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Abstract

This paper discusses theoretical foundations of
guantitative image-based measurements for extracting and
reconstructing geometric, kinematic and dynamic
properties of observed objects. New results are obtained
by using a combination of methods in perspective
geometry, differential geometry, radiometry, kinematics
and dynamics.  Specific topics include perspective
projection transformation, perspective developable conical
surface, perspective projection under surface constraint,
perspective invariants, the point correspondence problem,
motion fields of curves and surfaces, and motion equations
of image intensity. The methods given in this paper are
useful for determining morphology and motion fields of
deformable bodies such as elastic bodies, viscoelastic
mediums and fluids.
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1. Introduction

Image-based measurement techniques play an
increasingly important role in virtually all natural sciences
and engineering disciplines since they can provide
tremendous information and knowledge about observed
objects in a global, non-contact way with high temporal
and spatial resolution. Speciaists in photogrammetry,
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computer vision, and other scientific and engineering
disciplines have developed various methods that are best
suitable to particular applications in their fields. In
particular, both photogrammetrists and computer vision
scientists have studied image-based techniques for many
years to obtain metric and geometric information. The
approaches developed by photogrammetrists are more
mature and quantitative, which are recently extended to
non-topographic applications [1]. By contrast, in order to
deal with more complicated vision problems related to
artificial intelligence, computer scientists tend to adopt
more versatile mathematical approaches in perspective
geometry, differential geometry and image algebra [2-5].
However, the approaches used by computer vision
scientists are of qualitative nature in many cases and
generally less accurate than those used in photogrammetry
in metric measurements. Because the objectives of
different disciplines are very different, there is a lack of
sufficient interaction among specialists in various technical
communities. Perhaps due to different notations, jargons
and methodologies in these communities, it is difficult to
transcend the different technical domains and see a unified
scope of various image techniques.

From a methodological standpoint, the approaches in
photogrammetry and computer vision should be integrated
into a universal theoretical framework. Furthermore,
unlike computer vision scientists who mainly study rigid
bodies, aerospace engineers and scientists often deal with
complex morphology and motion fields of deformable
bodies such as elastic bodies, viscoelastic mediums and
fluids. It is highly desirable to formulate universal
theoretical foundations for quantitative image-based
measurements of morphology and motion fields of
deformable bodies. In this paper, we will focus on the
geometric, kinematic and radiometric aspects of image-
based measurements. First, we will provide a unified
treatment of the perspective projection transformation
from the 3D object space to the 2D image plane and
illustrate  geometric  connections among  different
formulations of the perspective projection transformation.
Then, we will discusses some specific problems for
recovering geometry and motion, such as projective
developable conical surface, projection under surface
congtraint, reconstruction of motion field on a surface and
motion field of a 3D curve, the correspondence problem,
and projective invariants. This is an area for combined
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radiometric aspect, we will discuss the fundamental
relationship between the image intensity and radiance from
an object. Based on this relation and imposed physical
constraints, the motion equations of image intensity will be
derived for typical physical processes such as moving
Lamertian surface, emitting passive scalar transport, and
transmitting passive scalar transport. These equations
provide a rational way for reconstructing the geometric
and kinematic properties of deformable bodies like fluids.
In general, the geometric, kinematic and radiometric
approaches are closely coupled.

2. Per spective Projection Transfor mation from 3D
Spaceto 2D Image

Image-based measurement techniques extract data
from 2D images and then map them into the 3D object
space. There is a perspective relationship between the 3D
coordinates in the object space and the corresponding 2D
coordinates in the image plane [1, 6-8]. Here, we discuss
several  formulations of the perspective projection
transformation. Although these formulations are
equivalent, one may be more convenient to use than others
for a specific problem. The fundamental geometric
problem in image-based measurements is to determine the

object space coordinates X =(X*,X?,X*)" given the
corresponding image (retinal) coordinates x =(x*,x?)".
Figure 1 illustrates the camera imaging process. The lens

of the camera is modeled by a single point known as the
perspective center (or the optical center), the location of
which in the object space is X, =(XI,X2,X3)".
Likewise, the orientation of the camera is characterized by
three Euler orientation angles. The orientation angles and
location of the perspective center are referred to as the
exterior orientation parameters. The object space point,
perspective center and image point lie along a straight line
for a “perfect” camera. This relationship is described by

the collinearity equations, the fundamental equations of i ) ]
On the other hand, the relationship Mu = COS@COSK, M, =SINW SIN@ COSK + COSWSINK,

photogrammetry.

dx? are modeled and characterized by a number of the

lens distortion parameters.

The image and object space coordinates of the points
are related by the collinearity condition in which the image
vector is aligned with the vector from the perspective
center to the object space point

H(l—xé+5x15 B)(l—xcla

Ekz—x2+JXZB:AM X2 -Xx20,

1-c 0 Be-xd

where M =[m;] is the rotation matrixA is a scaling

factor. Algebraic manipulation of Eq. (2.1) yields the
well-known collinearity equations (with the distortion

terms dx* and dx?) relating the point in the 3D object
space to the corresponding point on the image plane,

m, (X - X,) :_CT

(2.1)

X' =x +oxt =—¢

—3

=
m; (X=X
3T( c ) )iz , (22)
X=X
x? = x2+ox? :—c—sz( C):—ci—a
my (X =X) X
where  the vectors m, =(my,m,,m;,)" and

m, =(m,,m,,,m, )" are the directional cosine vectors
along thex'-axis, x*-axis in the image plane, respectively.
The vectorm, =(m,,,m,,,m,, )" is normal to the image

plane, directing from the principal point to the optical
center on the optical axis. As shown in Fig. 1, the unit
orthogonal vectorsn,, m,, and m; constitute an object

space coordinate frame at the optical cendr and

X =(X",X*,X*)T are the projections of the object space
position vectorX — X, in this frame. The elements of the

rotation matrixmy (i, j = 1, 2, 3) are functions of the Euler
orientation anglegw.¢x ),

between the perspective center and the image coordinaten, = —coswsing cosk +sinwsink, m, =—Ccospsink,

system is defined by the camera interior orientation
parameters, namely, the camera principal distanead
the photogrammetric principal-point location

X, =(x;,y3)". The principal distance, which equals

the camera focal length for a camera focused at infinity, is

m,, = —SiNW SIN@SINK + COS(wW COSK ,
m,, = COSw SIN@YSiNK + SiNcw COSK
m;, =sing, m,, =—SINWCOSY, My, = COSW COSY.
(2.3)

the perpendicular distance from the perspective center td Ne orientation angleg¢wgx ) are essentially the pitch,
the image plane, whereas the photogrammetric principalyaw, and roll angles of the camera in the established

point is where a perpendicular line from the perspectivecoordinate system in the object space.
Due to the lensnatrix M is an orthogonal matrix having the property of
distortion, however, perturbations to the imaging process

(J\/I‘leT or

center intersects the image plane.

lead to departures from collinearity that can be represente
by the shiftsdx* and dx? of the image point from its

“ideal” position on the image plane. The shifix* and

The rotational

;.

m,"m,; =4, The scaling factor

A

distance and the projected component of the object space
position vector X — X, on the optical axis in—-m,

:—c/maT(X-XC) is a ratio between the principal



direction. When an object space point X is on the focal
plane m3T(X—XC):0, the scaling factor becomes

infinite, i.e., A =, which corresponds to the points at
infinity on the image (retinal) plane.
The terms 0x* and dx? in Eq. (2.2) are the image

coordinate shifts induced by the lens distortion. The lens
distortion terms can be modeled by the sum of the radial
distortion and decentering distortion [9-10]

OX'=0x' +9x; and Ix*=0X? + X3, (2.4)
where, assuming that the optical axis of the lens is
perpendicular to the image plane, we have
OxF =Ky (XU =x3)r? + K, (xV=xz )r,

Ox? = Ky (x?'=x2)r? + K, (x=x2)r*

Oxg =R [r? +2(x"=x3 )21 +2P,(x"=x3 )(x*'=x2 ),
OxG =PR,[r? +2(x=x2)?] + 2P, (X" =x; )(X¥'=X2)
r2=(x"=xy)? +(x¥-x3)>. (2.5)
Here, K; and K, are the radial distortion parameters, P, and
P, are the decentering distortion parameters, and x* and
Xx? are the undistorted coordinates in image. When the

lens distortion is small, the unknown undistorted
coordinates can be approximated by the known distorted

coordinates, i.e., x* = x! and x* = x?. For large lens

distortion, an iterative procedure is employed to determine
the appropriate undistorted coordinates to improve the
accuracy of the estimate. The following iterative relations

are used: (x¥)? =x* and (x*)° =x2,
(Xlr )k+l - Xl +6Xl[(xlr )k ,( X21 )k] and
(X7 ) =2 + X [(XM ) (x* )], where  the
superscripted iteration index kis k=0,1,2---.

The collinearity equations Eq. (2.2) can be re-written
in the homogenous coordinates in the image plane

Xh - (Xl,xz ,X3 )T = (Xl ,X2 ,l)T
AX, =AM (X=X, ) or x, =AP(X-X.), (2.6)
where P=[p;] =A™M and A=[a;] isdefined as
— vl 1
Hl 0 -Xx,+0x E
A=00 1 -x2+ox?U 2.7
O O
o -c 3
The terse tensor form of Eq  (26) is
a;x) =Am; (X' =X/), where the Einstein convention
for summation is used. The matrix-form and tensor-form
of the collinearity equations are sometimes convenient for
mathematical manipulation. Another alternative form of

the collinearity eguations in the homogenous coordinatesis
Xy, = AP, X, (2.8)

where X, =(X*', X2, X3 1)" is
coordinates in the object space, and P,=A"M, and
M, =(M -MX,) are 3x4 matrices. Although Egs.
(2.6) and (2.8) are formally written as a linear relation
between x, and X or X, , they are essentialy non-

linear because not only the lens distortion is a non-linear
function of x, but aso the scaing factor

the homogenous

/\:—c/m3T(X—XC) is not a constant in general.

Nevertheless, because the lens distortion is usually small,
its effect can be corrected by using an iterative scheme.
Hence, Egs. (2.6) and (2.8) can be treated as a quasi-linear
system at each iteration. Without the lens distortion, the
collinearity equations describe the ideal perspective
projection. Eq. (2.8) is particularly suitable for utilizing
useful results of classical perspective geometry to
construct projective geometric invariants.

