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1 Abstract

An overview of the current status of time depen-
dent algorithms is presented. Special attention is
given to algorithms used to predict 
uid actuator

ows, as well as other active and passive 
ow control
devices. Capabilities for the next decade are pre-
dicted, and principal impediments to the progress of
time-dependent algorithms are identi�ed.

2 Introduction

Continuously expanding computer capabilities al-
low more attention to be devoted to the simulation
of unsteady 
ows. At the turn of the millennium,
practitioners routinely compute complex 3-D steady

ows involving 106 � 107 grid points, and 2-D un-
steady 
ows involving 105� 106 points. These feats
are performed while carrying �ve or more variables
per node! If Moore's law persists (a �xed cost dou-
bling of computer resources every 1.5 years) the next
decade will provide practitioners with the resources
to routinely simulate 3-D unsteady 
ows on 106 grid
points. This computer capability will enable the
burgeoning �eld of aerodynamic 
ow control (AFC),
which is often time-dependent.
Active 
ow control o�ers the aerospace commu-

nity the opportunity to expand the 
ight envelope
through the use of steady suction/blowing, zero net
mass synthetic jet actuators, or pulsed jets. These

ow control devices exhibit promising 
ow control
capabilities including separation control, thrust vec-
toring, mixing enhancement, noise control, and vir-
tual shape change. Bene�ts of 
ow control in-
clude reduction in part-card count, empty weight,
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manufacturing costs, operating cost, fuel burn, and
noise. A number of active 
ow control concepts have
been tested in the laboratory and 
ight. Examples
include leading-edge suction for transition delay,93

zero net mass separation control 123; 124; 125; 126; 127

and thrust vectoring 
uidic injection.111 Computa-
tional studies have demonstrated that Reynolds av-
eraged Navier-Stokes (RANS) methodologies pro-
vide qualitative insight into active 
ow control ap-
plications. However, quantitative agreement is lack-
ing between the computational and experimental re-
sults. To get from the bench-top to real applications
of 
ow control, reliable computational 
uid dynam-
ics (CFD) design tools must be developed and val-
idated with the experimental and 
ight databases.
An extensive amount of research is still needed to
develop a production-type tool for active 
ow con-
trol applications for the design engineer.

A critical assessment of the current capabilities of
time-dependent CFD, and identi�cation of impedi-
ments that still exist is timely. We focus on identi-
fying the critical areas (algorithmic and modeling)
that possess notable leverage to the success of 3-D
AFC computations.

The review of this material will be presented with
the following strategy. Each section will begin with
a broad overview of current state of the art in that
�eld, followed by a description of general bottle-
necks, and speci�c impediments for time-dependent
AFC computations. Finally, each section will con-
clude with a brief summary of NASA Langley Re-
search Center's (LaRC) present research aimed at
alleviating the bottlenecks, recognizing that some
impediments are not being addressed due to limited
resources. The �elds of CFD and turbulence model-
ing are nearly boundless! To limit the scope of the
review, only those methodologies which have shown
promise in AFC simulations will be addressed.

The paper focuses on the general areas of algo-
rithmic issues and turbulence models, and on the
speci�c area of 
uid actuators. The paper is orga-
nized as follows. Section 3 describes discretizations
in space and time. The section begins with a broad
discussion of the advantages of high-order schemes,
followed by speci�c discussions of temporal and spa-
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tial discretizations. Section 4 describes algorithmic
considerations related to convergence acceleration.
Section 5 describes the current state of turbulence
modeling for time-dependent 
ows. Section 6 de-
scribes speci�c considerations for e�ective actuator
boundary conditions. Section 7 presents conclusions.

3 Discretizations: Time and Space

3.1 Why High-Order?

For reasons of e�ciency, high-order schemes have
long been advocated for use in time-dependent prob-
lems. In 1902, Kutta recognized the virtues of inte-
grating ordinary di�erential equations (ODEs) with
high-order schemes. The following simple example
illustrates this point. Local error ei committed dur-
ing one step of a temporal integration is described
by the formula

keik � (�t)p+1i (1)

where p is the temporal order of the integration for-
mula. Global error at time Tf is estimated by sum-
ming all local errors after transporting each to the
�nal time Tf . Estimates of global error, though not
sharp, are generally expressed in the form 55

kEk � (�t)pmaxC
�
exp[L(Tf � To)]� 1

�
(2)

where To is the initial time, and C and L are problem
dependent constants related to solution smoothness,
etc. In equation (2) the time-step satis�es �t < 1,
and a given error tolerance can be achieved by in-
creasing the order p while increasing the time-step.
The resulting algorithm is more e�cient if any addi-
tional work accrued at each large time-step, is more
than compensated by a reduced number of steps.
Work, however, increases with the order p. Near op-
timal values of p in the range 3 � p � 5 exist
for countless sti� and non-sti� model problems. (see
xIV.10 in Hairer and Wanner 56).
While it is generally recognized that high-order

temporal schemes result in greater e�ciency for
time-dependent problems, it is less well appreciated
that higher order spatial schemes additionally con-
tribute to time-dependent e�ciency! The virtues of
high-order spatial schemes were �rst recognized and
quanti�ed by Kreiss and Oliger.83 To illustrate this
advantage we provide an overview of the original ar-
gument presented in Kreiss and Oliger.83

Consider the wave equation and initial data

Ut + aUx = 0; U (x; 0) = ei k x (3)

on the space and time intervals 0 � x � 2� and
0 � t � Tf , with the exact solution:

U (x; t) = ei k (x� a t) (4)

Assume a uniform grid xj = j�x with �x = 2�=N .
A general nl + nr + 1 point spatial discretization is

Uxjj =
1

�x

nrX
l=�nl

�lU (xj+l); j = 0; N � 1 (5)

Substituting equation (5) into equation (3) and solv-

ing the system of ODEs (~Ut +M~U = 0) in Fourier
space yields the modal solution

Û (x; t) = ei k (x� â(k) t) (6)

where â(k) is the wave speed of the semi-discrete
problem and is related to the Fourier image of the
spatial operator. For example, the second- and
fourth-order central di�erence waves speeds are

â(k)2 = 2a
sin(k�x)

2 k�x
(7)

â(k)4 = 2a
8 sin(k�x) � sin(2k�x)

12 k�x
(8)

For real â(k), the di�erence (error) between the ex-
act and numerical solutions (eqs. 4 and 6) obtained
using trigonometric relations is �(k) = 2sin(k[a �
â(k)]t=2). Expanding the error in small phase angles
yields the simple expression for the phase error:

�(k) = j k [a � â(k)] t j (9)

Taylor series arguments produce the leading order
term for the di�erence in wave speeds

a � â(k) ' a�p(k�x)
p

(10)

with �p a scheme and order dependent constant.
Substituting equation (10) into (9), de�ning the
points per wavelength as P = N=k, and substi-
tuting t = Tf yields

�(k) ' [�pk a Tf (
2�

P
)
p

] (11)

The semi-discrete solution error accumulates lin-
early with time Tf , and is a strong function of the
spatial truncation error. Rearranging equation (11)
in terms of a maximumacceptable target error �T (k)
yields the expression:

Pp � 2 � p

s
�pkaTf
�T (k)

(12)

The grid points per wavelength necessary to achieve
the speci�ed target error �T (k) increases for prob-
lem size (2�). The other dependencies rapidly de-
crease as the order of the spatial approximation is in-
creased, motivating high-order spatial formulations
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in time-dependent problems. The cost of the com-
putations increase with increasing order of accuracy,
and a global minimum is reached for a �nite value
of p. Kreiss and Oliger 83 suggest 4 � p � 6 for
problems of practical interest. Note that the optimal
order for spatial and temporal operators is similar.

In summary, error accumulates linearly in time.
The global error at Tf is the sum of local errors
that accumulate from each time-step in the integra-
tion. The local error at each time-step is the sum
of three components: the temporal truncation error,
the spatial truncation error, and the algebraic er-
ror. A simulation requiring many time-steps to reach
Tf requires extremely small local errors. High-order
methods are the most e�cient means of achieving
these small local error tolerances.

An example will help to clarify this point. Con-
sider a steady-state problem requiring lift to an engi-
neering accuracy of three signi�cant digits. A second
order method could easily achieve this accuracy re-
quirement. Now consider a similar time-dependent
problem requiring lift (at the speci�ed Tf ) to an en-
gineering accuracy of three signi�cant digits. Fur-
ther assume that 100 time-steps are required to inte-
grate from T0 to Tf . The local error (temporal, spa-
tial, algebraic) at each time-step must be less than
10�5 to achieve the desired error tolerance of three
signi�cant digits. The constraint on spatial error
(10�5) in the time-dependent problem is much more
severe than that required for the steady-state prob-
lem (10�3). This example demonstrates the com-
pelling need for high-order spatial operators espe-
cially for time-dependent simulations.

3.2 Temporal Algorithms

3.2.1 Overview

The application of method of lines (MOL) to time-
dependent partial di�erential equations (PDEs) re-
sults in an initial value problem (IVP) for a system
of ODEs. Dozens of excellent texts with detailed de-
scriptions of multi step, multi stage, and linear multi
step methods have been written on the numerical
integration of ODEs. 26; 40; 55; 56; 86; 128 After more
than 100 years of theoretical development, the math-
ematical framework for solving ODEs is relatively
mature. In a general context, it is doubtful that
dramatic (factors of 10) e�ciency improvements can
come from new methods.

The potential for dramatic e�ciency improve-
ments is greater in the �eld of time-dependent CFD,
where current methodologies are surprisingly primi-
tive. This schism between tidy mathematical theory,
and rough CFD practices is not without good reason.
Fluids practitioners are preoccupied with more ur-

gent issues such as algebraic solvers, dimensionality
issues, discontinuities, nonlinear instability, turbu-
lence models, grid generation, etc. Nevertheless, the
current objective is to identify mature technologies
in the ODE literature that could have an immediate
impact in CFD.
The hallmark of current ODE software is the abil-

ity to perform automated integration for sti� ODEs.
The �rst widely available multi step integration li-
brary was that developed by Gear,51 later modi-
�ed and improved by Hindmarsh,60 resulting in the
LSODE family of codes. Other variants have prolif-
erated over the past two decades to account for the
de�ciencies of the original approaches (see VODE
61).
Automated integration begins with the user spec-

ifying 1) the system of ODEs, 2) the system Ja-
cobian, and 3) the desired solution error tolerance.
The software then automatically integrates the equa-
tions, using the most e�cient numerical method cho-
sen from a variety of candidate methods (second-
order backward di�erentiation formulae (BDF2) is
frequently used). A reliable solution error estima-
tor allows variable time-stepping. The time-step is
adjusted to match the desired error tolerance. The
resultant nonlinear system of algebraic equations is
solved at each time-step using a Newton or modi�ed
Newton method. Direct matrix inversions are used
within the Newton methods whenever possible. The
algebraic error is reduced to a predetermined level,
a constant multiple below the speci�ed error toler-
ance. The Jacobian used in the nonlinear iteration
is periodically reevaluated and stored based on the
convergence rate of the iteration.
In contrast, the second-order accurate multi step

BDF2 method is extensively used in the CFD com-
munity. System dimensionality prohibits the use of
direct inverse methods useful for Newton or modi-
�ed Newton methods. Iterative techniques such as
Newton-Krylov methods are usually not as e�cient
as other more highly tuned methods (multigrid or
combinations of methods). Error estimation or vari-
able time-stepping mode is not perceived as neces-
sary (correct or otherwise).
Three technologies presently used in the ODE

community could have an immediate impact on
CFD:

