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Abstract    .

This paper discusses theoretical foundations of
quantitative image-based measurements for extracting and
reconstructing geometric, kinematic and dynamic
properties of observed objects.  New results are obtained
by using a combination of methods in perspective
geometry, differential geometry, radiometry, kinematics
and dynamics.  Specific topics include perspective
projection transformation, perspective developable conical
surface, perspective projection under surface constraint,
perspective invariants, the point correspondence problem,
motion fields of curves and surfaces, and motion equations
of image intensity.  The methods given in this paper are
useful for determining morphology and motion fields of
deformable bodies such as elastic bodies, viscoelastic
mediums and fluids.
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1. Introduction
Image-based measurement techniques play an

increasingly important role in virtually all natural sciences
and engineering disciplines since they can provide
tremendous information and knowledge about observed
objects in a global, non-contact way with high temporal
and spatial resolution.  Specialists in photogrammetry,
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computer vision, and other scientific and engineering
disciplines have developed various methods that are best
suitable to particular applications in their fields.  In
particular, both photogrammetrists and computer vision
scientists have studied image-based techniques for many
years to obtain metric and geometric information.  The
approaches developed by photogrammetrists are more
mature and quantitative, which are recently extended to
non-topographic applications [1].  By contrast, in order to
deal with more complicated vision problems related to
artificial intelligence, computer scientists tend to adopt
more versatile mathematical approaches in perspective
geometry, differential geometry and image algebra [2-5].
However, the approaches used by computer vision
scientists are of qualitative nature in many cases and
generally less accurate than those used in photogrammetry
in metric measurements.  Because the objectives of
different disciplines are very different, there is a lack of
sufficient interaction among specialists in various technical
communities.  Perhaps due to different notations, jargons
and methodologies in these communities, it is difficult to
transcend the different technical domains and see a unified
scope of various image techniques.

From a methodological standpoint, the approaches in
photogrammetry and computer vision should be integrated
into a universal theoretical framework.  Furthermore,
unlike computer vision scientists who mainly study rigid
bodies, aerospace engineers and scientists often deal with
complex morphology and motion fields of deformable
bodies such as elastic bodies, viscoelastic mediums and
fluids.  It is highly desirable to formulate universal
theoretical foundations for quantitative image-based
measurements of morphology and motion fields of
deformable bodies.  In this paper, we will focus on the
geometric, kinematic and radiometric aspects of image-
based measurements.  First, we will provide a unified
treatment of the perspective projection transformation
from the 3D object space to the 2D image plane and
illustrate geometric connections among different
formulations of the perspective projection transformation.
Then, we will discusses some specific problems for
recovering geometry and motion, such as projective
developable conical surface, projection under surface
constraint, reconstruction of motion field on a surface and
motion field of a 3D curve, the correspondence problem,
and projective invariants.  This is an area for combined
application of approaches in perspective geometry,
differential geometry, kinematics and dynamics.  In the
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radiometric aspect, we will discuss the fundamental
relationship between the image intensity and radiance from
an object.  Based on this relation and imposed physical
constraints, the motion equations of image intensity will be
derived for typical physical processes such as moving
Lamertian surface, emitting passive scalar transport, and
transmitting passive scalar transport.  These equations
provide a rational way for reconstructing the geometric
and kinematic properties of deformable bodies like fluids.
In general, the geometric, kinematic and radiometric
approaches are closely coupled.

2. Perspective Projection Transformation from 3D
Space to 2D Image

Image-based measurement techniques extract data
from 2D images and then map them into the 3D object
space.  There is a perspective relationship between the 3D
coordinates in the object space and the corresponding 2D
coordinates in the image plane [1, 6-8].  Here, we discuss
several formulations of the perspective projection
transformation.  Although these formulations are
equivalent, one may be more convenient to use than others
for a specific problem.  The fundamental geometric
problem in image-based measurements is to determine the
object space coordinates T321 )X,X,X(=X  given the

corresponding image (retinal) coordinates T21 )x,(x=x .

Figure 1 illustrates the camera imaging process.  The lens
of the camera is modeled by a single point known as the
perspective center (or the optical center), the location of
which in the object space is T3

c
2
c

1
c )X,X,X(=cX .

Likewise, the orientation of the camera is characterized by
three Euler orientation angles.  The orientation angles and
location of the perspective center are referred to as the
exterior orientation parameters.  The object space point,
perspective center and image point lie along a straight line
for a “perfect” camera.  This relationship is described by
the collinearity equations, the fundamental equations of
photogrammetry.  On the other hand, the relationship
between the perspective center and the image coordinate
system is defined by the camera interior orientation
parameters, namely, the camera principal distance c and
the photogrammetric principal-point location

T2
p

1
p )y,x(=px .  The principal distance c, which equals

the camera focal length for a camera focused at infinity, is
the perpendicular distance from the perspective center to
the image plane, whereas the photogrammetric principal-
point is where a perpendicular line from the perspective
center intersects the image plane.  Due to the lens
distortion, however, perturbations to the imaging process
lead to departures from collinearity that can be represented
by the shifts 1xδ  and 2xδ  of the image point from its

“ideal” position on the image plane.  The shifts 1xδ  and

2xδ  are modeled and characterized by a number of the

lens distortion parameters.
The image and object space coordinates of the points

are related by the collinearity condition in which the image
vector is aligned with the vector from the perspective
center to the object space point
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where ]m[ ij=M  is the rotation matrix, λ is a scaling

factor.  Algebraic manipulation of Eq. (2.1) yields the
well-known collinearity equations (with the distortion
terms 1xδ  and 2xδ ) relating the point in the 3D object

space to the corresponding point on the image plane,
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where the vectors T
131211 )m,m,m(=1m  and

T
232221 )m,m,m(=2m  are the directional cosine vectors

along the x1-axis, x2-axis in the image plane, respectively.
The vector T

333231 )m,m,m(=3m  is normal to the image

plane, directing from the principal point to the optical
center on the optical axis.  As shown in Fig. 1, the unit
orthogonal vectors 1m , 2m , and 3m  constitute an object

space coordinate frame at the optical center cX  and

T321
)X,X,X(=X  are the projections of the object space

position vector cXX −  in this frame.  The elements of the

rotation matrix mij (i, j = 1, 2, 3) are functions of the Euler
orientation angles ),,( κφω ,
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The orientation angles ),,( κφω  are essentially the pitch,

yaw, and roll angles of the camera in the established
coordinate system in the object space.  The rotational
matrix M is an orthogonal matrix having the property of

T1 MM =−  or ij
T δ=ji mm .  The scaling factor

)
c

(c T X-X/m 3−=λ  is a ratio between the principal

distance and the projected component of the object space
position vector cXX −  on the optical axis in 3m−
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direction.  When an object space point X  is on the focal

plane 0)
c

(T =− XXm 3 , the scaling factor becomes

infinite, i.e., ∞=λ , which corresponds to the points at

infinity on the image (retinal) plane.
The terms 1xδ  and 2xδ  in Eq. (2.2) are the image

coordinate shifts induced by the lens distortion.  The lens
distortion terms can be modeled by the sum of the radial
distortion and decentering distortion [9-10]

1
d

1
r

1 xxx δδδ +=  and 2
d

2
r

2 xxx δδδ += , (2.4)

where, assuming that the optical axis of the lens is
perpendicular to the image plane, we have
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Here, K1 and K2 are the radial distortion parameters, P1 and
P2 are the decentering distortion parameters, and ’x1  and

’x 2  are the undistorted coordinates in image.  When the

lens distortion is small, the unknown undistorted
coordinates can be approximated by the known distorted
coordinates, i.e., 11 x’x ≈  and 22 x’x ≈ .  For large lens

distortion, an iterative procedure is employed to determine
the appropriate undistorted coordinates to improve the
accuracy of the estimate.  The following iterative relations
are used: 101 x)’x( =  and 202 x)’x( = ,

])’x(,)’x[(xx)’x( k2k1111k1 δ+=+  and

])’x(,)’x[(xx)’x( k2k1221k2 δ+=+ , where the

superscripted iteration index k is L2,1,0k= .

The collinearity equations Eq. (2.2) can be re-written
in the homogenous coordinates in the image plane

T21T321 ,1)x,(x)x,x,(x ==hx

)( ch XXMxA −= λ  or )( ch XXPx −= λ , (2.6)

where MAP 1−== ]p[ ij  and ]a[ ij=A  is defined as
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The terse tensor form of Eq. (2.6) is

)XX(mxa j
c

j
ij

j
hij −= λ , where the Einstein convention

for summation is used.  The matrix-form and tensor-form
of the collinearity equations are sometimes convenient for
mathematical manipulation.  Another alternative form of
the collinearity equations in the homogenous coordinates is

hhh XPx λ= , (2.8)

where T321 )1,X,X,X(=hX  is the homogenous

coordinates in the object space, and h
1

h MAP −=  and

)( ch MXMM −=  are 3×4 matrices.  Although Eqs.

(2.6) and (2.8) are formally written as a linear relation
between hx  and X  or hX , they are essentially non-

linear because not only the lens distortion is a non-linear
function of x , but also the scaling factor

)
c

(c T X-X/m 3−=λ  is not a constant in general.

Nevertheless, because the lens distortion is usually small,
its effect can be corrected by using an iterative scheme.
Hence, Eqs. (2.6) and (2.8) can be treated as a quasi-linear
system at each iteration.  Without the lens distortion, the
collinearity equations describe the ideal perspective
projection.  Eq. (2.8) is particularly suitable for utilizing
useful results of classical perspective geometry to
construct projective geometric invariants.

Furthermore, Eq. (2.2) can be re-written as a form
suitable to least-squares estimation for the object space
coordinates X ,
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As shown in Fig. 2, the vector 1W  is on the plane spanned

by the orthogonal unit vectors 1m  and 3m , while 2W  is

on a plane spanned by 2m  and 3m .  Geometrically

speaking, 0)(T =− c1 XXW  and 0)(T =− c2 XXW

describe two planes normal to 1W  and 2W  through the

optical center.  Thus, Eq. (2.9) defines an intersection of
these two planes, which is a line through the optical center

cX .  For a given image point T21 )x,(x=x , Eq. (2.9) is

not sufficient to determine a point in the object space with
the three unknown coordinates T321 )X,X,X(=X .

Hence, extra equations associated with additional cameras
and other geometrical constraints should be added for
seeking a unique least squares solution of X .  In contrast
to Eq. (2.8), Eq. (2.9) does not include the scaling factor
λ .

The collinearity equations Eq. (2.2) contain the
camera parameters to be determined by geometric camera
calibration.  The parameter sets )X,X,X,,,( 3

c
2
c

1
cκφω ,

)x,x(c, 2
p

1
p , and )P,P,K,(K 2121  in Eq. (2.2) are the

exterior orientation, interior orientation, and lens distortion
parameters of a camera, respectively.  Geometric camera
calibration is a key problem in quantitative image-based
measurements and a specific topic in both photogrammetry
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and computer vision.  Here we only briefly address this
issue and readers can find the technical details of
geometric camera calibration from references.  In this
paper, we generally assume that the camera is calibrated
and a complete set of the orientation parameters and lens
distortion parameters of the camera

)P,P,K,K,x,xc,,X,X,X,,,( 2121
2
p

1
p

3
c

2
c

1
cκφω  is known.

