

AIAA-2002-4704

System IDentification Programs
for AirCraft (SIDPAC)

Eugene A. Morelli
NASA Langley Research Center
Hampton, VA

AIAA Atmospheric Flight Mechanics Conference
August 5-8, 2002 / Monterey, CA

 For permission to copy or to republish, contact the American Institute of Aeronautics and Astronautics,
1801 Alexander Bell Drive, Suite 500, Reston, VA, 20191-4344

AIAA-2002-4704

SYSTEM IDENTIFICATION PROGRAMS FOR AIRCRAFT (SIDPAC)

Eugene A. Morelli

NASA Langley Research Center
Hampton, Virginia USA 23681 – 2199

Abstract
 A collection of computer programs for aircraft
system identification is described and demonstrated.
The programs, collectively called System
IDentification Programs for AirCraft, or SIDPAC, were
developed in MATLAB® as m-file functions. SIDPAC
has been used successfully at NASA Langley Research
Center with data from many different flight test
programs and wind tunnel experiments. SIDPAC
includes routines for experiment design, data
conditioning, data compatibility analysis, model
structure determination, equation-error and output-
error parameter estimation in both the time and
frequency domains, real-time and recursive parameter
estimation, low order equivalent system identification,
estimated parameter error calculation, linear and
nonlinear simulation, plotting, and 3-D visualization.
An overview of SIDPAC capabilities is provided, along
with a demonstration of the use of SIDPAC with real
flight test data from the NASA Glenn Twin Otter
aircraft. The SIDPAC software is available without
charge to U.S. citizens by request to the author,
contingent on the requestor completing a NASA
software usage agreement.

Introduction
 Developing mathematical models of physical
systems based on imperfect observations or
measurements is known as system identification.
When the system to be modeled is an aircraft, the
models are generally dynamic with multiple inputs and
outputs, and the measurements are noisy. As a result,
the required data volume is substantial, and most
aircraft system identification tasks require computers

* Research Engineer, Senior Member AIAA
 e-mail: e.a.morelli@larc.nasa.gov

Copyright © 2002 by the American Institute of Aeronautics and
Astronautics, Inc. No copyright is asserted in the United States
under Title 17, U.S. Code. The U.S. Government has a royalty-
free license to exercise all rights under the copyright claimed
herein for Governmental purposes. All other rights are reserved by
the copyright owner.

and software. Many computer programs for aircraft
system identification have been developed over the
years, but most have been written in FORTRAN, and
have been designed to address a specific type of
problem, usually using methods best suited to the
application for which the program was developed. The
existing programs are scattered among different
organizations and people, and many have limited
availability. Significant time and effort can be required
to learn how to compile and operate a particular
program competently. This effort is in addition to the
time and effort involved in learning what the program
actually does, how the methods are implemented, and
how to properly interpret the results.

 System IDentification Programs for AirCraft, or
SIDPAC, is a collection of computer programs that
implement a variety of methods for solving problems
in the area of system identification applied to aircraft.
This paper describes the routines included in SIDPAC
and demonstrates SIDPAC using a real flight test data
example. All SIDPAC programs were written in
MATLAB® as m-file functions. An m-file function in
MATLAB® is the analog of a subroutine in
FORTRAN or a function in C.

 MATLAB® is a platform-independent language
that is easy to learn and program. MATLAB® also has
many built-in functions for linear algebra, data
analysis, plotting, and debugging, and uses double
precision arithmetic by default. These characteristics
make MATLAB® an excellent choice for
implementing SIDPAC algorithms.

 All of the algorithms implemented in SIDPAC are
based on information available in the open literature.
The documents listed under References contain
information on the algorithms implemented in
SIDPAC. The references are grouped according to
their relevance to system identification problems
addressed in SIDPAC.

 Development of SIDPAC occurred over a period
of approximately 10 years at NASA Langley Research
Center. The author wrote and tested all of the SIDPAC
routines. Most of the routines in SIDPAC were

American Institute of Aeronautics and Astronautics

1

originally coded as m-file functions, but a few were
translated and adapted from FORTRAN codes that
have been used for many years. SIDPAC has been and
continues to be used at NASA Langley Research
Center for system identification applied to data from
various flight test programs and wind tunnel
experiments.

 Software tools for specific system identification
tasks are implemented in SIDPAC as individual m-file
functions, which may call other supporting m-file
functions. The comment header for each SIDPAC
routine includes calling syntax, descriptions of inputs
and outputs, the creation and modification history, and
a list of called SIDPAC routines. SIDPAC makes use
of a few MATLAB® routines from the Signal
Processing Toolbox and the Control Systems Toolbox,
sold by The MathWorks, Inc., but SIDPAC also
includes alternate routines that can be used if these
MATLAB® toolboxes are not available to the user.
There are also a few C mex files included in SIDPAC
to increase processing speed for certain tasks, but
again, there are alternate routines that can be used if a
C compiler is not available to the user. SIDPAC is
therefore a complete set of programs for aircraft system
identification, requiring only the standard built-in
MATLAB® functions.

 SIDPAC was developed and tested under
MATLAB® 5.2, release 11, and MATLAB® 6.1,
release 12.1, on an IBM-compatible personal
computer. SIDPAC software will work properly on
any computer running MATLAB® 5.2 or higher.
Since SIDPAC is very much like a MATLAB®
toolbox, the computing hardware and operating system
requirements for SIDPAC are the same as for
MATLAB®.

 The descriptions and demonstrations included
here apply to SIDPAC version 1.1, which is the latest
version as of this writing. SIDPAC version 1.1
software was sent to all registered SIDPAC users via
e-mail just prior to public release of this paper.

 Calling syntax and descriptive material in the
header of each SIDPAC m-file are displayed in the
MATLAB® command window in response to typing
help filename, where filename is the name of a
specific m-file. All SIDPAC m-files have the
customary .m file extension. MATLAB® is an
interpretive language, so the source code runs directly
in the MATLAB® environment, with no requirement
for explicit compile and link commands. To execute
any m-file in SIDPAC, the correct calling syntax can
be copied from the comment header directly to the

MATLAB® command line, then executed with a
carriage return.

 The SIDPAC m-files were originally written for
research purposes and not for public release, so error
handling, user interface, and the like, are Spartan.
However, the software is fully documented and
liberally commented.

 The next section gives an overview of the
SIDPAC software by listing m-files in several system
identification problem categories, along with short
narrative descriptions of what each m-file does.
Following this, example applications of selected
routines in SIDPAC to real flight test data analysis and
modeling problems are presented and discussed.