Furthermore, Eqg. (2.2) can be re-written as a form
suitable to least-squares estimation for the object space
coordinates X ,

W, (X =X;)=0

: , (2.9)
W, (X =X, )=0
where W, and W, are defined as
W, =(x* =x;+dx")m, +cm
1 ( p ) 3 1 (210)

W, =(x? - x2+0x?)my +cm,
Asshown in Fig. 2, the vector W, is on the plane spanned
by the orthogonal unit vectors m; and m,, while W, is
on a plane spanned by m, and m;. Geometrically
speaking, W, (X-X_)=0 and W, (X-X_)=0
describe two planes normal to W, and W, through the
optical center. Thus, Eq. (2.9) defines an intersection of
these two planes, which is a line through the optical center
X.. For agiven image point x =(x',x*)", Eq. (2.9) is
not sufficient to determine a point in the object space with
the three unknown coordinates X =(X?*,X2,X3)7.
Hence, extra equations associated with additional cameras
and other geometrical constraints should be added for
seeking a unique least squares solution of X . In contrast
to Eq. (2.8), Eq. (2.9) does not include the scaling factor
A

The collinearity equations Eg. (2.2) contain the
camera parameters to be determined by geometric camera

caibration. The parameter sets (w,@.k,X1,XZ2,X?3),
(cx;.x3), ad (K;,K,,P,,P,) in Eq. (22) are the

exterior orientation, interior orientation, and lens distortion
parameters of a camera, respectively. Geometric camera
calibration is a key problem in quantitative image-based
measurements and a specific topic in both photogrammetry



and computer vision. Here we only briefly address this
issue and readers can find the technical details of
geometric camera cadibration from references. In this
paper, we generally assume that the camera is calibrated
and a complete set of the orientation parameters and lens
distortion parameters of the camera

(@K X, X2 X3 ,ex5,x2, K, K,, P, P,) is known.

Anaytical camera calibration techniques utilize the
collinearity equations and distortion terms to determine
these camera parameters [6-8]. Since Eqg. (2.2) is non-
linear, iterative methods of least squares estimation have
been used as a standard technique for the solution of the
collinearity equations in photogrammetry.  However,
direct recovery of the interior orientation parameters could
be problematic and unstable since the normal-equation-
meatrix of the least squares problem is nearly singular. The
singularity of the normal-equation-matrix mainly results
from strong correlation between the exterior and interior
orientation parameters. In order to reduce the correlation
between these parameters and enhance the determinability
of (cx,.y, ), Fraser [9, 11] suggested the use of multiple

camera stations, varying image scales, different camera
roll angles and a well-distributed target field in three
dimensions. Nevertheless, the multiple-station, multiple-
image method for camera calibration is not easy to use in
many engineering and scientific applications like wind
tunnel testing where optical access for cameras is limited
and the positions of cameras are fixed. Abdel-Aziz and
Karara [12] proposed a simple linear method for camera
calibration, Direct Linear Transformation (DLT).
Scientists in computer vision and robotics have developed
various camera calibration schemes to achieve a fast

curve lies can be reconstructed. When two calibrated
cameras are used, the 3D curve can be uniquely
determined as an intersection of two different projective
conical developable surfaces. Furthermore, a 3D surface
can be reconstructed as an envelope of a family of the
projective developable conical surfaces obtained from
images taken at different viewing angles. The motion field
of the 3D curve can be obtained from a time sequence of
the curve.
Generating Projective Developable Conical Surface

Consider a 3D simple cun&in the object space, and
its projection to the image plane and a pl&eormal to
the optical axis (parallel to the image plane), as shown Fig.
3. The collinearity equations Eq. (2.6) are written as

X=X,=A"Px,, (3.2)
where P=P™*= [Eij ]=M7*A=MTA. When the
camera parameters and the scaling factor are constant and
the lens distortion is fixed, differentiating Eq. (3.1) yields

dX = AP dx, (3.2)
where dX = (dX?*,dX?,dX?)", dx =(dx*,dx?)", and

EBM 512 H

Py = Er_pzl :pzz B
Hp?.l Ps, H

A constraint imposed on Eq. (3.2) isn, dX =0,
indicating that Eq. (3.2) actually describes the projection
Cp of the 3D curveC on the planeP orthogonal to the
optical axis direction om,. This constraint is equivalent

to the constancy condition of the scaling factor

calibration with an acceptable accuracy (a lower fs\ccuracy A=-am,T(X-X ) since the differential

for a photogrammetric application). Tsai's two-step c

method [13] is representative in computer vision, which di =cm, dX /[ m," (X - X_ )] 2 shows

uses a radial alignment constraint to obtain a linear least .
g m, dX =0 = dA=0. In fact, the constraint

squares solution for a subset of the calibration parameters,
whereas the rest of the parameters including the radiall = -c/m, (X -X_)=const. defines the plane
dlstortlon para.meter are estlmated by an |te_rat|ve SChemeorthogonaI to the optical axis direction ar,. As shown
By circumventing the singularity problem, Liu et al. [14] .

developed a robust optimization method for single—image,'gcl(:)'r?étijcizg ?rrggﬁcttﬁg icrﬁ;v@g g: dtk][ﬁealatr;s: gs\r/]elge able
automatic camera calibration to determine the interior an 9 P

. : . . . nical rfaceD ntaining th D rv n
exterior orientation parameters and lens distortion cONIca! surfaceblcontaining the 3D curveC can be

. : . generated.
parameters plus the pixel spacing ratio. The arc length element of the projected cuBgeon

3. Projective Developable Conical Surface Containing the planeP is _
3D Curve dSCp :|dX |:A_l| Pzt |d5, (33)
In this section, we introduce the concept of projective where t =dx/ds and ds=|dx| are the unit tangent vector
deyelopable coniga! surface and show h°V.V to (econstrucénd arc length element of the image of the 3D c@ve
this surface containing a 3D curve from a single image. Inthe image plane, respectively. Thus, the unit tangent

principle, a 3D curve in the objegt space cannot bevector of the projected cun@- on the plan® is
completely recovered from a single image since dx Bt
_ 32

information in one dimension is lost in the imaging T = )
process. Nevertheless, using a calibrated camera, a FdS,, |Paxt]|
projective conical developable surface on which a 3D

(3.4)



Note that the unit tangent vector T, isindependent of the

scaling factor A. The curvature vector of the projected
curve Cp on the plane P can be obtained by differentiating
Eqg. (3.4) with respect to the arc length S,

ko =Moo oA d|532t|)’
P dScp [Pzt |2 ds

where k =dt/ds=d?x/ds? is the curvature vector of the

curve image in the image plane. The curvature vector k

can be expressed as k =«_.n, where k. and n=Kk/ |k|

are the curvature and the unit normal vector of the curve
image in the image plane, respectively. Furthermore, we
prove

(Pak-Tg, (3.5)

d|Pat|_(Pazk) (Pat)

— 3.6
ds | Pa2t] (2.6)
Hence, Eq. (3.5) becomes
KA = (532 n)T(Bszt)
=== [Pn-T, ——————*]. 3.7)
e [Pt * cp | P2t

The curvature of the projected curve Cp on the plane P is
Ke, =Ke, *N¢,, where N =K /[K | is the
principal normal vector of the projected curve Cp. Thus,
the ratio between the curvatures k., on the plane P and

K. ontheimage planeis
Ke, _ A
K, |Pzmt]?

— Pzn) (Pat
[Pszn—TCPM]-NCP.
| P2t

(3.8)

Clearly, Eqg. (3.8) indicatesthat ., / k. is proportiona to
the scaling factor A .

After the unit tangent vector T is obtained from the

image, the projected curve Cp on the plane P is readily
reconstructed by

Xe, = Xe,o + J’ OSCEI'CP(SCP S, - (3.9)

Theinitial position X, on the projected curve Cp, in the
object space is often chosen at the end point of the curve.
Eqg. (381 gves Xg,-X, =A'PXx,,, where
Xho = (%5,%2,1)" is the homogenous coordinates of the
corresponding image point to X ,. Substituting Egs.
(3.3) and (3.4) into Eqg. (3.9) yields a ray vector directing
from the optical center X to a point X, on the
projected curve Cp

X, =X = AP Xy +Is Patds). (3.10)

0
A family of the projective rays through the optical center
X, given by Eq. (3.10) generates a projective developable
conical surface D that contains the 3D curve C. The

tangent plane on the developable conical surface D is
given by
(X=X_.)*Ny(s)=0, (3.11)
where Np(s)=Tc, x(Xc, =X )/ [Te, X(Xc, =X, )
is the unit normal vector to the tangent plane on the
developable surface, which is independent of the scaling
factor. EQ. (3.11) describes a single-parameter family of
the tangent planes where the parameter is the arc length s
of the curve in the image plane. The projective conical
developable surface, the envelope generated by the family
of the tangent planes, is given by a system of Eq. (3.11)
and Eq. (3.12) [15]
(X=X.)+dN(s)/ds=0. (3.12
Thus, the projective developable conical surface and
associated geometric quantities such as the curvature,
tangent vector and normal vector in the 3D object space
can be obtained by using measured image quantities given
the camera parameters.
Reconstructing 3D curve and Surface
From a single image, we are able to reconstruct the
projective conical developable surface containing the 3D
curve C rather than the 3D curve itself. Nevertheless,
when two calibrated cameras are used, as shown in Fig. 4,
the 3D curve C can be uniquely determined by intersecting
the two projective developable conical surfaces associated
with the different cameras. Interestingly, the developable
conical surface intersection method for determining the 3D
curve only requires knowing the correspondence of one
distinguished point such as an end point of the curve.
Furthermore, the developable conical surfaces can be
used to reconstruct a 3D surface in the object space. As
shown in Fig. 5, the developable conical surface
containing the contour of the 3D surface can be
constructed. Here the contour is a set of points on the 3D
surface at which the surface normal is aso the norma of
the developable conical surface. When the camera is
moved to a number of known positions through a
rotational and translational transformation (rigid-body
motion), a family of the developable conical surfaces can
be obtained. The 3D surface is generated as an envelope
of the family of the conical surfaces. Instead of moving
the camera, the 3D surface can be rotated around a fixed
axis such that a family of the conical surfaces can be
obtained using a camera at a fixed position and viewing
angle. From a computational viewpoint, this method may
not be the most efficient since the intersection and
envelope of the developable conical surfaces has to be
determined. However, this method is to great extent
immune from the ambiguous correspondence problem in
stereovision.
Recovering Motion Field of 3D Curve

After two or more 3D curves in the object space at
successive instants are reconstructed, we can estimate the
motion field U( X ) of the 3D curve that is defined as



dX
U(X)=—.

(X) "
The curve is given by X = X[ (t),t] , where t istime
and $(t) isthe arc length of the curve in the object space.

Measurements give the temporal and spatial difference
between two curves at two successive instants t, and t,

(thetimeinterval At =t, —t, issmall)

AStX :X[S(tz )at2] _X[S(tl)!tl] . (3-14)
Reconstruction of the motion field of the 3D curve from
A X is a non-trivial problem since the point

correspondence between two sequential images is not
known without using distinct targets on the curve
especialy for an elastic curve experiencing large and
complicated deformation.