Analytical camera calibration techniques utilize the
collinearity equations and distortion terms to determine
these camera parameters [6-8].  Since Eq. (2.2) is non-
linear, iterative methods of least squares estimation have
been used as a standard technique for the solution of the
collinearity equations in photogrammetry.  However,
direct recovery of the interior orientation parameters could
be problematic and unstable since the normal-equation-
matrix of the least squares problem is nearly singular.  The
singularity of the normal-equation-matrix mainly results
from strong correlation between the exterior and interior
orientation parameters.  In order to reduce the correlation
between these parameters and enhance the determinability
of )y,x(c, pp , Fraser [9, 11] suggested the use of multiple

camera stations, varying image scales, different camera
roll angles and a well-distributed target field in three
dimensions.  Nevertheless, the multiple-station, multiple-
image method for camera calibration is not easy to use in
many engineering and scientific applications like wind
tunnel testing where optical access for cameras is limited
and the positions of cameras are fixed.  Abdel-Aziz and
Karara [12] proposed a simple linear method for camera
calibration, Direct Linear Transformation (DLT).
Scientists in computer vision and robotics have developed
various camera calibration schemes to achieve a fast
calibration with an acceptable accuracy (a lower accuracy
for a photogrammetric application).  Tsai’s two-step
method [13] is representative in computer vision, which
uses a radial alignment constraint to obtain a linear least
squares solution for a subset of the calibration parameters,
whereas the rest of the parameters including the radial
distortion parameter are estimated by an iterative scheme.
By circumventing the singularity problem, Liu et al. [14]
developed a robust optimization method for single-image,
automatic camera calibration to determine the interior and
exterior orientation parameters and lens distortion
parameters plus the pixel spacing ratio.

3. Projective Developable Conical Surface Containing
3D Curve

In this section, we introduce the concept of projective
developable conical surface and show how to reconstruct
this surface containing a 3D curve from a single image.  In
principle, a 3D curve in the object space cannot be
completely recovered from a single image since
information in one dimension is lost in the imaging
process.  Nevertheless, using a calibrated camera, a
projective conical developable surface on which a 3D

curve lies can be reconstructed.  When two calibrated
cameras are used, the 3D curve can be uniquely
determined as an intersection of two different projective
conical developable surfaces.  Furthermore, a 3D surface
can be reconstructed as an envelope of a family of the
projective developable conical surfaces obtained from
images taken at different viewing angles.  The motion field
of the 3D curve can be obtained from a time sequence of
the curve.
Generating Projective Developable Conical Surface

Consider a 3D simple curve C in the object space, and
its projection to the image plane and a plane P normal to
the optical axis (parallel to the image plane), as shown Fig.
3.  The collinearity equations Eq. (2.6) are written as

hc xPXX 1−=− λ , (3.1)

where AMAMPP T11 ==== −− ]p[ ij .  When the

camera parameters and the scaling factor are constant and
the lens distortion is fixed, differentiating Eq. (3.1) yields

xPX dd 32
1−= λ , (3.2)

where T321 )Xd,Xd,Xd(d =X , T21 )dx,(dxd =x , and
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A constraint imposed on Eq. (3.2) is 0dT =Xm 3 ,

indicating that Eq. (3.2) actually describes the projection
CP of the 3D curve C on the plane P orthogonal to the
optical axis direction or 3m .  This constraint is equivalent

to the constancy condition of the scaling factor

)
c

(c T X-X/m 3−=λ  since the differential

2TT )](/[dcd c33 XXmXm −=λ  shows

0d0dT =⇔= λXm3 .  In fact, the constraint

.const)(/c T =−−= c3 XXmλ  defines the plane

orthogonal to the optical axis direction or 3m .  As shown

in Fig. 3, the projected curve CP on the plane P can be
reconstructed from the image and then the developable
conical surface D containing the 3D curve C can be
generated.

The arc length element of the projected curve CP on
the plane P is

ds|ddS 32
1

CP
|tP|X| −== λ , (3.3)

where dsdx/t =  and |d|ds x=  are the unit tangent vector

and arc length element of the image of the 3D curve C in
the image plane, respectively.  Thus, the unit tangent
vector of the projected curve CP on the plane P is

|tP

tPX
T

PC
32

32

C |dS

d

P

== . (3.4)
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Note that the unit tangent vector 
PCT  is independent of the

scaling factor λ.  The curvature vector of the projected
curve CP on the plane P can be obtained by differentiating
Eq. (3.4) with respect to the arc length 

PCS

)
ds

|d
(

|dS

d 32
32

32CP

|tP
TkP

|tP

T
K

P

P

P C2

C
C −== λ

, (3.5)

where 22 dsddsd x/t/k ==  is the curvature vector of the

curve image in the image plane.  The curvature vector k
can be expressed as nk cκ= , where cκ  and |k|k/n =
are the curvature and the unit normal vector of the curve
image in the image plane, respectively.  Furthermore, we
prove

||

)()(

ds

|d

32

32
T

3232

tP

tPkP|tP = . (3.6)

Hence, Eq. (3.5) becomes

]
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)()(
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tPnP
TnP

|tP
K

PP C2C −=
λκ

. (3.7)

The curvature of the projected curve CP on the plane P is

PP CC NK •=
PCκ , where ||/

PPP CCC KKN =  is the

principal normal vector of the projected curve CP.  Thus,
the ratio between the curvatures 

PCκ  on the plane P and

cκ  on the image plane is

PP

P
CC2

c

C N
tP

tPnP
TnP

|tP
•−= ]

||

)()(
[

| 32

32
T

32
32

32

λ
κ

κ
.

(3.8)
Clearly, Eq. (3.8) indicates that cC /

P
κκ  is proportional to

the scaling factor λ .
After the unit tangent vector 

PCT  is obtained from the

image, the projected curve CP on the plane P is readily
reconstructed by

P

PC

P C

S

0
C0 Sd)S(∫+=

PPP CCC TXX . (3.9)

The initial position 0PCX  on the projected curve CP, in the

object space is often chosen at the end point of the curve.

Eq. (3.1) gives 0hcC xPXX
P

1
0

−=− λ , where
T2

0
1
0 ,1)x,(x=0hx  is the homogenous coordinates of the

corresponding image point to 0PCX .  Substituting Eqs.

(3.3) and (3.4) into Eq. (3.9) yields a ray vector directing
from the optical center cX  to a point 

PCX  on the

projected curve CP

s)d(
s

0

32
1 ∫+=− − tPxPXX 0hcC P

λ . (3.10)

A family of the projective rays through the optical center

cX  given by Eq. (3.10) generates a projective developable

conical surface D that contains the 3D curve C.  The

tangent plane on the developable conical surface D is
given by

0)s()( =− • Dc NXX , (3.11)

where |)(|/)()s( cCCcCCD XXTXXTN
PPPP

−×−×=
is the unit normal vector to the tangent plane on the
developable surface, which is independent of the scaling
factor.  Eq. (3.11) describes a single-parameter family of
the tangent planes where the parameter is the arc length s
of the curve in the image plane.  The projective conical
developable surface, the envelope generated by the family
of the tangent planes, is given by a system of Eq. (3.11)
and Eq. (3.12) [15]

0ds/)s(d)( =− • Dc NXX . (3.12)

Thus, the projective developable conical surface and
associated geometric quantities such as the curvature,
tangent vector and normal vector in the 3D object space
can be obtained by using measured image quantities given
the camera parameters.
Reconstructing 3D curve and Surface

From a single image, we are able to reconstruct the
projective conical developable surface containing the 3D
curve C rather than the 3D curve itself.  Nevertheless,
when two calibrated cameras are used, as shown in Fig. 4,
the 3D curve C can be uniquely determined by intersecting
the two projective developable conical surfaces associated
with the different cameras.  Interestingly, the developable
conical surface intersection method for determining the 3D
curve only requires knowing the correspondence of one
distinguished point such as an end point of the curve.

Furthermore, the developable conical surfaces can be
used to reconstruct a 3D surface in the object space.  As
shown in Fig. 5, the developable conical surface
containing the contour of the 3D surface can be
constructed.  Here the contour is a set of points on the 3D
surface at which the surface normal is also the normal of
the developable conical surface.  When the camera is
moved to a number of known positions through a
rotational and translational transformation (rigid-body
motion), a family of the developable conical surfaces can
be obtained.  The 3D surface is generated as an envelope
of the family of the conical surfaces.  Instead of moving
the camera, the 3D surface can be rotated around a fixed
axis such that a family of the conical surfaces can be
obtained using a camera at a fixed position and viewing
angle.  From a computational viewpoint, this method may
not be the most efficient since the intersection and
envelope of the developable conical surfaces has to be
determined.  However, this method is to great extent
immune from the ambiguous correspondence problem in
stereovision.
Recovering Motion Field of 3D Curve

After two or more 3D curves in the object space at
successive instants are reconstructed, we can estimate the
motion field )( XU  of the 3D curve that is defined as
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dt

d
)(

X
XU = . (3.13)

The curve is given by ]t),t(S[XX = , where t  is time

and )t(S  is the arc length of the curve in the object space.

Measurements give the temporal and spatial difference
between two curves at two successive instants 1t  and 2t

(the time interval 12 ttt −=∆  is small)

]t),t(S[]t),t(S[ 1122 XXXSt −=∆ . (3.14)

Reconstruction of the motion field of the 3D curve from
XSt∆  is a non-trivial problem since the point

correspondence between two sequential images is not
known without using distinct targets on the curve
especially for an elastic curve experiencing large and
complicated deformation.

The motion field of the curve is constrained by the
underlying physical mechanisms behind the motion and
deformation of the curve.  In general, reconstructing the
motion field is formulated as an optimization problem of
the functional

min||t)(||)](J[ St →−= ∆∆ XUXXU (3.15)

subject to relevant physical and geometric constraints
0)]([Gi =XU ,   ( L2,1,i = ) (3.16)

and the suitable boundary conditions.  Without the
sufficient constraints, the solution to the optimization
problem may not be unique.  Also, the imposed physical
constraints serve as a bridge connecting image-based
measurements with the physical quantities in a specific
problem being studied.

In the simplest case in which the curve is rigid, the
rigid-body motion field is expressed as

)()( 00 XXUXU 0 −×+= Ω , (3.17)

where 0U  and 0Ω  are the constant translation velocity

and angular velocity, respectively, and 0X  is the rotational

center of the curve.  Because 0U  and 0Ω  together contain

only six unknown constants, it is easier to solve the
optimization problem.  A slightly complicated case is that
the curve is stretched in three fixed directions in addition
to the constant translation and rotation.  In this case, three
stretching constants are added, and thus the total number
of the unknowns in the optimization problem is nine.
Next, we consider a highly deformable material line
convected in an incompressible and irrotational flow.  In
this case, the physical constraints are the solenoidal and
irrotational conditions [16]

0)( =∇ • XU  and 0)( =×∇ XU . (3.18)

A vortex-filament in an incompressible and irrotational
flow is an interesting example since the filament driven by
not only mean flow, but also self-induction is no longer
passive and the motion field is directly related to the
geometric features of the filament.  In this case, the
induced motion velocity of the filament is proportional to

the curvature κ  of the filament along the binormal
direction vector B [17]

BXU κ∝)( . (3.19)

Overall, the physical constraints for a specific application
are necessary for recovering the correct motion field and
associated physical properties of the 3D curve.

