
Development of Reduced-Order Models for
Aeroelastic Analysis and Flutter Prediction

Using the CFL3Dv6.0 Code

Walter A. Silva �

NASA Langley Research Center
Hampton, Virginia 23681-0001

Robert E. Bartels y

NASA Langley Research Center
Hampton, Virginia 23681-0001

A reduced-order model (ROM) is developed for aeroelastic analysis using the CFL3D
version 6.0 computational 
uid dynamics (CFD) code, recently developed at the NASA
Langley Research Center. This latest version of the 
ow solver includes a deforming
mesh capability, a modal structural de�nition for nonlinear aeroelastic analyses, and a
parallelization capability that provides a signi�cant increase in computational eÆciency.
Flutter results for the AGARD 445.6 Wing computed using CFL3D v6.0 are presented,
including discussion of associated computational costs. Modal impulse responses of
the unsteady aerodynamic system are then computed using the CFL3Dv6 code and
transformed into state-space form. Important numerical issues associated with the com-
putation of the impulse responses are presented. The unsteady aerodynamic state-space
ROM is then combined with a state-space model of the structure to create an aeroelas-
tic simulation using the MATLAB/SIMULINK environment. The MATLAB/SIMULINK
ROM is used to rapidly compute aeroelastic transients including 
utter. The ROM shows
excellent agreement with the aeroelastic analyses computed using the CFL3Dv6.0 code
directly.

Introduction

E
ARLY mathematical models of unsteady aerody-
namic response capitalized on the eÆciency and

power of superposition of scaled and time- shifted fun-
damental responses, also known as convolution. Clas-
sical models of two-dimensional airfoils in incompress-
ible 
ow1 include Wagner's function2(response to a
unit step variation in angle of attack), Kussner's func-
tion3(response to a sharp-edged gust), Theodorsen's
function4(frequency response to sinusoidal pitching
motion), and Sear's function (frequency response to
a sinusoidal gust). As geometric complexity increased
from airfoils to wings to complete con�gurations, the
analytical derivation of these types of response func-
tions became impractical and the numerical computa-
tion of linear unsteady aerodynamic responses, in the
frequency domain, became the method of choice.5
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When geometry- and 
ow-dependent nonlinear aero-
dynamic e�ects became signi�cant, appropriate non-
linear aerodynamic equations were solved using time-
integration techniques. Coupling the nonlinear aero-
dynamic equations with a linear structural model pro-
vides a direct simulation of aeroelastic phenomena.
This direct simulation approach for solving nonlinear
aeroelastic problems has yielded a very powerful sim-
ulation capability with two primary challenges. The
�rst challenge is the associated computational cost
of this simulation, which increases with the �delity
of the nonlinear aerodynamic equations to be solved.
Computational cost may be reduced via the imple-
mentation of parallel processing techniques, advanced
algorithms, and improved computer hardware process-
ing speeds. The second, more serious, challenge is
that the information generated by these simulations
cannot be used e�ectively within a preliminary design
environment. Any attempt to incorporate the output
of these aeroelastic simulations within a design envi-
ronment inevitably becomes design by trial-and-error,
a completely impractical approach. As a result, the
integration of traditional, computational aeroelastic
simulations into preliminary design activities involving
disciplines such as aeroelasticity, aeroservoelasticity
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(ASE), and optimization is, at present, a costly and
impractical venture.
The goal behind the development of reduced-order

models (ROMs) is aimed precisely at addressing these
two challenges. Development of a ROM entails the
development of a simpli�ed mathematical model that
captures the dominant dynamics of the original sys-
tem. This alternative mathematical representation of
the original system is, by design, in a mathematical
form suitable for use in a multidisciplinary, prelimi-
nary design environment. As a result, interconnection
of the ROM with other disciplines is possible, thereby
addressing the second challenge. The simplicity of
the ROM yields signi�cant improvements in compu-
tational eÆciency as compared to the original system,
thereby addressing the �rst challenge.
At present, the development of CFD-based ROMs

is an area of active research at several industry, gov-
ernment, and academic institutions.6 Development
of ROMs based on the Volterra theory is one of sev-
eral ROM methods currently under development.7{11

Reduced-order models based on the Volterra theory
have been applied successfully to Euler and Navier-
Stokes models of nonlinear unsteady aerodynamic and
aeroelastic systems. Volterra-based ROMs are based
on the creation of linearized and nonlinear unsteady
aerodynamic impulse responses that are then used in
a convolution scheme to provide the linearized and
nonlinear responses of the system to arbitrary inputs.
In this setting, the linearized and nonlinear impulse
responses are the ROMs of the particular nonlinear
system under investigation. Upon transformation of
the linearized and nonlinear impulse responses into
state-space form, the state-space models generated can
also be considered ROMs.
Another ROM method, di�erent from the Volterra-