SIDPAC Overview
 Nearly every system identification problem has
some aspect that makes it unique. Therefore, it is only
a slight exaggeration to say that every system
identification problem is a special case. Because of
this, SIDPAC does not include much in the way of
automated analysis or decision-making. Instead,
SIDPAC implements a wide variety of system
identification methods as individual m-files. SIDPAC
includes Graphical User Interfaces (GUI) that aid the
analyst in routine tasks such as unit conversion, signal
definition, and data compatibility analysis. Beyond
this, the spectrum of choices for inputs and outputs,
model forms, transformations, data analysis, and
modeling methods is so broad, and the problems are so
diverse, that the development of a GUI for these
purposes would be either very complicated or not
effective. Therefore, after the initial data reduction,
SIDPAC m-files must be called individually from the
MATLAB® command line. This forces the analyst to
be cognizant of what methods are being used and how
the methods are implemented. This level of contact
with the methods and software is essential for
obtaining good results.

 It is a simple matter to create custom data
analysis and modeling scripts in MATLAB® for
particular system identification problems, using calls to
SIDPAC m-files. This is demonstrated in the Example
section. The resulting script can be used to automate
the analysis for different maneuvers, and has the added
benefit of completely documenting the data analysis
and modeling process.

 The m-file functions that comprise the main
capabilities of SIDPAC are categorized below
according to functionality. Short narrative descriptions
of the m-files appear below each category heading.

American Institute of Aeronautics and Astronautics

2

The m-files described here represent only a partial
listing of the contents of SIDPAC.

Data Analysis

accel_cor.m – Corrects accelerometer measurements
from the sensor location to the aircraft c.g.

axcnv.m – Finds vector components in a rotated
coordinate system.

bodecmp.m – Compares Bode plots for general
transfer function models.

bodeplt.m – Draws Bode plots.

chirpz.m – Computes the chirp-Z discrete Fourier
transform.

cmpplt.m – Plots two time series and their difference.

cmpsigs.m – Scales and removes biases from two
time series so their waveforms can be compared.

compfc.m – Computes non-dimensional applied force
coefficients based on measured data.

compmc.m – Computes non-dimensional applied
moment coefficients based on measured data.

compzsd.m – Computes a smoothed numerical time
derivative of noisy time series using Fourier analysis
and the Wiener filter in the frequency domain.

correl.m – Computes the estimated parameter
correlation matrix.

corx.m – Computes the normalized regressor
correlation matrix.

csmep.m – Computes smoothed endpoints for a noisy
time series using a local cubic least squares fit.

cubic_dtrend.m – Computes a cubic detrend function
for a noisy time series.

cutftd.m – Plots flight test data and implements
manual cutting of flight test maneuver data lengths.

deriv.m – Computes a smoothed numerical time
derivative of noisy time series using local least squares
polynomial fits to the data.

dft.m – Computes the discrete Fourier transform using
the definition (i.e., without using a Fast Fourier
Transform algorithm).

estlag.m – Estimates the pure time delay between two
time series, using the maximum slope projection
method described in MIL-STD 1797A.

fint.m – Computes a high-accuracy finite Fourier
integral for arbitrary frequencies, using measured time
series data.

fixdrop.m – Manually fixes data dropouts.

hsmoo.m – Implements a posteriori low-pass filtering
using fixed weight smoothing.

pwrband.m – Computes the frequency band that
contains a given fraction of the power in a time series.

smoo.m – Separates signal from noise for a measured
time series, using Fourier analysis and an optimal
Wiener filter.

spect.m – Computes power spectral density for a
measured time series.

tshift.m – Estimates the relative time shift between two
time series, using time-domain cross correlation.

xsmep.m – Computes smoothed endpoints for a
measured time series.

Experiment Design

compcrb.m – Computes the Cramér-Rao bounds and
the information matrix.

dox.m – Generates modern experiment designs for
response surface modeling.

mkfswp.m – Generates a linear or logarithmic
frequency sweep input.

mkrandss.m – Generates a sum of sine waves with
random amplitudes and frequencies.

mkrdn.m – Generates white or arbitrarily colored
random noise inputs.

mksqw.m – Generates an alternating square wave
input with arbitrary amplitudes and pulse widths.

mksswp.m – Generates a Schroeder sweep input.

Data Compatibility Analysis

airchk.m – Checks the compatibility of measured data
for translational accelerations, body-axis angular rates,
airspeed, sideslip angle, and angle of attack.

compat.m – Estimates instrumentation error
parameters from measured input-output time-domain
data, using output-error maximum likelihood.

dcmp.m – Integrates aircraft kinematic equations for
data compatibility analysis.

sens_cor.m – Applies instrumentation error
corrections to measured data.

American Institute of Aeronautics and Astronautics

3

rotchk.m – Checks the compatibility of measured data
for body-axis angular rates and Euler angles.

Model Structure Determination

gsorth.m – Generates a set of mutually orthogonal
regressors using Gram-Schmidt orthogonalization.

swr.m – Identifies general multivariate models from
measured input-output data using least squares
stepwise regression, and computes parameter estimates
and error bounds. This routine requires interactive
input from the analyst to identify the model structure.
The routine can handle either real or complex data, so
the same routine can be used for time-domain or
frequency-domain data.

offit.m – Identifies general multivariate models from
measured input-output time-domain data, and
computes parameter estimates and error bounds.
Multivariate orthogonal basis functions generated from
the measured data are used to identify the model
structure. This routine can be run autonomously or
with interactive input from the analyst.

pfstat.m – Computes the partial F statistic for
hypothesis testing in model structure determination.

Equation-Error Parameter Estimation

lesq.m – Estimates equation-error model parameters
using a linear least squares regression formulation.
This routine can be used with either real or complex
data, so the same routine can be used for time-domain
or frequency-domain data.

Output-Error Parameter Estimation

mnr.m – Computes the modified Newton-Raphson
step for multi-dimensional parameter optimization, and
computes the cost gradient and information matrix.

oe.m – Estimates dynamic model parameters from
measured input-output time-domain data using
output-error maximum likelihood. This routine uses
general dynamic model definition m-files that can be
linear or nonlinear.

senest.m – Computes sensitivity estimates using finite
differences.

simplex.m – Implements the simplex method for
multi-dimensional parameter optimization without cost
function gradients.