The motion field of the curve is constrained by the
underlying physical mechanisms behind the motion and
deformation of the curve. In general, reconstructing the
motion field is formulated as an optimization problem of
the functional

JIU(X)] =144 X —U(X)4t|| - min (3.15)
subject to relevant physical and geometric constraints
G [U(X)] =0, (i=12:-) (3.16)
and the suitable boundary conditions. Without the
sufficient constraints, the solution to the optimization
problem may not be unique. Also, the imposed physical
congtraints serve as a bridge connecting image-based
measurements with the physical quantities in a specific
problem being studied.

In the simplest case in which the curve is rigid, the
rigid-body motion field is expressed as

U(X)=U, +Q,x(X=X,), (3.17)
where U, and @, are the constant trandation velocity
and angular velocity, respectively, and X, isthe rotational
center of the curve. Because U, and Q, together contain

only six unknown constants, it is easier to solve the
optimization problem. A glightly complicated case is that
the curve is stretched in three fixed directions in addition
to the constant trandlation and rotation. In this case, three
stretching constants are added, and thus the total number
of the unknowns in the optimization problem is nine.
Next, we consider a highly deformable materia line
convected in an incompressible and irrotational flow. In
this case, the physical constraints are the solenoidal and
irrotational conditions [16]

O.U(X)=0and OxU(X)=0. (3.18)
A vortex-filament in an incompressible and irrotational
flow is an interesting example since the filament driven by
not only mean flow, but also self-induction is no longer
passive and the motion field is directly related to the
geometric features of the filament. In this case, the
induced motion velocity of the filament is proportional to

(3.13)

the curvature K of the filament aong the binormal
direction vector B [17]

U(X)OkB. (3.19)
Overdl, the physical constraints for a specific application
are necessary for recovering the correct motion field and
associated physical properties of the 3D curve.

4., Per spective Projection under Surface Constraint

In general, mapping between a point in the 3D object
space and the corresponding image point is not one-to-one.
Nevertheless, as shown in Fig. 6, under a given surface
congtraint, a point on the surface has the one-to-one
correspondence to the image point. In this section, we
discuss the geometric relationship between the surface in
the object space and the image plane. Thistopic is closely
related to some applications in experimental fluid
mechanics and aerodynamics such as reconstruction of
complex flow topology from images of surface ail
visualization and laser-sheet-induced  fluorescence
visualization. Consider a surface in the object space given
by

X3 =F(X*,X?). (4.2)

When Eg. (4.1) is imposed on Eq. (2.9) as a surface
constraint, the perspective projection transformation Eq.
(2.9) isreduced to

(W Wag = Wyg Wiy )X T+ (Wyp Wog = Wi Wa, )X 2
:W23W1Txc _W13W2Txc
Wy, X W, X2+ wy, FXEX2) =W, X, (4.2)
where w; (i =1,2 and j =1,2,3) are the elements of the
vectors W = (Wy; Wy, Wag )T and W, = (W, Wo, W )T
For the given surface equation X3® =F( X', X?) and the
known camera parameters, the coordinates (X!, X?2)7
can be obtained from the image coordinates x = (x*,x? )"
by numerically solving Eq. (4.2). Thus, the coordinates
X =(X*X2,X3)" in the object space can be
symbolically expressed as a function of the image
coordinates x =(x*,x?)7, that is,
X =fg(x). (4.3
In fact, Eq. (4.3) is a parametric representation of the
surface using the image coordinates x = (x!,x?)" as the
parameters. Generdly, the function fg(x) cannot be

written as a closed-form solution except in some special
cases such as aplane and a cylindrical surface.
Differentiating Eg. (2.9), we have

dw," X +W, dX =dw," X,
dw," X +W," dX =dw," X, . (4.4)
When the lens distortion is fixed, dw," =dx'm," and

dw,’” =dx®m,”  hold. Then, substitution of



dX?® =(0F /0X*)d X' +(9F / 0X?)d X? into Eq. (4.4)

yields
dXx ? Xt
HdXZE: mJ(xc—fs)Q*@XzH (45)
where

_ Wy OF 10Xt wy, +w, OF / 0X?
by + Wy OF 1 OX W, +W,, OF / 0X?

Furthermore, the differential dX*® can be expressed as a
function of the image coordinates dx = (dx*,dx? )"

dX3 =(dF /dx*)dx* +(dF / dx?)dx?,  (4.7)

(4.6)

where
1 2
dF _ oF oX oF oX (a=12) 48)
dx*  aX?! ax®  0X? ox“°
Combining Egs. (4.5) and (4.7), we have
dX = m, (X, - f5)Qdx, (4.9)
where

- Q™ ]
Q=g dF dF T N
—,—)Imy (X - f
H(dxl dxz) a S)B
Eqg. (4.9) provides a fundamental relation between the
differentials dX on the surface and dx on the image
plane. The matrix 6 is a function of the image
coordinates, the camera parameters, and the geometric
properties of the given surface.
On the other hand, we notice
dX =(0X /ax*)dx' +(aX /ax?)dx?.  (4.11)
From Egs. (4.9) and (4.11), we obtain the following
equality
(0X /ax*,0X /ax%) =m, (X, - f4)Q. (4.12)
The element dS of the arc length of a curve on the surface
can be determined from Egs. (4.11) and (4.12) from the
image coordinates. We know
ds? =|dX | = g, dx“dx”,

(4.10)

(4.13)

where
oX 0X
P oxt oxP (@.5=12)
is the so-called metric tensor in classica differentia
geometry [18]. The summation convention is used in Egs.
(4.13) and (4.14). The quadratic differential form Eq.
(4.13) is the first fundamental form of the surface in which
the image coordinates are the parametric variables. In the

case of the perspective projection transformation, Qs

(4.14)

may be properly named as the perspective metric tensor
that is a function of the image coordinates, the camera
parameters, and the properties of the given surface.

The first fundamental form Eq. (4.13) alows us to
measure the basic geometric quantities on the surface in
the 3D object space from the image quantities. Consider a

curve on the image plane given by a parametric form
x(1) = (x*(t),x?(t))" and the corresponding 3D curve on
the surface X(t) = X(x(t)) = f5(x(t)), where t is a
parameter (e.g. time). The length of an arc bounded the
points corresponding to the parametric values t =t, and
t=t, is

t
S:I [ 9qp (dx? / dt)(dx? / dit)] ¥ 2t . (4.15)
to

The angle of two 3D curves at the intersecting point on the
surface can be calculated based on the image quantities.

Consider two image curves x(t)=(x'(t),x*(t))" and
x(t) = (x* (1), x> ())T. The tangential vectors of the two
3D curves on the surface are
dX (xX(t), X2(t))/dt = aX/9x dx“ / dit and
dX (XY (t), x2* ())/dt = IX/dx?* dx?* / dt . Thus, the angle
y of intersection is

0.0 (CX° /i) (cx** /el

G (OX 1) (0P /) 9,15 (X /clt) (cx P /) '

(4.16)
The area of adomain H on the surface can be expressed in
the image coordinates

A(H) = H \Jg dxidx?,

where U is the domain in the image (x*,x?) plane
corresponding to the domain H on the surface in the object
spaceand g isthedeterminant g = g, |-
Example 1: Plane

The plane constraint is a simple, but very useful case
in which the vector function fg(x), the matrices Q and

cosy =

(4.17)

6 can be explicitly expressed as a function of the known
camera parameters and the measured image coordinates.
Many aerodynamic flow structures are observed on a plane
or a near-planar surface.  Planar laser sheet flow
visualization is just a typical case of the plane constraint.
In addition, a polyhedron consists of a number of the
planar faces. Consider a plane in the object space

X3=a X'+a,X?+a,. (4.18)
This plane is defined by the vector a=(a;,a,,a;)"
related to the normal vector of the plane. In this case, the
matrix Q in Eq. (4.6) is

Q - E:ill +W13 al W12 +W13a2 E
21 + W23 al W22 + W23 a2
The function fg(x) in Eg. (4.3) has a closed-form
solution

(4.19)



" f

fs(x)=0 Q™M (4.20)
i
where
"X, -w a; H
|:HNl ¢ B=h 4.21
HNzTXc_WzsaeB ( )
Now the matrix 6 in Eq. (4.10) is
_ Q!
= i 4.22
Q H(alvaz)Q_lﬁ ( )

Example 2: Cylindrical Surface
A cylindrical surface is another case where f¢(x), Q
and 6 can be explicitly expressed. For the sake of

convenience, a transformation from the Cartesian
coordinate system to the cylindrical coordinate system is
used, i.e.,

X =(X X2, X3*) =(pcosg, psing,z)", (4.23)
where p istheradia coordinate, ¢ isthe polar angle, and
Z isthe axia coordinate. The differential dX is

Bsoscﬁ —-psing O%ipg

dX =[sing pcos¢ O MO (4.24)
o 0 1fef
For a cylindrical surface constraint o= p, =const.,

solving Eq. (2.9) for ¢ and z, we have f¢(x) as a
function of the image coordinates and camera parameters

fo(X) = (9, COS@, 0, SN@, 2)T, (4.25)
where
cong = i = PFOE B BB
b +b;
g < 0y £ fBEDE + b b7
b +b;
z= W1_31(W11po CoSP +W,, P, SiNg _WlT X)),
By = 00 (Wi3Woz =W, W5 ),
B, = 05 (Wi Woy = WpWi, ),
b, = W23W1T Xe _W13W2T X
There are two solutions for fg(x), which are

corresponding to two intersecting points between a
perspective ray and the cylinder. For a non-transparent
solid surface, a camera only sees one intersecting point at
the surface facing the camera and hence fg(x) is one-to-

one. The differentialsin the cylindrical coordinate system
are related to the image coordinate differentials by the
following relation

d(¢,2" = m," (X, - fq)Q dx, (4.26)

where

Q= 12Po cos¢ - W10 sing W3 % (4.27)
2P COSP =W, 0p SINP Wy,
Another differential is dpo =0. Note that the expressions

of fg(x), Qand 6 for a spherica surface can be aso

analytically derived, but they are so tedious that we do not
present them here.