based ROM approach, is the Proper Orthogonal De-
composition (POD) technique. The POD is a method
that is used extensively at several research organiza-
tions for the development of reduced-order models. A
thorough review of POD research activities can be
found in Beran and Silva.6 In addition, a review of the
issues involved in the development of reduced-order
models for 
uid-structure interaction problems is pro-
vided by Dowell and Hall.12 A topic of recent interest
is the potential development of hybrid POD/Volterra
methods. These hybrid techniques would combine the
spatial resolution possible with POD methods with
the low dimensionality and computational eÆciency
of Volterra methods.
The linearization of a nonlinear aeroelastic model

is an important �rst step towards understanding the
nature and magnitude of nonlinear aeroelastic phe-
nomena. The response of a linearized system about
a nonlinear steady-state condition can be obtained via
several methods. Some of these methods include the
order reduction of state-space models using various

techniques.13,14 One method for building a linearized,
low-order, frequency-domain model from CFD anal-
ysis is to apply the exponential (Gaussian) pulse in-
put.15 This method is used to excite an aeroelastic
system, one mode at a time, using a smoothly-varying,
small-amplitude Gaussian pulse. The time-domain
aeroelastic responses due to the exponential pulse in-
put are transformed into frequency-domain general-
ized aerodynamic forces (GAFs). These linearized
GAFs can then be used in standard linear aeroelas-
tic analyses.16 Raveh et al17 applied this method but
replaced the exponential pulse input with step and
impulse inputs. Raveh18 also performed parametric
variations in order to better understand the numeri-
cal issues associated with impulse and step responses,
particularly for nonlinear problems. Guendel and
Cesnik19 applied the Aerodynamic Impulse Response
(AIR) technique, based on the Volterra theory, to the
PMARC aerodynamic panel code. The PMARC/AIR
code was applied to a simpli�ed High Altitude Long
Endurance (HALE) aircraft for rapid linear and non-
linear aeroelastic analysis of the vehicle.

As mentioned above, various inputs can be used in
the time domain (CFD code) to generate GAFs in
the frequency domain in order to perform standard,
frequency-domain aeroelastic analyses. But if time-
domain aeroservoelastic (ASE) analyses are desired,
the frequency-domain GAFs are transformed back into
the time domain using traditional rational function
approximation (RFA) techniques. These techniques
include, for example, the well-known Rogers approx-
imation20 and the Minimum State technique.21 The
RFA techniques transform frequency-domain GAFs
into state-space (time domain) models amenable for
use with modern control theory and optimization. The
process just described transforms time-domain infor-
mation (CFD results) into frequency-domain informa-
tion only to have the frequency-domain information
transformed back into the time domain.

Gupta et al22 and Cowan et al23,24 applied a set
of 
ight testing inputs to an unsteady CFD code and
used the information to create a linear ARMA (autore-
gressive moving average) model that was transformed
into state-space form. Although this technique is ap-
plied entirely within the time domain, the shape of the
inputs applied to the CFD code requires tailoring in
order to excite a speci�c frequency range, resulting in
an iterative process. In a similar vein, Rodrigues25 de-
veloped a state-space model for an airfoil in transonic

ow using a transonic small-disturbance algorithm. In
this paper, a direct approach for eÆciently generating
linearized unsteady aerodynamic state-space models is
presented. Although the present application of the
method deals with linearized responses based on lin-
earized impulse responses (linearized Volterra kernels),
the method can be formally extended to address non-
linear aeroelastic phenomena via the use of nonlinear
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impulse responses (nonlinear Volterra kernels).
The goal of this paper is to develop linearized, un-

steady aerodynamic state-space models for prediction
of 
utter and aeroelastic response using the the paral-
lelized, aeroelastic capability of the CFL3Dv6 code.
The results to be presented provide an important
validation of the various phases of the ROM devel-
opment process. As such, this paper begins with a
brief outline of the various phases of the process. This
outline is followed by a description of the CFL3Dv6
code and a description of the CFD-based impulse re-
sponse technique. The Eigensystem Realization Al-
gorithm (ERA),26 which transforms an impulse re-
sponse into state-space form, is described. Flutter
results for the AGARD 445.6 Aeroelastic Wing using
the CFL3Dv6 code are presented, including computa-
tional costs. Unsteady aerodynamic state-space mod-
els are then generated and coupled with a structural
model within a MATLAB/SIMULINK27 environment
for rapid calculation of aeroelastic responses including

utter. Aeroelastic responses computed directly using
the CFL3Dv6 code are compared with the aeroelas-
tic responses computed using the CFD-based ROM
within the MATLAB/SIMULINK environment.

Description of Methods
The following subsections describe the parallelized,

aeroelastic version of the CFL3Dv6 code and the two
primary phases of the ROM development process. The
�rst phase involves the identi�cation of unsteady aero-
dynamic impulse responses; the second phase involves
the transformation of these impulse responses into
state-space form. Step responses can be used in lieu
of impulse responses since these functions are related
via di�erentiation and both functions provide equiva-
lent levels of excitation to a given system. Preference
of one function over the other will be mentioned when
appropriate.

