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Abstract 
 A collection of computer programs for aircraft 
system identification is described and demonstrated.  
The programs, collectively called System 
IDentification Programs for AirCraft, or SIDPAC, were 
developed in MATLAB® as m-file functions.  SIDPAC 
has been used successfully at NASA Langley Research 
Center with data from many different flight test 
programs and wind tunnel experiments.  SIDPAC 
includes routines for experiment design, data 
conditioning, data compatibility analysis, model 
structure determination, equation-error and output-
error parameter estimation in both the time and 
frequency domains, real-time and recursive parameter 
estimation, low order equivalent system identification, 
estimated parameter error calculation, linear and 
nonlinear simulation, plotting, and 3-D visualization.  
An overview of SIDPAC capabilities is provided, along 
with a demonstration of the use of SIDPAC with real 
flight test data from the NASA Glenn Twin Otter 
aircraft.  The SIDPAC software is available without 
charge to U.S. citizens by request to the author, 
contingent on the requestor completing a NASA 
software usage agreement.   

Introduction 
 Developing mathematical models of physical 
systems based on imperfect observations or 
measurements is known as system identification.  
When the system to be modeled is an aircraft, the 
models are generally dynamic with multiple inputs and 
outputs, and the measurements are noisy.  As a result, 
the required data volume is substantial, and most 
aircraft system identification tasks require computers  
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and software.  Many computer programs for aircraft 
system identification have been developed over the 
years, but most have been written in FORTRAN, and 
have been designed to address a specific type of 
problem, usually using methods best suited to the 
application for which the program was developed.  The 
existing programs are scattered among different 
organizations and people, and many have limited 
availability.  Significant time and effort can be required 
to learn how to compile and operate a particular 
program competently.  This effort is in addition to the 
time and effort involved in learning what the program 
actually does, how the methods are implemented, and 
how to properly interpret the results.   

 System IDentification Programs for AirCraft, or 
SIDPAC, is a collection of computer programs that 
implement a variety of methods for solving problems 
in the area of system identification applied to aircraft.  
This paper describes the routines included in SIDPAC 
and demonstrates SIDPAC using a real flight test data 
example.  All SIDPAC programs were written in 
MATLAB® as m-file functions.  An m-file function in 
MATLAB® is the analog of a subroutine in 
FORTRAN or a function in C.   

 MATLAB® is a platform-independent language 
that is easy to learn and program.  MATLAB® also has 
many built-in functions for linear algebra, data 
analysis, plotting, and debugging, and uses double 
precision arithmetic by default.  These characteristics 
make MATLAB® an excellent choice for 
implementing SIDPAC algorithms.   

 All of the algorithms implemented in SIDPAC are 
based on information available in the open literature.  
The documents listed under References contain 
information on the algorithms implemented in 
SIDPAC.  The references are grouped according to 
their relevance to system identification problems 
addressed in SIDPAC.   

 Development of SIDPAC occurred over a period 
of approximately 10 years at NASA Langley Research 
Center.  The author wrote and tested all of the SIDPAC 
routines.  Most of the routines in SIDPAC were 
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originally coded as m-file functions, but a few were 
translated and adapted from FORTRAN codes that 
have been used for many years.  SIDPAC has been and 
continues to be used at NASA Langley Research 
Center for system identification applied to data from 
various flight test programs and wind tunnel 
experiments.   

 Software tools for specific system identification 
tasks are implemented in SIDPAC as individual m-file 
functions, which may call other supporting m-file 
functions.  The comment header for each SIDPAC 
routine includes calling syntax, descriptions of inputs 
and outputs, the creation and modification history, and 
a list of called SIDPAC routines.  SIDPAC makes use 
of a few MATLAB® routines from the Signal 
Processing Toolbox and the Control Systems Toolbox, 
sold by The MathWorks, Inc., but SIDPAC also 
includes alternate routines that can be used if these 
MATLAB® toolboxes are not available to the user.  
There are also a few C mex files included in SIDPAC 
to increase processing speed for certain tasks, but 
again, there are alternate routines that can be used if a 
C compiler is not available to the user.  SIDPAC is 
therefore a complete set of programs for aircraft system 
identification, requiring only the standard built-in 
MATLAB® functions.   

 SIDPAC was developed and tested under 
MATLAB® 5.2, release 11, and MATLAB® 6.1, 
release 12.1, on an IBM-compatible personal 
computer.  SIDPAC software will work properly on 
any computer running MATLAB® 5.2 or higher.  
Since SIDPAC is very much like a MATLAB® 
toolbox, the computing hardware and operating system 
requirements for SIDPAC are the same as for 
MATLAB®.   

 The descriptions and demonstrations included 
here apply to SIDPAC version 1.1, which is the latest 
version as of this writing.  SIDPAC version 1.1 
software was sent to all registered SIDPAC users via 
e-mail just prior to public release of this paper.   

 Calling syntax and descriptive material in the 
header of each SIDPAC m-file are displayed in the 
MATLAB® command window in response to typing 
help filename, where filename is the name of a 
specific m-file.  All SIDPAC m-files have the 
customary .m file extension.  MATLAB® is an 
interpretive language, so the source code runs directly 
in the MATLAB® environment, with no requirement 
for explicit compile and link commands.  To execute 
any m-file in SIDPAC, the correct calling syntax can 
be copied from the comment header directly to the 

MATLAB® command line, then executed with a 
carriage return.   

 The SIDPAC m-files were originally written for 
research purposes and not for public release, so error 
handling, user interface, and the like, are Spartan.  
However, the software is fully documented and 
liberally commented.   

 The next section gives an overview of the 
SIDPAC software by listing m-files in several system 
identification problem categories, along with short 
narrative descriptions of what each m-file does.  
Following this, example applications of selected 
routines in SIDPAC to real flight test data analysis and 
modeling problems are presented and discussed.   

