-
gent stiffness matrix may be computed approximately. Thevhere Ky = Ty exp(1/5)/AS. The range of the values
computation of the tangent stiffness matrix is intensive andf D33 should be restricted by two conditions: (1) A small
a very accurate expression is not required. Therefore, th®s3 induces interpenetration, and (2) a larbes produces
partial derivatives of the differential area in Equation (14) isill-conditioned matrices. A list of references on these restric-
neglected. For the computation K¢, the derivatives of the tions is given by Rvila et al??. The value ofD33 should be
rotation matrix with respect to the nodal displacements arén the range,
neglected. This approximation with Equation (32) leads to

10° N/mm?® < D35 < 10 N/mm?®
Bt =B~ =B, (35)

_ o The upper bound of the condition cannot be guaranteed be-
04 = [Bs, —Bs]0q = B'oq cause of the exponential nature of Equation (42). Therefore,

Thus, the approximate tangent stiffness matrix is, for Az < 0, the expression$; and D33 are modified to have

the form
fe T3 = KOA37 D33 == K() (43)
Ke — i / / B'DB'AS"  (36)
9q . andKy = TS exp(1/3)/AS.

. . ) ) i The material tangent stiffness is non-symmetric, and can be
whereD is the material tangent stiffness, and is later def'nedpositive definite, semi-definite, or negative definite. Far

Equation (36) is rewritten using the relation in Equation (35),17 the matrixD;; is negative definite. The material tangent
stiffness matrix has properties of an anisotropic material, one
KE*‘) = { Iié _é{s } (37)  which has strong dependence on the relative displacements
T s in all directions. For single-mode delaminatidp, is fully

Where diagonal, otherwise, some of the off-diagonals are non-zero.

K, = / / B,'DB,dS™ (38)  Consistent and Inconsistent Tangent Stiffness

For the full-Newton-Raphson nonlinear solution proce-
The internal force vector is accurately computed, while thedure, the consistent tangent stiffness matrix is used in the
approximations for the tangent stiffness matrix save compufinite element analysis. However, when softening constitu-
tational time because only a quarter of the full matrix has tative laws with the consistent tangent stiffness are employed,
be computed. the tangent stiffness matrix is often ill-conditioned and a
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converged solution may not be obtaidéd An alternative Table 1 Graphite-Epoxy Properties
solution is to refine the mesh ahead of the crack-tip or the

decrease the maximum interfacial strertgtht. Refining the
mesh size increases the computational time, and lowering the
maximum interface strength can result in a premature initia-
tion of delaminatiof. Alternatively, researchers often utilize
a positive definite matrix such as the material secant stiffness
when dealing with softening constitutive laws. However, a
large number of iterations results in using the material secant
stiffness. As an alternative, three different modifications to.

En Exz Ezz  Giz Gis G2 N2 =Nz N3

150.0GPa 11.0GPa 6.0GPa 3.7GPa  0.25 0.45

Table 2 Interface Material Properties

the tangent stiffness matrix eliminate these convergence diffi- T, T, Ts G Giie» Giiie K
culties while a converged solution can be obtained in a smak
number of iterations: 80MPa 60MPa 0.352N/mm 1.45N/mm 10" N/mm?

1. Equation (36)K& = max(0, K), i =1,2,...,2n
lower laminates. Interface elements with contact properties
were placed along the initial crack length and interface el-
3. Equation (40)D;; = max(0, D;;),i = 1,2,3 ements formulated with the softening law are placed along
the bonded length. The upper and lower laminates are mod-
The convergence rate of option 1 is better than option 2, angled with C3D8I incompatible-mode 8 node solid element
the convergence rate of option 2 is better than option 3. If thewailable in ABAQUS. Each laminate is modeled with one
mesh is coarse, is better to choose option 3. element through the thickness, 100 elements along the length
of the laminate, and one element across the width. See Fig-
ure 6a. For the DCB, three elements along the width are
Interface elements were developed to model initial delamused. The eight node isoparametric interface element for
inated surfaces. All the components of the material tangentree-dimensional analysis shown in Figaleis compatible
stiffness is zero, except for the case in which interpenetrawith C3D8I solid element. The element was implemented
tion is detected. If interpenetration is detected Equation (43jn the commercial finite element code ABAQUS as an UEL
is used. Thus, these interface elements act like contact elgubroutine. Three point Gauss integration is used for the
ments. computation of the tangent stiffness matrix and internal force
vector.