CFL3Dv6 Code

The computer code used in this study is the
CFL3Dv6 code, which solves the three-dimensional,
thin-layer, Reynolds averaged Navier-Stokes equations
with an upwind �nite volume formulation.28,29 The
code uses third-order upwind-biased spatial di�erenc-
ing for the inviscid terms with 
ux limiting in the
presence of shocks. Either 
ux-di�erence splitting or

ux-vector splitting is available. The 
ux-di�erence
splitting method of Roe30 is employed in the present
computations to obtain 
uxes at cell faces. There are
two types of time discretization available in the code.
The �rst-order backward time di�erencing is used for
steady calculations while the second-order backward
time di�erencing with subiterations is used for static
and dynamic aeroelastic calculations. Furthermore,
grid sequencing for steady state and multigrid and lo-
cal pseudo-time stepping for time marching solutions

are employed.
One of the important features of the CFL3D code is

its capability of solving multiple zone grids with one-
to-one connectivity. Spatial accuracy is maintained
at zone boundaries, although subiterative updating of
boundary information is required. Coarse-grained par-
allelization using the Message Passing Interface (MPI)
protocol can be utilized in multiblock computations by
solving one or more blocks per processor. When there
are more blocks than processors, optimal performance
is achieved by allocating an equal number of blocks to
each processor. As a result, the time required for a
CFD-based aeroelastic computation can be dramati-
cally reduced.
In this paper, multiblock MPI parallel aeroelastic

computations, including 
utter, for the AGARD 445.6
Aeroelastic Wing are performed using 96 
ow�eld
blocks. In order to achieve an optimal division of grid
points, it is necessary to place 
ow �eld block bound-
aries near a moving solid surface (the wing). The
multiblock boundary and interior movement scheme
allows the user to place block boundaries near surfaces
as necessary for optimal parallelization. Boundaries
interior to the 
uid domain near a surface respond to
the local surface motion. As the wing moves, block
boundaries move to maintain integrity of block inter-
faces and the airfoil surface.
Because the CFD and computational structural me-

chanics (CSM) meshes usually do not match at the
interface, CFD/CSM coupling requires a surface spline
interpolation between the two domains. The interpo-
lation of CSM mode shapes to CFD surface grid points
is done as a preprocessing step. Modal de
ections at
all CFD surface grids are �rst generated. Modal data
at these points are then segmented based on the split-
ting of the 
ow �eld blocks. Mode shape displacements
located at CFD surface grid points of each segment are
used in the integration of the generalized modal forces
and in the computation of the de
ection of the de-
formed surface. The �nal surface deformation at each
time step is a linear superposition of all the modal
de
ections.

ROM Development Process

An outline of the ROM development process is as
follows:
1. Implementation of impulse response technique

into aeroelastic CFD code;
2. Computation of impulse responses for each mode

of an aeroelastic system using the aeroelastic CFD
code;
3. Impulse responses generated in Step 2 are input

into the ERA;
4. Evaluation/validation of the state-space models

generated in Step 3;
Steps 1 and 2 are described in greater detail in the

references that address Volterra-based Reduced-Order
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Fig. 1 Coupling of structure and aerodynamics
within an aeroelastic CFD code.

Models (ROMs) such as Refs. 3-7. The basic premise
of Volterra-based ROMs is the extraction of linear
and nonlinear kernel functions that capture the input-
output functional relationship between, for example,
unsteady motion of a wing (input) and the resultant
loads created by that motion (output). For Volterra-
based ROMs, these kernel functions are linearized and
nonlinear impulse response functions. The relevant as-
pects of Step 1 and Step 2 are discussed in the next
two subsections. Details of Step 3 are presented in the
third subsection. Step 4 is presented in the Results
section of the paper.

CFD-Based Discrete Unit Impulse Response
Technique

An aeroelastic system can be viewed as the coupling
of an unsteady aerodynamic system (
ow solver) with
a structural system (Figure 1). The present study fo-
cuses on the development of an unsteady aerodynamic
ROM (Figure 2) that is then coupled to a structural
model for aeroelastic analyses.
A standard technique for computing linearized gen-

eralized aerodynamic forces (GAFs) for an aeroelas-
tic system with n modes using a CFD code is the
application of a Greens function (in
uence function)
approach. Using the CFD code, each mode is individ-
ually excited to obtain the response of all the modes to
this excitation. This process is applied to all n modes,
resulting in an n by n "matrix" of responses. The term
"matrix" is in quotes to indicate that the responses
obtained using this method are usually time-domain
functions rather than constants that usually populate
a standard matrix.
This technique is a linearization by virtue of the

fact that, in a computational aeroelastic analysis, the
input to the nonlinear 
ow solver is the total physi-
cal deformation of the wing consisting of the summed

LINEAR
STRUCTURE

NONLINEAR
AERODYNAMICS

MODAL
INPUTS

GAFs

Fig. 2 Identi�cation of generalized aerodynamic
forces (GAFs).

total of all the modes of interest. By applying a sep-
arate excitation to each mode through the nonlinear

ow solver, the total nonlinear aeroelastic response is
being approximated by a linear superposition of its
individual responses. For a linear 
ow solver, this
approach would be exact. Consistent with this as-
sumption, this approximation is valid only for small
input amplitudes. This is not necessarily a drawback
as, quite often, the linearized dynamic aeroelastic re-
sponse about a nonlinear steady (or static aeroelastic)
condition is a reasonable representation of the nonlin-
ear aeroelastic system under investigation.