Estimated Parameter Error Bounds

r_colores.m – Computes Cramér-Rao bounds for the
covariances of the estimated parameters in a linear

least squares regression formulation, both
conventionally and accounting for colored residuals.

colores.m – Computes corrected parameter standard
errors by post-processing results from output-error
maximum likelihood parameter estimation (oe.m).
The correction accounts for the practical fact that
output-error residuals are usually colored, not white, as
assumed in the output-error maximum likelihood
theoretical formulation. Corrected parameter standard
errors from colores.m are consistent with the scatter in
parameter estimates from repeated flight test
maneuvers, and therefore accurately represent
estimated parameter uncertainty.

m_colores.m – Vectorized version of colores.m,
which runs much faster and gives the same results as
colores.m.

Real-Time Parameter Estimation

rft.m – Computes the recursive discrete Fourier
transform of a time series.

rtpid.m – Computes sequential real-time estimates of
dynamic model parameters and the associated
covariance matrix, using equation-error in the
frequency domain.

rlesq.m – Computes equation-error model parameter
estimates and covariance matrix estimates for a linear
least squares regression problem, using a recursive
formulation. This routine is the recursive version of
lesq.m.

slesq.m – Computes equation-error model parameter
estimates and covariance matrix estimates for a linear
least squares regression problem, using a batch
formulation applied to sequential sections of data. This
routine is the sequential version of lesq.m.

Frequency Domain Parameter Estimation

fdoe.m – Estimates dynamic model parameters from
measured input-output frequency-domain data using
output-error maximum likelihood. This routine is the
frequency-domain equivalent of oe.m.

tfest.m – Estimates parameters in a transfer function
model structure, using equation-error in the frequency
domain and fint.m to compute high-accuracy finite
Fourier integrals for arbitrary frequencies.

loest.m – Estimates parameters in a low order
equivalent system transfer function model structure,
using the same approach as in tfest.m, except that a
relaxation technique is used to estimate the equivalent
time delay parameter.

American Institute of Aeronautics and Astronautics

4

Utilities

ab3.m – Implements third-order Adams-Bashforth
numerical integration.

adamb3.m – Version of ab3.m used in parameter
estimation algorithms.

adamb3.c – C mex-file version of adamb3.m used
for high speed computation in parameter estimation
algorithms.

buzz.m – Adds white noise to a time series.

colnse.m – Adds a selectable combination of white
noise and band-limited noise to a time series.

comfun.m – Computes the value of ordinary
polynomial functions.

dband.m – Applies a dead band to a time series.

int1.m – Does one-dimensional linear interpolation.

int2.m – Does two-dimensional linear interpolation.

int3.m – Does three-dimensional linear interpolation.

loadflat.m – Reads a general ASCII flat file into the
MATLAB® workspace.

massprop.m – Assembles aircraft mass and moment
of inertia data.

misvd.m – Computes robust matrix inversion using
singular value decomposition.

milstd.m – Computes longitudinal handling qualities
level prediction according to MIL-STD 1797A, and
plots handling qualities parameters and boundaries.

model_disp.m – Displays the functional form and
parameter values for a polynomial model.

ocf.m – Converts a transfer function numerator and
denominator into a state space model in observer
canonical form.

plotmesh.m – Makes 3-D mesh plots for polynomial
models.

plotpest.m – Plots parameter estimates and error bars
representing 95 percent confidence intervals.

plotsurf.m – Makes 3-D surface plots for polynomial
models.

plot3d.m – Makes 3-D plots using data arranged for
linear regression.

press.m – Computes predicted sum of squares metric.

ratelim.m – Implements rate limits.

regcor.m – Computes and displays pairwise regressor
correlations.

reggen.m – Generates multivariate polynomial
regressors.

rms.m – Computes root mean square of the elements
of a vector.

rk2.m – Implements second-order Runge-Kutta
numerical integration.

runk2.m – Version of rk2.m used in parameter
estimation algorithms.

runk2.c – C mex-file version of runk2.m used in
parameter estimation algorithms.

rk4.m – Implements fourth-order Runge-Kutta
numerical integration.

runk4.m – Version of rk4.m used in parameter
estimation algorithms.

runk4.c – C mex-file version of runk4.m used in
parameter estimation algorithms.

spl.m – Generates spline functions.

ulag.m – Applies a selected time shift to a time series.

Example
 To demonstrate the use and capabilities of
SIDPAC, a real flight test data analysis and modeling
problem is presented. This example was chosen so that
some of the main elements of SIDPAC could be
demonstrated.

 The flight test data was obtained from a
longitudinal maneuver flown on the NASA Glenn
Twin Otter aircraft, see Figure 1. The Twin Otter is a
twin-engine turboprop commuter aircraft equipped
with high-quality flight research instrumentation.

 The flight test data for the example maneuver was
available in an ASCII file, with the measured quantities
named according to the convention used at NASA
Glenn. To use SIDPAC effectively, the first step is to
put the data in a standard format that some of the
SIDPAC routines expect. This is a simple matter of
unit conversions, routine calculations, and assembling
the data into an array called fdata in the MATLAB®
workspace, where each column of the array is assigned
a specific quantity. There is a GUI in SIDPAC to make
this process easier, which is invoked by simply typing
sid at the MATLAB® command window prompt. The
resulting GUI is shown in Figure 2. The analyst can
use this GUI to quickly plot any of the workspace

American Institute of Aeronautics and Astronautics

5

variables, convert units, then assign the result to the
appropriate place in the standard data matrix fdata. A
side benefit of this procedure is that the flight test data
is automatically checked for missing information as the
analyst assigns data to the channels in the standard data
matrix fdata. In this example, the measurement for
heading angle psi was missing. However, this
measurement is not needed for longitudinal data
analysis and modeling.

 For large-scale flight test data analysis, the data
reduction and channel assignment process is typically
implemented by creating a script, so that the data
reduction steps can be repeated automatically for each
maneuver. A script is simply a text file containing
commands that could have been issued at the
MATLAB® command prompt. The commands in the
script are executed by typing the name of the script
file, omitting the file extension. Script files must have
the .m file extension.

 The analyst clicks on the Next button to proceed
to the next GUI, shown in Figure 3, which can be used
to cut the maneuver data length. This capability is
necessary because it is common for the data to include
more than is necessary for the analysis and dynamic
modeling. For example, there may be long stretches of
steady trim with no data information content, or it may
be that the pilot applied a different power setting or
changed the flight condition near the end of the data, to
set up for the next flight test maneuver. In the latter
case, the assumptions for the modeling may be
violated, so this part of the data must be removed. The
Cut Maneuver button allows the analyst to define the
beginning and end of the maneuver using graphical
(mouse) or numerical (keyboard) input.