4. Perspective Projection under Surface Constraint
In general, mapping between a point in the 3D object

space and the corresponding image point is not one-to-one.
Nevertheless, as shown in Fig. 6, under a given surface
constraint, a point on the surface has the one-to-one
correspondence to the image point.  In this section, we
discuss the geometric relationship between the surface in
the object space and the image plane.  This topic is closely
related to some applications in experimental fluid
mechanics and aerodynamics such as reconstruction of
complex flow topology from images of surface oil
visualization and laser-sheet-induced fluorescence
visualization.  Consider a surface in the object space given
by

)X,X(FX 213 = . (4.1)

When Eq. (4.1) is imposed on Eq. (2.9) as a surface
constraint, the perspective projection transformation Eq.
(2.9) is reduced to

c13c23

2
22132312

1
21132311

ww

)Xwww(w)Xwww(w

XWXW T
2

T
1 −=

−+−

c
21

13
2

12
1

11 )X,F(XwXwXw XW T
1=++ , (4.2)

where ijw  ( 1,2i =  and 1,2,3j = ) are the elements of the

vectors T
131211 )w,w,w(=1W  and T

232221 )w,w,w(=2W .

For the given surface equation )X,X(FX 213 =  and the

known camera parameters, the coordinates T21 )X,X(

can be obtained from the image coordinates T21 )x,(x=x
by numerically solving Eq. (4.2).  Thus, the coordinates

T321 )X,X,X(=X  in the object space can be

symbolically expressed as a function of the image
coordinates T21 )x,(x=x , that is,

)( xfX S= . (4.3)

In fact, Eq. (4.3) is a parametric representation of the
surface using the image coordinates T21 )x,(x=x  as the

parameters.  Generally, the function )( xf S  cannot be

written as a closed-form solution except in some special
cases such as a plane and a cylindrical surface.

Differentiating Eq. (2.9), we have

c111 XWXWXW TTT ddd =+

c222 XWXWXW TTT ddd =+ . (4.4)

When the lens distortion is fixed, T1T dxd 31 mW =  and
T2T dxd 32 mW =  hold.  Then, substitution of
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22113 Xd)X/F(Xd)X/F(dX ∂∂+∂∂=  into Eq. (4.4)

yields







−=




 −
2

1
1

2

1

dx

dx
Q)(

dX

dX
Sc

T
3 fXm , (4.5)

where












∂∂+∂∂+
∂∂+∂∂+

=
2

2322
1

2321

2
1312

1
1311

X/FwwX/Fww

X/FwwX/Fww
Q . (4.6)

Furthermore, the differential 3dX  can be expressed as a

function of the image coordinates T21 )dx,(dxd =x
22113 xd)xd/dF(xd)xd/dF(dX += , (4.7)

where

ααα x

X

X

F

x

X

X

F

dx

dF 2

2

1

1 ∂
∂

∂
∂+

∂
∂

∂
∂= . ( 1,2=α ) (4.8)

Combining Eqs. (4.5) and (4.7), we have

xfXmX Sc
T

3 dQ)(d −= , (4.9)

where

















−
=

−

)(/)
dx

dF
,

dx

dF
(

Q
Q

21

1

Sc
T

3 fXm
. (4.10)

Eq. (4.9) provides a fundamental relation between the
differentials Xd  on the surface and xd  on the image

plane.  The matrix Q  is a function of the image

coordinates, the camera parameters, and the geometric
properties of the given surface.

On the other hand, we notice
2211 xd)x/(xd)x/(d ∂∂+∂∂= XXX . (4.11)

From Eqs. (4.9) and (4.11), we obtain the following
equality

Q)()x/,x/( 21
Sc

T
3 fXmXX −=∂∂∂∂ . (4.12)

The element dS  of the arc length of a curve on the surface
can be determined from Eqs. (4.11) and (4.12) from the
image coordinates.  We know

βα
αβ dxdxg|d|dS 2 == X , (4.13)

where

βααβ xx
g

∂
∂

∂
∂= •

XX
  ( 1,2, =βα ) (4.14)

is the so-called metric tensor in classical differential
geometry [18].  The summation convention is used in Eqs.
(4.13) and (4.14).  The quadratic differential form Eq.
(4.13) is the first fundamental form of the surface in which
the image coordinates are the parametric variables.  In the

case of the perspective projection transformation, αβg
may be properly named as the perspective metric tensor
that is a function of the image coordinates, the camera
parameters, and the properties of the given surface.

The first fundamental form Eq. (4.13) allows us to
measure the basic geometric quantities on the surface in
the 3D object space from the image quantities.  Consider a

curve on the image plane given by a parametric form
T21 (t))x(t),(xt) =x(  and the corresponding 3D curve on

the surface )(t)((t))((t) xfxXX S== , where t is a

parameter (e.g. time).  The length of an arc bounded the
points corresponding to the parametric values 0tt =  and

1tt =  is

dt)]dt/dx)(dt/dx(g[S
1

0

t

t

2/1∫= βα
αβ . (4.15)

The angle of two 3D curves at the intersecting point on the
surface can be calculated based on the image quantities.
Consider two image curves T21 (t))x(t),(xt) =x(  and

T21 (t))x(t),(xt) ++=x( .  The tangential vectors of the two

3D curves on the surface are
dt/dxx/(t))/dtx(t),(xd 21 αα∂∂= XX  and

dt/dxx/(t))/dtx(t),(xd 21 ++++ ∂∂= ααXX .  Thus, the angle

γ of intersection is

/dt)/dt)(dx(dxg/dt)/dt)(dx(dxg

/dt)/dt)(dx(dxg
cos

++

+

=
βα

αβ
βα

αβ

βα
αβγ .

(4.16)
The area of a domain H on the surface can be expressed in
the image coordinates

21

U

dxdxgA(H) ∫∫= , (4.17)

where U is the domain in the image ( 21 x,x ) plane
corresponding to the domain H on the surface in the object
space and g  is the determinant |g|g αβ= .

Example 1: Plane
The plane constraint is a simple, but very useful case

in which the vector function )( xf S , the matrices Q and

Q  can be explicitly expressed as a function of the known

camera parameters and the measured image coordinates.
Many aerodynamic flow structures are observed on a plane
or a near-planar surface.  Planar laser sheet flow
visualization is just a typical case of the plane constraint.
In addition, a polyhedron consists of a number of the
planar faces.  Consider a plane in the object space

3
2

2
1

1
3 aXaXaX ++= . (4.18)

This plane is defined by the vector T
321 )a,a,(a=a

related to the normal vector of the plane.  In this case, the
matrix Q in Eq. (4.6) is







++
++

=
2232212321

2131211311

awwaww

awwaww
Q . (4.19)

The function )( xf S  in Eq. (4.3) has a closed-form

solution
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




















= −

−

1

Q

Q

)( 1

1

l
a

l

xf
TS , (4.20)

where












−

−
=

323
T

313
T

aw

aw

c2

c1

XW

XW
l . (4.21)

Now the matrix Q  in Eq. (4.10) is







=

−

−

1
21

1

Q)a,a(

Q
Q . (4.22)

Example 2: Cylindrical Surface
A cylindrical surface is another case where )( xf S , Q

and Q  can be explicitly expressed.  For the sake of

convenience, a transformation from the Cartesian
coordinate system to the cylindrical coordinate system is
used, i.e.,

TT321 )z,sin,cos()X,X,X( ϕρϕρ==X , (4.23)

where ρ  is the radial coordinate, ϕ  is the polar angle, and

z  is the axial coordinate.  The differential Xd  is































 −
=

dz

d

d

100

0cossin

0sincos

d ϕ
ρ

ϕρϕ
ϕρϕ

X . (4.24)

For a cylindrical surface constraint .const0 == ρρ ,

solving Eq. (2.9) for ϕ  and z , we have )( xf S  as a

function of the image coordinates and camera parameters
T

00 )z,sin,cos()( ϕρϕρ=xf S , (4.25)

where

2
2

2
1

2
3

2
2

4
2

2
2

2
131

bb

bbbbbbb
cos

+
−+±

=ϕ ,

2
2

2
1

2
3

2
1

4
1

2
1

2
232

bb

bbbbbbb
sin

+
−+±

=ϕ ,

)sinwcosw(wz c012011
1

13 XW T
1−+= − ϕρϕρ ,

)wwww(b 1321231101 −= ρ ,

)wwww(b 1322231202 −= ρ ,

c
T

2c
T

1 XWXW 13233 wwb −= .

There are two solutions for )( xf S , which are

corresponding to two intersecting points between a
perspective ray and the cylinder.  For a non-transparent
solid surface, a camera only sees one intersecting point at
the surface facing the camera and hence )( xf S  is one-to-

one.  The differentials in the cylindrical coordinate system
are related to the image coordinate differentials by the
following relation

xfXm Sc
T

3 dQ)(z),(d 1T −−=ϕ , (4.26)

where







−
−

=
23021022

13011012

wsinwcosw

wsinwcosw
Q

ϕρϕρ
ϕρϕρ

. (4.27)

Another differential is 0d =ρ .  Note that the expressions

of )( xf S , Q and Q  for a spherical surface can be also

analytically derived, but they are so tedious that we do not
present them here.