� high-order integrators : p � 3

� error estimation/variable time-stepping

� iteration termination strategies

To support this assertion, a brief summary of each
area is presented.
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3.2.2 High-Order Integrators
All general purpose solvers must integrate equa-

tions of considerable sti�ness. We begin with a
broad overview of sti�ness, and identify the mathe-
matical properties that enable a temporal integrator
to e�ciently integrate sti� equations.
Consider the integration of the system of ordinary

di�erential equations represented by the equation

dU

dt
= S(U(t))

In the present case, the vector S results from the
semi-discretization (spatial and source terms) of the
equations of 
uid mechanics plus a suitable turbu-
lence model. The integrator must integrate any S
with which it is provided. Numerical di�culties of-
ten arise when the Jacobian of S, J = @S=@U, has
large eigenvalues. A useful de�nition for sti�ness
states that a problem is sti� when the largest eigen-
value of the Jacobian J (scaled by the time-step)
jjz = �(�t)jj contained in the complex left-half-
plane (LHP) becomes much greater than unity. The
resulting sti�ness is then governed by both the Jaco-
bian and the chosen time-step. Ideally, the time-step
is selected solely based on error considerations and
a good method simply executes this step-size in a
stable and robust fashion. Time integration meth-
ods that do not amplify any LHP scaled eigenvalues
are called A-stable. While A-stability is generally
necessary, it is often not su�cient. We further de-
mand that all eigenvalues jjz !�1jj be completely
damped. The combination of these two properties,
A-stability and damping of �1 eigenvalues, is de-
�ned as L-stability. General purpose solvers invari-
ably rely on L-stable methods (and the partially sta-
ble L(�) methods with suitable error controllers) to
suppress temporal numerical instability and facili-
tate convergence of the nonlinear equation solver.
Popular implicit ODE integration methods are

generally either distinctly multi step or multistage
methods. Each has di�erent strengths and weak-
nesses. Implicit multi step BDF methods compute
each U-vector update to design order of accuracy
using one nonlinear equation solve per step. Unfor-
tunately, they are not A-stable above second-order.
Additionally, they are not self-starting and have di-
minished stability properties when used in a vari-
able step-size context. (Stability proofs are formu-
lated assuming constant time-steps. Variable time-
step cases may not be stable.) Practical experience
indicates that large-scale engineering computations
are seldom stable if run with BDF4.102 The BDF3
scheme, with its smaller regions of instability, is
often stable but diverges for certain problems and

some spatial operators. Thus, a conservative prac-
titioner uses the BDF2 scheme exclusively for large
scale computations due to its L-stability rather than
L(�)-stability.
Practical Runge-Kutta (RK) methods such as ex-

plicit, singly diagonal implicit, Runge-Kutta (ES-
DIRK) methods can be made arbitrarily high-order
while retaining L-stability but possess intermedi-
ate U-vectors with a reduced order of accuracy and
lesser stability. This reduced stage order may give
rise to order reduction phenomena in the presence
of substantial sti�ness. ESDIRK schemes with s
stages require (s-1) nonlinear equation solves per
step. Achieving progressively higher stage-order
methods is possible with fully implicit methods such
as the Radau IIA family. The cost of fully implicit
methods greatly exceeds that of ESDIRK methods
in the current context. Much less experience exists
with implicit RK methods than BDF methods in the
computation of large-scale engineering 
ows.
The general formula for a k-step, order-k, BDF

scheme can be written as

U(n+k) = �
k�1X
i=0

�iU
(n+i) + (�t)�kS

(n+k)(13)

where n is the time-step index. At each time-step
the BDF involve the storage of k+1 levels of the so-
lution vector U, and the implicit solution of one set
of nonlinear equations. Stability diagrams for these
methods may be found in Hairer and Wanner.56 At
order k > 2 an unstable zone for scaled eigenvalues
in the complex LHP exists. At orders f1; 2; 3; 4;5;6g
the methods are L(�)-stable where � is given by
f90o; 90o; 86:03o; 73:35o; 51:84o; 17:84og. (The dif-
fusion terms yield negative real eigenvalues. The
convective terms discretized with nondissipative op-
erators yield eigenvalues clustered on the imaginary
axis � = 90o. Numerical dissipation and boundary
conditions displace both sets of eigenvalues into the
LHP. Spatial operators with high levels of dissipa-
tion are more likely to be stable with BDF3.)
ESDIRK methods 78; 85 are implemented as

Uk = Un + (�t)
kX

j=1

akjS (Uj) ; k = 1; s

Un+1 = Un + (�t)
sX

j=1

bjS (Uj) (14)

Ûn+1 = Un + (�t)
sX

j=1

b̂jS (Uj)

where s is the number of stages, akj are the stage

weights, bi and b̂j are the main and embedded
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scheme weights. The vectors U and Û are the
pth-order and (p� 1)th-order solutions at time level
n + 1. The vector Û is used solely for estimat-
ing error and is calculated at little extra cost. ES-
DIRK schemes di�er from traditional SDIRK meth-
ods (see xIV.6 in Hairer and Wanner 56) by the
choice a11 = 0, which permits stage-order two meth-
ods. The sti�y accurate assumption (asj = bj)
makes the new solution Un+1 independent of any
explicit process within the integration step.

Many methods that combine multi step and multi
stage schemes, generally referred to as linear multi
step (LMS) methods, have been proposed in attempt
to overcome the problems of each. Surprisingly, the
results obtained with LMS methods (with a few ex-
ceptions) have been disappointing compared with ei-
ther multi step or multi stage schemes. Notable LMS
methods include the works of Cash.34; 35 To increase
the stability of the BDFmethods, Cash proposed the
extended backward di�erentiation formulae (EBDF)
and the modi�ed EBDF (MEBDF) schemes. The
MEBDF schemes involve three stages to advance the
solution one time-step. The �rst two stages are built
from existing (p � 1)th-order BDF formulas, while
the last stage combines the two previous BDF results
into a pth-order solution. Note that the second BDF
stage predicts a \super-future" point one time-step
beyond the target time level, and substantially con-
tributes to the A-stability of the method. At orders
f1; 2; 3; 4; 5; 6g the methods are L(�)-stable where �
is given by f90o; 90o; 90o; 90o; 88:36o; 83:07og. The
machinery involved with implementing the MEBDF
algorithm is nearly identical to that involved in the
BDF formulations. MEBDF schemes have the ad-
ditional advantage that very accurate solution data
are available on the �rst and third stages, based on
previous information. This information can be used
to provide the starting guess for the nonlinear it-
eration, and to establish time-step error estimates.
The second stage typically uses the trivial guess as
the starting point for the nonlinear iteration and no
error estimate is made.

Butcher 28 proposed a class of LMS methods for
sti� di�erential equations. The new methods com-
bine the properties of A- and L-stability, and are rea-
sonably simple to implement. They have a stability
region that is identical to that of a RK method, but
have high stage order. Uniformly high stage order
eliminates the possibility of order reduction. The
new methods were identi�ed by focusing speci�cally
on a diagonally implicit subclass of schemes referred
to as DIMSIM.27

3.2.3 Error Estimation
Temporal error management in the CFD com-

munity is presently accomplished by systematically
halving the time-step until the solution is indepen-
dent of further reduction. This strategy, while ac-
complishing the desired goal, can be streamlined by
using an error estimator at each time-step and ad-
justing each time-step to attain the desired error.
Error estimation is accomplished by comparing

two solutions of di�erent orders (Un+1 and Ûn+1)
at the same time-step. For reasons of e�ciency, the
auxiliary solution Ûn+1 should be available at little
additional cost. For example, in ESDIRK schemes
(see eqn. 15), as well as MEBDF 35 schemes, both
Un+1 and Ûn+1 are constructed from available data.
The di�erence kUn+1�Ûn+1k is proportional to the
truncation error of the lower order formula Ûn+1.
The estimate predicts the magnitude of the error in
the solution, and gives insight into its overall qual-
ity. Frequently, linear and nonlinear instability can
be predicted by the estimator well before the simu-
lation diverges.
Figure (1) shows the error estimate (MEBDF4)

for various �t. The test problem is for periodic
shedding from the turbulent circular cylinder. The
estimates are accurate to the correct order based
on grid-converged data. The error estimate predicts
that certain portions of the shedding cycle are more
di�cult to resolve in time. Variable time-stepping
could easily increase the e�ciency of the calculation
by adjusting the time-step so that the same amount
of error is produced at each time-step.
Variable time-stepping can introduce instability

into some temporal integrators. The stability func-
tion of multi step schemes (BDF, MEBDF, LMS)
is derived assuming constant time-steps. Large de-
partures from constant step-size can lead to solution
instability (although a good error estimator should
forewarn this possibility). Conversely, the stability
of multi stage schemes (ESDIRK) is independent of
variable time-steps, because they are self-starting.
The time-steps in a variable time-step formula-

tion, are chosen by a controller. A simple explicit
controller is (see xIV.2 in Hairer and Wanner 56)

(�t)n+1 = (�t)n
� Tol

kUn+1 � Ûn+1k

�p
(15)

Similar yet more elaborate controllers exist for im-
plicit formulations. The stability characteristics of
a controller can be tuned/optimized in conjunc-
tion with the integration technique it is control-
ling. Together, they should meet the design ob-
jective and not introduce instability into the inte-
gration. Note that in �gure (1) the predicted error
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at �ner tolerances has a high frequency component
that the controller must suppress. (See Kennedy
and Carpenter78 for details on the feedback error
controllers used with the ESDIRK scheme.)

3.2.4 Termination Strategy

An accurate error estimate can also be used to
automate the termination strategy of the nonlinear
iteration. Two competing components of temporal
error are the truncation and algebraic errors. Trun-
cation error is related to �t and the order of ac-
curacy p, while algebraic error is the residual error
generated each time-step by approximately solving
the algebraic system. The local temporal error is
the sum of the two components. To see full design
order from the temporal scheme, the algebraic er-
ror must be driven below the truncation error at
each time-step. This requires an accurate measure
of truncation error, and must be provided by the
error estimator.

The iteration termination strategy is complicated.
Our experience indicates that design-order temporal
convergence is achieved by maintaining a tolerance
ratio of 10�2 � T � 10�1. Here T is de�ned as the
ratio of nonlinear algebraic error to temporal inte-
gration error at each time-step (or stage). Algebraic
error for the nonlinear iteration is based on the L1
norm of the density residual. Choosing the time-step
based on accuracy considerations alone may not be
the most e�cient strategy for a temporal calcula-
tion. Decreasing the time-step can possibly greatly
increase the convergence rate of the nonlinear alge-
braic system, thus increase e�ciency. Gustafsson
and S�oderlind 54 devised optimal criteria for adjust-
ing �t. They assumed that either �xed point itera-
tions, or modi�ed Newton iterations is used for solv-
ing the algebraic system. The time-step is adjusted
so that the iteration convergence rate approximately
equals the optimal value. Because typical CFD alge-
braic solvers fall somewhere between �xed point and
modi�ed Newton iterations, additional work to re-
�ne these estimates is needed in the context of CFD
time-dependent solvers.

3.2.5 Bottlenecks

Algebraic solvers that exhibit poor convergence
behavior are an impediment for high-order schemes.
Huge time-steps are needed to utilize the favor-
able aspects of high-order formulations. Algebraic
solvers are needed that exhibits time-step indepen-
dent convergence characteristics. If the convergence
rate varies considerably with the time-step, then it
may be more e�cient to use a low-order scheme
with small time-steps. Thus, high-order temporal
schemes need fast and robust algebraic solvers. Tur-
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Figure 1. Time-dependent variation of predicted
L2 density error as calculated with the MEBDF4
scheme. The test case is turbulent 
ow around a
circular cylinder, at Re = 104, and Ma = 0.25.

bulent cases that have little or no convergence (one
order of magnitude) present a second obstacle. A
small number of cases are extremely di�cult to con-
verge, yielding dubious solutions at best. Neverthe-
less, solutions are still sought. It may be di�cult
to keep high-order formulations stable under these
circumstances.