5. Per spective Projection of Motion Field Constrained
on Surface
After discussing the geometric relationship between a
surface in the object space and the image plane, we study
kinematics under the surface constraint, that is, the
perspective projection of a motion field on a surface.
Consider adynamical system
dX
m =U(X), (5.2)
where U(X )=(U,,U,,U,)" isamotion field in the 3D
object space and t istime. A surface constraint imposed
on the motion field Eq. (5.1) is
X3 =F(X*,X?). (5.2)
Under this surface constraint, U( X ) should be paralel to
the surface, which obeys the orthogonality condition
N.,-U(X)=0, (5.3)
where N, =(0F /dX*',dF /9X?,-1)" is the normal
vector of the surface. Under the surface constraint Eq.
(5.2), Eq. (5.1) is effectively reduced to a 2D system

1 Xl,XZ,F lexZ
d BRI CCXENE
dt 2 2[x1]x2,F(X1,X2)]
In fact, Eqg. (5.4) describes an orthographic projection of
the motion field Eq. (5.1) onto the plane (X*,X?). From

Eg. (4.5), the dynamical system in the image plane, which
is corresponding to Eq. (5.4), is

u:i@f@:—Q EUJ fs(l H (5.5)
dt 2 mgT(Xc_fs) UZ[ fS(X)]

We cal u=dx/dt = d/dt(x*,x*)" the optic flow in the

image plane. The optic flow, aterm first used in computer
vision, is defined as the velocity field in the image plane
that transforms one image into the next image in a
sequence. If Eqg. (4.2) gives a one-to-one topological

mapping (homeomorphism): (x*,x? ) (X*,X?), the
topologica structure of the dynamical system Eq. (5.5) in
the image plane is equivalent to that of Eq. (5.4) on the
surface in the object space when Q has the full rank of 2
and m," (X, - fg) isnot zero. Figure 6 illustrates this
point. The problem is to recover two components of the
motion field (U,,U, )" using Eq. (5.5) from the measured



optic flow u =dx/dt, while the third component U, is
readily obtained from the orthogonal condition Eqg. (5.3).

In the above analysis, we do not specify the motion
field U( X)), which could be alimiting viscous flow field,
an oil-film motion field driven by skin friction, or a
particle motion field driven by a potential force (e.g.
gravity and electromagnetic force). The physica
congtraints on U( X ), which are different in different
cases, are necessary to reduce the number of unknowns.
For instance, an incompressible flow must obey the
continuity equation

O.U(x)=0, (5.6)
where O=(8/0X*,0/8X2%,0/0X3)" is the Laplace
operator. Differentiating Eqg. (5.3) with respect to X3, we
have

ou, _ OF ou, oF ouU, ' 57)
axX3® oX!ax® X2 ax?®
Substitution of Eq. (5.7) into Eq. (5.6) yields a constraint
on (U,,U,)" for anincompressible flow field,

6+6F6 +6+6F6EU:0'

X e B ok e

(5.8)
In generd, it is more difficult to directly obtain a
global solution of Eg. (5.5) for the motion field

(U,,U,)". Instead, we can seek a localized solution of
Eq. (5.5) in asufficiently small area. In a neighborhood of
apoint X, , the motion field (U,,U,)" can be expanded
asalinear function of X

Ui(X)=gp t(e1.8;.63)(X = X,), (i=12)  (59)
where e, =U,(X,) are the local velocity components
and e =9dU,(X,)/0X’ (j=123) ae the local

deformation components. Hence, the localized form of Eqg.
(5.5) iswritten as

Du:i@zl E——Q
dt 2 mST(Xc_fs)

x@elo +(ey €,,65) fs(X)=fs(X)] E
20 +(ezl, 622,623)[fS(X)—fS(XO)]
The unknowns e, and e;, can be determined by

(5.10)

minimizing thenorm || Du|| , i.e,,
[| Dul| - min. (5.11)
At the final stage, the global motion field on the surface is
reconstructed from the local motion fields.
In an incompressible flow, the localized constraint Eq.
(5.8)is
oF

oF
ell+elsm+ezz tey

Furthermore, for the irrotational motion field on a solid

surface  where the  vorticity  vanishes, i.e,
w =0xU(X)=0, three constraints are
2 2
Ula>?1<3|:x2 * 6 aa>|<:1 Uz a>fZaF><2 * aifz € =0,
0%F ve, oF N 9°F ‘e, oF e, =0
toxtaxt TMoaxt TZax2xt Fox?
€, —€,=0. (5.13)

Hence, for an incompressible, irrotational motion field,
eight unknowns in Eq. (5.10) are reduced to four
unknowns after these constraints are imposed. At the
critical points, the velocity vanishes, i.e,
&, =U,(X,)=0. Thelocal topological structures of the

motion field at the critical points are determined by the
deformation coefficients g; [19].

The above method for calculating the local motion
field is applicable to both discrete random particle patterns
(eg. particle image velocimetry (PIV) patterns) and
continuous passive scalar patterns (e.g. laser-sheet-induced
fluorescence patterns in fluids). When discrete particle
patterns are so coarse that an individual particle can be
tracked, the local optic flow u = dx/dt is the velocity of
the particle in the image plane [20-21]. For dense discrete
particle patterns, the local optic flow u=dx/dt can be
obtained using PIV method to seek the maximum
correlation between two particle patterns obtained at two
consecutive instants. However, for continuous passive
scalar patterns, recovering the local optic flow u = dx/dt
is non-trivial since we have to consider the perspective
projection of the transport equations of passive scalar
through a specific imaging process. Generally speaking,
the perspective projection of physical processes will lead
to motion equations of image intensity. The optic flow
u = dx/dt isdetermined by solving the motion equation of
image intensity for a specific physical process given the
suitable boundary conditions and constraints. Detailed
discussion on motion equations of image intensity will be
givenin Section 12.

6. The Correspondence Problem

In Sections 4 and 5, three unknown coordinates in the
object space are reduced to two when the surface
congtraint is imposed. Thus, the correspondence between
the constrained surface and the image plane is one-to-one.
In order to determine three unknown coordinates from
multiple views without any a priori constraint, however,
we need to know the point correspondence between two or
more images for the same physical point in the object
space. Thisisthe so-called point correspondence problem,
one of the fundamental problems in 3D vision. Note that
another correspondence problem is point correspondence
in a time sequence of images. Here we focus on the



stereoscopic correspondence of images rather than the
temporal correspondence.

Longuet-Higgins [22] gave a relation between the
corresponding points in two images. Consider two
cameras in which the unit vectors (m,,, My, , My, )
congtitute a local right-hand coordinate system whose
origin is located at the perspective center X, , where

n=1,2 is the index denoting the cameras 1 and 2. The
o = (Xny Xy X )T
in the coordinate frames (M, , M, , My, ) are related by

a tensor-form of the trandation and rotation
transformations

three-dimensional coordinates X

X& = Ry (X, -T7), (6.1)
where R=[R,;] and T, =[T,”] are the rotation matrix
and trandation vector, respectively. If the two cameras
have the same principal distance and pixel spacing ratio,
R and T, can be obtained by translating the origins X,
and rotating the vectors (M, , M, , My, ) (N=1,2) to
match the two coordinates frames. Here R and T, are

generaly treated as the unknown matrix and vector.
A new matrix Q is given by

Q=RSorS; =R, Sy, (6.2

where Sisthe skew—symmetrl C matrix

P T Ty
S=0-T2 0 THO (6.3)
2 -Tt 0

Eqg. (6.3) iswritten as atensor notation
S = a1 (6.4)
where the permutation index ¢&,, =1,0r -1,0r0 if

(u,B,0) isan even, or odd permutatlon of (1,2,3), or
otherwise. From Eqs (6.1)-(6.4), we know

a B B
X Qup X = Ra (Xyy =T, T7X G
=(XG) ~TH ), TC X(l) =0
since R isorthogonal (R,, R,z =9,;) and &, is anti-

symmetric in every pair of its subscripts. Note that
Xy = (X X&), X5, )T are the coordinates in the local

) au ,UﬁU

. (65

frame (M, , My, , My, ) Whose origin is located at the
perspective center. Thus, the collinearity equations Eq.
(2.2) can be re-written as a simpler form. In the local
coordinate frames (m,,, My, , My, ), Without the lens

distortion, the homogenous image coordinates
[ Xy ] = (X)X~ €)' are related to the object space
coordinates X7, by

i =~ CX&y I X8y (n=12,a=123)  (66)

10

The image coordinates X, are relative to the principal
point in these loca frames rather than the geometrical
center of the image. Dividing Eq. (6.6) by X(l) (2) /c?

yields the Longuet-Higgins equation for the image point
correspondence

Xetoy Qup Xfiyy =0. 6.7)
Often, Q =[Q,; ] is called the fundamental matrix that is

related to the camera exterior orientation parameters.
Given a number of the point correspondences between the
two images (more than eight), the elements Q,, can be

determined by solving the following algebraic equations
using aleast-squares method

(Xf.(z) Xkﬁl) ) Qa[} =0. (i=12,-) (6.8)
Longuet-Higgins’ original derivation of Eq. (6.7) is
purely algebraic without giving a geometrical

interpretation. In fact, the geometrical meaning of Eq.
(6.7) is related to the epipolar lines in the images [2-3].

Given a point(x},,,x%,) in the image 1, its epipolar line

in the image 2 is a projection of the line connecting the
object space point and the image point through the optical
center in the camera 1 onto the image 2. The epipolar line
in the image 2 is described by

X Pary =0, (6.9)
where p,., =Q,s xrﬁl) are the coefficients of the epipolar

line. Thus, the matrixQ maps the points in the image 1 to

the epipolar lines in the image 2. In the same way, Eq.
(6.7) also gives an epipolar line in the image 1 for a given
point in the image 2. Hence, Eq. (6.7) serves as the
epipolar constraint to reduce the number of unknowns in
establishing the point correspondence. It is easily shown
that when the lens distortion exists, the generalized
epipolar constraint is

(X + OXii 2y ) Qup (X +OXf1,)=0.  (6.10)
The lens distortion terms are
[OXn ] =(3X,0%%,,0)". Since the lens distortion

terms in Egs. (2.4) and (2.5) are non-linear, an epipolar
line is a curve rather than a straight line. More point
correspondences are required to solve Eq. (6.10) since
there are additional unknowns associated with the lens
distortion.

The unknown fundamental matrix in the epipolar
constraint is determined by using a number of point
correspondences. Nevertheless, for two calibrated
cameras, the image point correspondence can be directly
established from the collinearity equations. The
collinearity equations Eq. (2.9) for two cameras are written
as

Wl(n)T( X - Xc(n) )=

. . (n=12)
W2(n) (X _Xc(n)):O

(6.11)



Re-combination of Eq. (6.11) yields two sets of linear
equations for X

VvlcomX = Blcom (612)
and
WZComX = BZcom ' (613)
where the composite matrices and vectors are
T T
Wi W' H
_ 0 — a
Wloom - %lvz(l)T I WZCom - %AIZ(I)T r
T [ T
aNl(Z) O ENZ(Z) O
T T
HN 1(1) Xc(l) H HNl(l) XC(l) H
— 0 — 0
Bloom - g{vz(l)T Xc(l) r BZcom - aNz(l)T Xc(l) T (614)

T O T O
%Nl(z) Xc(2) O ENZ(Z) XC(Z) |
Eliminating X from Egs. (6.12) and (6.13), we have a

relation between the image coordinates (x(;,,x3,) in the
image 1 and (x; X5 ) in theimage 2
Gty Xy s X2 X% ) = Wicom Wagom B

2com - B = 0 .