5. Perspective Projection of Motion Field Constrained
on Surface

After discussing the geometric relationship between a
surface in the object space and the image plane, we study
kinematics under the surface constraint, that is, the
perspective projection of a motion field on a surface.
Consider a dynamical system

)(
dt

d
XU

X = , (5.1)

where T
321 )U,U,U()( =XU  is a motion field in the 3D

object space and t is time.  A surface constraint imposed
on the motion field Eq. (5.1) is

)X,X(FX 213 = . (5.2)

Under this surface constraint, )( XU  should be parallel to

the surface, which obeys the orthogonality condition
0)( =• XUN s , (5.3)

where T21 )1,X/F,X/F( −∂∂∂∂=sN  is the normal

vector of the surface.  Under the surface constraint Eq.
(5.2), Eq. (5.1) is effectively reduced to a 2D system







=






)]X,X(F,X,X[U

)]X,X(F,X,X[U

X

X

dt

d
2121

2

2121
1

2

1

. (5.4)

In fact, Eq. (5.4) describes an orthographic projection of
the motion field Eq. (5.1) onto the plane )X,X( 21 .  From

Eq. (4.5), the dynamical system in the image plane, which
is corresponding to Eq. (5.4), is







−

=





=

)]([U

)]([U

)(

Q

x

x

dt

d

2

1

T2

1

xf

xf

fXm
u

S

S

Sc3

. (5.5)

We call T21 )x,d/dt(xdtd == x/u  the optic flow in the

image plane.  The optic flow, a term first used in computer
vision, is defined as the velocity field in the image plane
that transforms one image into the next image in a
sequence.  If Eq. (4.2) gives a one-to-one topological
mapping (homeomorphism): )X,(X)x,(x 2121 a , the

topological structure of the dynamical system Eq. (5.5) in
the image plane is equivalent to that of Eq. (5.4) on the
surface in the object space when Q has the full rank of 2

and )( Sc
T

3 fXm −  is not zero.  Figure 6 illustrates this

point.  The problem is to recover two components of the
motion field T

21 )U,U(  using Eq. (5.5) from the measured
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optic flow dtdx/u = , while the third component 3U  is

readily obtained from the orthogonal condition Eq. (5.3).
In the above analysis, we do not specify the motion

field )( XU , which could be a limiting viscous flow field,

an oil-film motion field driven by skin friction, or a
particle motion field driven by a potential force (e.g.
gravity and electromagnetic force).  The physical
constraints on )( XU , which are different in different

cases, are necessary to reduce the number of unknowns.
For instance, an incompressible flow must obey the
continuity equation

0)( =∇ • XU , (5.6)

where T321 )X/,X/,X/( ∂∂∂∂∂∂=∇  is the Laplace

operator.  Differentiating Eq. (5.3) with respect to 3X , we
have

3
2

23
1

13
3

X

U

X

F

X

U

X

F

X

U

∂
∂

∂
∂+

∂
∂

∂
∂=

∂
∂

. (5.7)

Substitution of Eq. (5.7) into Eq. (5.6) yields a constraint
on T

21 )U,U(  for an incompressible flow field,

0U
XX

F

X
U

XX

F

X 23221311
=







∂
∂

∂
∂+

∂
∂+







∂
∂

∂
∂+

∂
∂

.

(5.8)
In general, it is more difficult to directly obtain a

global solution of Eq. (5.5) for the motion field
T

21 )U,U( .  Instead, we can seek a localized solution of

Eq. (5.5) in a sufficiently small area.  In a neighborhood of
a point 0X , the motion field T

21 )U,U(  can be expanded

as a linear function of X
))(e,e,e(e)(U 3i2i1i0ii 0XXX −+= ,  ( 1,2i = ) (5.9)

where )(Ue i0i 0X=  are the local velocity components

and j
iij /)(Ue XX 0 ∂∂=  ( 1,2,3j = ) are the local

deformation components.  Hence, the localized form of Eq.
(5.5) is written as

0
)]()()[e,ee(e

)]()()[e,ee(e

)(

Q

x

x

dt

d

2322,2120

1312,1110

T2

1

=





−+
−+

×

−
−





=

0SS

0SS

Sc3

xfxf

xfxf

fXm
Du

. (5.10)

The unknowns 0ie  and ije , can be determined by

minimizing the norm |||| Du , i.e.,

min|||| →Du . (5.11)

At the final stage, the global motion field on the surface is
reconstructed from the local motion fields.

In an incompressible flow, the localized constraint Eq.
(5.8) is

0
X

F
ee

X

F
ee

2232211311 =
∂
∂++

∂
∂+ . (5.12)

Furthermore, for the irrotational motion field on a solid
surface where the vorticity vanishes, i.e.,

0)( =×∇= XU , three constraints are

0e
X

F
e

XX

F
U

X

F
e

XX

F
U 2322222

2

211221

2

1 =−
∂
∂+

∂∂
∂+

∂
∂+

∂∂
∂

,

0e
X

F
e

XX

F
U

X

F
e

XX

F
U 3122112

2

211111

2

1 =−
∂
∂+

∂∂
∂+

∂
∂+

∂∂
∂

,

0ee 1221 =− . (5.13)

Hence, for an incompressible, irrotational motion field,
eight unknowns in Eq. (5.10) are reduced to four
unknowns after these constraints are imposed.  At the
critical points, the velocity vanishes, i.e.,

0)(Ue i0i == 0X .  The local topological structures of the

motion field at the critical points are determined by the
deformation coefficients ije  [19].

The above method for calculating the local motion
field is applicable to both discrete random particle patterns
(e.g. particle image velocimetry (PIV) patterns) and
continuous passive scalar patterns (e.g. laser-sheet-induced
fluorescence patterns in fluids).  When discrete particle
patterns are so coarse that an individual particle can be
tracked, the local optic flow dtdx/u =  is the velocity of
the particle in the image plane [20-21].  For dense discrete
particle patterns, the local optic flow dtdx/u =  can be
obtained using PIV method to seek the maximum
correlation between two particle patterns obtained at two
consecutive instants.  However, for continuous passive
scalar patterns, recovering the local optic flow dtdx/u =
is non-trivial since we have to consider the perspective
projection of the transport equations of passive scalar
through a specific imaging process.  Generally speaking,
the perspective projection of physical processes will lead
to motion equations of image intensity.  The optic flow

dtdx/u =  is determined by solving the motion equation of
image intensity for a specific physical process given the
suitable boundary conditions and constraints.  Detailed
discussion on motion equations of image intensity will be
given in Section 12.

6. The Correspondence Problem
In Sections 4 and 5, three unknown coordinates in the

object space are reduced to two when the surface
constraint is imposed.  Thus, the correspondence between
the constrained surface and the image plane is one-to-one.
In order to determine three unknown coordinates from
multiple views without any a priori constraint, however,
we need to know the point correspondence between two or
more images for the same physical point in the object
space.  This is the so-called point correspondence problem,
one of the fundamental problems in 3D vision.  Note that
another correspondence problem is point correspondence
in a time sequence of images.  Here we focus on the
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stereoscopic correspondence of images rather than the
temporal correspondence.

Longuet-Higgins [22] gave a relation between the
corresponding points in two images.  Consider two
cameras in which the unit vectors ( 1(n)m , 2(n)m , 3(n)m )

constitute a local right-hand coordinate system whose
origin is located at the perspective center c(n)X , where

2,1n =  is the index denoting the cameras 1 and 2.  The

three-dimensional coordinates T3
)n(

2
)n(

1
)n( )X,X,X(=(n)X

in the coordinate frames ( 1(n)m , 2(n)m , 3(n)m ) are related by

a tensor-form of the translation and rotation
transformations

)TX(RX r)1((2)
ββ

αβ −= , (6.1)

where ]R[ αβ=R  and ]T[ r
β=rT  are the rotation matrix

and translation vector, respectively.  If the two cameras
have the same principal distance and pixel spacing ratio,
R  and rT  can be obtained by translating the origins c(n)X

and rotating the vectors ( 1(n)m , 2(n)m , 3(n)m ) ( 2,1n = ) to

match the two coordinates frames.  Here R  and rT  are

generally treated as the unknown matrix and vector.
A new matrix Q is given by

SRQ =  or µβαµαβ SRS = , (6.2)

where S is the skew-symmetric matrix

















−
−

−
=

0TT

T0T

TT0

1
r

2
r

1
r

3
r

2
r

3
r

S . (6.3)

Eq. (6.3) is written as a tensor notation
σ

σµβµβ ε rTS = , (6.4)

where the permutation index 0or,1or,1 −=σµβε  if

),,( σβµ  is an even, or odd permutation of )3,2,1( , or

otherwise.  From Eqs. (6.1)-(6.4), we know

0XT)TX(

XTR)TX(RXQX

)1(rr)1(

)1(rr)1((1)(2)

=−=

−=
βσ

σµβ
µµ

βσ
σµβαµ

κκ
ακ

β
αβ

α

ε

ε
, (6.5)

since R  is orthogonal ( αβµβαµ δ=RR ) and σµβε  is anti-

symmetric in every pair of its subscripts.  Note that
T3

)n(
2

)n(
1

)n( )X,X,X(=(n)X  are the coordinates in the local

frame ( 1(n)m , 2(n)m , 3(n)m ) whose origin is located at the

perspective center.  Thus, the collinearity equations Eq.
(2.2) can be re-written as a simpler form.  In the local
coordinate frames ( 1(n)m , 2(n)m , 3(n)m ), without the lens

distortion, the homogenous image coordinates
T2

)n(
1

)n()n(h )c,x,x(]x[ −=α  are related to the object space

coordinates α
)n(X  by

3
)n()n(h(n) X/Xcx α−= .  ( 2,1n = , 3,2,1=α ) (6.6)

The image coordinates α
)n(x  are relative to the principal

point in these local frames rather than the geometrical
center of the image.  Dividing Eq. (6.6) by 23

)2(
3

)1( c/XX

yields the Longuet-Higgins equation for the image point
correspondence

0xQx h(1)h(2) =β
αβ

α . (6.7)

Often, ][Q=Q  is called the fundamental matrix that is

related to the camera exterior orientation parameters.
Given a number of the point correspondences between the
two images (more than eight), the elements αβQ  can be

determined by solving the following algebraic equations
using a least-squares method

0Q)x(x ih(1)h(2) =αβ
βα .   ( L,2,1i = ) (6.8)

Longuet-Higgins’ original derivation of Eq. (6.7) is
purely algebraic without giving a geometrical
interpretation.  In fact, the geometrical meaning of Eq.
(6.7) is related to the epipolar lines in the images [2-3].
Given a point )x,x( 2

)1(
1

)1(  in the image 1, its epipolar line

in the image 2 is a projection of the line connecting the
object space point and the image point through the optical
center in the camera 1 onto the image 2.  The epipolar line
in the image 2 is described by

0px )1(h(2) =α
α , (6.9)

where β
αβα h(1)(1) xQp =  are the coefficients of the epipolar

line.  Thus, the matrix Q  maps the points in the image 1 to

the epipolar lines in the image 2.  In the same way, Eq.
(6.7) also gives an epipolar line in the image 1 for a given
point in the image 2.  Hence, Eq. (6.7) serves as the
epipolar constraint to reduce the number of unknowns in
establishing the point correspondence.  It is easily shown
that when the lens distortion exists, the generalized
epipolar constraint is

0)xx(Q)x(x )1(hh(1))2(hh(2) =++ ββ
αβ

αα δδ . (6.10)

The lens distortion terms are
T2

)n(
1

)n()n(h )0,x,x(]x[ δδδ α = .  Since the lens distortion

terms in Eqs. (2.4) and (2.5) are non-linear, an epipolar
line is a curve rather than a straight line.  More point
correspondences are required to solve Eq. (6.10) since
there are additional unknowns associated with the lens
distortion.

The unknown fundamental matrix in the epipolar
constraint is determined by using a number of point
correspondences.  Nevertheless, for two calibrated
cameras, the image point correspondence can be directly
established from the collinearity equations.  The
collinearity equations Eq. (2.9) for two cameras are written
as

0)(

0)(
T

T

=−

=−

c(n)2(n)

c(n)1(n)

XXW

XXW
.   ( 2,1n = ) (6.11)
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Re-combination of Eq. (6.11) yields two sets of linear
equations for X

1com1com BXW = (6.12)

and

2comcom2 BXW = , (6.13)

where the composite matrices and vectors are



















=
T

T

T

1(2)

2(1)

1(1)

1com

W

W

W

W , 



















=
T

T

T

2(2)

2(1)

1(1)

com2

W

W

W

W ,



















=

c(2)1(2)

c(1)2(1)

c(1)1(1)

1com

XW

XW

XW

B
T

T

T

, 



















=

c(2)2(2)

c(1)2(1)

c(1)1(1)

2com

XW

XW

XW

B
T

T

T

. (6.14)

Eliminating X  from Eqs. (6.12) and (6.13), we have a
relation between the image coordinates )x,(x 2

(1)
1
(1)  in the

image 1 and )x,(x 2
(2)

1
(2)  in the image 2

0BBWWG 1com2com
1

com21com =−= −)x,x;x,(x 2
(2)

1
(2)

2
(1)

1
(1) .