A perceptual impediment is the implementation
of error estimation technology. A change in atti-
tude about the nature of temporal error and the
importance of its control is necessary. In spite of
the perceived adequacy of existing temporal error
practices, the CFD community should immediately
adopt the practice of reporting a time-step error es-
timate as a necessary requirement of a high �delity
time-dependent simulation. Ideally, the estimate
should include the component of primary interest
in the simulation. For example, if lift and drag are
the object of the study, then the estimate should in-
clude stepwise error estimates of these quantities, as
well as information on which formulas were used to
obtain the estimate.

Another common yet dangerous practice in the
CFD community is to use a �xed number of itera-
tions for each time-step. This approach eliminates
the need for an iteration termination strategy and
in most circumstances is satisfactory. Global tem-
poral error [see equation (2)] strongly depends on
time-steps with large local error. The error from just
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one nonconvergent time-step potentially could domi-
nate the error from all other time-steps combined! If
an intrinsic feature of the 
ow signi�cantly changes
the convergence rate of the algebraic solver, then a
�xed number of iterations is not a good strategy.
The periodic blowing from zero mass 
uid actuators
is a prime example. Di�erent phases of the cycle
converge at di�erent rates because convergence rate
is sensitive to boundary conditions. A termination
strategy that ensures a uniformly bounded algebraic
error at each time-step is needed.

3.2.6 Langley e�ort
An ongoing e�ort focuses on the e�cacy and e�-

ciencies of several time integration schemes for the
unsteady compressible Navier-Stokes equations. Ex-
isting and newly developed multi step and multi
stage schemes are being studied, with particular at-
tention to high-order (p � 3) schemes. Past work
includes comparisons of the high-order (ESDIRK4)
78 Runge-Kutta scheme with �rst- and second-order
BDF on laminar problems. Bijl, et al.20 showed that
the e�ciency of the ESDIRK4 scheme exceeds that
of the BDF2 by a factor of 2:5 at engineering er-
ror tolerance levels (10�1-10�2). E�ciency gains are
more dramatic at smaller tolerances. No problems of
nonlinear instability were noted with the high-order
ESDIRK4 scheme on the problems tested.
Carpenter et al.32 has shown that stage order two

Runge-Kutta schemes are susceptible to order re-
duction for sti� systems, although none is experi-
enced for laminar problems with sti�ness levels of
O(103). However, turbulence models exhibit con-
siderable sti�ness at Reynolds numbers in the range
of 105 � 107. Signi�cant order reduction is expe-
rienced with ESDIRK4 for cases experiencing sti�-
ness from strong turbulence �elds. Ongoing stud-
ies include investigating the e�ciency of ESDIRK
schemes on other one- and two-equation turbulence
models.
Figure 2 shows the convergence behavior of the

ESDIRK4 scheme, the BDF2 and BDF3 schemes,
and the MEBDF4 scheme. The test problem is the
circular cylinder at Reynolds number 104, with a
Mach number of 0.25. The calculations are run
with the unstructured Fun2D code.2 Design order
slopes are obtained for each scheme: 2, 3, 4, and
3 for BDF2, BDF3, MEBDF4, and ESDIRK4, re-
spectively (note that we have accounted for the the-
oretical order of ESDIRK4 in accordance with order
reduction). The MEBDF4 scheme was added to the
comparison because it is a stage order three method
and is not as susceptible to order reduction as the
ESDIRK4 scheme. Research continues on establish-
ing reliable error estimators and iteration termina-
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Figure 2. A comparison of temporal density error
obtained with BDF2, BDF3, MEBDF4, and ES-
DIRK4 schemes on a circular cylinder, with Re
= 104, and Ma = 0.25. The turbulence model is
Spalart-Allmaras.

tion strategies. A comparison of e�ciency will be
made between all integration schemes once each is
automated.

A �nal observation is relevant to help focus future
work. The BDF2 scheme yields engineering accuracy
if each temporal mode in a time periodic 
ow is re-
solved with approximately 50� 100 time-steps. The
fourth-order ESDIRK formulation attains a similar
accuracy (in spite of order reduction) using 5 � 10
time steps per period, with �ve stages per step,
yielding approximately 25�50 time-samples/period.
State-of-the-art LMS methods could lower this esti-
mate to 15 � 30 time-samples/period, an improve-
ment of approximately O(101=2) over existing tem-
poral e�ciency. The theoretical lower bound for
temporal schemes, based on in�nite order Chebyshev
operators, is � samples/period. High-order schemes
are presently asymptotically close to this theoreti-
cal lower bound. Another factor of three reduction
in samples/period is perhaps all that remains and is
becoming increasingly more di�cult to attain. Al-
gorithmic work focusing on other aspects of solver
technology will have a greater chance of producing
meaningful improvements during the next decade.
The next section describes high-order spatial algo-
rithms and their potential to increase the temporal
e�ciency, and section (4) describes the current and
future status of algebraic solvers.
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3.3 Spatial Algorithms

3.3.1 Overview
The spatial algorithms used currently in general

purpose aerodynamics solvers have not changed ap-
preciably during the past decade. Most current pro-
duction codes (structured or unstructured) rely on
some form of second-order upwind formulation with

ux limiting to provide necessary robustness in the
vicinity of unresolved features in the 
ow. Excellent
texts describing these methodologies can be found
elsewhere. For �nite-di�erence methodologies see
Hirsch 62; 63, and LeVeque.88 For basic �nite-element
methodologies see Hughes 70, Zienkiewicz and Tay-
lor 149; 150 and Baker and Pepper.10

In section 3:1, we established that spatial algo-
rithms play a important role in determining tem-
poral e�ciency. High-order methodologies will sig-
ni�cantly contribute to the ultimate goal of e�-
cient, general-purpose, time-dependent aerodynamic
solvers. A broad overview of the spatial discretiza-
tion landscape is now presented. Enabling technolo-
gies that allow extension of high-order methods into
the general purpose aerodynamic solver arena are
identi�ed. A wealth of scienti�c literature supports
the assertion that high-order general purpose algo-
rithms will likely mature within the unstructured
�nite element framework within the next decade.
Spatial operators are categorized by the kind of

grids on which they are formulated: structured
or unstructured. A structured grid has large re-
gions of the interior vertices that are topologically
alike, which results in well-established connectiv-
ity patterns. Accommodation of complex geome-
tries requires an arbitrary subdivision of the struc-
tured grid into what is referred to as a hybrid or
multi block formulation. Three examples of struc-
tured codes currently used at Langley as general-
purpose aerodynamics solvers include the block-
structured TLNS3D,144 and CFL3D,142 and the
overset-structured OVERFLOW 72. An unstruc-
tured mesh is one in which vertices may have ar-
bitrarily varying local neighbors. Three examples
of unstructured codes used at Langley (ICASE) are
USM3D49, FUN3D2, and NSU3D.94 The distinction
between structured and unstructured meshes usu-
ally (although not necessarily) extends to the shape
of the elements: 2-D structured meshes typically use
quadrilaterals, while unstructured meshes use trian-
gles, with similar analogous element shapes in 3-D
(hexahedra vs. tetrahedra).
Structured solvers o�er simplicity, easy data ac-

cess, and thus e�ciency. The data structure and
algorithmic simplicity of structured solvers leads to
more e�ciency and lower memory requirements for

a given accuracy tolerance. A discrete derivative
requires simple increments/decrements in array in-
dices, in stark contrast to an unstructured formu-
lation. The structured advantage in CPU time and
memory can be as much as a factor of three on prob-
lems not requiring signi�cant grid adaptation. How-
ever, on a complicated geometric domain a struc-
tured mesh may require many more elements than
an unstructured mesh, because elements in a struc-
tured mesh cannot vary in size as rapidly. Struc-
tured grid generation approaches are far from being
fully automated, and require user guidance in the
decomposition step. A complicated 3-D structured
mesh can take a month to generate. The current and
future role of structured formulations is for repeti-
tive computations late in the design cycle where grid
templates might exist and grid generation and adap-
tation are not important components in the solution
process.

Unstructured meshes o�er 
exibility in �tting
complicated domains, rapid variation from small
to large elements, and relative ease in re�nement
and de-re�nement. Unlike structured mesh gener-
ation, unstructured mesh generation has been au-
tomated in mainstream computational geometry for
some years. The major approaches for generating,
re�ning, and improving unstructured meshes rely
on unconstrained and constrained Delaunay trian-
gulation, quad trees algorithms, or combinations of
the above.19 A highly e�ective combination of tech-
niques for high Reynolds number 
ows is an advanc-
ing layers method (ALM) 114 in the near-wall re-
gion, and an advancing front method (AFM) 91 in
the far-�eld. Highly stretched viscous grids can be
generated in a reasonably automated fashion with
this approach. Automation begins to break down as
aspect ratio increases on complex geometries.

Element shape has a profound impact on the accu-
racy and e�ciency (direct and indirect) of a formu-
lation. Meshes with unintended large aspect ratio
cells lead to both poorly conditioned matrices and
poor solution accuracy. Poor solution accuracy re-
quires more grid points for a given accuracy. The
additional cost of �xing a bad mesh can usually
be mitigated by the faster convergence of the iter-
ative solver.17 Babu�ska and Aziz7 showed that con-
vergence on triangular elements is achieved only for
angles bounded away from 180o. This rather weak
condition becomes an issue for strongly anisotropic
meshes used in high Reynolds number turbulent
Navier-Stokes simulations. Near-wall aspect ratios
on these grids can be in the range 104 � 105. For-
mulations typically try to limit the maximum an-
gle in a grid (for example 179o) even though cur-
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rent evidence is divided on the necessity of this con-
dition. Quadrilateral and hexahedral meshes have
an advantage in accuracy over triangular and tetra-
hedral meshes for these problems. The faces of
hexahedral elements in the boundary layer are ei-
ther almost parallel or almost orthogonal to the sur-
face. Shock fronts and shear layers, which are also
strongly anisotropic, require high aspect ratio cells
for which the direction and location cannot be pre-
dicted in advance. Generation of these meshes can
be di�cult.

General purpose aerodynamic solvers have pro-
gressively shifted from hybrid/structured methods
to unstructured formulations over the past decade.
The principal motivations driving this change are
grid generation on complex con�gurations and grid
adaptation. These compelling reasons are likely to
become more important during the next decade, par-
ticularly as the grid adaptation �eld matures for
time-dependent simulations.

A large amount of inertia persists in the struc-
tured grid world, which is not entirely counterpro-
ductive. A time-dependent niche exists for computa-
tionally e�cient formulations over the next decade.
Unlike 3-D steady-state computations, realistic 3-
D time-dependent computations are presently con-
strained by processor speed rather than memory re-
quirements. The increased e�ciency of structured
methods is a notable advantage when run times can
be decreased by a factor of two to three. The addi-
tional hybrid/structured grid generation time can be
amortized if a calculation is likely to run for months.