 Clicking the Next button again, the analyst
arrives at the data compatibility analysis GUI, where
the kinematic consistency of the measured output
quantities is checked. Figure 4 shows data
compatibility plots of the measured airspeed, angle of
attack, and sideslip angle, compared to reconstructed
values obtained from integrating the kinematic
equations using translational accelerations and angular
rate measurements as inputs. The analogous check on
the Euler angle measurements, using the rotational
kinematic equations with angular rate measurement
inputs to reconstruct the Euler angles, is shown when
the analyst selects the rotational option from the pull-
down menu at the upper right of the GUI, see Figure 5.

 SIDPAC software was designed so that it is
possible to enter or exit any GUI at any time without
adversely affecting results. The analyst can issue any

required problem-specific commands in the
MATLAB® command window (whether the current
GUI is closed or not), then continue with the analysis
using the GUI.

 Instrumentation error parameters can be found
using output-error parameter estimation and a default
selection for the instrumentation error model structure
by simply clicking the Estimate Errors button in the
data compatibility GUI. Parameter estimation results
are stored and displayed in the MATLAB® workspace.
Estimated instrumentation errors can be removed from
the measured data by clicking the Correct Data
button. Figure 6 shows the rotational data after the
estimated instrumentation corrections have been
applied to the data. Figures 5 and 6 show how
applying the estimated instrumentation error
corrections implements kinematic consistency among
the measured outputs related to the pitch rotation.

 At this point, the data have been organized,
plotted, checked for data compatibility, and corrected
using estimated instrumentation errors. The next steps
vary greatly depending on the goals of the
investigation. For this example, a script was developed
to implement and document the data analysis and
modeling process. Figure 7 shows a listing of the
script. Space does not permit showing all of the results
generated from this script, but a short description will
be given here.

 The initial commands in the script plot the
measured data and compute non-dimensional
aerodynamic coefficients. Next, body-axis Z force and
pitching moment coefficients are modeled in an
equation-error formulation using least squares
regression and stepwise regression. Corrected
parameter error bounds are computed and displayed,
along with the parameter estimates and confidence
intervals. Modeling is then carried out in the
frequency domain, using a transfer function model and
equation-error parameter estimation. Following this,
output-error parameter estimation in the time domain is
used with a dynamic model file implementing the full
nonlinear equations of motion and a linear
aerodynamic model to estimate non-dimensional
stability and control derivatives. A prediction case is
included to demonstrate the validity of the identified
models and show the linear and nonlinear simulation
capabilities. Plots of the results appear in the
MATLAB® figure window and various displays of
results appear in the MATLAB® command window.

 Figure 8 shows one of the plots, which is a
comparison of the measured non-dimensional pitching

American Institute of Aeronautics and Astronautics

6

moment coefficient with the identified equation-error
model. Table 1 contains parameter estimation results
for this case.

 The entire demonstration script in Figure 7 is
available in SIDPAC as totter_demo.m. The
demonstration can be executed by simply typing
totter_demo at the MATLAB® command prompt.

Concluding Remarks
 A collection of computer programs called System
IDentification Programs for AirCraft, or SIDPAC, was
described and demonstrated on a real flight test data
analysis and modeling problem. SIDPAC was
developed and tested at NASA Langley Research
Center in the course of solving real problems in aircraft
system identification.

 SIDPAC addresses a wide range of system
identification problems in a common MATLAB®
environment. MATLAB® has many advantages,
including platform-independence, easy to learn and
program, many built-in functions for linear algebra,
data analysis, debugging, plotting, and data
visualization, and the use of double precision
arithmetic by default. These characteristics make
MATLAB® an excellent choice for implementing
SIDPAC algorithms.

 Relevant theory and practical considerations for
the methods implemented in SIDPAC are completely
described in the forthcoming text entitled System
Identification Applied to Aircraft – Theory and
Practice, by V. Klein and E.A. Morelli. The SIDPAC
software is a product of NASA Langley Research
Center, and is available free of charge to U.S. citizens
by request to the author, contingent on the requestor
completing a NASA software usage agreement.
Requests for the software should be e-mailed to:

e.a.morelli@larc.nasa.gov

 Please include name, mailing address, e-mail
address, telephone number, and company affiliation of
the requestor, along with a one-sentence description of
the intended use of SIDPAC, for technology transfer
record-keeping purposes.

 SIDPAC allows a user to apply state-of-the-art
technology to aircraft system identification problems,
within a single, highly capable, and easy-to-use
computing environment.

References

Data Analysis
 Bendat, J.S. and Piersol, A.G. Random Data

Analysis and Measurement Procedures, 2nd Ed.,
John Wiley & Sons, New York, NY, 1986.

 Gainer, T.G. and Hoffman, S. “Summary of
Transformation Equations and Equations of Motion
Used in Free-Flight and Wind-Tunnel Data
Reduction Analysis,” NASA SP-3070, 1972.

 Graham, R.J., “Determination and Analysis of
Numerical Smoothing Weights,” NASA TR R-179,
December 1963.

 Lanczos, C. Applied Analysis, Dover Publications,
Inc., New York, NY, 1988.

 Morelli, E.A. “Estimating Noise Characteristics
from Flight Test Data using Optimal Fourier
Smoothing,” Journal of Aircraft, Vol. 32, No. 4,
July-August 1995, pp. 689-695.

Data Compatibility Analysis
 Klein, V. and Morgan, D.R. “Estimation of Bias

Errors in Measured Airplane Responses using
Maximum Likelihood Method,” NASA TM 89059,
January 1987.

 Morelli, E. A., “Optimal Input Design for Aircraft
Instrumentation Systematic Error Estimation,”
AIAA paper 91-2850, AIAA Atmospheric Flight
Mechanics Conference, New Orleans, Louisiana,
August 1991.

Model Structure Determination
 Draper, N.R. and Smith, H. Applied Regression

Analysis, 2nd Edition, John Wiley & Sons, New York,
NY, 1981.

 Klein, V., Batterson, J.G., and Murphy, P.C.
“Determination of Airplane Model Structure from
Flight Data by using Modified Stepwise Regression,”
NASA TP-1916, October 1981.

 Morelli, E.A., “Global Nonlinear Aerodynamic
Modeling using Multivariate Orthogonal Functions,”
Journal of Aircraft, Vol. 32, No. 2, March-April
1995, pp. 270-77.

 Morelli, E.A., “Global Nonlinear Parametric
Modeling with Application to F-16 Aerodynamics,”
ACC paper WP04-2, Paper ID i-98010-2, American
Control Conference, Philadelphia, Pennsylvania,
June 1998.

American Institute of Aeronautics and Astronautics

7

 Morelli, E.A. and DeLoach, R., “Response Surface
Modeling using Multivariate Orthogonal Functions,”
AIAA paper 2001-0168, 39th AIAA Aerospace
Sciences Meeting and Exhibit, Reno, Nevada,
January 2001.