(6.15)
For a point )x,(x 2

(1)
1
(1)  in the image 1, the corresponding

epipolar line in the image 2 is given by
0||)x,x;x,(x 2

(2)
1
(2)

2
(1)

1
(1) =G|| . (6.16)

The Longuet-Higgins equation indicates that a point in
the image 1 corresponds to the epipolar line on the image 2
and vice versa.  Therefore, the point correspondence is not
uniquely established between a pair of images since given
an image point )x,(x 2

(1)
1
(1) , there is only one equation for

two unknowns )x,(x 2
(2)

1
(2) .  In order to establish the point

correspondence among images, we need at least four
cameras (or four images).  For four cameras or images, the
Longuet-Higgins equations are

0xQx h(j))ji(h(i) =−
β

αβ
α . ( 4,3,2,1i = , 4,3,2,1j = ) (6.17)

If the fundamental matrices )ji(Q −αβ  are determined by

calibration, for a given point )x,(x 2
(1)

1
(1)  in the image 1, we

have a system of six algebraic equations for six unknowns
)x,x,x,x,x,(x 2

(3)
1
(3)

2
(2)

1
(2)

2
(1)

1
(1)

0xQx h(2))21(h(1) =−
β

αβ
α , 0xQx h(3))31(h(1) =−

β
αβ

α ,

0xQx h(3))32(h(2) =−
β

αβ
α , 0xQx h(4))41(h(1) =−

β
αβ

α ,

0xQx h(4))42(h(2) =−
β

αβ
α , 0xQx h(4))43(h(3) =−

β
αβ

α . (6.18)

When the four cameras are suitably positioned, Eq. (6.18)
is not singular and the solution of Eq. (6.18) for

)x,x,x,x,x,(x 2
(3)

1
(3)

2
(2)

1
(2)

2
(1)

1
(1)  can be obtained using an

iterative method.  In general, there are multiple solutions
since three equations in Eq. (6.18) are quadratic.  The
correct solution has to be selected based on additional

criteria.  More than four cameras can be used to increase
the redundancy for least square estimation.

7. Composite Image Space and Object Space
Eq. (6.12) gives a non-linear relation between the

object space coordinates and X  and the composite image
coordinates T1

(2)
2
(1)

1
(1) )x,x,(x=comx .  As shown in Fig. 7,

the local coordinate frame ( 1(1)m , 2(1)m , 3(1)m ) at the

perspective center c(1)X  on the image 1 can serve as a

frame for the composite image space in which
T1

(2)
2
(1)

1
(1) )x,x,(x=comx  are the coordinates along the unit

vectors ( 1(1)m , 2(1)m , 3(1)m ).  Note that the coordinate 1
(2)x

of the corresponding point in the image 2 is artificially
assigned to the coordinate value in the axis 3(1)m  in the

composite image space.  Mapping between the composite
image space and the object space is one-to-one.
Differentiating Eq. (6.12), we have

1com1com1com BXWXW ddd =+ . (7.1)

Substitution of Eqs. (2.10), (6.12) and (6.14) into Eq. (7.1)
yields a basic differential relation between the composite
image space and object space (see Fig. 7)

comcom xxHX d)(d =  or β
αβ

α
comxd)(HdX comx= , (7.2)

where



















−

−

−

=
−

−

−

−

)(00

0)(0

00)(

)(
T

T

T

c(2)1com
1

1com3(2)

c(1)1com
1

1com3(1)

c(1)1com
1

1com3(1)

1
1comcom

XBWm

XBWm

XBWm

WxH

(7.3)
Consider a 3D curve in the object space.  The arc

length dS  of the curve in the object space is expressed in
the composite image coordinates, i.e.

βα
αβ

αα
comcom

2 xdxdJdXdXdS == , (7.4)

where βµαµαβ HHJ = .  Introducing the arc length
2/1

comcom )dx(dxds αα=  in the composite image space, we

obtain a relation between dS  and ds
sd)L(dS comx= . (7.5)

The length scale factor )L( comx  is
2/1

comcom )ttJ()L( βα
αβ=comx , (7.6)

where ds/dxt comcom
αα =  is the unit tangent vector comt  of

the corresponding curve in the composite image space.
Using Eq. (7.5), we are able to express the unit tangent
vector T of the curve in the object space in the composite
image space coordinates and tangent vector, i.e.,

β
αβ

αα
com

1 tHL/dSdXT −== . (7.7)

The principal normal vector K of the curve in the
object space is
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










+

∂
∂

== −
−

− β
αβ

βσ
σ

αβαα
com

1
comcom

com

1
1 kHLtt

x

)LH(
L/dSdTK ,

(7.8)
where 2

com
2

comcom ds/tdds/dtk ααα ==  is the principal

normal vector of the corresponding curve in the composite
image space.  In the derivation of Eq. (7.8), the relation

αα
comcom x/tds/d ∂∂=  is used.  The curvature of the curve

in the object space is
2/1

obj )K(K αακ = . (7.9)

Eqs. (7.8) and (7.9) indicate that the curvature is not an
invariant under the perspective projection transformation,
which depends on not only α

comk , but also α
comt  and the

camera parameters.  The unit principal normal vector N is
obtained by normalizing K

KN 1
obj
−= κ  and αα κ KN 1

obj
−= . (7.10)

The unit binormal vector B of the curve in the object space
is

NTB ×=  or σβ
αβσ

α ε NTB = . (7.11)

Thus, the torsion of the curve in the object space is

)x/NtTNN(LK

dS/dBN

comcom
11

obj

obj

µσµβσβ
αβσ

α

αα

εκ

τ

∂∂+−=

−=
−−

. (7.12)

In this stage, the geometric structures of the 3D curve such
as the tangent, curvature and torsion are expressed as a
function of the composite image space coordinates.  In
general, they are not differential invariants under the
perspective projection transformation.  In many
applications, however, these geometric quantities are very
useful since they are directly related to the physical
properties associated with the curve.  The useful physical
properties can be extracted from them.  For example, the
motion of an isolated vortex filament (a good model for a
tornado) is mainly determined by the curvature and torsion
of the filament [17].

From Eq. (7.2), we can relate the motion field
/dtdX)(U α

α =X  in the object space with the motion

field /dtdx)(u com
α

α =comx  in the composite image space

ααβα u)(H)(U comxX = . (7.13)

The motion field )(U Xα  can be decomposed into two

components
dt/dSTt/Xt)/dt(S(t),dX)(U ααα

α +∂∂==X . (7.14)

The first term t/X ∂∂ α  is the apparent velocity and the
second is the deformation velocity along the curve.
Similarly, )(u comxα  has two components

dt/dstt/xt)/dt(s(t),dx)(u comcomcom
ααα

α +∂∂==comx . (7.15)

If the point correspondence of the curve at two successive
instants is not known, Eq. (7.13) cannot be directly utilized
to calculate the motion field )(U Xα  form image

measurements.  The deformation dt/ds  in the composite

image space cannot be determined from images without
using any additional physical constraint.  Thus, we have to
look for a global method for recovering the motion field
that is briefly discussed in Section 3.

8. Perspective Invariants of 3D Curve
Construction of perspective algebraic and differential

invariants for a 3D curve is difficult because the
perspective projection transformation is non-linear.
However, it is possible to construct semi-differential
invariants in a special case of stereo image pair [23].  The
perspective invariants are useful since they can directly
give certain geometric features of the curve from non-
calibrated images.  We use the perspective projection
transformation for a pair of images

hh(i)h(i) XPx )i(λ= ,   ( 2,1i = ) (8.1)

where T2
(i)

1
(i) )1,x,(x=h(i)x  is the homogenous image

coordinates in a pair of images ( 2,1i = ),
T321 )1,X,X,X(=hX  is the homogenous coordinates in

the object space, and ][P nmh(i)=hP  ( 3,2,1n = ,

4,3,2,1m = ) are a 3×4 matrix that only depends on the

camera orientation parameters (see Section 2).  In general,

the scaling factors )(/c T
(i))i( c(i)3(i) XXm −−=λ  for the

two images are not the same, which are related to the
camera parameters and the position of a point in the object
space.  Here we consider a special but useful case in which
the scaling factors in two images are equal, i.e.,

λλλ == )2()1( . (8.2)

The condition Eq. (8.2) implies

)2()1( cc = , 3(2)3(1) mm = , 0XXm c(1)c(2)3(1) =− )(T . (8.3)

Eq. (8.3) indicates that the two images have a relative shift
on the same plane normal to the vector 3(2)3(1) mm = .  This

means that two cameras are placed side by side and their
optical axes are in parallel.  This coplanar condition allows
us to combine the collinearity equations Eq. (8.1) for the
two images, which makes construction of perspective
invariants possible.

A relationship between the composite image space
and the object space for a 3D curve is written as in the
homogeneous coordinates

hhcomhcom XPx )S())S(s( λ= , (8.4)

where T1
(2)

2
(1)

1
(1) )1,x,x,(x=hcomx  is the composite

homogeneous coordinates in the image space,
T321 )1,X,X,X(=hX  is the homogenous coordinates in

the object space, and hcomP  is a composite matrix
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



















=

34)1(h33)1(h32)1(h31)1(h

14)2(h13)2(h12)2(h11)2(h

24)1(h23)1(h22)1(h21)1(h

14)1(h13)1(h12)1(h11)1(h

PPPP

PPPP

PPPP

PPPP

hcomP . (8.5)

The arc lengths s and S of the curves in Eq. (8.4) are used
as a parameter of the curve in the composite image space

)x,x,(x 1
(2)

2
(1)

1
(1)  and the object space )X,X,X( 321 ,

respectively.  The function )S(ss =  is one-to-one.

Brill et al. [23] has constructed projective invariants
by differentiating Eq. (8.4) repeatedly with respect with S,
arranging the results in matrix equations for several points
on the curve, evaluating the determinants of the matrix
equations, and then eliminating all the factors related to the
imaging parameters.  At first, following the method
developed by Brill et al. [23], we consider a number of the
basic geometric structures.  The curvatures in the
composite image space and the object space are [18]

|xx||x comcomcomim &&&&& ×== |κ  and |XX||Xobj
&&&&& ×== |κ ,

(8.6)
where ds/d comcom xx =& , 22 ds/d comcom xx =&& ,

dS/dXX =& , and 22 dS/d XX =&&  are the derivatives
with respect to the arc length.  The torsions in the
composite image space and the object space are,
respectively,

2

2

|

|

comhcomhcomhcom

comcomcomcomim

x|/|xxx|

x|/|xxx|

&&&&&&&&

&&&&&&&&

−=
=τ

, (8.7)

and
22 || X|/|XXX|X|/|XXX| hhhobj

&&&&&&&&&&&&&&&& −==τ . (8.8)

Eqs. (8.7) and (8.8) are expressed in the homogeneous
coordinates T1

(2)
2
(1)

1
(1) )1,x,x,(x=hcomx  and

T321 )1,X,X,X(=hX  to facilitate the use of Eq. (8.4).