3.3.2 High-Order Spatial Operators

High-order spatial operators need fewer points
than second-order operators, to resolve the same in-
formation. The exact reduction strongly depends
on the desired accuracy. Steady-state problems re-
quiring an accuracy of three signi�cant digits can be
achieved with fourth-order schemes in half as many
points in each spatial dimension. The total reduc-
tion in the number of points is approximatelyO(101)
in 3-D. Time dependent simulations that require so-
lution accuracy to four or even �ve signi�cant digits
at each time-step, will favor high-order formulations
to a larger degree. High-order spatial methods can
increase the e�ciency the time-dependent simula-
tions by O(101 � 102).

The constraints necessary to expedite grid gener-
ation and grid adaption will guide the next genera-
tion of high-order solvers. High-order methods must
move beyond proof of concept and into the realm of
being tools used to increase the e�ciency of aerody-
namic solvers.

The implementation of high-order methods is
strongly dependent on whether the grid is structured
or unstructured. High-order �nite-elements (FE) are
natural candidates for structured or unstructured
meshes, while high-order �nite-di�erence (FD) tech-
niques are usually implemented on block-structured
or overset grids. Finite-volume (FV) techniques ex-
ist in both forms; a close similarity between linear
element FE methods and FV methods exists. All
three approaches solve di�erent forms of the govern-
ing integral equation. FV directly solves the integral
equation by approximating the numerical 
uxes. FD
solves the divergence form of the integral equation
by approximating the derivatives. FE take the di-
vergence of the integral equations, multiply by an
arbitrary test function, and integrate by parts. The
solution itself is the resulting approximation.

Not all current general purpose spatial discretiza-
tion algorithms are natural candidates for high-
order extensions. For example, based on 2-D re-
sults, Casper and Atkins 36 noted that a 3-D hy-
brid/structured essentially nonoscillatory (ENO)-
FV formulation would be extremely expensive to
implement relative to comparable FD techniques.
Barth and Frederickson12, and Barth13 extended
their unstructured FV solver to account for k-exact
reconstruction. They note that comparing quadratic
with linear reconstruction on a triangle requires
roughly quadruple the number of solution unknowns.
All high-order formulations require more work than
second-order formulations, but some are more e�-
cient than others.

Many di�erent approaches to high-order FE have
been adopted in developing numerical schemes to
solve the compressible Euler equations. Two major
classes have emerged as candidate schemes: 1) sta-
bilized methods (continuous across interfaces), and
2) discontinuous methods (discontinuous across in-
terfaces).

Standard Galerkin FE dis-
cretizations of convection-dominated Navier-Stokes
equations produce wildly oscillating solutions un-
less dissipation terms are added to the formulation.
Since the early 1980s stabilized FE methods have
become increasingly popular in CFD. Early devel-
opment motivated by the success of upwind FD/FV
schemes included the streamline di�usion �nite el-
ement Method (SDFEM),68; 75 which later evolved
into the streamline upwind Petrov-Galerkin (SUPG)
scheme of Brooks and Hughes.25 A stabilizing term
is added into the weak statement motivated by in-
viscid terms and results in a perturbed standard
Galerkin test function. The stabilization creates
an upwind e�ect by weighting more heavily the up-
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stream nodes within each element. Hughes and Tez-
duyar 69 generalized the SUPG method to �rst-order
hyperbolic systems and included work on the Euler
equation. The original SUPG formulation su�ered
from oscillation in steep gradient regions (shocks)
which led to the introduction of entropy variables
and ultimately to stabilization terms including the
e�ects of both the inviscid and viscous terms in their
Galerkin least-squares (GLS) formulation.71 A vari-
ety of methodologies have been proposed to provide
additional stability to the convection terms, mono-
tone discrete solutions and ease of implementation.

Another approach that has been gaining in pop-
ularity in recent years is the discontinuous Galerkin
(DG) method. The DG method originally intro-
duced by Reed and Hill 117 exhibits several distinct
advantages when applied to complex unstructured
grids. Local polynomials are used to represent the
data to arbitrary order, with the data on element
interfaces treated as discontinuities. The approach
is advantageous because the solution accuracy is rel-
atively insensitive to mesh smoothness and can be
extended to arbitrarily shaped elements. In 1986,
Johnson and Pitkarata76 proved that the conver-

gence rate of the method is (�x)k+1=2 for general tri-
angulations. The method generates a local mass ma-
trix that can easily be inverted, making the method
e�cient for explicit time integration. An entropy
inequality for any scalar nonlinear equation 73 ex-
ists, implying discrete nonlinear L2-stability for dis-
continuous solutions. (This assumes wellposedness
and boundedness of the continuous nonlinear prob-
lem.) Several researchers have demonstrated super-
convergence with DG.37 Lowrie et al.92 obtained
convergence rates of 2p + 1, and Hu and Atkins 67

showed that the dispersion of the DG method is gov-
erned by 2p+ 1 for polynomials of order p. The DG
formulation produces a matrix with many dense but
small sub-matrices weakly coupled to their neigh-
bors. Algorithmically, this matrix structure excels
in a parallel environment and has high cache e�-
ciency. Atkins and Shu6 developed a quadrature-
free approach that allows the precomputation and
storage of much of the algorithm, thereby increasing
the e�ciency.

In the early 1980s, the p- and the hp-FEM meth-
ods were introduced by Babu�ska, and Szab�o8. They
showed that for elliptic problems exponential conver-
gence could be achieved with the hp-FEM method.
The degree of the approximating polynomial can
vary by elements so both grid re�nement and order
re�nement are used simultaneously to attack solu-
tion error. The methods show design order for p
�xed in the limit h ! 0, and convergence for h

�xed p !1. The behavior for high Reynolds num-
ber Navier-Stokes equations is less clear; neverthe-
less the hp-FEM methods have great potential in the
context of complex geometries and grid adaptation.

High-order FD excel in their simplicity and e�-
ciency, and in the richness of linear and nonlinear
algorithmic permutations that can be formulated.
The Achilles heels of FD are \boundaries" and \sta-
bility".

Achieving numerical stability near boundaries
with high-order FD stencils is di�cult. This insta-
bility is closely related to the classical Runge oscil-
lations exhibited by high-order polynomials on uni-
form grids near the boundaries. The solution in both
cases is to lower the polynomial order, compress the
grid, or increase the stencil width. Gustafsson 53

showed that to maintain spatial design order accu-
racy, the boundary stencil order must not deviate
by more than one from the interior order of accu-
racy: fourth-order interior stencils require boundary
closures of at least third-order accuracy! Note that
in 
uid dynamics applications, near-wall regions are
precisely the regions were high-order accuracy is de-
sirable. In general, low order treatments for bound-
ary closures are not an acceptable alternative unless
special near-wall grid re�nement is used to compen-
sate for reduced accuracy.

Strand 137 following the work of Kreiss and
Scherer,84 partially resolved the boundary closure
dilemma by presenting constructive procedures for
developing stable and accurate boundary schemes.
Stability is ensured in an L2 norm using a dis-
crete summation-by-parts (SBP) procedure. Car-
penter et al.30 and Olsson 109; 110 showed how to
impose the physical boundary conditions to pre-
serve the SBP energy estimate. To date, bound-
ary closures have been formulated for central and
upwind FD schemes and Hermitian compact FD.
FD schemes require smooth structured meshes that
are often di�cult to generate on complex geome-
tries. Multi block/overset grids relax the gridding
constraints, allowing piecewise smooth grids around
complex geometries, but create a new set of compli-
cations. Conservation is a major concern on multi
block grids and is extremely di�cult to achieve on
overset grids. Shocks and other discontinuities near
interfaces must be treated carefully to ensure correct
shock speeds and locations. In addition, interfaces,
like boundaries, can cause linear and nonlinear in-
stability and lead to decreased levels of solver ro-
bustness.

Multiple attempts have been made to overcome
the di�culties of complex geometries for high-order
FD schemes. By far, the most common solution to
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ensure conservation and stability has been to reduce
boundary or interface accuracy. As a general rule,
this approach works well if little structure exists near
the boundary or interface. Solution accuracy in com-
plicated 
ow scenarios, however, is di�cult to pre-
dict. Carpenter, Nordstrom, and Gottlieb 31; 106; 107

have developed L2-stable interface conditions based
on SBP energy estimates. The interface points are
treated discontinuously through a penalty term and
provide conservative, high-order solutions on multi
block grids. The only grid requirement is C0 inter-
face continuity between blocks, a mild restriction.

3.3.3 Bottlenecks
The major obstacle facing all high-order spatial

discretization methods FE or FD, structured or un-
structured, is nonlinear instability in the presence
of unresolved features. Shock and sliplines are no-
table examples. The classical approaches to deal
with discontinuities in FD and FV are the addition
of local arti�cial viscosity and/or �ltering, and total
variation diminishing (TVD) or limiting approaches.
Equivalent approaches exist in FE, though they are
termed \stabilization." The amount of added dissi-
pation depends on the simulation objectives. Mono-
tone solutions can be obtained with any formulation
at the expense of reduced accuracy. In principle, the
minimum amount of dissipation necessary for non-
linear stability is advisable. Unfortunately, precise
mathematical theory does not exist to determine the
optimal dissipation. Thus, most approaches reduce
the approximation/
ux/solution near the disconti-
nuity to �rst order to achieve monotonicity and ro-
bustness. Reduction to �rst-order accuracy locally
results in the undesirable second-order 53 global ac-
curacy if a uniform h-re�nement is then performed.
Arti�cial dissipation/�ltering approaches are

quite e�cient and simple to implement in FD formu-
lations. Unfortunately, they are often problem de-
pendent, vary considerably on shock strengths, and
are often user dependent. Although TVD and 
ux
limiting approaches maintainmonotonicity near dis-
continuities, they unfortunately degenerate to �rst-
order accuracy near smooth extrema. (See LeVeque
88 for an overview of TVD techniques.)
Essentially non oscillatory (ENO) 57 and later

Weighted ENO (WENO) 90; 74 schemes were de-
veloped to circumvent nonlinear instability. ENO
schemes choose the smoothest stencil from all avail-
able design order stencils, thereby avoiding as much
as possible interpolation/di�erentiation across dis-
continuities. ENO schemes have been extremely suc-
cessful algorithms over the past 10 years for prob-
lems where both discontinuities and features requir-
ing high-order spatial accuracy are required. See Shu

129 for a detailed account of ENO/WENO schemes
and their applications. The principal di�culty with
structured grid ENO schemes is their extension to
complex geometries. The mathematical foundations
for ENO/WENO schemes (bounded total variation
proofs, etc.) are predominantly based on periodic
or in�nite domains, and are outside the context of
boundaries. ENO/WENO schemes can not be im-
plemented at several points next to boundaries be-
cause they do not have smooth data outside the
boundary to build high-order non-oscillatory sten-
cils. The extension of ENO/WENO schemes to mul-
tiple domains is complicated by numerous bound-
ary interfaces throughout the domain. Another dif-
�culty with ENO schemes is that stencil searching
algorithms have stencils that \switch" sometimes ar-
bitrarily, which makes convergence to steady-state
di�cult. Atkins 5 proposed a smoothly varying
stencil biasing technique to eliminate this problem.
Integer stencil shifts were not allowed in the ap-
proach. In addition, WENO schemes that are a
smooth weighted sum of stencils in principle should
not su�er from this di�culty.

Durlofsky, et al.47 and Abgrall 1 attempted to
overcome the geometric complexity problems by
building fully unstructured stencils using stencil
searching algorithms. Ollivier-Gooch 108 suggested
using a least-squares reconstruction approach for un-
structured mesh ENO. Encouraging results were ob-
tained for AGARD test case 1 with second- through
fourth-order ENO, although convergence problems
were experienced in the fourth-order case.