(6.15)

For a point (x3,,X3,) in the image 1, the corresponding
epipolar line in the image 2 is given by

1G(XGy X35 X3y X ) =0 (6.16)

The Longuet-Higgins equation indicates that a point in

the image 1 corresponds to the epipolar line on the image 2

and vice versa. Therefore, the point correspondence is not

uniquely established between a pair of images since given

an image point (x},Xg, ). there is only one equation for
two unknowns (X ,X3 ). In order to establish the point

correspondence among images, we need at least four
cameras (or four images). For four cameras or images, the
Longuet-Higgins equations are

Xy Quaciopy Xoy =0.(1=1,234,j=1234) (6.17)

If the fundamental matrices Q,,,_;, are determined by

2com 1com

calibration, for a given point (xj,x3, ) in the image 1, we
have a system of six algebraic equations for six unknowns
(X 1 X1y X)X 1 X3 1 X3 )

Xy Qup1-2) Xy = 0 Xiay Qup(ray Xy = 0.

Xy Qup(z-2) Xy =0 Xixwy Qapa-ay Xy = 0.

X2 Qap(z-a) Xnay =0 Xty Qupa-ay Xigay =0 (6.18)
When the four cameras are suitably positioned, Eq. (6.18)
is not singular and the solution of Eg. (6.18) for
(X XG) 1 Xy X3y 1 X5 X3 ) can be obtained using an
iterative method. In general, there are multiple solutions
since three equations in Eq. (6.18) are quadratic. The
correct solution has to be selected based on additiona
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criteria. More than four cameras can be used to increase
the redundancy for least square estimation.

7. Composite | mage Space and Object Space
Eqg. (6.12) gives a non-linear relation between the
object space coordinates and X and the composite image

coordinates X, = (X4 . X3 X3 )" - As shown in Fig. 7,
the local coordinate frame (Mg, My, My,,) a the
perspective center X, on the image 1 can serve as a

frame for the composite image space in which
Xeom = (X)X X5 )" are the coordinates along the unit

vectors (M, , My, , My,)). Note that the coordinate xp,

of the corresponding point in the image 2 is artificially
assigned to the coordinate value in the axis my,, in the

composite image space. Mapping between the composite
image space and the object space is one-to-one.
Differentiating Eg. (6.12), we have

W, .dX +dw, X =dB

Icom 1com lcom * (71)
Substitution of Egs. (2.10), (6.12) and (6.14) into Eq. (7.1)
yields a basic differential relation between the composite
image space and object space (see Fig. 7)

dX = H(Xeom )Xo OF dX ¥ = H 5 (X YAX5r,  (7.2)
where
H“?,(l)T (ngm Blcom -X (1) ) 0 OE
H (Xeom )= Wiz My (WikiBiom = Xe) 01
%) 0 ms(Z)T (ngm Blcom - Xc(2) )%
(7.3

Consider a 3D curve in the object space. The arc
length dS of the curve in the object space is expressed in
the composite image coordinates, i.e.

ds? =dX?dX“ =J,, dx§ dx?

com com ?

(7.9)
where J,; =H, ,H, ;. Introducing the arc length
ds = (dx2,.dx2 )2 in the composite image space, we

obtain arelation between dS and ds

dS = L( Xy )0s. (7.5)
Thelength scale factor L( Xy, ) iS
L( Xcom ) = ( ‘]aﬁ tgomtclf)m )l/ 2 ! (76)

where tg = dxg,,/ds is the unit tangent vector t,, of

the corresponding curve in the composite image space.

Using Eg. (7.5), we are able to express the unit tangent

vector T of the curve in the object space in the composite

image space coordinates and tangent vector, i.e.,

Te=dX?/dS=L"H 4t5,. (7.7)

The principal normal vector K of the curve in the
object space is



[B(H,,L™ O
K? =dTa/dS = L™ B#tg)mtg)m +LH k40
H Xom g

(7.8)

where k2 =dtZ /ds=d%Z /ds® is the principa
normal vector of the corresponding curve in the composite
image space. In the derivation of Eq. (7.8), the relation

d/ds=t2 0/0x? isused. The curvature of the curve

in the object spaceis

Koy = (KK )z, (7.9
Egs. (7.8) and (7.9) indicate that the curvature is not an
invariant under the perspective projection transformation,
which depends on not only kZ , but also tZ and the

com ! com
camera parameters. The unit principal normal vector N is
obtained by normalizing K
N =k K and N =k K. (7.10)
The unit binormal vector B of the curve in the object space
is

B=TxN or BY =¢,, T N°. (7.11)
Thus, the torsion of the curve in the object space is
Ty =—N7dB? /dS
. (7.12)
=Ky KL e,5 (NPNT +TP L 0N [ Oxk

In this stage, the geometric structures of the 3D curve such
as the tangent, curvature and torsion are expressed as a
function of the composite image space coordinates. In
general, they are not differential invariants under the
perspective  projection  transformation. In  many
applications, however, these geometric quantities are very
useful since they are directly related to the physical
properties associated with the curve. The useful physical
properties can be extracted from them. For example, the
motion of an isolated vortex filament (a good model for a
tornado) is mainly determined by the curvature and torsion
of the filament [17].

From Eq. (7.2), we can relate the motion field

U,(X)=dX?/dt in the object space with the motion
field u, (X, ) =dxZ,./dt inthe composite image space
U, (X)=Hg(Xeom )Ug - (7.13)
The motion field U,(X) can be decomposed into two
components

U,(X)=dX(St)t)dt =oX/ot +TdS/dt. (7.14)
The first term 0X“/ot is the apparent velocity and the
second is the deformation velocity along the curve.
Similarly, u,( Xy, ) hastwo components
U, (Xeom ) = OXE (S(),t)/dt =0xZ, /ot +tZ ds/dt. (7.15)
If the point correspondence of the curve at two successive
instants is not known, Eq. (7.13) cannot be directly utilized
to caculate the motion field U, (X) form image

measurements. The deformation dS/ dt in the composite

com
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image space cannot be determined from images without
using any additional physical constraint. Thus, we have to
look for a global method for recovering the motion field
that is briefly discussed in Section 3.

8. Per spective Invariants of 3D Curve
Construction of perspective algebraic and differential
invariants for a 3D curve is difficult because the
perspective projection transformation is non-linear.
However, it is possible to construct semi-differential
invariants in a specia case of stereo image pair [23]. The
perspective invariants are useful since they can directly
give certain geometric features of the curve from non-
calibrated images. We use the perspective projection
transformation for a pair of images
Xuiy = Adiy Pogy Xy (i=1,2) (8.2)

where X, = (X, %G.1)" is the homogenous image

coordinates in a par of images (i=1,2),
X, =(X*, X% ,X3,1)" isthe homogenous coordinates in
the object space, and B, =[R;.] (n=123,

m=1,234) are a 3x4 matrix that only depends on the
camera orientation parameters (see Section 2). In general,
the scaling factors A, = —¢;, / my, (X = X, ) for the
two images are not the same, which are related to the
camera parameters and the position of a point in the object
space. Here we consider a special but useful case in which
the scaling factorsin two images are equal, i.e.,
Agy = Az =A.

The condition Eq. (8.2) implies

Cry = Cayr Mgy = Mgy, m3(1)T (X = Xgp)=0. (83)
Eqg. (8.3) indicates that the two images have a relative shift
on the same plane normal to the vector m,,) = m,, . This

means that two cameras are placed side by side and their
optical axesarein parallel. This coplanar condition alows
us to combine the collinearity equations Eqg. (8.1) for the
two images, which makes construction of perspective
invariants possible.

A relationship between the composite image space
and the object space for a 3D curve is written as in the
homogeneous coordinates

(8.2)

thom(qs)) = A(S)Phcom Xh’ (84)
where X, =X X5 . X5 .1)" is  the composite
homogeneous coordinates in the image space,

X, =(X*, X% X3, 1)" isthe homogenous coordinates in
the object space, and P, ,,, iSacomposite matrix

com



H:)h(l)ll Ph(1)12 Ph(1)13 Ph(1)14 H
_ EPh(l)Zl Ph(l)22 Ph(l)23 Ph(l)24 g
Phcom - SD P P P 0 (85)
h(2)11 h(2)12 h(2)13 h(2)14 [
O
h(1)31 Ph(1)32 Ph(1)33 Ph(1)34 O

The arc lengths s and S of the curves in Eq. (8.4) are used
as a parameter of the curve in the composite image space

(X3 X% %) and the object space (X!, X?,X?),
respectively. Thefunction s=9(S) isone-to-one.

Brill et al. [23] has constructed projective invariants
by differentiating Eq. (8.4) repeatedly with respect with S,
arranging the results in matrix equations for several points
on the curve, evaluating the determinants of the matrix
equations, and then eliminating all the factors related to the
imaging parameters. At first, following the method
developed by Brill et a. [23], we consider a number of the
basic geometric structures.  The curvatures in the
composite image space and the object space are [18]

Klm zlxcomlzl).(com comlandK —|X|:|XXX|,
(8.6)
where Xeom = X / A, Koom = A X o 1 AS?,

X =dX/dS, and X =d?X/dS? are the derivatives
with respect to the arc length. The torsions in the
composite image space and the object space are,
respectively,

mzl)‘('oomx com coml/lx | , (87)
:_l thom thom thom |/ |Xcom |

and

Ty SIX XXX P==]X, X, X, [TIXP. (88)

Egs. (8.7) and (8.8) are expressed in the homogeneous
coordinates Xnoom = (X 1 Xy 1 X3, 1)T and

=(X*,X?,X3,1)" to facilitate the use of Eq. (8.4).
In the object space, the unit tangent vector is T = X , the
unit principal normal vector is N = X / k; , and the unit
=TxN=XxX/Ky . We define
the distance D; fromapoint X; to the osculating planeto

binormal vector is B

the curve at another point X

D; =(X; X) B, =1(X; = X;) X X I K
= Xpj X Xh,j hi |/ Kot i
(8.9)
where the subscriptsi’‘and j’ denote the quantities

associated with the pointX; and X .
meaning of D;
composite image space, the distandge from a point