In the object space, the unit tangent vector is XT &= , the

unit principal normal vector is obj/ κXN &&= , and the unit

binormal vector is obj/ κXXNTB &&& ×=×= .  We define

the distance ijD  from a point iX  to the osculating plane to

the curve at another point jX

j,obj

j,objjij

/||

/|)(|)(D

κ

κ

ih,jh,jh,jh,

jijjij

XXXX

XXXXBXX

&&&

&&&

=

−=−= •
,

(8.9)
where the subscripts ‘i’ and ‘j’ denote the quantities
associated with the points iX  and jX .  The geometrical

meaning of ijD  is illustrated in Fig. 8.  Similarly, in the

composite image space, the distance ijd  from a point

icom,x  to the osculating plane to the curve at the point

jcom,x

j,im

j,imij

/||

/|)(|d

κ
κ

ihcom,jhcom,jhcom,jhcom,

jhcom,jhcom,ihcom,jhcom,

xxxx

xxxx

&&&

&&&

=

−=
. (8.10)

In addition, we introduce the following geometric
quantities

||3)2,,1’i(1, 3hcom,2hcom,1hcom,hcom,1 xxxx &= ,

||3),2’2,i(1, 3hcom,hcom,22hcom,1hcom, xxxx &= ,

||3)2,,1’I(1, 3h,2h,1h,h,1 XXXX &= ,

||3),2’2,I(1, 3h,2h,2h,h,1 XXXX &= . (8.11)

Differentiating Eq. (8.4) with respect to S, we obtain







= −

i

i
hcom

1 )(s
λ
λ&&&& ih,ih,ihcom, XXPx ,
















= −

i

i2

i1

hcom
2 )(s

λ
ξ
ξ

ih,ih,ih,ihcom, XXXPx &&&&&& ,





















++
−+

−

= −

i

iii2

i2i2i1

i1i1

hcom
3

s2

s2

s2

)(s

λ
λλξ
ξξξ

ξξ

&&

&&&

&&&

&&&&&&&&&& ih,ih,ih,ih,ihcom, XXXXPx

(8.12)

where 1
iii1 ss −−= &&&&&& λλξ , 1

iii2 ss2 −−= &&&& λλξ , and

dS/)S(dss =& .  From Eqs. (8.6)-(8.12), we have the

following determinantal relations

i,obj
2

i,objhcom
64

ii,im
2

i,im |s τκλτκ P|−= & , (8.13)

ijj,objhcom
33

jiijj,im D|sd κλλκ P|−= & , (8.14)

)3,2,’1,1(I|s)3,2,’1,1(i hcom
3

32
2
1 P|−= &λλλ , (8.15)

)3,’2,2,1(I|s)3,’2,2,1(i hcom
3

31
2
2 P|−= &λλλ . (8.16)

The subscripts ‘i’ and ‘j’ denote the quantities associated
with the points iX  and jX  in the object space and the

corresponding points icom,x  and jcom,x  in the composite

image space.  Re-arrangement of Eqs. (8.13)-(8.16) to
eliminate 1λ , 2λ , s& , and |hcomP|  yields several semi-

differential perspective invariants.
(I) An invariant related to the torsions and the

distances ijD  and ijd  is

2
212,obj

2
121,obj

2
212,im

2
121,im

D

D

d

d

τ
τ

τ
τ

= . (8.17)

For 01,obj =τ , 02,obj ≠τ , 0D12 ≠ , and 0D21 ≠ , then

01,im =τ .  The zero-torsion point in the object space

corresponds to the zero-torsion point in the composite
image space.  The condition 0D12 ≠ , and 0D21 ≠
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implies that the points 1X  and 2X  are not on the same

osculating plane.
(II) An invariant related to the curvatures, the

distances ijD  and ijd , and the quantities )3,2,’1,1(i ,

)3,’2,2,1(i , )3,2,’1,1(I  and )3,’2,2,1(I  is

)3,’2,2,1(ID

)3,2,’1,1(ID

)3,’2,2,1(id

)3,2,’1,1(id
2

211,obj

2
122,obj

2
211,im

2
122,im

κ
κ

κ
κ

= . (8.18)

For 02,obj =κ , 01,obj ≠κ , 0D12 ≠ , and 0D21 ≠ , then

02,im =κ .  This means that the zero-curvature point in the

object space corresponds to the zero-curvature point in the
composite image space.

(III) An invariant related to the distances ijD  and ijd

is

2341

4321

2341

4321

DD

DD

dd

dd
= . (8.19)

This result is analogous to the cross-ratio of the distances
on a line, a classical perspective invariant in perspective
geometry [2, 24].

9. Modeling of Imaging System
Modeling of an imaging system is necessary for

radiometric measurements.  Figure 9 shows a radiation
source at an infinitesimal area element sdA  on the optical

axis, having a distance 1R  from the optical center of the

imaging system like a CCD camera [25].  The radiant
energy (units: joule) from the area element integrated over
a solid angle seen from sdA  to a lens is

∫= ωθφθ dcos),(LdtdAdQ s , (9.1)

where ),(L φθ  is the radiance (units: watt-m-2-sr-1) of the

radiative source at sdA , φθθω ddsind =  is the

infinitesimal element of solid angle, θ  is the polar angle
(measured from the surface normal), φ  is the azimuthal

angle (measured between an arbitrary axis on the surface
and the element of solid angle on the surface), and dt  is a
time interval.  The number of photons collected by the lens
is

∫−

−

=

=

ωθφθν

ν

dcos),(LTdtdA)(

dQT)(dn

atms
1

atm
1

lens

h

h

. (9.2)

where νh  is the energy of a single photon and atmT  is the

transmittance of atmosphere air.  Define Aθ  as the angle

between the optical axis and the line connecting sdA  and

the edge of the aperture.  When Aθ  is small,
2
10

2
A R/A)(sin ≈θ  is approximately the solid angle in

which the radiative energy from sdA  is collected by the

imaging system, where 0A  is the imaging system aperture

entrance area.  Thus, Eq. (9.2) becomes
)R/A(TdtdALdn 2

10atmsplens = , (9.3)

where pL  is the average photon radiance over the

collecting solid angle 2
A

2
10 )(sinR/A θ≈

∫−−= ωθφθθν dcos),(L)(sin)(L 2
A

1
p h . (9.4)

Consequently, the number of photons reaching the image
plane is

optatm
2
10spim TT)R/A(dtdALdn = , (9.5)

where optT  is the transmittance of the optical system.  The

number of photons incident the detector element is simply
proportional to a ratio between the detector element area

DA  and the image area IdA  corresponding to sdA

IDimdet dA/Adndn = . (9.6)

Under the approximation of small angle 1A <<θ , IdA  is

related to sdA  by
2
2I

2
1s R/dAR/dA = , (9.7)

where 2R  is the distance of the image plane from the

optical center.  Substituting Eqs. (9.5) and (9.7) to Eq.
(9.6) and using the relations 4/DA 2

0 π=  and

fl/1R/1R/1 12 =+ , we have

2
opt

2

optatmDp
det )M1(F

TTdtAL

4
dn

+
= π

, (9.8)

where D/flF =  is the F-number and 12opt R/RM =  is

the optical magnification, D  is the diameter of the
aperture, and fl  is the focal length.  Thus, the total

number of photons collected over an integration time INTt

is

2
opt

2

optatmINTDp
det )M1(F

TTtAL

4
n

+
= π

. (9.10)

Since some of the variables in Eq. (9.10) depend on the
frequency ν  of light, the number of photoelectrons
generated in the solid-state detector over a frequency band

],[ 21 νν  is

∫ +
=

2

1

d
)M1(F

)(T)(TtA)(L

4
)(Rn

2
opt

2

optatmINTDp
gpe

ν

ν
ν

νννπν ,

(9.11)
where )(Rg ν  is the detector’s quantum efficiency (units:

electrons/phonon).  We separate the photon radiance pL

into the radiance magnitude pL  independent of ν  and a

shape function of the frequency spectrum )(f sp ν , i.e.,

)(fLL sppp ν= . (9.12)

Therefore, Eq. (9.11) becomes
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pcampe Lpn = , (9.13)

where camp  is a parameter describing the camera

performance

∫ +
=

2

1

d
)M1(F

)(T)(TtA)(f

4
)(Rp

2
opt

2

optatmINTDsp
gcam

ν

ν
ν

νννπν .

(9.14)
After the camera is radiometrcally calibrated, the

image intensity (gray level) is proportional to pen , i.e.,

peIm nc)(I =x . (9.15)

The proportional constant Imc  is determined by

calibration.  The above analysis is made based on the
assumption that the radiation source is on the optical line.
In general, we have to take the off-axis effect into account
[26-27].  Hence, a generalized form of Eq. (9.15) is

p
4

pcamIm cosLpc)(I θ=x , (9.16)

where pθ  is the angle between the optical axis and light

ray through the optical center.  When the lens distortion is
negligible, the angle pθ  can be expressed as a function of

the image coordinates x , the principal point location px

and the principal distance c, i.e.,
)c/|arctan(|p pxx −=θ . (9.17)

Grouping the terms in Eq. (9.16) that are only dependent
of the image coordinates to the left-hand side, we get

)(Lpc|)(|O)(I pcamImx Xxxx p =− , (9.18)

where the function describing the off-axis effect can be
approximated by

22
p

4
x c/||21cos|)(|O pp xxxx −+≈=− − θ . (9.19)

Assuming that the off-axis effect is corrected on the image
plane, without loss of generality, we simply rewrite Eq.
(9.18) as

)(Lpc)(I pcamIm Xx = . (9.20)

In order to simplify the notations, we use replacements

camImsys pcc →  and )(L)(L p XX → .  Therefore,

without loss of generality, Eq. (9.20) becomes
)(Lc)(I sys Xx = , (9.21)

where sysc  is a proportional constant related to the imaging

system and )(L X  should be understood as the spectrally

averaged radiance.