FINITE ELEMENT RESULTS An incremental-iterative approach is adopted for the non-
Numerical results are presented for quasi-static loading antinear finite element analysis, and the Newton’s method avail-
unloading of the double cantilever beam (DCB), the end loadble in ABAQUS is used to trace the loading path of the spec-
split (ELS), end notch flexure (ENF), and fixed ratio mixed imens with a displacement-control analysis. For the MMB,
mode (FRMM) fracture test specimens. Results are also preéhe Riks method available in ABAQUS is used. The modifi-
sented for quasi-static loading of the mixed mode bendingation to the tangent stiffness matrix mostly used is option 2
(MMB). Mode | fracture occurs in the DCB specimen, Mode discussed in the section of interface elements. The response
Il occurs in the ELS and ENF specimens, and Mode | and llof the test specimens is characterized by the load-deflection
occur in the FRMM and MMB. The fracture test specimenscurve. A typical finite element model of one of the test spec-
are shown in Figureé. imens consists of about 300 elements, and 2000 degrees of

Mode | and mixed-mode test specimens are modeled witffeedom. The computational time required was about 1200
the laminate stacking sequenfti§] and the unidirectional seconds of CPU time on a Sun Solaris 2000. The average
material properties of Graphite-Epoxy listed in Table 1. Annumber of iterations per load increment is 7.
isotropic material with = Fy; andv = v45 are used for the The finite element solutions are compared to the beam
Mode Il test specimens rather than composite. The maximuranalytical solutions derived from linear elastic fracture me-
interfacial strength and the critical energy release rates arehanics. The analytical solutions for the DCB and ENF are
listed in Table 2. The geometrical properties are the lengtiyiven by Mi et all4, and for the FRMM and ELS are given
L = 100 mm, the arm thicknesd = 1.5 mm, and width by Chen et af*. The finite element solutions for the MMB
B = 10 mm. For the DCB, the geometrical properties are dif-test specimen are compared to the analytical solution in the
ferent from the other test specimerds:= 150 mm,h = 1.5 appendix.

mm, andB = 20 mm. The initial crack length, of each test The DCB test specimen shown in Figui@is used to de-
specimen is: DCB - 50 mm, ENF - 30 mm, ELS - 50 mm, termine the interlaminar fracture toughness in Mode I. The
FRMM - 40 mm, and MMB - 20 mm. load w is symmetrically applied, equal and opposite at the

The interface elements are positioned between the upip of the upper and lower arm of the DCB test specimen.
per 0° laminate and the lowed° laminate. Delamination The corresponding reaction foréeis computed. The other
is constrained to grow in the plane between the upper andnd of the specimen is clamped. The response of the DCB is

2. Equation (37)K,,, = max(0, K,,),t =1,2,...,n

Contact Elements
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shown in Figurera. For a loading-unloading cycle, excellent CONCLUSIONS

agreement of the FEM results are obtained compared t0 t0 pn jrreversible constitutive law that describes the delam-
the closed form solutlong and to the expenme_ntal_data. Atpﬁ)nation process is presented. The constitutive law is imple-
view of the Mode | specimen near the delamination front isy,gteq with interface element to predict delamination. It pre-
shown in Figurezb. Non-self-similar crack growth occurs be- iqts initiation of delamination based on a multi-axial stress
cause of the anticlastic bending effect. The tangent St'ﬁ”esériteria, and progression of delamination based on an em-

matrix in the Newton-Raphson methods did not converge afjca) fracture criteria. A damage parameter is included to
the limit point because of the large value of the maximumy eyent the restoration of the previous cohesive state between
|nt.erfaC|aI strength™. TheT* was reduced by half Of IS the interfacial surfaces. To demonstrate the irreversibility ca-
original value and a converged solution was obtained. Any of,apjjity of the constitutive law, steady-state crack growth is

the modifications to the tangent stiffness matrix discussed i |ated for quasi-static loading-unloading cycle of various
the section of interface elements, produced converged sOlyzaqq e test specimens. The finite element solutions are in

tions without having to modify the originial value &f". excellent agreement with the analytical solutions.
The ELS and ENF test specimens shown in Figilrend
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where E is the Young's Modulus aridis the moment of in-
ertia. The load-deflection response, when delamination prop-
agates withu < L/2is

(50)

6, 1999, pp. 301-317. and substituting its solution into
16L (6c— L\ Pia®
APPENDIX == ! 52
R < AL ) EI (52)

The beam analytical solutions based on linear elastic frac-
ture mechanics for the MMB test specimen are presented
without details. In general, the total energy release rate is

Gr=Gr+Gyr (44)

G andGyy are the Mode | and Mode |l energy release rate
contributions. The delamination propagates when,

Gr=G.=G"+Gm (45)

andG. is the critical energy release rat@;* and G7; are

the the Mode | and Mode Il energy release rates at crack
propagation. For all the fracture test specimens, it is possi-
ble to expres® = G'/G7}, whereg € [0, o), so that the

G, value can be computed based on the fracture criterion in
Equation (2)

" a/2 1\ (/2 —(2/a)
o) () )" e

The derivations to obtain the expressiongofor the MMB
specimen are omitted here, and is

GI G}n 4 6c— L
¢ Grr G}"} 3 <QC+L> ( )

wherec is the length of the lever arm, ardis the length of
the MMB specimen. For simplifying purposes, the lodgs
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