The geometrical
is illustrated in Fig. 8. Similarly, in the
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Xem; tO the osculating plane to the curve at the point
Xcom,j
dij :|(thom,j _).(hcom,i )“thom,j thom,j |/Kim,j (810)

:| thom,j thom,j thom,j thom,i |/Kim,j
In addition, we introduce the following geometric
guantities
|(1, 1' 121 3) :l thom,l thom,l Xhoom,2 Xhoom,3 |!
I(lv 21 2 13) :| thom 1 thom,2 thom,Z thom,s | ’
I(1,1,2,3) = Xpy Xpg Xpp Xpsl,
1(1,2.2,3) =] Xp1 Xpz Xpz Xpsl. (8.11)

Differentiating Eq. (8.4) with respect 8 we obtain

Xncom i = 8 Pocom ( X, Xh,i )E:I E
thoml - _2Phoom(xh,i Xh,i Xh,i )Bv;Zi B'
7 0
Bili _2§€t1j H
4+ & —28f 0O
thom,i =S hCOm(XhI Xhl Xhl Xhl)%rlI (ltZI ..(ltZID
Ea +A +284 O
SRS
(8.12)
where &, =X -A88t, &, =24-185', and
$§=dg(S)/dS. From Egs. (8.6)-(8.12), we have the
following determinantal relations
Ki?m |m| _/]4 - | Ph(:om |K0bj i Z-obj,i ' (813)
|mJ d _/‘ /‘3 = | Ph(:om |Kobj,j Dij ’ (814)
i(1,2 ,2,3) = /\f A, Ag §3 | Proom [1(1,2,2,3), (8.15)
i(1,2,2,3) :/\g A A, s [ Pooom 11(1,2,2,3). (8.16)

The subscriptsi* and ' denote the quantities associated
with the points X; and X, in the object space and the

corresponding pointsx and X.y,; in the composite
image space. Re-arrangement of Egs. (8.13)-(8.16) to
eliminate A,, A,, $, and |P,,,| Yields several semi-

differential perspective invariants.
() An invariant related to the torsions and the
distancesD; andd; is

com,i

Z-im,l d122 _ Obj D122
= . (8.17)
Timz d21 Obj D21
For 74,,=0, 7,,%#0, D, #0, and D, #0, then
Ina =0. The zero-torsion point in the object space

corresponds to the zero-torsion point in the composite
image space. The conditiod,, 20, and D, #0



implies that the points X, and X, are not on the same

osculating plane.
(I An invariant related to the curvatures, the
distances D; and d;, and the quantities i(1,1,2,3),

i(1,2,2,3), 1(1,1,2,3) and 1(1,2,2,3) is

Kimz A1 17(1,1,2,3) _ Koz D, 1%(1,1,2,3) @19
Kima O 12(1,2,2,3)  Kyys Dy 17(1,2,2,3)

For Ky, =0, Ku1#0, Dy, #0, and D, #0, then
Kim2 =0. This means that the zero-curvature point in the

object space corresponds to the zero-curvature point in the
composite image space.
(111) An invariant related to the distances D;; and d;
is
dy dug - Dy Dy )
d41 d23 D41 D23
This result is analogous to the cross-ratio of the distances
on aline, a classical perspective invariant in perspective
geometry [2, 24].

(8.19)

9. Modeling of Imaging System

Modeling of an imaging system is necessary for
radiometric measurements. Figure 9 shows a radiation
source at an infinitesimal area element dA; on the optical

axis, having a distance R, from the optica center of the

imaging system like a CCD camera [25]. The radiant
energy (units: joule) from the area element integrated over
asolid angle seen from dA, to alensis

dQ = dA, dtJ‘ L(8,¢)cosfdw,

where L(8,9) is the radiance (units: watt-m2sr™) of the
radiative source a dA,, dw=snddfdy is the
infinitesimal element of solid angle, @ is the polar angle
(measured from the surface norma), ¢ is the azimutha
angle (measured between an arbitrary axis on the surface
and the element of solid angle on the surface), and dt isa

timeinterval. The number of photons collected by the lens
is

(9.2)

AN = (V)™ T, dQ
B . (9.2)
=(hv)tdA, dtTatmI' L(6,9)cos8 dw
where 7iv isthe energy of a single photon and T, isthe
transmittance of atmosphere air. Define 8, as the angle
between the optical axis and the line connecting dA, and
the edge of the aperture. When 6, is small,
(snd,)* = A,/ R? is approximately the solid angle in
which the radiative energy from dA, is collected by the
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imaging system, where A, is the imaging system aperture
entrance area. Thus, Eq. (9.2) becomes

dng, =L, dA T, (A /R?), (9.3)
where L, is the average photon radiance over the
collecting solid angle A,/ R? =(sin8, )?

L, =(av)™(snd,)? [ L(8,p)cosbdw. (9.9

Consequently, the number of photons reaching the image
planeis

dnim = Lp d'% dt (Ab / Rf )TatmTopt ! (95)
where T, is the transmittance of the optical system. The

number of photons incident the detector element is simply
proportional to a ratio between the detector element area
A, and theimage area dA, corresponding to dA,

dn,, =dn, A,/ dA . (9.6)
Under the approximation of small angle 8, <<1, dA is
related to dA, by

dA /R? =dA / RZ, 9.7)
where R, is the distance of the image plane from the
optical center. Substituting Egs. (9.5) and (9.7) to Eq.
(96) and using the relations A, =7D%/4 and
1/ R, +1/ R, =1/ fl , wehave
L, AT, T,
T4 FA(14Mg, )?
where F = fl /D is the F-number and M, =R,/ R, is

the optical magnification, D is the diameter of the
aperture, and fl is the focal length. Thus, the total

number of photons collected over an integration time t,;
is

dn,,

(9.9)

_ T Lp AD tINT TatmTopt
Neet = 2 2
4 F(1+M,,)
Since some of the variables in Eqg. (9.10) depend on the
frequency v of light, the number of photoelectrons
generated in the solid-state detector over a frequency band
[viv,] is

(9.10)

_ " 7 Lo (V) Ap tir Tom(V ) To (V)
npe—L RV)y F2(1+M,, )? v,
(9.11)

where R (V) is the detector’s quantum efficiency (units:

electrons/phonon). We separate the photon radidnce
into the radiance magnitudla‘_p independent oV and a
shape function of the frequency spectrdgy(v), i.e.,

L,=L, fy(v). (9.12)
Therefore, Eq. (9.11) becomes



npe = pcam Lp 1 (913)
where p_, IS a parameter describing the camera
performance

Y2 fo (v tint Tam(V )T, (V
pcam: Rg(v)g sp( )':D2 INT atm( 2)opt( )dV
v (1+M,,)

(9.14)

After the camera is radiometrcally calibrated, the
image intensity (gray level) is proportional to n,, i.e,

[(X)=Cypy Npe- (9.15)

The proportional constant c,, is determined by

calibration. The above anaysis is made based on the
assumption that the radiation source is on the optical line.
In general, we have to take the off-axis effect into account
[26-27]. Hence, ageneralized form of Eq. (9.15) is

I(x)=c,, pcamL_pcos4 6, (9.16)
where 6, is the angle between the optica axis and light
ray through the optical center. When the lens distortion is
negligible, the angle 6, can be expressed as a function of
the image coordinates x , the principa point location x,,
and the principal distancec, i.e,

6, =arctan(| x—x,|/c). (9.17)
Grouping the terms in Eq. (9.16) that are only dependent
of the image coordinates to the left-hand side, we get

H(X) O, (I X=X, 1) = Cpry Pearm Lo (X)), (9.18)
where the function describing the off-axis effect can be
approximated by

O(lx-x,)=cos™8, =1+2|x-x, > /c*. (9.19)
Assuming that the off-axis effect is corrected on the image
plane, without loss of generality, we simply rewrite Eq.
(9.18) as

(X)) =Cip Peam Lo (X)) (9.20)
In order to simplify the notations, we use replacements

Cys = Cim Peam  @d  L(X) > L(X).  Therefore,
without loss of generality, Eq. (9.20) becomes
1(X)=Cye L(X), (9.21)

where ¢, isaproportional constant related to the imaging

system and L( X ) should be understood as the spectrally
averaged radiance.

10. Typical Radiation Processes
Surface Reflection

Quantitative image-based measurements require the
knowledge of the physical properties of radiation-matter
interaction of the objects of interest. One of the important
interactions is reflection on a surface. As shown in Fig.
10, the incident radiance is generally a function of the
incident direction (8,,¢ ), i.e,
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L =L(6.9). (10.1)
The reflection radiance L, (6,,¢;6,,¢ ) is quantitatively
characterized by the bidirectional reflectance distribution
function (BRDF) [28]
f(6.9:6.¢)=d.(6,.9:6.9)/ d&(6,.9). (102
where the infinitesmal incident irradiance dE;(8,,q )
over asolid angle element dw is
dE (6,9 )=L(6,.¢ )cosbdw . (10.3)
The BRDF has a unit of steradian®. The BRDF depends
on the surface roughness distribution. Foe a perfectly
diffuse surface or a Lambertian surface where the
reflection radiance isisotropic, i.e., L, =const., the BRDF

is f, =1/ . Inthiscase, thereflection radianceis

L, :(1/77)1 L,(6,,¢ )cosb, dw, . (10.4)
Furthermore, when the incident source of the irradiance
E, iscollimated at afixed incident direction (6,,¢, ), the

incident radiance is described by the Dirac-delta function
Li(6.9)=E, (6 —-6,)0(@ ~@ )/ sinb, . (10.5)
Thus, Eq. (10.4) becomes the Lambert’s cosine law

L, =(1/ m)E, cosb,. (10.6)

For a general surface, the BRDF can be derived based
on either the wave equation for electromagnetic waves or
geometrical optics. Using the method of Helmholtz-
Kirchhoff integral, Beckmann and Spizzichino [29] have
derived an expression for the mean power of
electromagnetic wave scattered from a rough surface.
Similar integral approaches were used by Icart & Arques
[30] and Wang [31]. Icart and Arques [30] derived an
expression of the BRDF for multilayer materials, which
was composed of specular, directional-diffuse (spread
reflection), and uniform diffuse (Lambertian) components.
From a viewpoint of geometrical optics, Torrance and
Sparrow [32] gave a simpler expression for the BRDF.
Beckmann-Spizzichino’'s model and Torrance-Sparrow’s
model were discussed by Nayar et al. [33] from a
viewpoint of computer vision application. A
bibliographical review on the BRDF was given by Asmail
[34]. Scattering of electromagnetic waves from randomly
rough surfaces is still an active research area covering a
variety of theoretical and experimental studies [35].