Estimated Parameter Error Bounds
 Maine, R.E. and Iliff, K.W., “The Theory and

Practice of Estimating the Accuracy of Dynamic
Flight-Determined Coefficients,” NASA RP 1077,
July 1981.

 Morelli, E.A. and Klein, V. “Accuracy of
Aerodynamic Model Parameters Estimated from
Flight Test Data,” Journal of Guidance, Control,
and Dynamics, Vol. 20, No. 1, January-February
1997, pp. 74-80.

Equation-Error Parameter Estimation
 Klein, V., “Estimation of Aircraft Aerodynamic

Parameters from Flight Data,” Prog. Aerospace
Sciences, Vol. 26, 1989, pp. 1-77.

 Klein, V. and Morelli, E. A., “Parameter Estimation
of a Highly Augmented Aircraft from Flight Data,”
9th IFAC/IFORS Symposium on Identification and
System Parameter Estimation, Budapest, Hungary,
July 1991.

Output-Error Parameter Estimation
 Maine, R.E. and Iliff, K.W., “Application of

Parameter Estimation to Aircraft Stability and
Control - The Output-Error Approach”, NASA RP
1168, June 1986.

 Taylor, L.W., Jr. and Iliff, K.W. “Systems
Identification using a Modified Newton-Raphson
Method – A Fortran Program,” NASA TN D-6734,
May 1972.

 Morelli, E.A. and Klein, V. “Determining the
Accuracy of Maximum Likelihood Parameter
Estimates with Colored Residuals,” NASA CR
194893, March 1994.

Low Order Equivalent System Identification
 Military Standard – Flying Qualities of Piloted

Aircraft, MIL-STD-1797A, January 1990.
 Morelli, E.A., “Low Order Equivalent System

Identification for the Tu-144LL Supersonic
Transport Aircraft,” AIAA paper 2000-3902, AIAA
Atmospheric Flight Mechanics Conference, Denver,
Colorado, August 2000.

 Morelli, E.A. “Identification of Low Order
Equivalent System Models from Flight Test Data,”
NASA TM-2000-210117, August 2000.

Parameter Estimation in the Frequency Domain
 Klein, V. “Aircraft Parameter Estimation in

Frequency Domain,” AIAA paper 78-1344, AIAA
Atmospheric Flight Mechanics Conference, Palo
Alto, CA, August 1978.

 Morelli, E.A. “High Accuracy Evaluation of the
Finite Fourier Transform using Sampled Data,”
NASA TM 110340, June 1997.

Real-Time Parameter Estimation
 Morelli, E.A. “In-Flight System Identification,”

AIAA paper 98-4261, AIAA Atmospheric Flight
Mechanics Conference, Boston, MA, August 1998.

 Morelli, E.A., “Real-Time Parameter Estimation in
the Frequency Domain,” Journal of Guidance,
Control, and Dynamics, Vol. 23, No. 5, September-
October 2000, pp. 812-818.

Experiment Design
 Box, G.E.P., Hunter, W.G., and Hunter, J.S.,

Statistics for Experimenters – An Introduction to
Design, Data Analysis, and Model Building, John
Wiley & Sons, Inc., New York, NY, 1978.

 Morelli, E.A., “Practical Input Optimization for
Aircraft Parameter Estimation Experiments,” NASA
CR 191462, May 1993.

 Morelli, E.A., “Flight Test of Optimal Inputs and
Comparison with Conventional Inputs,” Journal of
Aircraft, Vol. 36, No. 2, March-April 1999, pp. 389-
397.

 Schroeder, M.R. “Synthesis of Low-Peak-Factor
Signals and Binary Sequences with Low
Autocorrelation,” IEEE Transactions on Information
Theory, January 1970, pp. 85-89.

 Williams, J.N., Ham, J.A., and Tischler, M.B.,
“Flight Test Manual, Rotorcraft Frequency Domain
Flight Testing,” U.S. Army Aviation Technical Test
Center, Edwards AFB, CA, AQTD Project No.
93-14, September 1995.

Software Implementation

 Using MATLAB®, Version 6, The MathWorks, Inc.,
Natick, MA, 2000.

 Press, W.H., Flannery, B.P., Teukolsky, S.A., and
Vetterling, W.T. Numerical Recipes – The Art of
Scientific Computing (FORTRAN Version),
Cambridge University Press, Cambridge, UK, 1989.

American Institute of Aeronautics and Astronautics

8

Table 1 Twin Otter Equation-Error Modeling Results

Parameter Estimate Std. Error

mC
α

 (rad−1) −1.476 0.022

qmC −36.35 0.69

emC
δ

 (rad−1) −1.869 0.020

omC 0.0023 0.0001

Figure 1 NASA Glenn Twin Otter

Figure 2 SIDPAC Data Channel Assignment GUI

American Institute of Aeronautics and Astronautics

9

Figure 3 SIDPAC Maneuver Length GUI

Figure 4 SIDPAC Translational Data Compatibility GUI

American Institute of Aeronautics and Astronautics

10

Figure 5 SIDPAC Rotational Data Compatibility GUI

Figure 6 SIDPAC Rotational Data Compatibility GUI with Instrumentation Corrections Applied

American Institute of Aeronautics and Astronautics

11

%
% script totter_demo.m
%
% Usage: totter_demo;
%
% Description:
%
% Demonstrates flight data analysis and modeling
% using SIDPAC for a longitudinal flight test maneuver
% on the NASA Glenn Twin Otter aircraft.
%
% Input:
%
% None
%
% Output:
%
% data file
% 2-D plots
%

%
% Calls:
% compfc.m
% compmc.m
% xsmep.m
% lesq.m
% r_colores.m
% model_disp.m
% swr.m
% zep.m
% tfest.m
% nldyn_psel.m
% oe.m
% nldyn.m
% m_colores.m
% plotpest.m
% tfsim.m
%
% Author: Eugene A. Morelli
%
% History:
% 11 Jul 2002 - Created and debugged, EAM.
%
% Copyright (C) 2002 Eugene A. Morelli
%
% This program carries no warranty, not even the implied
% warranty of merchantability or fitness for a particular purpose.
%
% Please email bug reports or suggestions for improvements to:
%
% e.a.morelli@larc.nasa.gov
%