SIDPAC Overview 
 Nearly every system identification problem has 
some aspect that makes it unique.  Therefore, it is only 
a slight exaggeration to say that every system 
identification problem is a special case.  Because of 
this, SIDPAC does not include much in the way of 
automated analysis or decision-making.  Instead, 
SIDPAC implements a wide variety of system 
identification methods as individual m-files.  SIDPAC 
includes Graphical User Interfaces (GUI) that aid the 
analyst in routine tasks such as unit conversion, signal 
definition, and data compatibility analysis.  Beyond 
this, the spectrum of choices for inputs and outputs, 
model forms, transformations, data analysis, and 
modeling methods is so broad, and the problems are so 
diverse, that the development of a GUI for these 
purposes would be either very complicated or not 
effective.  Therefore, after the initial data reduction, 
SIDPAC m-files must be called individually from the 
MATLAB® command line.  This forces the analyst to 
be cognizant of what methods are being used and how 
the methods are implemented.  This level of contact 
with the methods and software is essential for 
obtaining good results.   

 It is a simple matter to create custom data 
analysis and modeling scripts in MATLAB® for 
particular system identification problems, using calls to 
SIDPAC m-files.  This is demonstrated in the Example 
section.  The resulting script can be used to automate 
the analysis for different maneuvers, and has the added 
benefit of completely documenting the data analysis 
and modeling process.   

 The m-file functions that comprise the main 
capabilities of SIDPAC are categorized below 
according to functionality.  Short narrative descriptions 
of the m-files appear below each category heading.  
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The m-files described here represent only a partial 
listing of the contents of SIDPAC.   

Data Analysis 

accel_cor.m – Corrects accelerometer measurements 
from the sensor location to the aircraft c.g.   

axcnv.m – Finds vector components in a rotated 
coordinate system.   

bodecmp.m – Compares Bode plots for general 
transfer function models.   

bodeplt.m – Draws Bode plots.   

chirpz.m – Computes the chirp-Z discrete Fourier 
transform.   

cmpplt.m – Plots two time series and their difference.   

cmpsigs.m – Scales and removes biases from two 
time series so their waveforms can be compared.   

compfc.m – Computes non-dimensional applied force 
coefficients based on measured data.   

compmc.m – Computes non-dimensional applied 
moment coefficients based on measured data.   

compzsd.m – Computes a smoothed numerical time 
derivative of noisy time series using Fourier analysis 
and the Wiener filter in the frequency domain.   

correl.m – Computes the estimated parameter 
correlation matrix.   

corx.m – Computes the normalized regressor 
correlation matrix.   

csmep.m – Computes smoothed endpoints for a noisy 
time series using a local cubic least squares fit.   

cubic_dtrend.m – Computes a cubic detrend function 
for a noisy time series.   

cutftd.m – Plots flight test data and implements 
manual cutting of flight test maneuver data lengths.   

deriv.m – Computes a smoothed numerical time 
derivative of noisy time series using local least squares 
polynomial fits to the data.   

dft.m – Computes the discrete Fourier transform using 
the definition (i.e., without using a Fast Fourier 
Transform algorithm).   

estlag.m – Estimates the pure time delay between two 
time series, using the maximum slope projection 
method described in MIL-STD 1797A.   

fint.m – Computes a high-accuracy finite Fourier 
integral for arbitrary frequencies, using measured time 
series data.   

fixdrop.m – Manually fixes data dropouts.   

hsmoo.m – Implements a posteriori low-pass filtering 
using fixed weight smoothing.   

pwrband.m – Computes the frequency band that 
contains a given fraction of the power in a time series.   

smoo.m – Separates signal from noise for a measured 
time series, using Fourier analysis and an optimal 
Wiener filter.   

spect.m – Computes power spectral density for a 
measured time series.   

tshift.m – Estimates the relative time shift between two 
time series, using time-domain cross correlation.   

xsmep.m – Computes smoothed endpoints for a 
measured time series.   

Experiment Design 

compcrb.m – Computes the Cramér-Rao bounds and 
the information matrix.   

dox.m – Generates modern experiment designs for 
response surface modeling.   

mkfswp.m – Generates a linear or logarithmic 
frequency sweep input.   

mkrandss.m – Generates a sum of sine waves with 
random amplitudes and frequencies.   

mkrdn.m – Generates white or arbitrarily colored 
random noise inputs.   

mksqw.m – Generates an alternating square wave 
input with arbitrary amplitudes and pulse widths.   

mksswp.m – Generates a Schroeder sweep input.   

Data Compatibility Analysis 

airchk.m – Checks the compatibility of measured data 
for translational accelerations, body-axis angular rates, 
airspeed, sideslip angle, and angle of attack.   

compat.m – Estimates instrumentation error 
parameters from measured input-output time-domain 
data, using output-error maximum likelihood.   

dcmp.m – Integrates aircraft kinematic equations for 
data compatibility analysis.   

sens_cor.m – Applies instrumentation error 
corrections to measured data.   
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rotchk.m – Checks the compatibility of measured data 
for body-axis angular rates and Euler angles.   

Model Structure Determination 

gsorth.m – Generates a set of mutually orthogonal 
regressors using Gram-Schmidt orthogonalization.   

swr.m – Identifies general multivariate models from 
measured input-output data using least squares 
stepwise regression, and computes parameter estimates 
and error bounds.  This routine requires interactive 
input from the analyst to identify the model structure.  
The routine can handle either real or complex data, so 
the same routine can be used for time-domain or 
frequency-domain data.   

offit.m – Identifies general multivariate models from 
measured input-output time-domain data, and 
computes parameter estimates and error bounds.  
Multivariate orthogonal basis functions generated from 
the measured data are used to identify the model 
structure.  This routine can be run autonomously or 
with interactive input from the analyst.   

pfstat.m – Computes the partial F statistic for 
hypothesis testing in model structure determination.   