There are three types of modal excitation inputs
that are typically used when implementing this tech-
nique. The �rst is a brute-force approach based on the
input of sine waves of individual frequencies. The in-
dividual modal responses to these inputs for n modes
and r frequencies requires n times r separate code eval-
uations. In addition, the time length required for each
one of these evaluations can be quite large (i.e., com-
putationally expensive) in order to get an adequate
number of cycles for adequate frequency resolution,
especially for the lower frequencies. This approach is
clearly the least eÆcient.

A second, more elegant approach, involves the use
of an exponential (Gaussian) pulse.15 The exponen-
tial pulse can be shaped to excite a particular range
of frequencies. Because an exponential pulse excites
a pre-selected frequency range, only one code eval-
uation is required per mode. This is a signi�cant
computational savings compared to the brute-force
approach, but shape optimization of the exponential
pulse may be required when targeting a particular
frequency range. In addition, the exponential pulse
appears to be strictly limited to linearized analyses.
Whereas the impulse function �nds formal application
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to nonlinear problems via the Volterra theory, the in-
clusion of the exponential pulse within a Volterra-type
theoretical framework is unde�ned.
A third, recently-developed, approach consists of

replacing the exponential pulse input with a unit im-
pulse.8{11 The unit impulse excites the entire fre-
quency range of a system so that shape optimization
to excite a particular range of frequencies is not nec-
essary. In addition, due to the simplicity of the input
and the short amount of time required for convergence,
each solution is computed with signi�cant computa-
tional eÆciency. Raveh et al11 applied this technique
successfully to the AGARD 445.6 Aeroelastic Wing
using step and impulse responses. Convolution of
the step responses with sinusoids of varying frequency
yielded frequency-domain GAFs that were then used
for frequency-domain aeroelastic analyses. If desired, a
more direct approach for computing frequency-domain
GAFs is to apply a Fast Fourier Transform (FFT) to
the impulse responses. An example of this approach is
presented in a subsequent section.

System/Observer/Controller Identi�cation
Toolbox (SOCIT)

In structural dynamics, the realization of discrete-
time state-space models that describe the modal dy-
namics of a structure has been enabled by the de-
velopment of algorithms such as the Eigensystem
Realization Algorithm (ERA)26 and the Observer
Kalman Identi�cation (OKID)31 Algorithm. These
algorithms perform state-space realizations by us-
ing the Markov parameters (discrete-time impulse
responses) of the systems of interest. These algo-
rithms have been combined into one package known as
the System/Observer/Controller Identi�cation Tool-
box (SOCIT)32 developed at NASA Langley Research
Center.
The primary algorithm within the SOCIT group

of algorithms used for the present system realization
is known as the Eigensystem Realization Algorithm
(ERA). A brief summary of the basis of this algorithm
follows.
A �nite dimensional, discrete-time, linear, time-

invariant dynamical system has the state-variable
equations

x(k + 1) = Ax(k) +Bu(k) (1)

y(k) = Cx(k) +Du(k) (2)

where x is an n-dimensional state vector, u an m-
dimensional control input, and y a p-dimensional out-
put or measurement vector with k being the discrete
time index. The transition matrix, A, characterizes
the dynamics of the system. The goal of system real-
ization is to generate constant matrices (A, B, C) such
that the output responses of a given system due to a
particular set of inputs is reproduced by the discrete-
time state-space system described above.

Fig. 3 Aeroelastic modes for the AGARD 445.6
Wing.

For the system of Eqs. (1) and (2), the time-domain
values of the systems discrete-time impulse response
are also known as the Markov parameters and are de-
�ned as

Y (k) = CAk�1B (3)

with B an (n x m) matrix and C a (p x n) matrix.
The ERA algorithm begins by de�ning the generalized
Hankel matrix consisting of the discrete-time impulse
responses for all input/output combinations. The al-
gorithm then uses the singular value decomposition
(SVD) to compute the A, B, and C matrices.
In this fashion, the ERA is applied to unsteady

aerodynamic impulse responses to construct unsteady
aerodynamic state-space models. The next section
presents computational aeroelastic and unsteady aero-
dynamic results for the CFL3Dv6 code and for the
state-space ROM.

Results
The AGARD 445.6 Aeroelastic Wing has been used

extensively by several authors to validate computa-
tional methods.16,22,33 Although the aeroelastic be-
havior of this wing is fairly benign (weakly nonlin-
ear), the aeroelastic data from the 
utter test of this
wing provides a good starting point for validation of
computational techniques.34 The wing is a 45-degree
swept-back wing with a NACA 65A004 airfoil section,
panel aspect ratio of 1.65, and a taper ratio of 0.6576.
The shapes of the �rst four structural modes for this
wing are presented in Figure 3. The modes are �rst
bending, �rst torsion, second bending and second tor-
sion. The corresponding modal frequencies in vacuo
are 9.60, 38.2, 48.35, and 91.54 Hz. Additional details
regarding this wing can be found in the references.