%
% Load the data file.
%
load 'totter_lon_020213f1_018.mat'
%
% Set up the figure window.
%
FgH=figure('Units','normalized','Position',[.506 .231 .504 .715],...
 'Name','SIDPAC Demonstration','NumberTitle','off','Toolbar','none');
%
% Plot the measured inputs and outputs.
%
subplot(4,1,1), plot(t,fdata(:,14),'LineWidth',2),
title('Twin Otter Flight Test Data','FontWeight','bold'),
grid on, ylabel('elevator (deg)'),

Figure 7 Twin Otter Data Analysis and Modeling Script (continued)

American Institute of Aeronautics and Astronautics

12

subplot(4,1,2), plot(t,fdata(:,4),'LineWidth',2),
grid on, ylabel('alpha (deg)'),
subplot(4,1,3), plot(t,fdata(:,6),'LineWidth',2),
grid on, ylabel('q (deg/sec)'),
subplot(4,1,4), plot(t,fdata(:,13),'LineWidth',2),
grid on, ylabel('az (g)'), xlabel('Time (sec)'),
fprintf('\n\n The figure shows the measured input and outputs.')
fprintf('\n\n Press any key to continue ... '),pause,
%
% Calculate aerodynamic force and moment coefficients.
%
fprintf('\n\n Calculate the non-dimensional ')
fprintf('\n aerodynamic force and moment ')
fprintf('\n coefficients using compfc.m and compmc.m:')
fprintf('\n\n [CX,CY,CZ,CD,CYw,CL]=compfc(fdata);')
fprintf('\n\n [Cl,Cm,Cn]=compmc(fdata);')
[CX,CY,CZ,CD,CYw,CL]=compfc(fdata);
[Cl,Cm,Cn,pv,qv,rv]=compmc(fdata);
subplot(2,1,1),plot(t,CZ,'LineWidth',2),grid on,ylabel('Z Force Coefficient'),
title('Non-Dimensional Coefficients from Flight Test Data','FontWeight','bold'),
subplot(2,1,2),plot(t,Cm,'LineWidth',2),grid on,ylabel('Pitching Moment Coefficient'),xlabel('Time (sec)'),
fprintf('\n\n Press any key to continue ... '),pause,
%
% Assemble the regressor matrix.
%
fprintf('\n\n Assemble the matrix of regressors ')
fprintf('\n for equation-error parameter estimation: ')
fprintf('\n\n alpha (rad)'),
fprintf('\n qhat '),
fprintf('\n elevator (rad)'),
X=[fdata(:,4)*pi/180,fdata(:,72),fdata(:,14)*pi/180];
%
% Plot the regressors.
%
subplot(3,1,1),plot(t,X(:,1),'LineWidth',2),grid on,ylabel('alpha (rad)'),
title('Equation-Error Regressors','FontWeight','bold'),
subplot(3,1,2),plot(t,X(:,2),'LineWidth',2),grid on,ylabel('qhat '),
subplot(3,1,3),plot(t,X(:,3),'LineWidth',2),grid on,ylabel('elevator (rad)'),
xlabel('Time (sec)'),
fprintf('\n\n Press any key to continue ... '),pause,
%
% Find smoothed trim values.
%
fprintf('\n\n Find the smoothed trim values ')
fprintf('\n from the regressors using xsmep.m:')
fprintf('\n\n X0=xsmep(X,1.0,dt);')
X0=xsmep(X,1,dt);
%
% Plot the regressors and the smoothed trim values.
%
subplot(3,1,1),plot(t,X(:,1),'LineWidth',2),hold on,
title('Equation-Error Regressors','FontWeight','bold'),
plot(t(1),X(1,1),'r.','MarkerSize',14,'LineWidth',2), hold off,
grid on,ylabel('alpha (rad)'),
subplot(3,1,2),plot(t,X(:,2),'LineWidth',2), hold on,
plot(t(1),X(1,2),'r.','MarkerSize',14,'LineWidth',2), hold off,
grid on,ylabel('qhat '),
subplot(3,1,3),plot(t,X(:,3),'LineWidth',2), hold on,
plot(t(1),X(1,3),'r.','MarkerSize',14,'LineWidth',2), hold off,
grid on,ylabel('elevator (deg)'),xlabel('Time (sec)'),
%
% Remove the smoothed trim values.
%
fprintf('\n\n Remove the smoothed trim values ')
fprintf('\n from the regressors using :')
fprintf('\n\n X=X-ones(size(X,1),1)*X0(1,:);')
X=X-ones(size(X,1),1)*X0(1,:);
%
% Program lesq.m requires a constant regressor for the bias term.
%

Figure 7 Twin Otter Data Analysis and Modeling Script (continued)

American Institute of Aeronautics and Astronautics

13

X=[X,ones(size(X,1),1)];
fprintf('\n\n Press any key to continue ... '),pause,
%
% Linear regression for the Z force coefficient.
%
fprintf('\n\n Z force coefficient:')
fprintf('\n\n Estimate stability and control ')
fprintf('\n derivatives using equation-error ')
fprintf('\n linear regression program lesq.m: ')
fprintf('\n\n [yZ,pZ,crbZ,s2Z]=lesq(X,CZ);')
[yZ,pZ,crbZ,s2Z]=lesq(X,CZ);
%
% Plot the results.
%
subplot(2,1,1),plot(t,CZ,t,yZ,'r:','LineWidth',2),grid on,
title('Equation-Error Parameter Estimation','FontWeight','bold'),
ylabel('CZ'),legend('Flight data','Regression model',0),
subplot(2,1,2),plot(t,CZ-yZ,'LineWidth',1.5),grid on,
ylabel('Residual'),xlabel('Time (sec)'),
%
% Compute and display the error bounds.
%
fprintf('\n\n Compute the estimated parameter ')
fprintf('\n error bounds using r_colores.m: ')
fprintf('\n\n [crbZ,crboZ]=r_colores(X,CZ); ')
[crbZ,crboZ]=r_colores(X,CZ);
serroZ=sqrt(diag(crboZ));
serrZ=sqrt(diag(crbZ));
perrZ=100*serrZ./abs(pZ);
fprintf('\n\n Display the parameter estimation ')
fprintf('\n results using model_disp.m:')
Xlab=['alpha (rad) ';'qhat ';'elevator (rad)'];
model_disp(pZ,serrZ,[1,10,100,0],Xlab);
fprintf('\n\n Press any key to continue ... '),pause,
%
% Stepwise regression for the pitching moment coefficient.
%
fprintf('\n\n Pitching moment coefficient: ')
fprintf('\n\n Add a nonlinear cross term alpha*elevator ,')
fprintf('\n regressor and use stepwise regression program swr.m:')
fprintf('\n\n [ym,pm,crbm,s2m]=swr(X,Cm);')
%
% Program swr.m adds the bias term automatically,
% so the constant regressor is not necessary. Add
% the nonlinear cross term to the regressor matrix X.
%
X=[X(:,[1:3]),X(:,1).*X(:,3)];
[ym,pm,crbm,s2m,Xm,pindxm]=swr(X,Cm,1);
%
% Include only parameters for selected regressors.
%
pm=pm(pindxm);
%
% Plot the results.
%
subplot(2,1,1),plot(t,Cm,t,ym,'r:','LineWidth',1.5),grid on,
title('Pitching Moment Coefficient','FontWeight','bold'),
ylabel('Cm'),legend('Flight data','Equation-Error model')
subplot(2,1,2),plot(t,Cm-ym,'LineWidth',1.5),grid on,
ylabel('Residual'),xlabel('Time (sec)'),
%
% Compute and display the error bounds.
%
fprintf('\n\n Compute the estimated parameter ')
fprintf('\n error bounds using r_colores.m: ')
fprintf('\n\n [crbm,crbom]=r_colores(X,Cm); ')
[crbm,crbom]=r_colores(Xm,Cm);
serrom=sqrt(diag(crbom));
serrm=sqrt(diag(crbm));
perrm=100*serrm./abs(pm);