Equation-Error Parameter Estimation 

lesq.m – Estimates equation-error model parameters 
using a linear least squares regression formulation.  
This routine can be used with either real or complex 
data, so the same routine can be used for time-domain 
or frequency-domain data.   

Output-Error Parameter Estimation 

mnr.m – Computes the modified Newton-Raphson 
step for multi-dimensional parameter optimization, and 
computes the cost gradient and information matrix.   

oe.m – Estimates dynamic model parameters from 
measured input-output time-domain data using 
output-error maximum likelihood.  This routine uses 
general dynamic model definition m-files that can be 
linear or nonlinear.   

senest.m – Computes sensitivity estimates using finite 
differences.   

simplex.m – Implements the simplex method for 
multi-dimensional parameter optimization without cost 
function gradients.   

Estimated Parameter Error Bounds 

r_colores.m – Computes Cramér-Rao bounds for the 
covariances of the estimated parameters in a linear 

least squares regression formulation, both 
conventionally and accounting for colored residuals.   

colores.m – Computes corrected parameter standard 
errors by post-processing results from output-error 
maximum likelihood parameter estimation (oe.m).  
The correction accounts for the practical fact that 
output-error residuals are usually colored, not white, as 
assumed in the output-error maximum likelihood 
theoretical formulation.  Corrected parameter standard 
errors from colores.m are consistent with the scatter in 
parameter estimates from repeated flight test 
maneuvers, and therefore accurately represent 
estimated parameter uncertainty.   

m_colores.m – Vectorized version of colores.m, 
which runs much faster and gives the same results as 
colores.m.   

Real-Time Parameter Estimation 

rft.m – Computes the recursive discrete Fourier 
transform of a time series.   

rtpid.m – Computes sequential real-time estimates of 
dynamic model parameters and the associated 
covariance matrix, using equation-error in the 
frequency domain.   

rlesq.m – Computes equation-error model parameter 
estimates and covariance matrix estimates for a linear 
least squares regression problem, using a recursive 
formulation.  This routine is the recursive version of 
lesq.m.   

slesq.m – Computes equation-error model parameter 
estimates and covariance matrix estimates for a linear 
least squares regression problem, using a batch 
formulation applied to sequential sections of data.  This 
routine is the sequential version of lesq.m.    

Frequency Domain Parameter Estimation 

fdoe.m – Estimates dynamic model parameters from 
measured input-output frequency-domain data using 
output-error maximum likelihood.  This routine is the 
frequency-domain equivalent of oe.m.   

tfest.m – Estimates parameters in a transfer function 
model structure, using equation-error in the frequency 
domain and fint.m to compute high-accuracy finite 
Fourier integrals for arbitrary frequencies.   

loest.m – Estimates parameters in a low order 
equivalent system transfer function model structure, 
using the same approach as in tfest.m, except that a 
relaxation technique is used to estimate the equivalent 
time delay parameter.   
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Utilities 

ab3.m – Implements third-order Adams-Bashforth 
numerical integration.   

adamb3.m – Version of ab3.m used in parameter 
estimation algorithms.   

adamb3.c – C mex-file version of adamb3.m used 
for high speed computation in parameter estimation 
algorithms.   

buzz.m – Adds white noise to a time series.   

colnse.m – Adds a selectable combination of white 
noise and band-limited noise to a time series. 

comfun.m – Computes the value of ordinary 
polynomial functions.   

dband.m – Applies a dead band to a time series.   

int1.m – Does one-dimensional linear interpolation.   

int2.m – Does two-dimensional linear interpolation.   

int3.m – Does three-dimensional linear interpolation.   

loadflat.m – Reads a general ASCII flat file into the 
MATLAB® workspace.   

massprop.m – Assembles aircraft mass and moment 
of inertia data.   

misvd.m – Computes robust matrix inversion using 
singular value decomposition.   

milstd.m – Computes longitudinal handling qualities 
level prediction according to MIL-STD 1797A, and 
plots handling qualities parameters and boundaries.   

model_disp.m – Displays the functional form and 
parameter values for a polynomial model.   

ocf.m – Converts a transfer function numerator and 
denominator into a state space model in observer 
canonical form.   

plotmesh.m – Makes 3-D mesh plots for polynomial 
models.   

plotpest.m – Plots parameter estimates and error bars 
representing 95 percent confidence intervals.   

plotsurf.m – Makes 3-D surface plots for polynomial 
models.   

plot3d.m – Makes 3-D plots using data arranged for 
linear regression.   

press.m – Computes predicted sum of squares metric.   

ratelim.m – Implements rate limits.   

regcor.m – Computes and displays pairwise regressor 
correlations.   

reggen.m – Generates multivariate polynomial 
regressors.   

rms.m – Computes root mean square of the elements 
of a vector.   

rk2.m – Implements second-order Runge-Kutta 
numerical integration.   

runk2.m – Version of rk2.m used in parameter 
estimation algorithms.   

runk2.c – C mex-file version of runk2.m used in 
parameter estimation algorithms.   

rk4.m – Implements fourth-order Runge-Kutta 
numerical integration.   

runk4.m – Version of rk4.m used in parameter 
estimation algorithms.   

runk4.c – C mex-file version of runk4.m used in 
parameter estimation algorithms.   

spl.m – Generates spline functions.   

ulag.m – Applies a selected time shift to a time series.   

Example 
 To demonstrate the use and capabilities of 
SIDPAC, a real flight test data analysis and modeling 
problem is presented.  This example was chosen so that 
some of the main elements of SIDPAC could be 
demonstrated.   

 The flight test data was obtained from a 
longitudinal maneuver flown on the NASA Glenn 
Twin Otter aircraft, see Figure 1.  The Twin Otter is a 
twin-engine turboprop commuter aircraft equipped 
with high-quality flight research instrumentation.   