From a viewpoint of application, the empirical
expressions for the scattered radiance from a rough surface
are very useful due to their simplicity [36]. An empirical
model for a single light source is

L (X)=p, Eo(X)+pg E(X)(NTL,)
+ps E(X)p(R™V)
where the first, second and third terms are, respectively,

the contributions from the ambient reflection, diffuse
reflection, and specular reflection. In Eq. (10.8),, pq,

(10.7)



and p,, are the empirical reflection coefficients for the
ambient reflection, diffuse reflection, and specular
reflection. As shown in Fig. 11, the vectors N, L, R,

and V are, respectively, the unit norma vector of a
surface, the unit vector directing the light source from the
surface, the unit main directional vector of the specular
reflection, and the unit viewing vector. E,(X) and

E.(X) are the irradiances for the ambient environment

and light sources, respectively. The function p(R™V ) is

the directional distribution of the specular reflection,
describing the spreading of scattered light. Phong [37]

gave a power function p(R™V )=(R™V)". In general,
the main directional vector of the specular reflection, R, is
afunction of theincident direction of light —L. Although

there are theories for predicting R [32], it is not known for
a general surface. The unknowns in Eg. (10.7), including
R, the reflection coefficients and the parameters in
p(R™V ), have to be determined by calibration. For

multiple light sources, Eq. (10.7) includes superposition of
the contributions from these light sources.
Radiative Energy Transfer in Media

When light travels in a medium, the radiance is
affected by absorption, emission and scattering. The
radiative energy obeys overall conservation of energy.
The equation of radiative energy transfer can be derived
based on a baance among absorption, emission and
scettering, i.e.,

dL, oy,
—T=s.0L, =S, - B,L, +4—nJ’ L,(s)®,(s,s)dw,

ds

T

(10.8)
where s is the path vector, S, is the extinction

coefficient, o, is the scattering coefficient, @, (s ,s) is
the scattering phase function, S, is a radiation source

term, and the subscript 7 denotes the frequency range.

This transport equation has been used in radiative heat
transfer [38] and radiative hydrodynamics [39]. Note that
the terminology of the radiatve intensity (unit:
watts/area/solid angle) used in literature of radiative heat
transfer is just the radiance in radiometry. The solution
techniques and the suitable boundary conditions have been
discussed by Modest [38].
Luminescence

Luminescence is an emission from molecules after
they are excited by an excitation light with a suitable
wavelength.  Luminescent dyes, widely used as probe
molecules in biological and medical applications [40],
have been utilized for flow visuaization and
measurements. For example, based on oxygen quenching
of luminescence, luminescent molecules immobilized in a
polymer layer have been used for surface pressure and
temperature measurements in aerodynamic testing. These
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new sensors are called as pressure- and temperature-
sensitive paints (TSP and PSP).  After luminescent
molecules in PSP absorb the energy from the excitation
light with a wavelength A;, they emit luminescence with a
longer wavelength A, due to the Stokes shift. Liu et al.
[41] have analyzed luminescent radiation from a PSP layer

and obtained the spectral luminescent radiance (L, , )

L, =h@(P,T)q, Es;,(4,)K, (B, / ) M(u), (10.9)
where @(P,T) is the luminescent quantum yield that
depends on pressure (P) and temperature (T), Es; ,(4,) is

the luminescent emission spectrum, h is the layer
thickness, q, is the incident light flux, x =cosé is the

cosine of the polar angle @, and the extinction coefficient
B, = ¢; ¢ isaproduct of the molar absorptivity & X and

luminescent molecule concentration ¢. The coefficient
M represents the effects of reflection and scattering of the
luminescent light at the wall. The term K, represents the

combined effect of the optica filter, excitation light
scattering, and direction of the incident excitation light.

The luminescent irradiance E,, over a collecting solid

angle @ is

E,, :I L,, cosde
o . (10.10)
:I[)’/,'thD( P,T)d, ES;.Z(lz) K;<M >0

where <M > is the spectrally averaged quantity of M .

Even though Liu’s analysis was focused on a thin PSP
layer, calculation of luminescent radiance is generally
valid for a luminescent volume where surface reflection is
absent. The spectral luminescent radiance integrated over
a volumeV is expressed as

L, = Es,».zaz)KluﬂJ’ D(X)G(X) B, (X)dX .

(10.10)
A similar analysis for the luminescent flux was given by
Gaigalas et al. [42].

11. Reflection and Shape Recovery

Reflection on a solid surface depends on the geometric
properties of the surface. In principle, shape of the surface
can be recovered from surface reflectance under certain
conditions. Computer vision scientists have studied the so-
called shape-from-shading problem for decades [43-44].
Here we give a general consideration that is particularly
useful for more complex engineering structures. Figure 11
shows a surface element with the unit normal vedtor
The incident polar anglé, is the angle between the unit

normal vector N and the unit vectorL directing the
light source from the surface. The reflecting polar angle



6. isthe angle between the unit normal vector N and the
unit reflecting vector R. The azimuthal angle ¢ is the
angle between the projections of the vectors L, and R on
the surface. Assuming that the reflecting vector R is on
the plane spanned by L, and N , we have

R=a N +aL,. (11.1)
The coefficients a, and a, are determined by solving the

following equations
cosd. =N.R=a,+a N-L,

R.R=aj +2a,a N-L ,+a =1. (11.2)
Eliminating a, from Eq. (11.2) yields
(1+cos® 6 )a? —2cos’ 8, a, +cos’6, —1=0. (1.3

There are two solutions for a,
_cos’ 6, + \/(1+ cos? 6, )(cos® 8, —cos? 6, ) +1
- 1+ cos? 6 '

a'L

(11.4)
The reflecting polar angle 6, is not necessarily equal to
the incident angle 8, especidly at large incident angles
due to the off-specular reflection phenomenon on a rough
surface [32]. In general, 8, =6, insures that there is no

imaginary solution for a,, which is also supported by
experiment data. The condition 8, = 8, indicates a, <0.
Thus, the appropriate solution for a, and a, are
_cos® 6, —\/(1+ cos? 8, )(cos? 8, —cos? 6, ) +1
- 1+cos® 6,
a, =cosf, —a, cosb, . (11.5)
The reflecting polar angle 6, can be expressed as a
function of 8, based on theories and experimental results.
In a special, but very useful case 6, =6,, Eq. (11.5)
becomes
_cos?’8 -1 _(N-L,)* -1
T 1+c0s?6, 1+(N-L,)?’
a, = 2cosf _  2N-L .
1+cos?6  1+(N-L.)?
Consider asurface X3 =F(X*,X?) illuminated by a

single light source. The relation between the image
intensity and reflection radiance from the surface is

1(X) =Cys 0, Eo(X)
+CoEg(X)[ P N+ L+, p(ReV)]
The relation between the image coordinates x and the

object-space coordinates X is given by the collinearity
equations Eq. (2.2). The unit normal vector N is

N =(F,,.F,,~1)7 [ JFZ +F2 +1,

L

L

(11.6)

(11.7)

(11.8)
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where F_, =9dF / oX! and F.. =0F /dX2. The unit

vector L directing the light source X from the surface
is

L, =(X,=X)/| X, = X]. (11.9)
When the camera is sufficiently away from the object, the
unit viewing vector V directing from surface to the
camerais approximately

V =-m,, (11.10)

which is known for a photogrammetrically calibrated
camera. The reflecting vector R is given by Egs. (11.1),
(11.5) and (11.6). Clearly, given an image intensity field
I(x), Eg. (11.7) is a complicated non-linear first-order
patial  differential equation for the surface
X3 =F(X*X?). Thus, a numerical solution to Eq.
(11.7) has to be sought with suitable boundary conditions
and constraints.

When the light source is away enough from the object
relative to the size of the object, the incident irradiance
E.(X) and ambient irradiance E_(X) can be
considered to be homogenous on the surface of the object,
that is, E (X )=const. and E,(X)=const.. In this
case, the vector L, isalso approximately homogenous and
it becomes a constant vector. Thus, Eg. (11.7) is
simplified to
1(x)=cyep, E,
+Cy B[ 0y Ne L+ o, p(ayN -V +a L V)]
Eq. (11.11) is still complicated for analysis. Furthermore,
at a Lambertian surface without the ambient illumination,
Eqg. (11.11) issimply

[(x)=cysEspy N« L. (11.12)
In computer vision, a viewer-oriented coordinate system
and orthographic projection are often used to further
simplify the problem [45]. The viewer-oriented
coordinates ( X*,X?) in the object space are aligned with

.(11.11)

the image coordinates (x*,x*). The third viewer-oriented

coordinate X2 isin the direction of the viewing vector V .
Eg. (11.12), known as the image irradiance equation in
computer vision, has been extensively studied for shape-
from-shading [43-44]. For quantitative measurements, Eq.
(11.12) can serve as the first-order approximation.

12. Motion Equations of I mage Intensity

In this Section, we derive motion equations of image
intensity from underlying physical principles. The motion
equations of image intensity can be used for recovering the
optic flow and other physical properties from a time
sequence of images of continuous patterns. The temporal
and spatial development of the image intensity depends on
the radiation process that is characterized by the physica



parameters  p=(p,,p,-,Py )" and the geometric
parameters q= (Q1quv"' 1Om )T ’ that iS,
[(x,t) =cys L(X, p,q;t). (12.1)

Differentiating Eqg. (12.1) with time, we have the motion
equation of image intensity
dt

ol oL
o
(12.2)

—+u-,l =c

ot

where u =dx/dt is the optical flow in the image plane,

U =dX/dt isthe motion field in the object space, and the

gradient operators are defined as
O,=(a/0x*a/0x*)",
O,=(0/0X*a/0X?,0/0X3)",
O0,=(0/0p,,~-,0/0py)",
0,=(0/0q,,--,0/09qy)".