Full CFD Flutter Solution

This section presents results based on the tradi-
tional full CFD 
utter solution. The 
utter solution
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is obtained by iterating between the nonlinear aerody-
namic system (
ow solver) and the structural system
at a given Mach number and dynamic pressure entirely
within the CFD code. The output of this solution con-
sists of a time history of the generalized coordinates of
the aeroelastic system. Depending on the nature of
this aeroelastic response (divergent or convergent), a
new dynamic pressure is selected and a corresponding

utter solution is computed. This iterative process is
used to de�ne the 
utter boundary at several Mach
numbers. The results presented in this paper are for
the solution of the Euler equations within CFL3Dv6.
Figure 4 presents the response of each of the four

generalized coordinates at a Mach number of 0.9, a
dynamic pressure of 89.3 psf, and a structural damp-
ing value (g) of zero. The divergent nature of the �rst
mode indicates that this condition is above the 
utter
boundary. By performing similar analyses at di�erent
dynamic pressures, a dynamic pressure of 75 psf was
de�ned as the 
utter dynamic pressure (neutral stabil-
ity point) for this Mach number. The corresponding

utter frequency was 14.8 Hz. The aeroelastic re-
sponse at a dynamic pressure of 75 psf is presented as
Figure 5, indicating the neutral stability of the aeroe-
lastic system at this condition. These solutions were
computed using a non-dimensional time step of 0.3
with 5 subiterations per time step and use of multigrid
capability for error reduction and convergence acceler-
ation.
Comparison of 
utter results for the full CFD anal-

ysis with 0.03 structural damping, the analysis of
Lee-Rausch16 (0.03 structural damping), and the ex-
perimental results of Yates et al34 are presented in
Table 1 and Table 2 for Flutter Speed Index (FSI)
and Flutter Frequency Ratio (FFR), respectively. Re-
sults from the full CFD 
utter analysis are consistent
with those from Lee-Rausch16 and other Euler 
utter
results.22

Table 1 Comparison of Flutter Speed Index (FSI)
with published results.

M Exp. Lee-Rausch CFL3Dv6
g=0.03 g=0.03

0.9 0.370 0.352 0.350
0.96 0.308 0.275 0.279

Table 2 Comparison of Flutter Frequency Ratio
(FFR) with published results.

M Exp. Lee-Rausch CFL3Dv6
g=0.03 g=0.03

0.9 0.422 0.425 0.394
0.96 0.365 0.343 0.315

The computational cost for one 
utter solution (at a
given Mach number and dynamic pressure) is 71 CPU
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Fig. 4 Aeroelastic transients in terms of general-
ized coordinates at M=0.9 and Q=89.3 psf.
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Fig. 5 Aeroelastic transients in terms of general-
ized coordinates at M=0.9 and Q=75.0 psf.

hours for the number of cycles shown in Figures 4 and
5. This is the total CPU cost but, using 96 processors,
the actual execution time is approximately 45 minutes
on an Origin 2000 cluster. The total time elapsed from
the moment the job is submitted for execution, how-
ever, can vary depending on the number of other jobs
(from di�erent users) in the queue for the computer
resources. The total elapsed time for a single 
utter
solution can therefore range from 45 minutes to several
hours if the job queue is busy. In addition, although
four cycles of the lowest frequency mode appear to be
suÆcient for visually determining the stability of the
system, accurate computation of the relevant aeroelas-
tic frequency and damping requires additional cycles.
If the number of cycles is doubled to eight cycles, the
computational costs increase proportionately to 142
CPU hours and 90 minutes of execution time. The to-
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tal time elapsed can range from 90 minutes to several
hours depending on the number of jobs in the queue.
These costs are, of course, a function of the aeroelas-

tic properties of the system under investigation. The
use of parallel processing clearly provides signi�cant
improvement in computational time. However, the
computational costs (CPU) are still high because par-
allelization, obviously, does not reduce the amount of
computation that needs to be done. Nonetheless, this
is a signi�cant improvement over computations per-
formed on a serial platform.
Assuming four dynamic pressure solutions per Mach

number, the cost of computing a 
utter point (at one
Mach number) is 568 CPU hours, requiring at least
360 minutes of execution time. The actual time in-
vested, however, can be on the order of days since
the value of dynamic pressure selected for the subse-
quent analysis depends on the results obtained from
the previous analysis. If additional analyses involving
parametric variations of structural parameters (damp-
ing and frequencies) are needed, additional 
utter so-
lutions would be required, increasing computational
costs (CPU and time). Finally, as can be seen, the
output of traditional CFD-based 
utter analyses are
aeroelastic transients which provide frequency and
damping information at a given 
ight condition. These
transients can certainly be used to de�ne the 
utter
boundary of the aeroelastic system under investigation
but do not comprise a mathematical model of the sys-
tem itself. In order to develop a mathematicalmodel of
the system itself, a ROM is needed. The next sections
present results for the development and validation of
a ROM using the CFL3Dv6 code.