 The flight test data for the example maneuver was 
available in an ASCII file, with the measured quantities 
named according to the convention used at NASA 
Glenn.  To use SIDPAC effectively, the first step is to 
put the data in a standard format that some of the 
SIDPAC routines expect.  This is a simple matter of 
unit conversions, routine calculations, and assembling 
the data into an array called fdata in the MATLAB® 
workspace, where each column of the array is assigned 
a specific quantity.  There is a GUI in SIDPAC to make 
this process easier, which is invoked by simply typing 
sid at the MATLAB® command window prompt.  The 
resulting GUI is shown in Figure 2.  The analyst can 
use this GUI to quickly plot any of the workspace 
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variables, convert units, then assign the result to the 
appropriate place in the standard data matrix fdata.  A 
side benefit of this procedure is that the flight test data 
is automatically checked for missing information as the 
analyst assigns data to the channels in the standard data 
matrix fdata.  In this example, the measurement for 
heading angle psi was missing.  However, this 
measurement is not needed for longitudinal data 
analysis and modeling.   

 For large-scale flight test data analysis, the data 
reduction and channel assignment process is typically 
implemented by creating a script, so that the data 
reduction steps can be repeated automatically for each 
maneuver.  A script is simply a text file containing 
commands that could have been issued at the 
MATLAB® command prompt.  The commands in the 
script are executed by typing the name of the script 
file, omitting the file extension.  Script files must have 
the .m file extension.   

 The analyst clicks on the Next button to proceed 
to the next GUI, shown in Figure 3, which can be used 
to cut the maneuver data length.  This capability is 
necessary because it is common for the data to include 
more than is necessary for the analysis and dynamic 
modeling.  For example, there may be long stretches of 
steady trim with no data information content, or it may 
be that the pilot applied a different power setting or 
changed the flight condition near the end of the data, to 
set up for the next flight test maneuver.  In the latter 
case, the assumptions for the modeling may be 
violated, so this part of the data must be removed.  The 
Cut Maneuver button allows the analyst to define the 
beginning and end of the maneuver using graphical 
(mouse) or numerical (keyboard) input.   

 Clicking the Next button again, the analyst 
arrives at the data compatibility analysis GUI, where 
the kinematic consistency of the measured output 
quantities is checked.  Figure 4 shows data 
compatibility plots of the measured airspeed, angle of 
attack, and sideslip angle, compared to reconstructed 
values obtained from integrating the kinematic 
equations using translational accelerations and angular 
rate measurements as inputs.  The analogous check on 
the Euler angle measurements, using the rotational 
kinematic equations with angular rate measurement 
inputs to reconstruct the Euler angles, is shown when 
the analyst selects the rotational option from the pull-
down menu at the upper right of the GUI, see Figure 5.   

 SIDPAC software was designed so that it is 
possible to enter or exit any GUI at any time without 
adversely affecting results.  The analyst can issue any 

required problem-specific commands in the 
MATLAB® command window (whether the current 
GUI is closed or not), then continue with the analysis 
using the GUI.   

 Instrumentation error parameters can be found 
using output-error parameter estimation and a default 
selection for the instrumentation error model structure 
by simply clicking the Estimate Errors button in the 
data compatibility GUI.  Parameter estimation results 
are stored and displayed in the MATLAB® workspace.  
Estimated instrumentation errors can be removed from 
the measured data by clicking the Correct Data 
button.  Figure 6 shows the rotational data after the 
estimated instrumentation corrections have been 
applied to the data.  Figures 5 and 6 show how 
applying the estimated instrumentation error 
corrections implements kinematic consistency among 
the measured outputs related to the pitch rotation.   

 At this point, the data have been organized, 
plotted, checked for data compatibility, and corrected 
using estimated instrumentation errors.  The next steps 
vary greatly depending on the goals of the 
investigation.  For this example, a script was developed 
to implement and document the data analysis and 
modeling process.  Figure 7 shows a listing of the 
script.  Space does not permit showing all of the results 
generated from this script, but a short description will 
be given here.   

 The initial commands in the script plot the 
measured data and compute non-dimensional 
aerodynamic coefficients.  Next, body-axis Z force and 
pitching moment coefficients are modeled in an 
equation-error formulation using least squares 
regression and stepwise regression.  Corrected 
parameter error bounds are computed and displayed, 
along with the parameter estimates and confidence 
intervals.  Modeling is then carried out in the 
frequency domain, using a transfer function model and 
equation-error parameter estimation.  Following this, 
output-error parameter estimation in the time domain is 
used with a dynamic model file implementing the full 
nonlinear equations of motion and a linear 
aerodynamic model to estimate non-dimensional 
stability and control derivatives.  A prediction case is 
included to demonstrate the validity of the identified 
models and show the linear and nonlinear simulation 
capabilities.  Plots of the results appear in the 
MATLAB® figure window and various displays of 
results appear in the MATLAB® command window.   

 Figure 8 shows one of the plots, which is a 
comparison of the measured non-dimensional pitching 
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moment coefficient with the identified equation-error 
model.  Table 1 contains parameter estimation results 
for this case.   

 The entire demonstration script in Figure 7 is 
available in SIDPAC as totter_demo.m.  The 
demonstration can be executed by simply typing 
totter_demo at the MATLAB® command prompt.   

Concluding Remarks 
 A collection of computer programs called System 
IDentification Programs for AirCraft, or SIDPAC, was 
described and demonstrated on a real flight test data 
analysis and modeling problem.  SIDPAC was 
developed and tested at NASA Langley Research 
Center in the course of solving real problems in aircraft 
system identification.   

 SIDPAC addresses a wide range of system 
identification problems in a common MATLAB® 
environment.  MATLAB® has many advantages, 
including platform-independence, easy to learn and 
program, many built-in functions for linear algebra, 
data analysis, debugging, plotting, and data 
visualization, and the use of double precision 
arithmetic by default.  These characteristics make 
MATLAB® an excellent choice for implementing 
SIDPAC algorithms.   