10. Typical Radiation Processes
Surface Reflection

Quantitative image-based measurements require the
knowledge of the physical properties of radiation-matter
interaction of the objects of interest.  One of the important
interactions is reflection on a surface.  As shown in Fig.
10, the incident radiance is generally a function of the
incident direction ),( ii φθ , i.e.,

),(LL iiii φθ= . (10.1)

The reflection radiance ),;,(L rriir φθφθ  is quantitatively

characterized by the bidirectional reflectance distribution
function (BRDF) [28]

),(dE/),;,(dL),;,(f iiirriirrriir φθφθφθφθφθ = . (10.2)

where the infinitesimal incident irradiance ),(dE iii φθ
over a solid angle element idω  is

iiiiiiii dcos),(L),(dE ωθφθφθ = . (10.3)

The BRDF has a unit of steradian-1.  The BRDF depends
on the surface roughness distribution.  Foe a perfectly
diffuse surface or a Lambertian surface where the
reflection radiance is isotropic, i.e., .constLr = , the BRDF

is π/1f r = .  In this case, the reflection radiance is

∫=
i

iiiiir dcos),(L)/1(L
ω

ωθφθπ . (10.4)

Furthermore, when the incident source of the irradiance

0E  is collimated at a fixed incident direction ),( 00 φθ , the

incident radiance is described by the Dirac-delta function

00i0i0iii sin/)()(E),(L θφφδθθδφθ −−= . (10.5)

Thus, Eq. (10.4) becomes the Lambert’s cosine law

00r cosE)/1(L θπ= . (10.6)

For a general surface, the BRDF can be derived based
on either the wave equation for electromagnetic waves or
geometrical optics.  Using the method of Helmholtz-
Kirchhoff integral, Beckmann and Spizzichino [29] have
derived an expression for the mean power of
electromagnetic wave scattered from a rough surface.
Similar integral approaches were used by Icart & Arques
[30] and Wang [31].  Icart and Arques [30] derived an
expression of the BRDF for multilayer materials, which
was composed of specular, directional-diffuse (spread
reflection), and uniform diffuse (Lambertian) components.
From a viewpoint of geometrical optics, Torrance and
Sparrow [32] gave a simpler expression for the BRDF.
Beckmann-Spizzichino’s model and Torrance-Sparrow’s
model were discussed by Nayar et al. [33] from a
viewpoint of computer vision application.  A
bibliographical review on the BRDF was given by Asmail
[34].  Scattering of electromagnetic waves from randomly
rough surfaces is still an active research area covering a
variety of theoretical and experimental studies [35].

From a viewpoint of application, the empirical
expressions for the scattered radiance from a rough surface
are very useful due to their simplicity [36].  An empirical
model for a single light source is

)(p)(E

))((E)(E)(L

lss

lsdaar

VRX

LNXXX
T

s
T

ρ
ρρ

+
+=

, (10.7)

where the first, second and third terms are, respectively,
the contributions from the ambient reflection, diffuse
reflection, and specular reflection.  In Eq. (10.7), aρ , dρ ,
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and sρ , are the empirical reflection coefficients for the

ambient reflection, diffuse reflection, and specular
reflection.  As shown in Fig. 11, the vectors N , sL , R ,

and V  are, respectively, the unit normal vector of a
surface, the unit vector directing the light source from the
surface, the unit main directional vector of the specular
reflection, and the unit viewing vector.  )(Ea X  and

)(Els X  are the irradiances for the ambient environment

and light sources, respectively.  The function )(p VRT  is

the directional distribution of the specular reflection,
describing the spreading of scattered light.  Phong [37]
gave a power function n)()(p VRVR TT = .  In general,

the main directional vector of the specular reflection, R , is
a function of the incident direction of light sL− .  Although

there are theories for predicting R  [32], it is not known for
a general surface.  The unknowns in Eq. (10.7), including
R , the reflection coefficients and the parameters in

)(p VRT , have to be determined by calibration.  For

multiple light sources, Eq. (10.7) includes superposition of
the contributions from these light sources.
Radiative Energy Transfer in Media

When light travels in a medium, the radiance is
affected by absorption, emission and scattering.  The
radiative energy obeys overall conservation of energy.
The equation of radiative energy transfer can be derived
based on a balance among absorption, emission and
scattering, i.e.,

i

4

s d),()(L
4

LSL
ds

dL
ωΦ

π
σ

β η

π

η
η

ηηηη
η ssss ii∫+−=∇= •

(10.8)
where s  is the path vector, ηβ  is the extinction

coefficient, ησ s  is the scattering coefficient, ),( ssiηΦ  is

the scattering phase function, ηS  is a radiation source

term, and the subscript η  denotes the frequency range.

This transport equation has been used in radiative heat
transfer [38] and radiative hydrodynamics [39].  Note that
the terminology of the radiatve intensity (unit:
watts/area/solid angle) used in literature of radiative heat
transfer is just the radiance in radiometry.  The solution
techniques and the suitable boundary conditions have been
discussed by Modest [38].
Luminescence

Luminescence is an emission from molecules after
they are excited by an excitation light with a suitable
wavelength.  Luminescent dyes, widely used as probe
molecules in biological and medical applications [40],
have been utilized for flow visualization and
measurements.  For example, based on oxygen quenching
of luminescence, luminescent molecules immobilized in a
polymer layer have been used for surface pressure and
temperature measurements in aerodynamic testing.  These

new sensors are called as pressure- and temperature-
sensitive paints (TSP and PSP).  After luminescent
molecules in PSP absorb the energy from the excitation
light with a wavelength λ1, they emit luminescence with a
longer wavelength λ2 due to the Stokes shift.  Liu et al.
[41] have analyzed luminescent radiation from a PSP layer

and obtained the spectral luminescent radiance (
2

L )

)M(�/()K(Esq)TP,(hL
122 120Φ= , (10.9)

where )TP,(Φ  is the luminescent quantum yield that

depends on pressure (P) and temperature (T), )(Es 22
 is

the luminescent emission spectrum, h is the layer
thickness, 0q  is the incident light flux, cos=  is the

cosine of the polar angle , and the extinction coefficient

c
11

=  is a product of the molar absorptivity 
1

 and

luminescent molecule concentration c .  The coefficient
M  represents the effects of reflection and scattering of the
luminescent light at the wall.  The term 1K  represents the

combined effect of the optical filter, excitation light
scattering, and direction of the incident excitation light.

The luminescent irradiance 
2

E  over a collecting solid

angle  is

MK)(Esq)TP,(h

dcosLE

120 21

22

><=

= ∫
Φ

, (10.10)

where >< M  is the spectrally averaged quantity of M .

Even though Liu’s analysis was focused on a thin PSP
layer, calculation of luminescent radiance is generally
valid for a luminescent volume where surface reflection is
absent.  The spectral luminescent radiance integrated over
a volume V is expressed as

∫−=
V

0
1

12 d)()(q)()K(EsL
122

XXXXΦ .

(10.10)
A similar analysis for the luminescent flux was given by
Gaigalas et al. [42].

11. Reflection and Shape Recovery
Reflection on a solid surface depends on the geometric

properties of the surface.  In principle, shape of the surface
can be recovered from surface reflectance under certain
conditions.  Computer vision scientists have studied the so-
called shape-from-shading problem for decades [43-44].
Here we give a general consideration that is particularly
useful for more complex engineering structures.  Figure 11
shows a surface element with the unit normal vector N .
The incident polar angle iθ  is the angle between the unit

normal vector N  and the unit vector sL  directing the

light source from the surface.  The reflecting polar angle
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rθ  is the angle between the unit normal vector N  and the

unit reflecting vector R .  The azimuthal angle rφ  is the

angle between the projections of the vectors sL  and R  on

the surface.  Assuming that the reflecting vector R  is on
the plane spanned by sL  and N , we have

sLNR LN aa += . (11.1)

The coefficients Na  and La  are determined by solving the

following equations

sr LNRN •• +== LN aacosθ ,

1aaa2a 2
LLN

2
N =++= •• sLNRR . (11.2)

Eliminating Na  from Eq. (11.2) yields

01cosacos2a)cos(1 2
L

22
L

2 =−+−+ rii θθθ . (11.3)

There are two solutions for La

i

riii

θ
θθθθ

2

2222

L cos1

1)cos)(coscos(1cos
a

+
+−+±

= .

(11.4)
The reflecting polar angle rθ  is not necessarily equal to

the incident angle iθ  especially at large incident angles

due to the off-specular reflection phenomenon on a rough
surface [32].  In general, ir θθ ≥  insures that there is no

imaginary solution for La , which is also supported by

experiment data.  The condition ir θθ ≥  indicates 0aL ≤ .

Thus, the appropriate solution for Na  and La  are

i

riii

θ
θθθθ

2

2222

L cos1

1)cos)(coscos(1cos
a

+
+−+−

= ,

ir θθ cosacosa LN −= . (11.5)

The reflecting polar angle rθ  can be expressed as a

function of iθ  based on theories and experimental results.

In a special, but very useful case ir θθ = , Eq. (11.5)

becomes

2

2

2

2

L )(1

1)(

cos1
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a

s

s
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=
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2
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2
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s
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•

•

+
=

+
=

θ
θ

. (11.6)

Consider a surface )X,X(FX 213 =  illuminated by a

single light source.  The relation between the image
intensity and reflection radiance from the surface is

)](p)[(Ec

)(Ec)(I

sdlssys

aasys

VRLNX

Xx

s •• ++

=

ρρ
ρ

. (11.7)

The relation between the image coordinates x  and the
object-space coordinates X  is given by the collinearity
equations Eq. (2.2).  The unit normal vector N  is

1FF/)1,F,(F 2
X

2
X

T
XX 2121 ++−=N , (11.8)

where 1
X

X/FF 1 ∂∂=  and 2
X

X/FF 2 ∂∂= .  The unit

vector sL  directing the light source cX  from the surface

is
|XXXXL sss −−= |/)( . (11.9)

When the camera is sufficiently away from the object, the
unit viewing vector V  directing from surface to the
camera is approximately

3mV −= , (11.10)

which is known for a photogrammetrically calibrated
camera.  The reflecting vector R  is given by Eqs. (11.1),
(11.5) and (11.6).  Clearly, given an image intensity field

)(I x , Eq. (11.7) is a complicated non-linear first-order

partial differential equation for the surface
)X,X(FX 213 = .  Thus, a numerical solution to Eq.

(11.7) has to be sought with suitable boundary conditions
and constraints.

When the light source is away enough from the object
relative to the size of the object, the incident irradiance

)(Els X  and ambient irradiance )(Ea X  can be

considered to be homogenous on the surface of the object,
that is, .const)(Els =X  and .const)(Ea =X .  In this

case, the vector sL  is also approximately homogenous and

it becomes a constant vector.  Thus, Eq. (11.7) is
simplified to

)]aa(p[Ec

Ec)(I

LNsdlssys

aasys

VLVNLN

x

ss ••• +++

=

ρρ
ρ

.(11.11)

Eq. (11.11) is still complicated for analysis.  Furthermore,
at a Lambertian surface without the ambient illumination,
Eq. (11.11) is simply

sLNx •= dlssys Ec)(I ρ . (11.12)

In computer vision, a viewer-oriented coordinate system
and orthographic projection are often used to further
simplify the problem [45].  The viewer-oriented
coordinates )X,X( 21  in the object space are aligned with

the image coordinates )x,x( 21 .  The third viewer-oriented

coordinate 3X  is in the direction of the viewing vector V .
Eq. (11.12), known as the image irradiance equation in
computer vision, has been extensively studied for shape-
from-shading [43-44].  For quantitative measurements, Eq.
(11.12) can serve as the first-order approximation.