The use of overset meshes is another approach
used to overcome geometric di�culties. Wang and
Huang146 developed a compact ENO scheme and ap-
plied it to a multi domain overset code. Boundary
issues with the ENO formulation are still present,
and additional complications of non conservation at
the interfaces exist. Wang et al. 145 partially address
the issue of interface conservation, but signi�cant is-
sues still remain for time-dependent discontinuous

ows.

Most high-order formulations are only guaranteed
stable on linear problems, and some cannot even
claim linear stability. The high-order DG FE formu-
lations can claim a stronger form of stability. Barth
14 and Barth and Chirrier 16 have designed numeri-
cal 
uxes that satisfy a nonlinear energy condition.
They assume a convex entropy extension of the Eu-
ler equations and bound the nonlinear \energy" of
the system for all time in terms of the initial data.
Simpli�ed interface 
ux functions are derived to al-
low this result. These results and others 66 provide
an encouraging step towards nonlinearly stable for-
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mulations that maintain high resolution.
Although theoretically advantageous, high-order

spatial discretizations in their present form still have
several obstacles to overcome. Considerable work
has been devoted to these methods over the past
decade, yet few studies demonstrate the increased
e�ciency of high-order spatial discretizations for
general-geometry aerodynamic simulations, includ-
ing turbulence models. De Rango and Zingg 43; 44

address this speci�c question and achieve encourag-
ing results for which high-order methods give more
accurate solutions on a given grid. Additional work
needs to be done to demonstrate increased e�ciency
for a given accuracy.
Geuzaine et al.52 and Delanaye et al.41 apply

the quadratic reconstruction FV scheme of Barth
and Frederickson12 to high Reynolds number 
ows.
They achieve suitable convergence rates with gener-
alized minimal residual (GMRES) and bi-conjugate
gradient stabilized (Bi-CGSTAB) algorithms, and
show second- and third-order convergence on irreg-
ular and smooth meshes, respectively. They do not
compare the e�ciency of second- and third-order for-
mulations, but note that the quadratic method con-
verges more slowly than the comparable linear re-
construction. Delanaye and Liu 42 report signi�cant
improvements in e�ciency and accuracy in inviscid
2-D calculation over a multi-element airfoil, compar-
ing the quadratic and linear formulations. Results
in three dimensions are not as dramatic.

3.3.4 Langley E�ort
Langley has had a strong presence over the last

decade in the following high-order spatial disciplines:
1) structured grid FD, 2) structured grid ENO-FD
and ENO-FV, 3) unstructured grid DG-FEM, and
4) unstructured grid SUPG-FEM. The following in-
formation is presented to summarize our experiences
and provide guidance when comparing the di�erent
high-order methods.
Table (1) can be used to compare the important

attributes of current high-order formulations. Cat-
egories are rated on a scale from one to �ve, with
�ve being the best currently available, and one be-
ing a capability representative of 1980. The cate-
gories are 1) complex geometry, 2) grid adaptation,
3) robustness (nonlinear), and 4) cost for a given
accuracy requirement. At some level, all categories
are closely related; however, we assume that each
is independent from all others when assigning a nu-
merical value. Speci�cally, the complex geometry
category rates the capability of each method to ac-
commodate complex 3-D con�gurations. This cat-
egory is closely related to the locality of the dis-
crete scheme. Grid adaptation is used to attack so-

lution error. The second category, grid adaptation,
describes each method's success on adapted grids,
including sensitivity to grid smoothness and ease of
grid generation. The robustness category describes
the robustness of the method for under-resolved fea-
tures and discontinuities. In simple terms, this cat-
egory rate whether the code \runs" (converges for
steady-state cases, and does not diverge in time-
dependent cases) with minimal user support. The
cost category describes the cost of achieving a given
accuracy. It is assumed that the necessary grid has
been generated by whatever means are necessary in
each case.

The candidate schemes include two broad classes:
1) unstructured database schemes, and 2) semi-
structured databases. We include the high-order
FEM methods as unstructured methods because the
structure within each element does not present a sig-
ni�cant burden on the 
exibility of the method. The
unstructured candidate schemes are DG, SUPG, k-
exact �nite-volume, and k-exact ENO FV. The can-
didate structured grid schemes are Upwind FD, Up-
wind FV, and WENO-FD. The numbers are sub-
jective, and should only be used as a relative guide
for the purpose of comparing strengths and weak-
nesses. In general, researchers hold strongly varying
opinions about the relative merits of each scheme.

Table 1: Comparison of high-order schemes. Cat-
egories are 1) complex geometry, 2) grid adaptation,
3) nonlinear robustness, and 4) cost for a given ac-
curacy.

Method Geometry Adapt Robust Cost

Unstructured
DG FE 5 5 3 2
SUPG FE 5 5 2 3
k-exact FV 5 4 2 2
LS-ENO FV 4 4 4 1

Multi-block
Upwind FD 3 2 2 5
Upwind FV 3 2 3 3
WENO-FD 2 1 5 3

4 Convergence Acceleration

A second algorithmic issue that contributes signif-
icantly to the e�ciency of the temporal algorithm is
the convergence rate of the algebraic solution algo-
rithm. At some point in the solution process the
algebraic system

A ~x = ~b (16)
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is solved for the vector of data ~x, with

A =
I

�t
+
@F

@U
(17)

~x = ~Uk+1 � ~Uk ; ~b = ~R( ~Uk) (18)

The matrixA is sparse. Equation (16) can be solved
either directly, or iteratively. The dimensionality of
~x is O(107) for 3-D problems, which makes direct
methods uncompetitive with iterative solvers. Shur-
complement methods can be used to attack equation
(16) by subdividing A into numerous subproblems
and interface conditions. Each subproblem is then
solved directly, but the interface conditions are dif-
�cult (dense). (See Saad 120 for details.)
Iterative methods fall into two broad categories:

stationary and nonstationary.11 Stationary methods
can be expressed in the simple form

~xk+1 = B~xk + ~c (19)

with the matrix B independent of the iteration k.
These methods are older, simple to implement, and
usually not very e�ective when used alone. Sim-
ple methods used in 
uid mechanics are Jacobi,
Gauss-Seidel (GS), symmetric GS, successive-over-
relaxation (SOR), and symmetric SOR (SSOR). Nu-
merous permutations of these methods exist includ-
ing matrix reordering. (For details see Barrett et
al.11). More powerful stationary methods include in-
complete factorization ILU(k), and block factoriza-
tion. An ILU(k) approximately factors the original
matrix A using an LU decomposition with the level
of �ll governed by the parameter k. Block factoriza-
tion is motivated by tensor product grids (line data
dependencies) where implicit solves along directions
are e�cient. Both are somewhat more expensive
than basic stationary methods, but have consider-
ably faster rates of convergence. Implementation of
sweeping algorithms is complicated in a parallel en-
vironment.
Nonstationary methods involve information that

changes at every iteration. They are more recently
developed, more di�cult to understand, and more
powerful. Commonly used examples in 
uid me-
chanics include conjugate gradient (CG), general-
ized minimal residual (GMRES), bi-conjugate gra-
dient (BiCG), quasi-minimal residual (QMR), and
bi-conjugate gradient stabilized (Bi-CGStab). These
methods update the solution in certain \directions"
by considering inner products of current residuals
and other Krylov space vectors arising during the
course of the iteration. (See Saad 120 for details).
On di�erent problem classes, the convergence rate of
nonstationary methods varies considerably. Nachti-
gal et al.104 showed that a class of problems exists

for which each of the aforementioned nonstationary
methods is a clear winner (in terms of e�ciency),
and a clear loser (in terms of e�ciency).
A preconditioner is a matrix used to rotate a lin-

ear system into a new system that has the same
solution but is easier to solve in some sense. A
left-preconditioner acts on equation (16) yielding the
new system,

M�1 A ~x = M�1~b (20)

where the new matrix M�1A is easier to solve.
The preconditioner changes the eigenstructure of the
original system into a more compact set of eigenval-
ues that an iterative method can attack more e�ec-
tively. Ideally, a preconditioner should change the
eigenstructure dramatically but at a minimal ad-
ditional cost. Simple preconditioners used in 
uid
dynamics include the block Jacobi, GS, and SSOR
methods. More powerful preconditioners include in-
complete factorization ILU(k) and block factoriza-
tion.
Multigrid, at least in terms of elliptic problems,

is a mechanism for rapid communication of mul-
tiscale information.23 Multigrid methods are usu-
ally de�ned as a strategy to accelerate any sta-
tionary or nonstationary iterative procedure. The
solution is obtained on a sequence of grids, rang-
ing from coarse to �ne. Each grid smoothes the
high-frequency components of the residual on that
grid. Restrictions and prolongations communicate
the data between grids. The resulting algorithm
rapidly communicates long wavelength data via the
grids, while damping short wavelength data by using
e�cient local smoothing operators. The exact choice
of grid structure, restriction and prolongation oper-
ators, and smoothers greatly in
uences the overall
performance of the procedure.
Multigrid methods are e�ective techniques for

accelerating convergence of elliptic and hyperbolic
problems. Convergence rates easily approach 0.1
per cycle on elliptic problems such as the Poisson
equation. The theoretical lower bound (if we rely
on coarse grid corrections) on the convergence for
hyperbolic equations is 0.75 per cycle for a second-
order spatial discretization, and is routinely achieved
by general-purpose Euler solvers. (See Molder103

for details.) The convergence rate su�ers consider-
ably for high-Reynolds number (turbulent) viscous

ow solutions. The primary cause for this slow-
down is the highly stretched wall normal grids used
to resolve turbulent boundary layers. Wall nor-
mal sti�ness can introduce sti�nesses of the order
of 104 � 105. A secondary cause of slowdown is the
existence of signi�cant regions of low Mach num-
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ber 
ow around stagnation points and in recircula-
tion regions. A third cause of slowdown comes from
the imperfections of realistic grids. Generating grids
that have 107 points without having grid anoma-
lies is di�cult. All general-purpose CFD solvers ad-
dress each of these problems ultimately in the same
way. For wall anisotropies, semi-coarsening and/or
directional-implicit techniques precondition the wall
normal boundary sti�ness. Low Mach number pre-
conditioning is added in those regions of the 
ow
below a critical Mach number. Grid anomalies are
addressed with grid smoothing and movement algo-
rithms in problem regions.

Solution techniques within the aerodynamics com-
munity are far from being \black-box" algorithms.
Two decades of experience have shown that none
of these algorithms is well suited for solving broad
classes of high Reynolds number turbulent 
ows.
Practitioners rely on combinations of a wide vari-
ety of methods including 1) modi�ed Newton-Krylov
methods, 2) algebraic multigrid methods and 3) ge-
ometric multigrid methods, 4) defect-correction it-
eration techniques, and 5) sparse matrix methods.

Anderson et al.3 compared the e�ciencies of
several iterative strategies in the context of an
unstructured, 3-D incompressible, Navier-Stokes
solver. Multi element airfoils and high-lift sys-
tems were used as test problems in 2-D and 3-D.
The turbulence model used was that of Spalart and
Allmaras.132 GMRES was the Krylov method used
in the study, with Gauss-Seidel or incomplete LU-
decomposition used as a preconditioner. Newton-
type solvers were shown to converge in the fewest it-
erations. In terms of work and storage the multigrid
algorithms are the most e�ective means of reducing
the residual on the problems studied.