 Relevant theory and practical considerations for 
the methods implemented in SIDPAC are completely 
described in the forthcoming text entitled System 
Identification Applied to Aircraft – Theory and 
Practice, by V. Klein and E.A. Morelli.  The SIDPAC 
software is a product of NASA Langley Research 
Center, and is available free of charge to U.S. citizens 
by request to the author, contingent on the requestor 
completing a NASA software usage agreement.  
Requests for the software should be e-mailed to: 

e.a.morelli@larc.nasa.gov 

 Please include name, mailing address, e-mail 
address, telephone number, and company affiliation of 
the requestor, along with a one-sentence description of 
the intended use of SIDPAC, for technology transfer 
record-keeping purposes.   

 SIDPAC allows a user to apply state-of-the-art 
technology to aircraft system identification problems, 
within a single, highly capable, and easy-to-use 
computing environment.   
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Table 1  Twin Otter Equation-Error Modeling Results 

Parameter Estimate Std. Error 

mC
α

  (rad−1) −1.476 0.022 

qmC  −36.35 0.69 

emC
δ

  (rad−1) −1.869 0.020 

omC  0.0023 0.0001 

 
 

Figure 1  NASA Glenn Twin Otter 
 
 

 

 

 
Figure 2  SIDPAC Data Channel Assignment GUI 
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Figure 3  SIDPAC Maneuver Length GUI 

 

 
Figure 4  SIDPAC Translational Data Compatibility GUI 
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Figure 5  SIDPAC Rotational Data Compatibility GUI 

 

 
Figure 6  SIDPAC Rotational Data Compatibility GUI with Instrumentation Corrections Applied 
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% 
%  script totter_demo.m 
% 
%  Usage: totter_demo; 
% 
%  Description: 
% 
%    Demonstrates flight data analysis and modeling  
%    using SIDPAC for a longitudinal flight test maneuver  
%    on the NASA Glenn Twin Otter aircraft. 
% 
%  Input: 
% 
%    None 
% 
%  Output: 
% 
%    data file 
%    2-D plots 
% 
 
% 
%    Calls: 
%      compfc.m 
%      compmc.m 
%      xsmep.m 
%      lesq.m 
%      r_colores.m 
%      model_disp.m 
%      swr.m 
%      zep.m 
%      tfest.m 
%      nldyn_psel.m 
%      oe.m 
%      nldyn.m 
%      m_colores.m 
%      plotpest.m 
%      tfsim.m 
% 
%    Author:  Eugene A. Morelli 
% 
%    History:   
%     11 Jul 2002 - Created and debugged, EAM. 
% 
%  Copyright (C) 2002  Eugene A. Morelli 
% 
%  This program carries no warranty, not even the implied  
%  warranty of merchantability or fitness for a particular purpose.   
% 
%  Please email bug reports or suggestions for improvements to: 
% 
%      e.a.morelli@larc.nasa.gov 
% 
 
% 
%  Load the data file. 
% 
load 'totter_lon_020213f1_018.mat' 
% 
%  Set up the figure window. 
% 
FgH=figure('Units','normalized','Position',[.506 .231 .504 .715],... 
           'Name','SIDPAC Demonstration','NumberTitle','off','Toolbar','none'); 
% 
%  Plot the measured inputs and outputs. 
% 
subplot(4,1,1), plot(t,fdata(:,14),'LineWidth',2),  
title('Twin Otter Flight Test Data','FontWeight','bold'), 
grid on, ylabel('elevator  (deg)'), 

Figure 7  Twin Otter Data Analysis and Modeling Script (continued) 

American Institute of Aeronautics and Astronautics 

12



 

subplot(4,1,2), plot(t,fdata(:,4),'LineWidth',2),  
grid on, ylabel('alpha  (deg)'),  
subplot(4,1,3), plot(t,fdata(:,6),'LineWidth',2),  
grid on, ylabel('q  (deg/sec)'),  
subplot(4,1,4), plot(t,fdata(:,13),'LineWidth',2),  
grid on, ylabel('az  (g)'), xlabel('Time (sec)'),  
fprintf('\n\n The figure shows the measured input and outputs.') 
fprintf('\n\n Press any key to continue ... '),pause, 
% 
%  Calculate aerodynamic force and moment coefficients. 
% 
fprintf('\n\n Calculate the non-dimensional ') 
fprintf('\n aerodynamic force and moment ') 
fprintf('\n coefficients using compfc.m and compmc.m:') 
fprintf('\n\n [CX,CY,CZ,CD,CYw,CL]=compfc(fdata);') 
fprintf('\n\n [Cl,Cm,Cn]=compmc(fdata);') 
[CX,CY,CZ,CD,CYw,CL]=compfc(fdata); 
[Cl,Cm,Cn,pv,qv,rv]=compmc(fdata); 
subplot(2,1,1),plot(t,CZ,'LineWidth',2),grid on,ylabel('Z Force Coefficient'), 
title('Non-Dimensional Coefficients from Flight Test Data','FontWeight','bold'), 
subplot(2,1,2),plot(t,Cm,'LineWidth',2),grid on,ylabel('Pitching Moment Coefficient'),xlabel('Time (sec)'),  
fprintf('\n\n Press any key to continue ... '),pause, 
% 
%  Assemble the regressor matrix. 
% 
fprintf('\n\n Assemble the matrix of regressors ') 
fprintf('\n for equation-error parameter estimation: ') 
fprintf('\n\n alpha  (rad)'), 
fprintf('\n qhat '), 
fprintf('\n elevator  (rad)'), 
X=[fdata(:,4)*pi/180,fdata(:,72),fdata(:,14)*pi/180]; 
% 
%  Plot the regressors. 
% 
subplot(3,1,1),plot(t,X(:,1),'LineWidth',2),grid on,ylabel('alpha  (rad)'), 
title('Equation-Error Regressors','FontWeight','bold'), 
subplot(3,1,2),plot(t,X(:,2),'LineWidth',2),grid on,ylabel('qhat '), 
subplot(3,1,3),plot(t,X(:,3),'LineWidth',2),grid on,ylabel('elevator  (rad)'), 
xlabel('Time (sec)'), 
fprintf('\n\n Press any key to continue ... '),pause, 
% 
%  Find smoothed trim values.  
% 
fprintf('\n\n Find the smoothed trim values ') 
fprintf('\n from the regressors using xsmep.m:') 
fprintf('\n\n X0=xsmep(X,1.0,dt);') 
X0=xsmep(X,1,dt); 
% 
%  Plot the regressors and the smoothed trim values. 
% 
subplot(3,1,1),plot(t,X(:,1),'LineWidth',2),hold on, 
title('Equation-Error Regressors','FontWeight','bold'), 
plot(t(1),X(1,1),'r.','MarkerSize',14,'LineWidth',2), hold off, 
grid on,ylabel('alpha  (rad)'), 
subplot(3,1,2),plot(t,X(:,2),'LineWidth',2), hold on, 
plot(t(1),X(1,2),'r.','MarkerSize',14,'LineWidth',2), hold off, 
grid on,ylabel('qhat '), 
subplot(3,1,3),plot(t,X(:,3),'LineWidth',2), hold on, 
plot(t(1),X(1,3),'r.','MarkerSize',14,'LineWidth',2), hold off, 
grid on,ylabel('elevator  (deg)'),xlabel('Time (sec)'), 
% 
%  Remove the smoothed trim values. 
% 
fprintf('\n\n Remove the smoothed trim values ') 
fprintf('\n from the regressors using :') 
fprintf('\n\n X=X-ones(size(X,1),1)*X0(1,:);') 
X=X-ones(size(X,1),1)*X0(1,:); 
% 
%  Program lesq.m requires a constant regressor for the bias term. 
% 