The first term in the right-hand side of Eg. (12.2) is the
local tempora change of the radiance. The second term is
the change induced by motion in a non-homogenous
radiance field. The third and fourth terms are related to the
changes of the physical and geometric parameters,
respectively. Eq. (12.2) is a generic form of the motion
equation of image intensity. However, the detailed
structure of Eq. (12.2) depends on the specific physical
process being studied. To determine the optical flow,
Horn and Schunck [46] suggested the well-known
brightness constraint equation dl/dt+u-0,1 =0 in

computer vision. In fact, the brightness constraint
equation is just an assumption that the image intensity
remains invariant along a stream of images. Generaly
speaking, this assumption, which is not related to any
physical process, does not hold exactly. In the following,
we give the motion equations of image intensity for three
typical cases. Similar results can be obtained for other
physical processes. Determining the optic flow in the
motion equation of image intensity is a constrained
variational problem.
Moving Lambertian Surface

Consider a moving Lambertian surface illuminated by
an incident irradiance field E (X ). Since the image

intensity is 1(x)=cyEpy N« L, the motion equation
of image intensity for a Lambertian surfaceis

a—|+u 0,1
ot

+U .0 L+‘é'|ID 0, L+3a, 0L

dN
= Cys Py E(N <L )(U-Oy Els)+EIs(d_

L)
O

(12.3)
The first term in the right-hand side of Eq. (12.3) is the
change due to motion in the non-homogenous irradiance
field. Theterm (dN/dt). L, represents the rate of change

:
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of the unit normal vector N of the surface projected in the
illumination directional vector L, =(L,,L,,,L)" . We

explore the connection of this term with the fundamental
geometric quantities of the surface. The term (dN/dt)- L,

is expanded as
dN Ls_a—'\I L,+U-(L,-O,N). (12.9)
dt ot
The surface is described by a parametric equation
X = X(é*,&?), (12.5)

where &' and &2 are the parameters of the surface. The
term L« 0, N canbeexpressedin é* and &2

&% oN
L,eON=L 12,a=123) (126
s X sa X 6{’; (IB ) ( )
According to the formulae of Weingarten [18]
ON oX
—=-9%b,, —, 12.
653 g Bo af” ( 7)
we obtain
oo oX
Ue(Le-OxN)==l,g bﬁaﬁ-u, (12.8)
where |, =L, 07 /0X", g™ are the contravariant

metric tensor, and b,, are the coefficients of the second

fundamental form of the surface.
Emitting Passive Scalar Transport

In a transport process of passive scalar such as
fluorescent dye, scattering particles, and temperature in
fluids, the radiance is assumed to be proportiona to the
density or concentration /( X ,t) of the scalar

L(X,t)=c, (X t),
is a proportional constant.

(22.9)

where ¢, The density of the

scalar (( X ,t) obeys the transport equation

dy _oy 2
+U-0 D,0

dt ot v= ¥,

where D, is the diffusion coefficient of the scalar.

Differentiating Eq. (12.1) and using Egs. (12.9) and
(12.10), we have

(12.10)

d'(d)t(t) CqsC,y D, 0214 . (12.11)
Furthermore, because of [(x,t)=cy.c, Y (X t),
(12.11) becomes

% D, 02 1(xt). (12.12)

The Laplace operator (1%
coordinates x, i.e.,

can be expressed in the image

62
Y ax7 oxY

0

2 —
R

, (12.13)



where h, and h,, (a=12,y=12,=123) ae
defined as
a%x” ox’ ax*
= an = : 12.14
) &) & ) ) & ( )

(12.15)

(12.17)

For a photogrammetrically caibrated camera, h, and h,,
are determined by the collinearity equations with the
known camera parameters and the image coordinates when
a surface congtraint X3 =F(X?',X?) is imposed (see
Section 4). Hence, the motion equation of image intensity
for apassive scalar transport processis
ol ol ol 92l
—+ =D —+h
ot “oxr Y qu oxr axaaxV%
The optical flow field u® =dx®/dt can be recovered
from Eq. (12.15). In particular, using the orthographic
projection x* = X7, we have
h,=0and h, =9, . (12.16)
In this case, Eq. (12.15) is reduced to the standard
diffusion equation [47]
2
al ru, ol _ D 0°l _
ot ox? Ypxox”
Transmittant Passive Scalar Transport
Here we derive the motion equation of image intensity
for transmittant passive scalar transport in a medium like
fluids. When a light ray transmits through a bulk of
passive scalar, the intensity of light is attenuated due to
absorption and scattering, shown in Fig. 12. The radiance
reaching a camera through the scalar medium is given by
(12.18)

ds
where s is the path vector and B is the extinction

coefficient. The solution of Eg. (12.18) gives the
transmitted radiance

L =L, exp( —J’S,Bds).

Consider a bulk of the participating passive scalar confined
by two virtual boundary surfaces /°;, and I°,, as shownin
Fig. 12. We assume that the camera is far enough away
from the bulk of scalar such that the light path is almost
parallel to the optical axis, i.e., s=-m;. Inthiscasg, itis

(12.19)

convenient to use the object space coordinates X inthe
frame (m,, m,,m,), defined as
X' =m, (X=X, )
X =m, - (X-X,), (12.20)
X =mye (X -X,)
where the unit vectors m,, m,, and m; are orthogonal,
=9,;. Under the above conditions, the
transmitted radiance in Eq. (12.19) can be written as

ie, mgm,
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" X DdXC

I

L(X t)=L, exp%— (12.21)

where the boundary surfaces are X~ = I",(X,X _,t) and
X =r,(X X" 1).
proportional to the concentration w(?,t) of the scalar,
i.e,

The extinction coefficient is

BIX V)=, W(X 1), (12.22)
where g, is an absorption coefficient. The relationship
between the image intensity and radiance is

1(x,t) =cys L(X 1), (12.23)
where x=(x*x*)" is the image coordinates.
Combination of Egs. (12.21), (12.22) and (12.23) yields a

basic relation between the image intensity and the
concentration of the scalar

1(x.t) = Cys Ly exp%— £, I "X DX E (12.24)

Differentiating Eq. (12.24) with respect to time, we

have
di(x,t) dy s dar, ar,
=—-¢g,1(x,t ——dX + - —_—
dt ol )Erfl dt 4 dt Yy dt

(12.25)
Since (X ,t) obeys the transport equation Eqg. (12.10),
the first termin the right-hand sideis

I _ ) 2 _ ) 2 _
W 4x*=p,[ - 2¥ _ax*=p,[ 2L dx’
r, dt r, 0X70X nax ax
(a=1,2,3) (12.26)

The second eguality in Eqg. (12.26) can be easily proven.
From Eg. (12.20), we know the differential relation

/09X =m,,a/9X" and then
92 /9X“9X* =m,.m 3% /aX X’

o o (12.27)
=5,,02/0%X X" =02/ axX"9X

Integration by parts yields

Iy 2 _ 2 2 J—
J’ %dxsz%J’ wdX +BT.,
noX oX 0X 0X n

(B=12,a=123)
where the boundary terms B.T. are

(12.29)



B.T.:za‘/’| o —26‘/’| o,

ox” |, ox” ox’l, ox’

Low| er or, eyl or, or,

x|, ax” ax’ ax’l, ax” ax”’

4y, _a;rl_ﬁ -y, _a;rz_ﬁ + aﬂ' - aﬂ'
ax"ax ox’ox’ ox’l, ox'l,

We consider that a bulk of the passive scalar is confined in
a finite domain and the distribution of ¢( X,t) rapidly

decrease to zero outside the domain. This represents a
typical case in many practical applications. Therefore,
when the virtual boundary surfaces I, and I, are large

enough such that ¢ and its derivatives at the surfaces
approach to zero, i.e.,

oy oy
—7 ~ 0 =7
X" | X" |,
Since the boundary terms in Egs. (12.25) and (12.28)
vanish, Eq. (12.25) becomes
di(x,t) _
dat
(B=12) (12.30)
Now we consider the transformation between the
image coordinates x =(x',x*)" and the object space
coordinates X =(X ,X X )T,
equations without the lens distortion are
Xf-xt=-cX" X7, (B=12) (1231

Thus, from Eq. (12.30), the Laplace operator can be
written as

Y|, -0.¢, -0, - 0.(12.29)

2
& Dy |(X,t)_a—_

R,
wdXx' .
ax’ox” Jn

The collinearity

62
axPax?’

92 _
ax’ox”’
where A c/Y3 is the scaling factor. Using Egs.

(12.24), (12.30) and (12.32), we obtain the maotion
equation of image intensity for transmittance images of
passive scalar transport

(B=12) (12.32)

al ol 0oi L a

-+ — =D, A? -1 — B

ot “oxP T Y7 HhxPoxP ox”? axﬁE
(B=12) (12.33)

Note that a simple version of the motion equation of image
intensity for transmittance flow images was given by
Wilders et a. [48] based on the orthographic projection
and other assumptions.

13. Conclusions

We study a number of theoretical problems in
guantitative image-based measurements of geometric,
kinematic and dynamic properties of observed objects
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(specifically deformable bodies). From a unified
viewpoint, we discuss different formulations of the
perspective projection transformation and their geometrical
connection. These equivalent formulations of the
perspective projection transformation are selectively used
in this paper to study different geometric problems,
depending on convenience of the formulation applied to a
specific problem. The perspective developable conical
surface containing a 3D curve is reconstructed from known
image measurements of the curve. The developable
conical surfaces can be used to reconstruct a 3D curve and
a surface without solving the ambiguous correspondence
problem in stereovision.  Furthermore, the general
methodology is proposed for reconstructing the motion
field of a 3D curve from atime sequence of images.

The perspective projection transformation under a
surface constraint allows one-to-one mapping between the
surface in the object space and the image plane. We
explore the connection of the geometric structures and
motion fields between the image plane and the surface in
the object space. These issues are important in
reconstructing the complex motion fields on a surface such
as skin friction field on an aerodynamic body and passive
scalar motion field illuminated by a laser sheet. Then, we
consider the general point correspondence problem in
multiple images. Longuet-Higgins relation for the point
correspondence problem is generalized by taking the lens
distortion effect into account. Generally, establishing the
point correspondence requires at least four cameras or
images. The concept of the composite image space is
introduced. After the relationship between the composite
image space and the object space is established under the
coplanar condition, the perspective invariants of a 3D
curve are constructed. These invariants alow us to
directly know the geometric features of the curve such as
torsion and curvature from images without calibrating the
cameras.

In the radiometric aspects, we discuss the relationship
between the image intensity and the radiance received by a
camera as well as typical radiation processes such as
surface reflection, radiative energy transport through the
participating mediums and luminescence. The motion
equations of image intensity are derived for moving
Lambertian surface, emitting passive scalar transport and
transmittant passive scalar transport. These equations
provide a rational foundation for recovering the optic
flows and motion fields of deformable bodies (e.g. fluids)
from a time sequence of images of continuous patterns.
Future research will be focused on the development of the
effective numerical techniques and algorithms and their
implementation in various simulations and experiments.
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Figure 1. Imaging geometry and coordinate systems.

Figure 2. Relationship between the vectors m, (i =1,2,3)
and W, (j=12).
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Figure 3. Perspective developable conical surface
containing a 3D space curve.
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Figure 5. Perspective developable conical surface
containing a contour of a 3D surface.

24



Imaging
system light

A,=rD2/4 Image of source
Source A boundary r,
A surface
R R
< > < >

Figure 9. Imaging system.

z

\‘ optical center
Incident light

0 / Emission

image plane

Figure 12. Transmittance of a light ray through passive
scalar.

X
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Figure 11. Vectors of incident, reflecting, and viewing
directions.
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