In spite of all the powerful iterative techniques
brought to bear on aerodynamic problems, the con-
vergence rates for high-Reynolds problems can ap-
proach 0.98 per cycle. Mavriplis demonstrated the
capabilities of his unstructured code NSU3D 94 on
complex 3-D con�gurations.95; 96; 97; 98; 99; 100 The
features in NSU3D are among the most advanced
presently used in the CFD community. A wide va-
riety of 3-D test problems was run including but
not con�ned to 1) a realistic high-lift con�guration
including a wing, pylon, and nacelle, 2) the trape-
zoidal wing 99, and 3) an ONERA M6. Grids ranged
from 1-10 million vertices. Reynolds numbers were
in the 1-10 million range with wall-normal spacing of
10�5 � 10�6 based on chord length. Published con-
vergence rates for these cases ranged from 0.96 - 0.98
per cycle. Approximately 500-1000 multigrid cycles
were required to achieve residual levels converged to

engineering tolerances.

4.1 Bottlenecks

The convergence rates quoted in the previous sub-
section are based on steady-state solvers. The e�-
ciency of time-dependent and steady computations
are closely related, as the underlying nonlinear ma-
trices are nearly identical. (The time-dependent for-
mulation converges slightly faster for time-steps gov-
erned solely by accuracy considerations). Thus, the
cost of the unsteady calculations can be related to
that of the steady. Simple back-of-the-envelope cal-
culations reveal that at a minimum the unsteady
computation will be equivalent to the solution of 100
steady-state problems each having the same compu-
tational complexity . Dropping an equation residual
three orders of magnitude at a rate of 0.98 requires of
approximately 400 iterations. Thus, modifying the
convergence rate of the algebraic solution algorithm
has a profound e�ect on the e�ciency of the tem-
poral algorithm. An order of magnitude increase in
computational e�ciency could be achieved by suc-
cessful convergence acceleration e�orts.
The convergence characteristics of high-order spa-

tial formulations has not been extensively studied.
The dissipation level of the spatial operator fre-
quently a�ects the convergence rate of the alge-
braic system, with more dissipation producing faster
convergence. High-order methods inherently have
less dissipation, and could be more di�cult to con-
verge. An additional concern is the e�ciency of
multigrid methods as spatial order increases. The
theoretical lower bound of multigrid methods (as-
suming coarse grid corrections) on linear advection
is  � 1 � 1=2p where  is the convergence rate,
and p is the order of spatial approximation. Fourth-
order methods should converge no faster than 0.9375
per cycle. Ollivier-Gooch 108 used multigrid on
an unstructured high-order FV scheme and expe-
rienced increasing di�culty with convergence as the
order of the approximation increased. Delanaye et
al.41 notes that quadratic elements converge more
slowly than equivalent linear elements, when a di�er-
ence GMRES algorithm is used. Interestingly, Bon-
haus 21 using SUPG with a Newton-Krylov GMRES
method and diagonal preconditioning, experienced
no changes in convergence rate with increasing or-
der.

4.2 Langley E�ort

Current iterative nonlinear solvers require O(103)
iterations to converge, based on high Reynolds num-
ber (� 106 � 107), turbulent, separated, 3-D, com-
plex geometry 
ows. Newton solvers converge these
problems in O(101) iterations if a reasonable ini-
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tial guess is given. Currently, a group at Lang-
ley is studying methods that potentially have text-
book multigrid e�ciency (TME).22; 23 Methods that
achieve TME converge at rates that are independent
of the number of degrees of freedom (grid), and con-
verge to the truncation error of the discretization
in approximately 101 work units. A work unit is
de�ned as the work equivalent to the evaluation of
the residual. Thus, TME methods have a poten-
tial increase in e�ciency of O(102) compared with
existing state of the art solvers. The potential e�-
ciency of TME methods relies the \factorizability"
property of the Navier-Stokes (NS) equations. Split-
ting the NS equations into factors decouples the sys-
tem somewhat, and allows optimal (fast and inex-
pensive) operators to be constructed for each por-
tion. This \divide and conquer" approach yields
nearly optimal e�ciency for the entire problem. The
Langley e�ort was showcased at the 2001 AIAA
CFD conference.24; 45; 119; 130; 139 Work continues on
this revolutionary method to implement TME algo-
rithms on general purpose aerodynamic solvers.

5 Turbulence Modeling

5.1 Overview: Current practices

An equally important aspect of temporal algo-
rithms is the underlying turbulence models being
solved. Numerous turbulence models exist for at-
tached steady turbulent 
ows. During the last two
decades great strides have been made in tuning these
turbulence models to increase their robustness and
generality. Practitioners routinely utilize these mod-
els to predict the 
ow behavior of a surprisingly
broad class of complex problems with acceptable
con�dence levels in their solutions. Unfortunately,
the same level of maturity does not exist for nonsta-
tionary 
ows, where time-averaged turbulence quan-
tities inadequately describe the important dynamics
of the 
ow. Oftentimes, these 
ows are dominated
by large-scale 
ow features that are not properly
modeled by conventional turbulence models. Flows
with massive separations such as blu�-body wakes,
cavity 
ows, shock-induced separations, and recircu-
lation zones almost always fall into this category.

5.1.1 LES

In 1970 Deardor�39 published the �rst results of
a large-eddy simulation (LES). The objective of an
LES is to simulate, or directly compute, the large
energy-containing 
uid motions and to model only
the small scales that are unresolved by the grid (the
subgrid scales). A subgrid-scale (SGS) model acts to
remove the energy associated with the small scales
and therefore facilitates the global energy transfer

from the large scales to the small scales. When prop-
erly implemented, LES can be used to simulate the
turbulence in a 
ow at low to moderate Reynolds
numbers. For more complete discussions of the con-
cepts and applications of LES see Piomelli115; 116

and the references therein.
In an LES calculation, the smallest resolved scales

are determined by the grid-cell size. On �ner grids,
more of the 
ow is simulated and less is modeled.
The SGS model therefore has an explicit dependence
on the local grid-cell size. This feature of LES has
led some to believe that the grid-cell size is unre-
stricted and simply corresponds to the break in re-
solved and subgrid scales. This sort of thinking usu-
ally leads to poor calculations. An important as-
sumption in an LES calculation is that the energy-
containing scales are actually simulated. To do this,
the peak in the energy spectrum must be in the re-
solved range of scales and the cuto� between the
resolved and subgrid scales should be in the inertial
wavenumber range.
The development of dynamic subgrid-scale mod-

els for LES has motivated the use of LES on non-
stationary turbulent 
ows over extremely complex
con�gurations. However, estimates of the grid re-
quirements for LES computations over realistic ge-
ometries at realistic Reynolds numbers indicate that
LES is not likely to be a viable option for most 
ows
for several decades to come.134

5.1.2 URANS
Despite the abovementioned shortcomings of ex-

isting turbulence models, most time-dependent
codes use unsteady extensions of popular steady-
state algorithms. These calculations are typically
referred to as unsteady Reynolds-averaged Navier
Stokes (URANS). The turbulence models used in
URANS span the spectrum of available models.
H�old et al.65 used a Baldwin-Lomax model to

compute the unsteady 
ow about a rounded half-
cylinder embedded in a 
at plate. Their time-
averaged pressure coe�cients agreed reasonably well
with experimental measurements. Surface pressure
spectra, however, showed far more disagreement
with the measured spectra. H�old et al.65 suggested
that the disagreements were primarily temporal and
spatial resolution issues rather than a turbulence
modeling problem. Their paper illustrates a signif-
icant problem associated with assessing turbulence
models for unsteady 
ows; unless care is taken to
�rst assess grid and time-step issues, the in
uence of
the turbulence model is almost impossible to evalu-
ate. Because of the computational expense of doing
thorough resolution checks for unsteady problems,
these numerical issues are often left unresolved.
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Khorrami, Berkman, and Choudhari79 and later
Khorrami, Singer, and Berkman80 used the two-
equation SST (k-!) model of Menter101 for 2-D
unsteady calculations of 
ow in the vicinity of a
leading-edge slat. In their work the grid resolution
and time-step were su�ciently �ne for them to sus-
pect that the turbulence model was responsible for
excessive damping of the large eddies in the slat
cove. Subsequent work by Khorrami, Singer, and
Lockard81 locally eliminated the turbulence produc-
tion term in much of the slat cove and observed un-
steady coherent vortex motions that closely resem-
bled the PIV measurements reported in the work of
others.112; 140; 141

Scotti and Piomelli121 assessed four low Reynolds
number turbulence models in pulsating channel 
ows
generated by oscillating the imposed pressure gra-
dient. The apparent simplicity of these 
ows was
deceptive. In fact the pulsating 
ows represented
signi�cant challenges to the URANS models. The
turbulence was out of equilibrium, in some cases
so much so that partial relaminarization occurred,
followed by a re-transition. Somewhat surpris-
ingly, the phase-averaged streamwise velocity pro-
�les matched corresponding LES results reasonably
well when plotted in wall coordinates. However
the time-averaged velocities of the URANS mod-
els were always less than those determined from the
LES. Signi�cant di�erences in the Reynolds shear
stresses and the turbulent kinetic energies were also
observed.

5.1.3 Composite LES/RANS Schemes
Recently, a class of composite models has been de-

veloped for unsteady 
ows. These composite models
attempt to blend the unsteady capabilities of LES
with a method having grid requirements that are
more like those conventionally used in Reynolds-
averaged Navier-Stokes (RANS) calculations. A
composite model will typically involve a RANS tur-
bulence model and RANS-type grid in regions near
solid surfaces, where the resolution of turbulent ed-
dies would require exceptionally �ne grid resolution.
In these regions typical RANS models are usually
adequate for modeling the e�ects of turbulent 
ow.
Away from wall regions, where large unsteady 
ow
structures dominate the 
ow, the composite model
shifts from a RANS-type turbulence model to a less-
dissipative LES-type subgrid-scale model. Similarly,
away from wall regions, the gridding strategy will
shift from a RANS-type grid to a grid amenable to
resolving at least some of the unsteady turbulence
scales of motions.
A variety of di�erent composite models have been

proposed in the last few years. The composite

models go by di�erent names and involve di�erent
turbulence models for the RANS and LES regions
and di�erent switching functions to shift between
the RANS and LES regions. Batten, Goldberg,
and Chakravarthy18 proposed limited Navier Stokes;
Zhang, Bachman, and Fasel148 developed their 
ow
simulation methodology; Arunajatesan, Shipman,
and Sinha4 developed the hybrid RANS-LES. How-
ever, the �rst and perhaps the most thoroughly
tested of these composite models has been the de-
tached eddy simulation (DES) model of Spalart.135

In its most common form, the DES model is imple-
mented in combination with the Spalart-Allmaras
(SA) turbulence model,133 although recently DES
results with Menter's SST model101 have also been
published.138 In either case, the switch from the
RANS region to the LES region is governed by a ra-
tio of grid-cell size with distance from the wall. Vis-
cous grid cells (high-aspect ratio with lengths long
compared to the distance from the wall) characterize
the RANS regions. Small, approximately uniformly
sized grid cells far from solid surfaces characterize
the LES region. In theory, the RANS portion cor-
rectly models the rather benign attached turbulent

ow regions, while the LES portion has su�cient
grid resolution and su�ciently reduced eddy viscosi-
ties to simulate the large-scale turbulent 
ow struc-
tures.

The ease with which DES can be implemented in
a code is a mixed blessing. Upgrading an existing
SA model to accommodate the DES model requires
minimal additional logic. The triviality of the modi-
�cations required for this transformation has led nu-
merous well-intentioned users to perform and pub-
lish DES-like calculations. Unfortunately, it is easier
to obtain results than to verify and critically inter-
pret them.