Figure 7  Twin Otter Data Analysis and Modeling Script (continued) 
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X=[X,ones(size(X,1),1)]; 
fprintf('\n\n Press any key to continue ... '),pause, 
% 
%  Linear regression for the Z force coefficient. 
% 
fprintf('\n\n Z force coefficient:') 
fprintf('\n\n Estimate stability and control ') 
fprintf('\n derivatives using equation-error ') 
fprintf('\n linear regression program lesq.m: ') 
fprintf('\n\n [yZ,pZ,crbZ,s2Z]=lesq(X,CZ);') 
[yZ,pZ,crbZ,s2Z]=lesq(X,CZ); 
% 
%  Plot the results. 
% 
subplot(2,1,1),plot(t,CZ,t,yZ,'r:','LineWidth',2),grid on, 
title('Equation-Error Parameter Estimation','FontWeight','bold'), 
ylabel('CZ'),legend('Flight data','Regression model',0), 
subplot(2,1,2),plot(t,CZ-yZ,'LineWidth',1.5),grid on, 
ylabel('Residual'),xlabel('Time (sec)'), 
% 
%  Compute and display the error bounds.   
% 
fprintf('\n\n Compute the estimated parameter ') 
fprintf('\n error bounds using r_colores.m: ') 
fprintf('\n\n [crbZ,crboZ]=r_colores(X,CZ); ') 
[crbZ,crboZ]=r_colores(X,CZ); 
serroZ=sqrt(diag(crboZ)); 
serrZ=sqrt(diag(crbZ)); 
perrZ=100*serrZ./abs(pZ); 
fprintf('\n\n Display the parameter estimation ') 
fprintf('\n results using model_disp.m:') 
Xlab=['alpha  (rad)   ';'qhat           ';'elevator  (rad)']; 
model_disp(pZ,serrZ,[1,10,100,0],Xlab); 
fprintf('\n\n Press any key to continue ... '),pause, 
% 
%  Stepwise regression for the pitching moment coefficient. 
% 
fprintf('\n\n Pitching moment coefficient: ') 
fprintf('\n\n Add a nonlinear cross term alpha*elevator ,') 
fprintf('\n regressor and use stepwise regression program swr.m:') 
fprintf('\n\n [ym,pm,crbm,s2m]=swr(X,Cm);') 
% 
%  Program swr.m adds the bias term automatically,  
%  so the constant regressor is not necessary.  Add  
%  the nonlinear cross term to the regressor matrix X.   
% 
X=[X(:,[1:3]),X(:,1).*X(:,3)]; 
[ym,pm,crbm,s2m,Xm,pindxm]=swr(X,Cm,1); 
% 
%  Include only parameters for selected regressors. 
% 
pm=pm(pindxm); 
% 
%  Plot the results. 
% 
subplot(2,1,1),plot(t,Cm,t,ym,'r:','LineWidth',1.5),grid on, 
title('Pitching Moment Coefficient','FontWeight','bold'), 
ylabel('Cm'),legend('Flight data','Equation-Error model') 
subplot(2,1,2),plot(t,Cm-ym,'LineWidth',1.5),grid on, 
ylabel('Residual'),xlabel('Time (sec)'), 
% 
%  Compute and display the error bounds. 
% 
fprintf('\n\n Compute the estimated parameter ') 
fprintf('\n error bounds using r_colores.m: ') 
fprintf('\n\n [crbm,crbom]=r_colores(X,Cm); ') 
[crbm,crbom]=r_colores(Xm,Cm); 
serrom=sqrt(diag(crbom)); 
serrm=sqrt(diag(crbm)); 
perrm=100*serrm./abs(pm); 