12. Motion Equations of Image Intensity
In this Section, we derive motion equations of image

intensity from underlying physical principles.  The motion
equations of image intensity can be used for recovering the
optic flow and other physical properties from a time
sequence of images of continuous patterns.  The temporal
and spatial development of the image intensity depends on
the radiation process that is characterized by the physical
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parameters T
N21 )p,,p,(p L=p  and the geometric

parameters T
M21 )q,,q,(q L=q , that is,

)t,,(Lc)t,(I sys qpX,x = . (12.1)

Differentiating Eq. (12.1) with time, we have the motion
equation of image intensity







∇+∇+∇+

∂
∂=∇+

∂
∂

•••• L
dt

d
L

dt

d
L

t

L
cI

t

I
qpXsysx

qp
Uu

(12.2)
where /dtdxu =  is the optical flow in the image plane,

/dtdXU =  is the motion field in the object space, and the
gradient operators are defined as

T21
x )x/,x/( ∂∂∂∂=∇ ,

T321
X )X/,X/,X/( ∂∂∂∂∂∂=∇ ,

T
N1p )p/,,p/( ∂∂∂∂=∇ L ,

T
N1q )q/,,q/( ∂∂∂∂=∇ L .

The first term in the right-hand side of Eq. (12.2) is the
local temporal change of the radiance.  The second term is
the change induced by motion in a non-homogenous
radiance field.  The third and fourth terms are related to the
changes of the physical and geometric parameters,
respectively.  Eq. (12.2) is a generic form of the motion
equation of image intensity.  However, the detailed
structure of Eq. (12.2) depends on the specific physical
process being studied.  To determine the optical flow,
Horn and Schunck [46] suggested the well-known
brightness constraint equation 0It/I x =∇+∂∂ •u  in

computer vision.  In fact, the brightness constraint
equation is just an assumption that the image intensity
remains invariant along a stream of images.  Generally
speaking, this assumption, which is not related to any
physical process, does not hold exactly.  In the following,
we give the motion equations of image intensity for three
typical cases.  Similar results can be obtained for other
physical processes.  Determining the optic flow in the
motion equation of image intensity is a constrained
variational problem.
Moving Lambertian Surface

Consider a moving Lambertian surface illuminated by
an incident irradiance field )(Els X .  Since the image

intensity is sLNx •= dlssys Ec)(I ρ , the motion equation

of image intensity for a Lambertian surface is






 +∇=
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dt
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ss L
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ULN

u

ρ
.

(12.3)
The first term in the right-hand side of Eq. (12.3) is the
change due to motion in the non-homogenous irradiance
field.  The term sLN/ •dt)d(  represents the rate of change

of the unit normal vector N  of the surface projected in the
illumination directional vector T

3s2s1s )L,L,L(=sL .  We

explore the connection of this term with the fundamental
geometric quantities of the surface.  The term sLN/ •dt)d(

is expanded as

)
tdt

d
X( NLUL

N
L

N
sss ∇+

∂
∂= •••• . (12.4)

The surface is described by a parametric equation
),( 21 ξξXX = , (12.5)

where 1ξ  and 2ξ  are the parameters of the surface.  The

term NLs X∇•  can be expressed in 1ξ  and 2ξ

βα

β

α ξ
ξ

∂
∂

∂
∂

=∇•
N

NLs X
LsX . ( 2,1=β , 3,2,1=α ) (12.6)

According to the formulae of Weingarten [18]

ασβ
σα

β ξξ ∂
∂−=

∂
∂ XN

bg , (12.7)

we obtain

U
X

NLU s •••
∂
∂−=∇ ασβ

σα
β ξ

bgl)X( , (12.8)

where αβ
αβ ξ X/Ll s ∂∂= , σαg  are the contravariant

metric tensor, and σβb  are the coefficients of the second

fundamental form of the surface.
Emitting Passive Scalar Transport

In a transport process of passive scalar such as
fluorescent dye, scattering particles, and temperature in
fluids, the radiance is assumed to be proportional to the
density or concentration )t,( Xψ  of the scalar

)t,(c)t,(L XX ψψ= , (12.9)

where ψc  is a proportional constant.  The density of the

scalar )t,( Xψ  obeys the transport equation

ψψψψ
ψ

2
XD

tdt

d ∇=∇+
∂
∂= •U , (12.10)

where ψD  is the diffusion coefficient of the scalar.

Differentiating Eq. (12.1) and using Eqs. (12.9) and
(12.10), we have

ψψψ
2
Xsys Dcc

dt

)t,(dI ∇=x
. (12.11)

Furthermore, because of )t,(cc)t,(I sys Xx ψψ= , Eq.

(12.11) becomes

)t,(ID
dt

)t,(dI 2
X x

x ∇= ψ . (12.12)

The Laplace operator 2
X∇  can be expressed in the image

coordinates x , i.e.,

γαγαγγ xx
h

x
h

2
2
X ∂∂

∂+
∂
∂=∇ , (12.13)
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where λh  and λαh  ( 2,1=α , 2,1=γ , 3,2,1=β ) are

defined as

ββ

γ

γ XX

x
h

2
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∂=  and β
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γα X

x

X

x
h

∂
∂

∂
∂= . (12.14)

For a photogrammetrically calibrated camera, γh  and γαh

are determined by the collinearity equations with the
known camera parameters and the image coordinates when
a surface constraint )X,X(FX 213 =  is imposed (see

Section 4).  Hence, the motion equation of image intensity
for a passive scalar transport process is
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. (12.15)

The optical flow field dt/dxu αα =  can be recovered
from Eq. (12.15).  In particular, using the orthographic
projection αα Xx = , we have

0h =γ  and γαγα δ=h . (12.16)

In this case, Eq. (12.15) is reduced to the standard
diffusion equation [47]
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Transmittant Passive Scalar Transport
Here we derive the motion equation of image intensity

for transmittant passive scalar transport in a medium like
fluids.  When a light ray transmits through a bulk of
passive scalar, the intensity of light is attenuated due to
absorption and scattering, shown in Fig. 12.  The radiance
reaching a camera through the scalar medium is given by

LL
ds

dL β−=∇= •s , (12.18)

where s  is the path vector and β  is the extinction

coefficient.  The solution of Eq. (12.18) gives the
transmitted radiance

)dsexp(LL
s

0
0 ∫−= β . (12.19)

Consider a bulk of the participating passive scalar confined
by two virtual boundary surfaces 1  and 2 , as shown in

Fig. 12.  We assume that the camera is far enough away
from the bulk of scalar such that the light path is almost
parallel to the optical axis, i.e., 3ms −≈ .  In this case, it is

convenient to use the object space coordinates X  in the
frame ( 1m , 2m , 3m ), defined as
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, (12.20)

where the unit vectors 1m , 2m , and 3m  are orthogonal,

i.e., βγαγαβ δ=mm .  Under the above conditions, the

transmitted radiance in Eq. (12.19) can be written as
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where the boundary surfaces are )t,X,X(X
21

1

3
=  and

)t,X,X(X
21

2

3
= .  The extinction coefficient is

proportional to the concentration )t,( Xψ  of the scalar,

i.e.,

)t,()t,( XX ψεβ ψ= , (12.22)

where ψε  is an absorption coefficient.  The relationship

between the image intensity and radiance is

)t,(Lc)t,(I sys Xx = , (12.23)

where T21 )x,x(=x  is the image coordinates.

Combination of Eqs. (12.21), (12.22) and (12.23) yields a
basic relation between the image intensity and the
concentration of the scalar
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Differentiating Eq. (12.24) with respect to time, we
have
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Since )t,( Xψ  obeys the transport equation Eq. (12.10),

the first term in the right-hand side is
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The second equality in Eq. (12.26) can be easily proven.
From Eq. (12.20), we know the differential relation
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Integration by parts yields
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( 2,1=β , 3,2,1=α ) (12.28)

where the boundary terms .T.B  are
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We consider that a bulk of the passive scalar is confined in

a finite domain and the distribution of )t,( Xψ  rapidly

decrease to zero outside the domain.  This represents a
typical case in many practical applications.  Therefore,
when the virtual boundary surfaces 1  and 2  are large

enough such that ψ  and its derivatives at the surfaces

approach to zero, i.e.,
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ψ
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Since the boundary terms in Eqs. (12.25) and (12.28)
vanish, Eq. (12.25) becomes
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Now we consider the transformation between the
image coordinates T21 )x,x(=x  and the object space

coordinates T321
)X,X,X(=X .  The collinearity

equations without the lens distortion are
3

p X/Xcxx
βββ −=− .   ( 2,1=β ) (12.31)

Thus, from Eq. (12.30), the Laplace operator can be
written as

ββββ λ
xxXX
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∂
,   ( 2,1=β ) (12.32)

where 
3

X/c−=λ  is the scaling factor.  Using Eqs.

(12.24), (12.30) and (12.32), we obtain the motion
equation of image intensity for transmittance images of
passive scalar transport







∂
∂

∂
∂−

∂∂
∂=

∂
∂+

∂
∂ −

ββββψββ λ
x

I

x

I
I

xx

I
D

x

I
u

t

I 1
2

2 .

( 2,1=β ) (12.33)

Note that a simple version of the motion equation of image
intensity for transmittance flow images was given by
Wilders et al. [48] based on the orthographic projection
and other assumptions.

13. Conclusions
We study a number of theoretical problems in

quantitative image-based measurements of geometric,
kinematic and dynamic properties of observed objects

(specifically deformable bodies).  From a unified
viewpoint, we discuss different formulations of the
perspective projection transformation and their geometrical
connection.  These equivalent formulations of the
perspective projection transformation are selectively used
in this paper to study different geometric problems,
depending on convenience of the formulation applied to a
specific problem.  The perspective developable conical
surface containing a 3D curve is reconstructed from known
image measurements of the curve.  The developable
conical surfaces can be used to reconstruct a 3D curve and
a surface without solving the ambiguous correspondence
problem in stereovision.  Furthermore, the general
methodology is proposed for reconstructing the motion
field of a 3D curve from a time sequence of images.

The perspective projection transformation under a
surface constraint allows one-to-one mapping between the
surface in the object space and the image plane.  We
explore the connection of the geometric structures and
motion fields between the image plane and the surface in
the object space.  These issues are important in
reconstructing the complex motion fields on a surface such
as skin friction field on an aerodynamic body and passive
scalar motion field illuminated by a laser sheet.  Then, we
consider the general point correspondence problem in
multiple images.  Longuet-Higgins relation for the point
correspondence problem is generalized by taking the lens
distortion effect into account.  Generally, establishing the
point correspondence requires at least four cameras or
images.  The concept of the composite image space is
introduced.  After the relationship between the composite
image space and the object space is established under the
coplanar condition, the perspective invariants of a 3D
curve are constructed.  These invariants allow us to
directly know the geometric features of the curve such as
torsion and curvature from images without calibrating the
cameras.

In the radiometric aspects, we discuss the relationship
between the image intensity and the radiance received by a
camera as well as typical radiation processes such as
surface reflection, radiative energy transport through the
participating mediums and luminescence.  The motion
equations of image intensity are derived for moving
Lambertian surface, emitting passive scalar transport and
transmittant passive scalar transport.  These equations
provide a rational foundation for recovering the optic
flows and motion fields of deformable bodies (e.g. fluids)
from a time sequence of images of continuous patterns.
Future research will be focused on the development of the
effective numerical techniques and algorithms and their
implementation in various simulations and experiments.
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Figure 9. Imaging system.
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