Proper grid resolution is always important in
CFD. However, with DES, the grid takes on new
signi�cance, as the grid determines the switch be-
tween the RANS region and the LES region. For-
tunately, Spalart136 provides some guidance for the
development of appropriate grids. Importantly, once
the RANS region of the 
ow is adequately resolved,
improved grid resolution should be undertaken lo-
cal to the LES portion of the simulation, not glob-
ally. Over-resolving the RANS regions can displace
the RANS/LES switch-over surface into the bound-
ary layer, where the grid is likely to be insu�cient
for a reliable LES calculation. Of course, continued
grid re�nement will eventually lead to adequate LES
grids over the entire 
ow, although for aerodynamic

ows of commercial interest, solving the 
ow on such
a grid will likely be a decades-long endeavor.
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With a DES grid well designed for a particular ap-
plication, global grid re�nement is likely to adversely
a�ects the results. Nikitin et al105 discusses these
circumstances in the context of a series of channel-

ow calculations. Although modifying the switching
function, as is done in other composite LES/RANS
methods, can alleviate some of the deleterious ef-
fects, a key to successful implementation of these
methods is going to involve careful attention to grid-
ding.

Another concern with the implementation of com-
posite methods is the numerical di�usion, especially
in the LES region where di�usion associated with the
model is far less than in the RANS region. In simula-
tions of the unsteady 
ow about a sphere, Constan-
tinescu and Squires38 used both second-order and
�fth-order accurate upwind di�erences for the con-
vective terms. All other operators were discretized
using three-point, second-order accurate central dif-
ferences. On the same grid, they found that the
results of calculations with the �fth-order accurate
scheme agreed better with a separate LES calcula-
tion than the results obtained with the second-order
upwind scheme.

In later work, Strelets138 was concerned about the
di�usion of upwind schemes in the LES region and
the lack of stability of central-di�erence schemes in
the RANS regions. To weaken the adverse e�ects
of upwinding in the LES regions, he used a hybrid
central/upwind approximation of the inviscid 
uxes.
The hybrid is designed so that in the RANS region
the scheme is \almost upwind" and in the LES re-
gions the scheme is \almost centered."

Recent work at NASA Langley suggests that
second-order central-di�erence schemes can be used
for both the RANS and LES regions, although the
grid resolution must be chosen appropriately. The
key is to ensure that the turbulence model, and not
the numerics, controls the di�usion.

DES has been used in unstructured grid environ-
ments, �rst by Forsythe, Ho�mann, and Dietiker.48

Their research suggested that CDES, the one addi-
tional free parameter in DES (as compared to SA)
needed to be adjusted when DES is used in conjunc-
tion with tetrahedrons. Because CDES weights a
measure of grid-cell size in the RANS/LES switch-
ing function, the need to adjust CDES when di�er-
ently shaped grid elements are used is not surprising.
Pelaez, Mavriplis, and Kandil 113 used the standard
value of CDES for their unstructured grid calcula-
tions and ultimately concluded that the value should
be determined by performing a decaying homoge-
neous turbulence test case.

In spite of the many unanswered questions associ-
ated with DES, in the right hands it can be a useful
tool for simulating unsteady complex 
ows. Travin
et al.143 used DES for 
ows around a circular cylin-
der. They explored the e�ects of grid, Reynolds
number, 2-D versus 3-D, DES versus URANS, and
laminar versus turbulent separation. An important
conclusion, �rst suggested by Spalart et al.134 is that
2-D DES calculations are not fruitful. To achieve the
advantages of DES, a true LES should be done in
the LES regions which implies that the full 3-D 
ow
needs to be simulated. Without the third dimension,
important turbulence dynamics are inoperative. An-
other important conclusion is that the bene�ts of
DES vary with the 
ow and the information desired.
In the case of a circular cylinder with laminar sepa-
ration, DES proved itself superior to URANS, even
for obtaining time-averaged quantities. However, for
the case of turbulent separation, the time-averaged
quantities were the same, regardless of whether DES
or URANS was used. Hedges, Travin, and Spalart59

found that URANS performed almost as well as DES
for time-averaged quantities on a four-wheel landing-
gear model. The unsteady 
ow around the landing
gear appeared much more turbulent-like in the case
of DES compared to URANS, but unfortunately un-
steady 
ow data was not available for comparison.

5.2 Bottlenecks

In this section we will review some of the bottle-
necks that are holding back further progress in re-
solving turbulence modeling issues. In particular, we
will discuss experimental validation problems, con-
sistency concerns for the composite methods, and
the high cost of the calculations.

5.2.1 Validation by Experiments
One of the great di�culties with new turbulence

models for unsteady 
ows is the lack of relevant ex-
perimental data with which to validate the mod-
els. As discussed earlier, di�erent types of turbu-
lence models with very di�erent unsteady character-
istics can provide very similar time-averaged results.
Hence, if the time-dependent behavior of the 
ow is
important in an application, then experiments that
provide time-dependent data are indispensable.
Although 
ow past circular cylinders and spheres

has provided useful validation tests in the past, for
applications that involve 
ow actuators, particu-
larly those that involve unsteady mass addition, new
types of experiments are required.
A typical unsteady 
ow actuator comprises a noz-

zle or ori�ce that communicates with a cavity. The
cavity includes either a 
exible membrane or a mov-
ing wall. Unsteady deformation of the 
exible mem-
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ber inside the cavity results in a local pressure
change that drives 
uid through the nozzle and into
an external 
ow. In practical applications, the ex-
ternal 
ow is turbulent without the presence of the
actuator; the 
ow inside the actuator is often a mix
of laminar and turbulent regions.
A good place to start with the experiments is

where a number of calculations of 
ow actuators
have begun, i.e., with actuators in no-
ow and lam-
inar 
ow environments. Such experiments are cur-
rently being performed at Langley. These experi-
ments are time-consuming and require attention to
details not typically recognized as important. For in-
stance, the deformation of the 
exible member may
need to be simulated or modeled with greater �delity
than expected, time lags between the electrical ac-
tuation of the 
exible member and its actual me-
chanical actuation need to addressed, and 
ow mea-
surements in largely inaccessible locations, like the
actuator cavity, are desired.
The problems prove much more di�cult when the

external 
ow is turbulent. In that case, character-
istics of the external turbulent boundary layer must
be measured. In addition, the interaction of the 
ow
structures in the turbulent boundary layer with the

ow in the cavity must be characterized. Validated
criteria for choosing a particular turbulence model-
ing approach for a speci�c type of actuator 
ow have
not been established. However, we speculate that if
a signi�cant amount of the external 
ow is ingested
into the actuator cavity, then a full LES calculation
may be the only reasonable approach. On the other
hand, if the actuator is biased such that it does not
ingest the external 
ow, a DES calculation might be
able to calculate the relevant 
ow features. One con-
cern with DES in this sort of application is that the
relevant unsteady 
ow regions are close to the wall;
hence the model may revert to its RANS character-
istics in these regions and be too di�usive. Other
composite LES/RANS models may be more appro-
priate for such 
ows. Although explorations of these
problems are ongoing at Langley, no de�nitive guid-
ance can be provided to the CFD community yet.

5.2.2 Consistency Concerns
Gatski50 raises questions as to the formal con-

sistency of the composite methods. The compos-
ite methods assume that the 
ow variables from the
RANS regions match smoothly with the correspond-
ing variables from the LES regions. Gatski50 shows
that such a match cannot be taken for granted, even
without considering the consistency issues associ-
ated with the coupling of the temporal averages used
to derive RANS models and the spatial �ltering used
to derive SGS models for the LES regions. To date,

these consistency issues have not been addressed by
the modeling community.

5.2.3 Calculation Cost

One of the problems with using a composite
LES/RANS method is that for the LES region to
be reasonably simulated, it needs to be not only
time-dependent, but also three-dimensional. With-
out three-dimensionality, the vortex stretching and
tilting mechanisms, which are so important in real

ows, cannot be appropriately simulated. The ne-
cessity to do 3-D calculations dramatically raises the
costs of the calculations, both in terms of computer
memory and in terms of run time. Turnaround time
for circular cylinder calculations on eight processors
of an SGI Origin 2000 can easily be multiple weeks.
Grid and time-step studies therefore turn the activ-
ity into a very long process, even for such a relatively
simple 
ow. The time can be signi�cantly reduced
through the use of more extensive parallel process-
ing, but the parallel e�ciency must be maintained
over approximately 100 processors for the calcula-
tion turnaround times to become su�ciently short
for good systematic studies to be performed. Those
like Travin et al.143who have performed such studies
have added greatly to our understanding of the per-
formance of these methods. More work along those
lines needs to follow.

5.3 Langley E�ort

The e�orts at Langley in this area have concen-
trated on the development of appropriate validation
experiments and also in doing some of the careful
studies needed to calibrate the performance of DES
with di�erent codes. Some additional developmen-
tal work on new families of composite LES/RANS
models has been funded by NASA Langley Research
Center. Although the DES model has by far the
greatest following, and therefore the most thorough
testing, some aspects of the model raise questions
as to its suitability for actuator-type computations.
In particular, the fact that the boundary between
the RANS region and the LES region is entirely dic-
tated by grid size and distance from the wall makes
the simulation of near-wall recirculation regions dif-
�cult. Other versions of composite models may work
better in 
ows where near-wall recirculation regions
are anticipated.

Another important role played by Langley is to
act as a clearinghouse for ideas related to unsteady
turbulence models. Langley researchers can provide
appropriate suggestions and criticism of emerging
concepts so that the developers can address these
concerns early in the models' development. As an
example of this interaction, the consistency concerns
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discussed earlier are now being addressed in at least
one new model under development.

At NASA Langley Research Center a concerted
e�ort is underway to measure and compute the 
ow
in active 
ow control devices. This e�ort brings to-
gether experimentalists, turbulence modelers, and
computationalists who all have been working to-
gether to develop appropriate techniques for the sim-
ulation of actuator 
ows.

6 Actuator Boundary Conditions

6.1 Overview: Current Practices

Interest in active 
ow control for drag or noise
reduction, 
ow vectoring, mixing enhancement, and
separation control has stimulated the recent develop-
ment of innovative synthetic jet actuators that cre-
ate localized disturbances in a 
ow�eld. Synthetic
jets are generated by a dynamic 
uid actuator con-
sisting of a cavity enclosed by one (or more) moving
diaphragm(s) driven into transverse oscillations at
their resonance frequency. The distinctive feature
of these actuators is that they have minimal power
requirements and have jet-like characteristics with-
out the need for mass injection. Although net mass
injection into the overall system occurs over each
cycle of operation, the momentum transfer into the
embedding 
ow is nonzero. These features enable
synthetic jets to e�ect signi�cant global modi�ca-
tions in the embedding 
ow on scales that are one
to two orders of magnitude larger than the charac-
teristic length or force scale of the jets themselves.

In recent
years, because of considerable improvements in com-
puter resources, more attention is being devoted to
numerical simulation and optimization of synthetic
jet actuators.82; 46; 58; 33; 147; 29; 64; 89; 118; 77; 87 The
presence of several temporal and spatial scales and
moving boundaries in the problem makes simula-
tion of such unsteady 
ows computationally very ex-
pensive. To reduce the computational cost, several
approaches have been developed. All the methods
can be divided into two classes: 1) simpli�ed models
without simulation of the 
ow inside the actuator,
and 2) numerical simulation of both the exterior and
cavity 
ows.