Figure 7  Twin Otter Data Analysis and Modeling Script (continued) 
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fprintf('\n\n Display the parameter estimation ') 
fprintf('\n results using model_disp.m:') 
model_disp(pm,serrm,[1,10,100,0],Xlab); 
fprintf('\n\n Press any key to continue ... '),pause, 
% 
%  Estimate the transfer function model q/de. 
% 
fprintf('\n\n Estimate the transfer function ') 
fprintf('\n for pitch rate to elevator deflection ') 
fprintf('\n (q/de), using tfest.m:') 
fprintf('\n\n [ytf,num,den,ptf,crbtf,s2tf,zr,xr,f] = tfest(u,z,t,1,2,w);') 
fprintf('\n\n The frequency vector is w = 2*pi*[0.3:.01:1.3]''.') 
w=2*pi*[0.3:.01:1.3]'; 
% 
%  Detrend the time domain data for frequency domain analysis. 
% 
u=zep(fdata(:,14)); 
z=zep(fdata(:,6)); 
subplot(2,1,1),plot(t,u,'LineWidth',2),grid on, 
title('Transfer Function Modeling Data','FontWeight','bold'), 
ylabel('Elevator  (deg)'), 
subplot(2,1,2),plot(t,z,'LineWidth',2),grid on, 
ylabel('Pitch Rate  (deg/sec)'),xlabel('Time (sec)'), 
fprintf('\n\n Press any key to continue ... '),pause, 
[ytf,num,den,ptf,crbtf,s2tf,zr,xr,f] = tfest(u,z,t,1,2,w); 
subplot(2,1,1),plot(f,abs(zr),f,abs(xr*ptf),'r:','LineWidth',1.5),grid on, 
title('Frequency Domain Transfer Function Modeling','FontWeight','bold'), 
ylabel('Magnitude'),legend('Flight data','Transfer function model') 
subplot(2,1,2),plot(f,unwrap(angle(zr)),f,unwrap(angle(xr*ptf)),'r:','LineWidth',1.5),grid on, 
ylabel('Phase'),xlabel('Frequency (Hz)'), 
fprintf('\n'),tf(num,den), 
fprintf('\n\n The figure shows the frequency domain fit. ') 
fprintf('\n\n Identified modes from the transfer function ') 
fprintf('\n identification in the frequency domain are: \n') 
damp(den), 
fprintf('\n\n Press any key to continue ... '),pause, 
subplot(2,1,1),plot(t,z,t,ytf,'r:','LineWidth',1.5),grid on, 
title('Equation-Error Frequency Domain Transfer Function Modeling','FontWeight','bold'), 
ylabel('Pitch Rate (deg/sec)'),legend('Flight data','Transfer function model') 
subplot(2,1,2),plot(t,z-ytf,'LineWidth',2),grid on, 
ylabel('Residual'),xlabel('Time (sec)'), 
fprintf('\n\n The figure now shows the time domain fit. ') 
fprintf('\n\n Press any key to continue ... '),pause, 
% 
%  Estimate the dimensional stability and control derivatives  
%  using time-domain output-error parameter estimation.   
% 
fprintf('\n\n\n Now estimate the non-dimensional stability ') 
fprintf('\n and control derivatives using output-error ') 
fprintf('\n parameter estimation in the time domain.') 
fprintf('\n\n Input:   elevator (rad)') 
fprintf('\n Outputs: alpha (rad), q (rad/sec), az (g)') 
dtr=pi/180; 
u=fdata(:,[14:16])*dtr; 
z=[fdata(:,[4,6])*dtr,fdata(:,13)]; 
% 
%  Plot the measured inputs and outputs. 
% 
subplot(4,1,1), plot(t,u(:,1),'LineWidth',2),  
title('Output-Error Time Domain Modeling','FontWeight','bold'), 
grid on, ylabel('elevator  (rad)'),  
subplot(4,1,2), plot(t,z(:,1),'LineWidth',2),  
grid on, ylabel('alpha  (rad)'),  
subplot(4,1,3), plot(t,z(:,2),'LineWidth',2),  
grid on, ylabel('q  (rad/sec)'),  
subplot(4,1,4), plot(t,z(:,3),'LineWidth',2),  
grid on, ylabel('az  (g)'), xlabel('Time (sec)'),  
fprintf('\n\n The figure shows the measured input and outputs.') 