Figure 7 Twin Otter Data Analysis and Modeling Script (continued)

American Institute of Aeronautics and Astronautics

14

fprintf('\n\n Display the parameter estimation ')
fprintf('\n results using model_disp.m:')
model_disp(pm,serrm,[1,10,100,0],Xlab);
fprintf('\n\n Press any key to continue ... '),pause,
%
% Estimate the transfer function model q/de.
%
fprintf('\n\n Estimate the transfer function ')
fprintf('\n for pitch rate to elevator deflection ')
fprintf('\n (q/de), using tfest.m:')
fprintf('\n\n [ytf,num,den,ptf,crbtf,s2tf,zr,xr,f] = tfest(u,z,t,1,2,w);')
fprintf('\n\n The frequency vector is w = 2*pi*[0.3:.01:1.3]''.')
w=2*pi*[0.3:.01:1.3]';
%
% Detrend the time domain data for frequency domain analysis.
%
u=zep(fdata(:,14));
z=zep(fdata(:,6));
subplot(2,1,1),plot(t,u,'LineWidth',2),grid on,
title('Transfer Function Modeling Data','FontWeight','bold'),
ylabel('Elevator (deg)'),
subplot(2,1,2),plot(t,z,'LineWidth',2),grid on,
ylabel('Pitch Rate (deg/sec)'),xlabel('Time (sec)'),
fprintf('\n\n Press any key to continue ... '),pause,
[ytf,num,den,ptf,crbtf,s2tf,zr,xr,f] = tfest(u,z,t,1,2,w);
subplot(2,1,1),plot(f,abs(zr),f,abs(xr*ptf),'r:','LineWidth',1.5),grid on,
title('Frequency Domain Transfer Function Modeling','FontWeight','bold'),
ylabel('Magnitude'),legend('Flight data','Transfer function model')
subplot(2,1,2),plot(f,unwrap(angle(zr)),f,unwrap(angle(xr*ptf)),'r:','LineWidth',1.5),grid on,
ylabel('Phase'),xlabel('Frequency (Hz)'),
fprintf('\n'),tf(num,den),
fprintf('\n\n The figure shows the frequency domain fit. ')
fprintf('\n\n Identified modes from the transfer function ')
fprintf('\n identification in the frequency domain are: \n')
damp(den),
fprintf('\n\n Press any key to continue ... '),pause,
subplot(2,1,1),plot(t,z,t,ytf,'r:','LineWidth',1.5),grid on,
title('Equation-Error Frequency Domain Transfer Function Modeling','FontWeight','bold'),
ylabel('Pitch Rate (deg/sec)'),legend('Flight data','Transfer function model')
subplot(2,1,2),plot(t,z-ytf,'LineWidth',2),grid on,
ylabel('Residual'),xlabel('Time (sec)'),
fprintf('\n\n The figure now shows the time domain fit. ')
fprintf('\n\n Press any key to continue ... '),pause,
%
% Estimate the dimensional stability and control derivatives
% using time-domain output-error parameter estimation.
%
fprintf('\n\n\n Now estimate the non-dimensional stability ')
fprintf('\n and control derivatives using output-error ')
fprintf('\n parameter estimation in the time domain.')
fprintf('\n\n Input: elevator (rad)')
fprintf('\n Outputs: alpha (rad), q (rad/sec), az (g)')
dtr=pi/180;
u=fdata(:,[14:16])*dtr;
z=[fdata(:,[4,6])*dtr,fdata(:,13)];
%
% Plot the measured inputs and outputs.
%
subplot(4,1,1), plot(t,u(:,1),'LineWidth',2),
title('Output-Error Time Domain Modeling','FontWeight','bold'),
grid on, ylabel('elevator (rad)'),
subplot(4,1,2), plot(t,z(:,1),'LineWidth',2),
grid on, ylabel('alpha (rad)'),
subplot(4,1,3), plot(t,z(:,2),'LineWidth',2),
grid on, ylabel('q (rad/sec)'),
subplot(4,1,4), plot(t,z(:,3),'LineWidth',2),
grid on, ylabel('az (g)'), xlabel('Time (sec)'),
fprintf('\n\n The figure shows the measured input and outputs.')

Figure 7 Twin Otter Data Analysis and Modeling Script (continued)