In the �rst class of methods, a synthetic jet gener-
ated by harmonic motion of the actuator diaphragm
is modeled by using simpli�ed boundary conditions
imposed at the ori�ce exit. In the work of Donovan,
Kral, and Cary,82 and Kral et al.46, the 
ow within
the cavity is not calculated and the perturbation to
the 
ow�eld is introduced through the wall-normal

component of velocity at the ori�ce exit

v(x; y = 0; t) = VA(x)sin(!t)
u(x; y = 0; t) = 0

(21)

where x and y are the 
ow streamwise and cross-
stream directions, respectively. Di�erent spatial
variations of VA(x) over the ori�ce have been con-
sidered. Numerical experiments 46; 82 indicate that
a \top hat" distribution most closely matches the
experimental data. A modi�ed boundary condition
on the pressure at the ori�ce is introduced through
a consideration of the normal momentum equation.
Taking into account time-harmonic velocity pertur-
bations, this condition, obtained under the assump-
tion that the 
ow is incompressible, becomes

@p

@y
= ��VA(x)!cos(!t) (22)

The numerical simulations based on the boundary
condition (eqs. 21 and 22) show good qualita-
tive agreement with the experiments.123; 122; 131 A
similar approach modeling the actuator as a blow-
ing/suction boundary condition, which can be fully
speci�ed in advance of the calculation, is used by
others.29; 58; 64; 89

An alternative technique for modeling synthetic
jet actuators has been proposed by Carpenter et al.33

This theoretical model for the actuator is based on
classic thin plate theory for the diaphragm dynam-
ics. The 
ow through the ori�ce is modeled using
unsteady pipe-
ow theory. This approach is based
on the assumption that streamlines in the ori�ce exit
are parallel to its axis, which is an adequate approxi-
mation if the length-to-diameter ratio is much larger
than unity. The governing equation for the ori�ce

ow is given by

�
@v

@t
+
�vjvj

2l
= �

@p

@y
+ �r

@

@r

�
1

r

@v

@r

�
(23)

where y and r are the axial and radial coordinates,
respectively, v is the axial velocity, l is the ori�ce
length, and density � is taken to be the instanta-
neous mean of the cavity and external densities. The
inertial term �vvy is modeled approximately by the
second term on the left-hand side of equation (23).
The dynamics of the air in the cavity is ignored and
the pressure there is calculated by means of the per-
fect gas law. The cavity and the external boundary
layer 
ow�elds are linked by requiring continuity of
velocity and pressure at the ori�ce exit. In Carpen-
ter, Lockerby and Davies,33 only the blowing phase
of the actuator dynamics has been studied.
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The second class of methods is based on a direct
numerical simulation of the entire problem includ-
ing the 
ow inside the actuator. Rizzetta, et al. 118

solve the unsteady compressible Navier-Stokes equa-
tions in the external region, the cavity itself, and
the throat of the actuator on separate grids that are
linked with each other through a Chimera method-
ology. The membrane motion is simulated by vary-
ing the position of appropriate boundary points. As
follows from the numerical calculations presented in
reference [118], the internal cavity 
ow becomes peri-
odic after several cycles. Therefore the velocity pro-
�le across the jet exit at each time-step was recorded
and was used as a boundary condition in subsequent
runs involving the external domain only. For com-
putations that consider only the upper exterior do-
main, the transverse and span-wise velocity compo-
nents (orthogonal to jet axis) are set to zero and the
inviscid normal momentum equation, expressed as

@p

@y
= ��

�
@v

@t
+ v

@v

@y

�
(24)

is used to establish the pressure. The ori�ce exit
density is extrapolated from the interior solution.
This approach provides more accurate description
of the 
ow details at the ori�ce than the simpli�ed
boundary condition of equations (21) and (22). Sim-
ilar direct numerical simulation of the external and
cavity 
ows has been performed by Joslin et al.77

and shown good agreement with experimental re-
sults.
To avoid the integration of the Navier-Stokes

equations on a moving grid, an alternative technique
is used by Lee and Goldstein.87 The main idea of the
method is to impose a localized body force along de-
sired points in the computational mesh to bring the

uid there to a speci�ed velocity so that the force has
the same e�ect as a solid boundary. The desired ve-
locity is incorporated in an iterative feedback loop
to determine the appropriate force. For a moving
boundary with velocity VA(x; t), an expression for
the body force is

F (x; t) = �

tZ
0

(v � VA)dt
0 + �(v � VA) (25)

where v is the 
uid velocity, and � and � are
user-de�ned constants that are negative and can be
treated as the gain and damping of the force �eld
with dimensions of M=(L3T 2) and M=L3T , respec-
tively. This approach allows a moving diaphragm
without using a time-dependent coordinate trans-
formation.

6.2 Bottlenecks

In spite of the fact that the methods mentioned
above have successfully been used for modeling syn-
thetic jet actuators, several issues persist. One of
the main drawbacks of the �rst class of methods is
that the simpli�ed boundary conditions do not pro-
vide conservation of mass, momentum, and energy
through the actuator ori�ce. Because these methods
use the normal momentum equation to calculate the
pressure, whereas the other quantities are extrapo-
lated or prescribed analytically, this boundary con-
dition does not satisfy the governing equations at the
boundary and, therefore, does not provide the con-
servation properties. Another disadvantage of the
boundary condition [eqs. (21) and (22)] is its in-
ability to account for changes in the pressure �eld
caused by the interaction of the external boundary
layer and actuator. Furthermore, as has been shown
in Lee and Goldstein,87 the real streamwise velocity
pro�le and the velocity component in the cross-
ow
direction are far from the analytical expressions of
equation (21).

The main problem associated with the second
class of methods is complexity/cost. The numerical
calculation of the cavity 
ow requires a large number
of grid points. For geometries �tted with multiple
actuators, grid requirements for the actuators could
exceed those of the exterior 
ow, and would con-
tribute extensively to the computational cost. An-
other consideration is the actuator Mach number,
which varies from 0.001 (near the diaphragm) to 0.1
(at the ori�ce exit). This variation of the 
ow pa-
rameters from fully incompressible in the actuator
to fully compressible in the exterior region imposes
very severe requirements on a numerical method and
increases the algorithm complexity.

6.3 Langley E�ort

As follows from the literature overview presented
above, the research in the area of active 
ow control
is of empirical nature, mainly due to the computa-
tional cost involved and lack of con�dence in compu-
tational methods for such complex time-dependent

ows. A strong e�ort 147 is currently underway
at Langley toward constructing a new methodology
that combines the accuracy and conservation prop-
erties of the simulation methods with the e�ciency
of the techniques based on simpli�ed boundary con-
ditions. In contrast to the methods found in the
literature, the new approach uses a reduced-order
model of 2-D or 3-D actuators. In other words,
the multidimensional actuator is simulated by solv-
ing the time-dependent 1-D Euler equations similar
to those used for the quasi-one-dimensional nozzle
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Figure 3. Comparison of the mass rate errors
for the 2-D actuator problem obtained with the
quasi-1-D actuator model and the nonconservative
boundary condition (21,22).

problem. The simpli�ed actuator model has several
advantages. First, this approach provides conser-
vation of not only mass, but also momentum and
energy. Second, the new method is much more e�-
cient in terms of computational time compared with
the 2-D or 3-D numerical simulation of the 
ow�eld
in the actuator. Third, this reduced-order model
retains some multidimensional features of the realis-
tic actuator that are governed by the area variation
of the quasi-one-dimensional nozzle, and, therefore,
can be used for qualitative study of the resonance
characteristics of the actuator. As follows from the
comparison presented in �gure (3), the conventional
boundary conditions based on the normal momen-
tum equation do not provide mass conservation. The
maximum mass rate error, which occurs during the
suction stage, is of the order of 15 percent if the
normal momentum equation is used as a boundary
condition for pressure. In contrast to the conven-
tional approach, the new method provides conserva-
tion of mass, momentum, and energy. As a result,
the mass rate error is reduced by one to two orders
of magnitude compared with that obtained with the
blowing/suction boundary condition [eqs. (21) and
(22)]. These preliminary results are very encourag-
ing. In our future work, we will focus on calibration
of the new methodology with readily available ex-
perimental data and numerical simulation of time-
dependent 
ows encountered in active 
ow control

environment.

7 Conclusions

The current status of time-dependent algorithms
is presented. Special attention is given to algo-
rithms used to predict 
uid actuator 
ow�elds. The
overview begins by considering algorithmic issues
that could greatly improve the temporal e�ciency
of actuator simulations. The general state of time-
dependent turbulent models for nonstationary 
ows
is then assessed. Finally, an e�cient new 
uid actu-
ator boundary condition is presented. Each section
begins by describing the current state of the art in-
cluding notable impediments in the �eld, and con-
cludes with a summary of current Langley e�orts.
Profound improvements in the e�ciency of tempo-

ral algorithms could be achieved in the next decade.
Notable leverage in time-dependent methods exists
in the following algorithmic areas: 1) implementa-
tion of high-order (p � 3) temporal schemes, 2)
implementation of high-order (p � 3) spatial algo-
rithms, and 3) convergence acceleration techniques
for complex high-Reynolds number 
ows. Signi�-
cant impediments exist in each of these three cate-
gories.
High-order schemes need huge time steps to uti-

lize their full potential. Algebraic solvers with rapid,
time-step independent, convergence rates are neces-
sary for these schemes. The principal impediment
facing the implementation of high-order temporal
schemes is the need for robust and rapid algebraic
equation solvers. Error estimation, variable time-
stepping and automated iteration termination will
immediately follow. Current fourth-order schemes
are asymptotically close to being optimal, and fur-
ther increases in e�ciency are di�cult to obtain.
High-order spatial operators must be 
exible

enough to accommodate complex geometries, grid
adaptation and nonlinear instability. Methods uti-
lizing compact locality (unstructured methods) are
advantageous when addressing complex geometries
and grid adaptation. Unstructured high-order for-
mulations include Finite-Elements (FE), k-exact Up-
wind Finite-Volume (FV), or k-exact ENO FV. The
principal impediment facing the implementation of
high-order spatial operators is their lack of nonlinear
stability resulting from unresolved features and dis-
continuities. Extensive research is currently under-
way within the FE community. Some formulations
possess a nonlinear L2 stability property. It is still
unknown whether this stability is a strong enough
for general purpose solvers, or whether stronger sta-
bility conditions (TVD, TVB, ENO) must be pur-
sued.
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A wide variety of di�erent iterative methods are
currently used. Nevertheless, the convergence rate
of current state of the art iterative solvers is poor.
Complex high Reynolds number 3-D simulations
converge at per cycle rates in the range 0:96� 0:98.
The principal impediments for rapid convergence are
high aspect ratio cells in the turbulent boundary lay-
ers, and low Mach number regions in the 
ow.

Conventional URANS turbulence models are not
very accurate for nonstationary turbulent 
ows. A
new class of composite LES/RANS schemes has been
developed to address these inadequacies. Among
these is the detach eddy simulation (DES) approach,
and is currently being veri�ed and validated. The
DES scheme is very expensive because is requires
a full 3-D time-dependent simulation of the 
ow in
question. The principal impediment facing all com-
posite approaches is validation against high quality
experimental data. The accuracy and consistency of
the blended region between the outer LES and inner
RANS regions is a concern with composite methods.
The accuracy of this region is extremely important
in 
uid actuator simulations.

An optimistic estimate indicates that successful
research could improve overall e�ciency by O(101=2)
for temporal algorithms, by O(103=2) for spatial al-
gorithms, and by O(103=2) for convergence accelera-
tion. Improvements in the modeling of 
uid actua-
tors could account for a factor of two. Moore's law
predicts that increases in computer hardware will
yield O(101) improvements. All these e�ects can be
combined in a multiplicative sense to yield poten-
tial improvements of O(104). Improvements of this
magnitude would allow us to do 3-D optimization
studies based on DES turbulence models, including

uid actuator design and resonance, and actuator
placement and coupling studies.
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