Figure 7  Twin Otter Data Analysis and Modeling Script (continued) 
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% 
%  Set up for the output-error parameter estimation using  
%  nldyn.m to define the dynamic model. 
% 
nldyn_psel; 
fprintf('\n\n Press any key to continue ... '),pause,  
% 
%  Find initial parameter values for the  
%  output-error parameter estimation. 
% 
fprintf('\n\n Initial values of the parameters in ') 
fprintf('\n vector p0 are obtained from the ') 
fprintf('\n equation-error solution:\n') 
% 
%  Omit the CZq term in the output-error formulation,  
%  because of low sensitivity at low angles of attack. 
% 
p0=[pZ([1,3,4]);pm], 
serr0=[serrZ([1,3,4]);serrm]; 
fprintf('\n\n Estimate the model parameters ') 
fprintf('\n using output-error parameter estimation ') 
fprintf('\n program oe.m and dynamic model file nldyn.m:  ') 
fprintf('\n\n [y,p,crb,rr]=oe(''nldyn'',p0,u,t,x0,cc,z);') 
fprintf('\n\n Press any key to continue ... '),pause, 
fprintf('\n\n Starting oe.m ...') 
tic,[y,p,crb,rr]=oe('nldyn',p0,u,t,x0,cc,z);toc, 
% 
%  Plot the results. 
% 
clf, title('Output-Error Parameter Estimation','FontWeight','bold'), 
subplot(3,1,1),plot(t,z(:,1),t,y(:,1),'r:','LineWidth',2),grid on,ylabel('alpha  (rad)'), 
legend('Flight data','Output-Error model',0), 
subplot(3,1,2),plot(t,z(:,2),t,y(:,2),'r:','LineWidth',2),grid on,ylabel('q  (rad/sec)'), 
subplot(3,1,3),plot(t,z(:,3),t,y(:,3),'r:','LineWidth',2),grid on,ylabel('az  (g)'),xlabel('Time (sec)'), 
fprintf('\n The plots show the measured output data ') 
fprintf('\n and the identified model fit. ') 
fprintf('\n\n Press any key to continue ... '),pause, 
% 
%  Examine the residuals. 
% 
clf, subplot(3,1,1),plot(t,z(:,1)-y(:,1),'LineWidth',2),grid on;ylabel('alpha residuals (rad)'), 
title('Residuals','FontSize',12,'FontWeight','bold'), 
subplot(3,1,2),plot(t,z(:,2)-y(:,2),'LineWidth',2),grid on;ylabel('q residuals (rad/sec)'), 
subplot(3,1,3),plot(t,z(:,3)-y(:,3),'LineWidth',2),grid on;ylabel('az residuals (g)'),xlabel('Time (sec)'), 
% 
%  Correct the estimated parameter error bounds. 
% 
fprintf('\n\n The output residuals are colored ') 
fprintf('\n (due to modeling error), so the ') 
fprintf('\n Cramer-Rao bounds calculated by oe.m must ') 
fprintf('\n be corrected for colored residuals using ') 
fprintf('\n program m_colores.m:') 
fprintf('\n\n [crb,crbo] = m_colores(''nldyn'',p,u,t,x0,c,z);') 
fprintf('\n\n Press any key to continue ... '),pause, 
fprintf('\n\n Starting m_colores.m ...\n\n') 
tic,[crb,crbo] = m_colores('nldyn',p,u,t,x0,cc,z);toc, 
serr=sqrt(diag(crb)); 
% 
%  Display the parameter estimation results. 
% 
model_disp(p,serr,[1,100,0,1,10,100,0],Xlab); 
leglab=['Equation-Error';'Output-Error  ']; 
parlab=['CZ_alpha';'CZ_de   ';'CZ_o    ';... 
        'Cm_alpha';'Cm_q    ';'Cm_de   ';'Cm_o    ']; 
indx=[4,6]'; 
plotpest([p0(indx),p(indx)],[serr0(indx),serr(indx)],[],[],parlab(indx,:),leglab); 
title('Parameter Estimation Results','FontWeight','bold') 
fprintf('\n\n The figure shows that the equation-error ') 
fprintf('\n and output-error parameter estimates are ') 
fprintf('\n in statistical agreement. ') 
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fprintf('\n\n Press any key to continue ... '),pause, 
save 'totter_results.mat' num den p serr p0 serr0 pZ serrZ pm serrm cc dtr; 
% 
%  Check the prediction capability. 
% 
load 'totter_lon_020213f1_017.mat' 
fprintf('\n\n Now check the prediction capability ') 
fprintf('\n using data from a different maneuver ') 
fprintf('\n and the identified transfer function ') 
fprintf('\n model from before:') 
fprintf('\n'),tf(num,den), 
u=fdata(:,14); u=zep(u); 
z=fdata(:,6); z=zep(z); 
ytfp=tfsim(num,den,0,u,t); 
% 
%  Plot the transfer function prediction results. 
% 
subplot(2,1,1),plot(t,z,t,ytfp,'r:','LineWidth',2),grid on, 
title('Transfer Function Prediction','FontWeight','bold'), 
ylabel('Pitch Rate (deg/sec)'),legend('Flight data','Transfer function prediction',4) 
subplot(2,1,2),plot(t,z-ytfp,'LineWidth',2),grid on, 
ylabel('Residual'),xlabel('Time (sec)'), 
fprintf('\n\n The figure shows the time domain prediction ') 
fprintf('\n using the transfer function model identified ') 
fprintf('\n using data from a different maneuver. ') 
fprintf('\n\n Press any key to continue ... '),pause, 
u=fdata(:,[14:16])*dtr; 
z=[fdata(:,[4,6])*dtr,fdata(:,13)]; 
nldyn_psel; 
yp=nldyn(p,u,t,x0,cc); 
% 
%  Plot the measured inputs and outputs. 
% 
subplot(4,1,1), plot(t,u(:,1),'LineWidth',2),  
title('Twin Otter Flight Test Data','FontWeight','bold'), 
grid on, ylabel('elevator  (rad)'),  
subplot(4,1,2), plot(t,z(:,1),'LineWidth',2),  
grid on, ylabel('alpha  (rad)'),  
subplot(4,1,3), plot(t,z(:,2),'LineWidth',2),  
grid on, ylabel('q  (rad/sec)'),  
subplot(4,1,4), plot(t,z(:,3),'LineWidth',2),  
grid on, ylabel('az  (g)'), xlabel('Time (sec)'),  
fprintf('\n\n\n The figure shows the measured input and outputs ') 
fprintf('\n for the prediction maneuver. ') 
fprintf('\n\n Press any key to continue ... '),pause, 
% 
%  Plot the output-error prediction results. 
% 
title('Output-Error Prediction','FontWeight','bold'), 
% 
%  Correct for measurement biases. 
% 
bias=ones(length(t),1)\(z-yp); 
yp=yp+ones(length(t),1)*bias; 
subplot(3,1,1),plot(t,z(:,1)/dtr,t,yp(:,1)/dtr,'r:','LineWidth',2),grid on,ylabel('alpha  (rad)'), 
legend('Flight data','Output-Error prediction',4), 
title('Output-Error Model Prediction','FontWeight','bold'), 
subplot(3,1,2),plot(t,z(:,2)/dtr,t,yp(:,2)/dtr,'r:','LineWidth',2),grid on,ylabel('q  (rad/sec)'), 
subplot(3,1,3),plot(t,z(:,3),t,yp(:,3),'r:','LineWidth',2),grid on,ylabel('az  (g)'),xlabel('Time (sec)'), 
fprintf('\n The plots show the measured output data ') 
fprintf('\n and the prediction using the output-error ') 
fprintf('\n model identified using data from a different ') 
fprintf('\n maneuver. ') 
fprintf('\n\n\nEnd of demonstration \n\n') 
return 
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Figure 8  Twin Otter Pitching Moment Coefficient Modeling 
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