Unsteady Aerodynamic System Identi�cation

Step/Impulse Responses

Identi�cation of the unsteady aerodynamic system
begins with the excitation of each mode using a step
or impulse input. Although the frequency content
of both responses is identical, the use of the impulse
response is bene�cial when computing the frequency-
domain generalized aerodynamic forces (GAFs) and in
the application of the ERA code for the generation of
state-space models. Raveh et al17 indicate improved
numerical robustness for the step response over the im-
pulse response. Selection of one input over the other
may depend on the particular con�guration and prob-
lem under investigation.
Consistent with the linearization process described

in a previous section and in order to reduce the
possibility of numerical problems with aeroelastically-
deforming grids, small amplitudes are used with this
technique. The mode-by-mode excitation for the
AGARD 445.6 Aeroelastic Wing using impulse and
step inputs is performed using the �rst four elastic
modes of the wing. The mode-by-mode excitation
technique provides the unsteady aerodynamic response
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Fig. 6 Impulse response in mode 1 due to mode
1, M=0.9.

in all four modes due to an excitation of one of the
modes. In this fashion, the matrix of four-by-four re-
sponse functions is developed, resulting in a total of
sixteen response functions.

Figure 6 presents the impulse response of the �rst
mode due to an impulse input in the �rst mode. This
response was computed using a nondimensional time
step of 0.3, a modal amplitude of 0.001 with 5 subit-
erations and multigrid for improved convergence and
error minimization. As can be seen, the response is
well-behaved and numerically stable.
An important point in the generation of step and

impulse responses is the need to maintain the rate-
of-change of the excitation input (the modal velocity
in this case) to a reasonable value. For an aeroe-
lastic analysis, the modal velocity is de�ned as the
modal amplitude of the excitation input divided by
the nondimensional time step. Values on the order of
unity appear to be the most robust although values as
high as ten have worked. The adherence to this range
of values for the modal velocity provides the neces-
sary numerical stability to generate these responses for
unsteady motions with deforming grids. For rigidly de-
forming grids, such as plunging and pitching motions,
this limitation can be relaxed since the rigid-body am-
plitudes and velocities can be de�ned independently.
For an aeroelastically-deforming grid, the modal am-
plitude is input explicitly while the modal velocity is
computed implicitly based on the amplitude of mo-
tion and the time step. This is consistent with results
obtained by Raveh et al11 and Silva and Raveh.35

Successful and accurate identi�cation of impulse
and step responses requires careful consideration of
time/frequency resolution issues. In addition, the ef-
fect of input amplitude on the convergence of the solu-
tion and veri�cation of linear/nonlinear behavior must
be addressed. These issues are extremely important
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Fig. 7 Impulse response GAFs for all four modes.

and are discussed in greater detail in the Appendix.

Time- and Frequency-Domain GAFs

For the present four-mode aeroelastic system, four
separate analyses were performed to compute the nec-
essary impulse response GAFs. Figure 7 presents the
sixteen impulse response GAFs due to each of the four
modes at a Mach number of 0.9 computed using a
modal amplitude of 0.001 and a nondimensional time
step size of 0.3. Using a total of 2000 time steps and ac-
counting for various nondimensional parameters, this
nodimenstional time step size and number of time
steps translates to a reduced frequency resolution of
0.009. Clearly, all impulse responses are well behaved.
It is noticed that the GAFs with the largest magni-
tudes correspond to the \diagonal" responses (A11,
A22, A33, and A44). This makes physical sense since
a mode exhibits the largest response to its own exci-
tation.

Once all of the impulse response GAFs were com-
puted for all of the modes, an FFT of each impulse
response GAF yielded the frequency-domain GAF.
Figure 8 presents a comparison of the resultant FFTs
of the impulse response GAFs from Figure 7 with
frequency-domain results computed using a linear un-
steady aerodynamic method.11 As can be seen, the
comparison is very good for most of the GAFs with
some discrepancies at the higher-frequency modes.
Additional analyses are required to determine if these
di�erences are due to physically nonlinear e�ects or if
they are due to numerical/computational di�erences.
This type of comparison with a linear unsteady aero-
dynamic code can also be used to ascertain the level
of linear/nonlinear content of the CFD-based unsteady
aerodynamics. The results of Figure 8 show a close
correlation of the linearized (CFD-based) GAFs with
the fully linear GAFs.
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Fig. 8 Comparison of frequency-domain GAFs
from the impulse response GAFs with GAFs from
a linear unsteady aerodynamic method.