American Institute of Aeronautics and Astronautics

15

%
% Set up for the output-error parameter estimation using
% nldyn.m to define the dynamic model.
%
nldyn_psel;
fprintf('\n\n Press any key to continue ... '),pause,
%
% Find initial parameter values for the
% output-error parameter estimation.
%
fprintf('\n\n Initial values of the parameters in ')
fprintf('\n vector p0 are obtained from the ')
fprintf('\n equation-error solution:\n')
%
% Omit the CZq term in the output-error formulation,
% because of low sensitivity at low angles of attack.
%
p0=[pZ([1,3,4]);pm],
serr0=[serrZ([1,3,4]);serrm];
fprintf('\n\n Estimate the model parameters ')
fprintf('\n using output-error parameter estimation ')
fprintf('\n program oe.m and dynamic model file nldyn.m: ')
fprintf('\n\n [y,p,crb,rr]=oe(''nldyn'',p0,u,t,x0,cc,z);')
fprintf('\n\n Press any key to continue ... '),pause,
fprintf('\n\n Starting oe.m ...')
tic,[y,p,crb,rr]=oe('nldyn',p0,u,t,x0,cc,z);toc,
%
% Plot the results.
%
clf, title('Output-Error Parameter Estimation','FontWeight','bold'),
subplot(3,1,1),plot(t,z(:,1),t,y(:,1),'r:','LineWidth',2),grid on,ylabel('alpha (rad)'),
legend('Flight data','Output-Error model',0),
subplot(3,1,2),plot(t,z(:,2),t,y(:,2),'r:','LineWidth',2),grid on,ylabel('q (rad/sec)'),
subplot(3,1,3),plot(t,z(:,3),t,y(:,3),'r:','LineWidth',2),grid on,ylabel('az (g)'),xlabel('Time (sec)'),
fprintf('\n The plots show the measured output data ')
fprintf('\n and the identified model fit. ')
fprintf('\n\n Press any key to continue ... '),pause,
%
% Examine the residuals.
%
clf, subplot(3,1,1),plot(t,z(:,1)-y(:,1),'LineWidth',2),grid on;ylabel('alpha residuals (rad)'),
title('Residuals','FontSize',12,'FontWeight','bold'),
subplot(3,1,2),plot(t,z(:,2)-y(:,2),'LineWidth',2),grid on;ylabel('q residuals (rad/sec)'),
subplot(3,1,3),plot(t,z(:,3)-y(:,3),'LineWidth',2),grid on;ylabel('az residuals (g)'),xlabel('Time (sec)'),
%
% Correct the estimated parameter error bounds.
%
fprintf('\n\n The output residuals are colored ')
fprintf('\n (due to modeling error), so the ')
fprintf('\n Cramer-Rao bounds calculated by oe.m must ')
fprintf('\n be corrected for colored residuals using ')
fprintf('\n program m_colores.m:')
fprintf('\n\n [crb,crbo] = m_colores(''nldyn'',p,u,t,x0,c,z);')
fprintf('\n\n Press any key to continue ... '),pause,
fprintf('\n\n Starting m_colores.m ...\n\n')
tic,[crb,crbo] = m_colores('nldyn',p,u,t,x0,cc,z);toc,
serr=sqrt(diag(crb));
%
% Display the parameter estimation results.
%
model_disp(p,serr,[1,100,0,1,10,100,0],Xlab);
leglab=['Equation-Error';'Output-Error '];
parlab=['CZ_alpha';'CZ_de ';'CZ_o ';...
 'Cm_alpha';'Cm_q ';'Cm_de ';'Cm_o '];
indx=[4,6]';
plotpest([p0(indx),p(indx)],[serr0(indx),serr(indx)],[],[],parlab(indx,:),leglab);
title('Parameter Estimation Results','FontWeight','bold')
fprintf('\n\n The figure shows that the equation-error ')
fprintf('\n and output-error parameter estimates are ')
fprintf('\n in statistical agreement. ')

Figure 7 Twin Otter Data Analysis and Modeling Script (continued)

American Institute of Aeronautics and Astronautics

16

fprintf('\n\n Press any key to continue ... '),pause,
save 'totter_results.mat' num den p serr p0 serr0 pZ serrZ pm serrm cc dtr;
%
% Check the prediction capability.
%
load 'totter_lon_020213f1_017.mat'
fprintf('\n\n Now check the prediction capability ')
fprintf('\n using data from a different maneuver ')
fprintf('\n and the identified transfer function ')
fprintf('\n model from before:')
fprintf('\n'),tf(num,den),
u=fdata(:,14); u=zep(u);
z=fdata(:,6); z=zep(z);
ytfp=tfsim(num,den,0,u,t);
%
% Plot the transfer function prediction results.
%
subplot(2,1,1),plot(t,z,t,ytfp,'r:','LineWidth',2),grid on,
title('Transfer Function Prediction','FontWeight','bold'),
ylabel('Pitch Rate (deg/sec)'),legend('Flight data','Transfer function prediction',4)
subplot(2,1,2),plot(t,z-ytfp,'LineWidth',2),grid on,
ylabel('Residual'),xlabel('Time (sec)'),
fprintf('\n\n The figure shows the time domain prediction ')
fprintf('\n using the transfer function model identified ')
fprintf('\n using data from a different maneuver. ')
fprintf('\n\n Press any key to continue ... '),pause,
u=fdata(:,[14:16])*dtr;
z=[fdata(:,[4,6])*dtr,fdata(:,13)];
nldyn_psel;
yp=nldyn(p,u,t,x0,cc);
%
% Plot the measured inputs and outputs.
%
subplot(4,1,1), plot(t,u(:,1),'LineWidth',2),
title('Twin Otter Flight Test Data','FontWeight','bold'),
grid on, ylabel('elevator (rad)'),
subplot(4,1,2), plot(t,z(:,1),'LineWidth',2),
grid on, ylabel('alpha (rad)'),
subplot(4,1,3), plot(t,z(:,2),'LineWidth',2),
grid on, ylabel('q (rad/sec)'),
subplot(4,1,4), plot(t,z(:,3),'LineWidth',2),
grid on, ylabel('az (g)'), xlabel('Time (sec)'),
fprintf('\n\n\n The figure shows the measured input and outputs ')
fprintf('\n for the prediction maneuver. ')
fprintf('\n\n Press any key to continue ... '),pause,
%
% Plot the output-error prediction results.
%
title('Output-Error Prediction','FontWeight','bold'),
%
% Correct for measurement biases.
%
bias=ones(length(t),1)\(z-yp);
yp=yp+ones(length(t),1)*bias;
subplot(3,1,1),plot(t,z(:,1)/dtr,t,yp(:,1)/dtr,'r:','LineWidth',2),grid on,ylabel('alpha (rad)'),
legend('Flight data','Output-Error prediction',4),
title('Output-Error Model Prediction','FontWeight','bold'),
subplot(3,1,2),plot(t,z(:,2)/dtr,t,yp(:,2)/dtr,'r:','LineWidth',2),grid on,ylabel('q (rad/sec)'),
subplot(3,1,3),plot(t,z(:,3),t,yp(:,3),'r:','LineWidth',2),grid on,ylabel('az (g)'),xlabel('Time (sec)'),
fprintf('\n The plots show the measured output data ')
fprintf('\n and the prediction using the output-error ')
fprintf('\n model identified using data from a different ')
fprintf('\n maneuver. ')
fprintf('\n\n\nEnd of demonstration \n\n')
return

Figure 7 Twin Otter Data Analysis and Modeling Script (complete)

American Institute of Aeronautics and Astronautics

17

Figure 8 Twin Otter Pitching Moment Coefficient Modeling

American Institute of Aeronautics and Astronautics

18