ROM Flutter Solution

Unsteady Aerodynamic State-Space Models

The ERA was then used to transform the impulse
response GAFs from Figure 7 into state-space form.
This process is performed within MATLAB and exe-
cutes quickly. Several options are available to allow
the user to reduce the size of the resultant state-space
matrices depending on the desired frequency range or
importance of particular modes. For the present anal-
ysis, no order reduction of this type was performed
in order to establish a baseline performance level to
which subsequent order reductions could be compared
in future analyses. The resultant system quadruple
(A,B,C,D) is of 196th order with four inputs and four
outputs corresponding to the four modes. Although
this is a high order, it is important to mention that
this state-space model contains the entire range of
unsteady aerodynamic frequencies extracted from the
CFD code. Signi�cant reductions in order can be
achieved by de�ning a frequency bandwidth of interest,
analogous to the procedure in the frequency domain
when rational function approximations are developed.
Given modern computational power, however, this
high-order system poses no computational issues with
respect to memory storage or computational speed for
aeroelastic analyses. The order, however, may need to
be reduced for subsequent ASE design studies.
The state-space model of the CFD-based unsteady

aerodynamic system can be used to compute the re-
sponse to arbitrary inputs without costly re-execution
of the CFD code. Figure 9 is a comparison of the
responses in the �rst mode due to an input consist-
ing of a narrow exponential pulse applied to all four
modes simultaneously. One of the responses in the
�gure was computed using CFL3Dv6 directly while
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Fig. 9 Comparison of GAFs for the CFD and
state-space unsteady aerodynamic model.

the other response was computed using the state-space
model within MATLAB. The exact comparison veri�es
the accuracy of the unsteady aerodynamic state-space
model. The response from the unsteady aerodynamic
state-space model was generated within seconds while
the response from CFL3Dv6 required approximately
two hours of total elapsed computing time and 177
CPU hours.

Flutter

Coupling the state-space model of the unsteady
aerodynamic system with a state-space model of the
structure within MATLAB/SIMULINK results in a
state-space aeroelastic system shown in Figure 10.
The aeroelastic response of the system is a function of
the initial conditions of the structure and the dynamic
pressure.
In order to validate this state-space aeroelastic sys-

tem, simulations were performed at various dynamic
pressures. Figure 11 presents the generalized coordi-
nate time histories and the corresponding generalized
coordinate FFTs at zero dynamic pressure (wind-o�).
The zero dynamic pressure attenuates all aerodynamic
e�ects, leaving only structural e�ects. With zero struc-
tural damping, the response consists of, in the time
domain, the simple harmonic motion of the uncoupled
vibration modes and, in the frequency domain, fre-
quency spikes of the uncoupled vibration modes: 9.60,
38.2, 48.35, and 91.54 Hz.
At a dynamic pressure of 50 psf, Figure 12, the ef-

fect of aerodynamic damping is evident in the decaying
response of the generalized coordinate time histories.
The associated modal frequency spikes at this condi-
tion are no longer uncoupled as they were in Figure
11.
Finally, at a dynamic pressure of 75 psf, Figure 13,


utter is evident. A close-up of this aeroelastic tran-
sient is presented as Figure 14. This result compares

Discrete State­Space
Model of Structure

Discrete State­Space
Model of Aerodynamics

GAFs

Generalized
Coordinates

Dynamic
Pressure

Fig. 10 SIMULINK model of the aeroelastic sys-
tem.
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Fig. 11 Aeroelastic response of the state-space
aeroelastic system at M=0.9 and Q=0 psf.

identically with that of Figure 5, which was computed
using CFL3Dv6 directly. In fact, the ROM results
compare identically with results using CFL3Dv6 di-
rectly at all dynamic pressures investigated.
These aeroelastic transients are computed in sec-

onds within MATLAB/SIMULINK, thus allowing a
larger number of cycles to be computed for improved
frequency resolution. In addition, if parametric varia-
tions that involve the structure are desired (structural
damping, updated frequencies, etc), the analyses can
be performed using this approach since the unsteady
aerodynamic system is una�ected by these variations.
These results validate the ROM methodology pre-

sented and are examples of a new and powerful tool
available to the aeroelastician. Most importantly,
the state-space models developed are suitable for use
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eralized coordinates for the state-space system at
M=0.9, Q=50 psf, and g=0.0.
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Fig. 13 Aeroelastic transients in terms of gen-
eralized coordinates for the state-space system at
M=0.9, Q=75 psf, and g=0.0.

within a mutidisciplinary design environment, includ-
ing ASE analysis and design.

Concluding Remarks
A reduced-order model (ROM) was developed for

aeroelastic analysis using the recently-developed, par-
allelized CFL3D version 6.0 computational 
uid dy-
namics (CFD) code. Flutter results for the AGARD
445.6 Wing, computed using CFL3D directly, were
presented, including a discussion of the associated
computational costs. The ROM of the unsteady aero-
dynamic system, in state-space form, was developed
using modal impulse responses. Important numer-
ical issues associated with the computation of the
impulse responses including time/frequency resolution
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Fig. 14 Close-up of the aeroelastic transients for
the state-space system at M=0.9, Q=75 psf, and
g=0.0.

and amplitude-dependent convergence issues were pre-
sented. The unsteady aerodynamic state-space ROM
was then combined with a state-space model of the
structure to create an aeroelastic simulation using
the MATLAB/SIMULINK environment. The MAT-
LAB/SIMULINK ROM was used to rapidly compute
aeroelastic transients including 
utter. The ROM
shows excellent agreement with the aeroelastic analy-
ses computed using the CFL3Dv6.0 code directly but
at signi�cantly lower computational costs. The aeroe-
lastic state-space models generated are then suitable
for use in a multidisciplinary, design environment in-
cluding computational aeroservoelasticity (ASE).

Appendix
Time Step/Frequency Issues

Successful development of a state-space model of an
unsteady aerodynamic system requires an understand-
ing of the relationship between the time step used for
the numerical discretization and the frequency con-
tent associated with that particular discretization. It
is well known from signal processing theory that the
frequency resolution of a given discretization, �F , is
inversely proportional to the product of the number of
time steps, N, and the discretizing time step, �T , or

�F =
1

N ��T

Standard numerical analysis states that a smaller time
step is more accurate due to a reduction of the error
terms associated with most numerical discretizations.
A smaller value of frequency resolution is also preferred
so that appropriate frequency-domain phenomena can
be captured accurately. This is important, for exam-
ple, when an aeroelastic system contains modes that
are closely-spaced in frequency. Therefore, a large

10 of 12

American Institute of Aeronautics and Astronautics Paper AIAA 2002-1596



number of time steps is needed to satisfy both of these
requirements.

This observation leads to an important considera-
tion when impulse and step responses are generated for
subsequent use in a convolution or state-space frame-
work. If the time step is reduced (in an e�ort to reduce
numerical error) while the number of time steps is kept
constant, the frequency resolution is increased. This
increased frequency resolution may lead to inaccurate
representation of frequency content. Therefore, in an
attempt to improve the accuracy of the step or impulse
response, by decreasing the time step (without regard
to the number of time steps), the overall predictive ca-
pability of the step or impulse response may in fact be
compromised. Guendel19 and Raveh18 indicate that
decreasing the time step resulted in decreased predic-
tive accuracy of the impulse response. The preceding
observation may explain this counterintuitive and un-
expected result.

A small nondimensional time step size ( 0.001) can
reduce the numerical error, but it places a limit on the
modal amplitude allowed since it a�ects the discretized
modal velocity. In addition, a small time step requires
a large number of time steps in order to achieve a small
frequency resolution. However, using the subiteration
capability available within the CFL3Dv6 code, larger
time steps can be used while controlling the level of
the numerical error. The ability to safely use larger
time steps provides a signi�cant bene�t with respect
to the time/frequency resolution issue. In particular,
the use of a larger nondimensional time step permits
the use of a larger input amplitude (modal velocity)
to excite nonlinear terms. At the same time, a larger
nondimensional time step yields a smaller frequency
resolution for a given number of time steps. Therefore,
the use of a larger nondimensional time step allows
larger input amplitudes and a smaller frequency reso-
lution for less time steps than would be required for a
smaller nondimensional time step. This provides valu-
able computational eÆciency.

Amplitude/Convergence

The subiteration capability must also be used for
controlling the numerical error that is in
uenced by
the amplitude of the excitation input. Figure 15 is
a comparison of the residual (measure of error) for
two modal step responses with di�erent input ampli-
tudes at a Mach number of 0.9. In the �gure, three
regions are presented: Steady Solution, Transient Un-
steady Solution, and Final Unsteady Solution. The
Steady Solution consists of the steady-state solution
of the Euler equations. The steady-state solution is
then used as the starting point for the unsteady solu-
tion. The steady-state solution does not contain the
time-derivative terms needed for the unsteady solu-
tion and, as a result, the introduction of the unsteady
terms at the start of the unsteady solution induces the
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Fig. 15 Comparison of the residual errors for two
step responses at di�erent amplitudes.

numerical transient shown in the �gure (Transient Un-
steady Solution). The step input is therefore delayed
so that the step response will not be contaminated by
the transient at the start of the unsteady solution.
An additional point to be made is that the two

step responses converge to di�erent error levels even
though 10 subiterations per time step are being ap-
plied to each solution. The larger amplitude therefore
needs an increased number of subiterations to reduce
its error level to the level of the smaller amplitude re-
sponse. Even though the di�erence in amplitudes is
large for this comparison (two orders of magnitude),
this result emphasizes the importance of tracking the
numerical error as a function of amplitude and apply-
ing the subiteration procedure appropriately.
Proper development of a CFD-based ROM requires

careful attention to the creation and growth of numer-
ical error so that relevant physical characteristics of
a system are not clouded by nonphysical noise. It is
also strongly recommended that linearity tests be per-
formed at the conditions of interest. A simple linearity
test consists of applying inputs at various amplitudes
to determine the range of amplitudes over which lin-
ear conditions are satis�ed. A second linearity test
consists of validating the assumption of modal super-
position by comparing the response to an excitation of
all the modes with the sum of the responses for indi-
vidual modes. These types of tests were performed for
the present analysis but are not included in the paper.
The point to be made is that, for the conditions at
which analyses were performed, and the range of am-
plitudes investigated, the assumption to linearize the
aeroelastic system was validated.
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