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Abstract

This research investigates residual-based a posteriori error estimates for finite element

approximations of heat conduction in single-layer and multi-layered materials. The

finite element approximation is based upon hierarchical modelling combined with

p-version finite elements. Hierarchical modelling results in thermal elements which

are geometrically compatible with structural finite elements. Thermal stresses are an

important concern when designing reusable launch vehicles, and accurate temperature

distributions throughout the structure are required.

A posteriori error estimation is a way to determine the accuracy of an approxi-

mate thermal solution when the exact solution is unknown. Error estimates are also

necessary for developing an adaptive scheme which is the automatic process of mesh

refinement and p-enrichment to deliver a solution with the desired accuracy.

Element error indicators are determined by solving an element equation for the

error using the element residual, and a global error estimate in the energy norm is

computed by collecting the element contributions. Two methods, the average flux and

the equilibrated flux method, are discussed for constructing the element flux boundary

condition for the error equation. The error estimation is extended to multi-layered

materials, and a directional error indicator is developed to distinguish the error in the

hierarchical model from the error in the finite element method. Comparisons of the

actual and estimated error show that the equilibrated flux method provides accurate

estimates of the error for single and multi-layered materials. Numerical results also

show that the directional indicators accurately determine which contribution to the

total error dominates. This is an essential step in implementing an effective adaptive

scheme.
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Chapter 1

Introduction

When performing structural analysis of hot structures, it is necessary to understand

the temperature distribution throughout the structure. Thermal concerns include

maximum and minimum temperatures, thermal stresses induced by temperature gra-

dients, and rates of heat flow depending on the application of the material being stud-

ied. Therefore, efficient and dependable methods of computing thermal solutions are

vital in the design and analysis of thermal structures. For example, reusable launch

vehicles must be able to repeatedly withstand the extreme temperatures present dur-

ing Earth re-entry. The Thermal Protection System (TPS) is the primary outer

material that protects the system from high temperatures. Materials and concepts

are continuously being investigated to improve the insulating properties for TPS.

Such multi-layered materials include composite laminates and TPS panels composed

of insulation between two layers of metal to replace the tiles used on the orbiter of the

Space Shuttle system. Therefore, the numerical analysis of these types of materials,

along with error estimates, will aid in the design process.

1.1 Background

The finite element method is a popular numerical analysis tool for engineers working

thermal problems with complex geometry or boundary conditions. The advances in
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finite element approaches and computer technology have increased the usefulness of

finite element methods and allowed for more accurate and efficient approximations.

One such advanced method is the hierarchical p-version finite element method. The

use of hierarchical modelling allows the dimension of the domain to be reduced by

one dimension. The benefit of this approach is that mesh regeneration is not required

when changing the approximation order to obtain a more accurate solution.

When making numerical approximations with the finite element method, it is

useful to know how accurately the methods approximate the exact solution. Error

estimation is widely known and used to answer the question, ’How good is the finite

element solution?’ Knowledge of the application of the problem and an understanding

of how the error behaves can reduce the computational effort needed to achieve the

desired accuracy.

The two types of error estimates are a priori and a posteriori. A priori error

estimates contain the exact solution and the parameters that influence the accuracy

of the approximate solution. This type of error estimate provides information on

the convergence and stability of the method and gives the asymptotic behavior of

the error in the approximation as mesh size and polynomial orders are appropriately

varied [1].

The second type is a posteriori error estimates, that are computed from the finite

element approximation and the given problem data and do not require the exact

solution to the problem. Since approximation methods are generally used because the

exact solution is not known for a the problem of interest, a posteriori error estimates

are useful for determining accuracy when analyzing complex problems for which the

solution is unknown. A posteriori error estimates are also necessary for adaptivity

and control of the finite element approximation error. Adaptivity is a method of

automatically refining the mesh or increasing the polynomial degree in particular
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regions where the finite element error is greatest. These regions of large error occur

near steep solution gradients, singularities, or discontinuities in applied loadings. The

mesh can be refined or the polynomial degree increased in these particular areas

to improve the solution instead of the costly approach of refining the entire mesh.

Through the use of a tolerance, local refinements can be made after each approximate

solution is obtained until the error is within a specified tolerance, and this repeating

method can be done with no further input from the analyst. Therefore the method

can be set up and allowed to continue without any further input from the analyst.

Accurate a posteriori error estimates are essential to the success of such an adaptive

procedure.

The two main categories of a posteriori error estimates are explicit and implicit.

Explicit error estimates involve a direct computation (usually post-processing) using

the finite element solution and the given problem data and include an unknown con-

stant which is typically ignored. Implicit error estimators involve the approximation

of a boundary value problem for the error using residuals and generally involve the

solution of a system of equations, and are usually more accurate than explicit error

estimates [2]. Although more computational time is generally required for implicit

error estimates, the improved accuracy can be worth the extra effort.

When a mesh is defined for finite element analysis, the process usually involves a

combination of experience, intuition, and guesswork. If the results of the finite element

approximation appear reasonable, then the solution is accepted. If not, then the mesh

is redesigned. But this process is time consuming, and without an a posteriori error

estimate, there is no other reliable and precise way of judging the acceptability of the

solution except to uniformly refine the mesh until the solution converges. A posteriori

error estimation provides the analyst with a method of measuring the quality of the

computed solution. A more accurate solution can then be obtained by selecting
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various parameters to change such as the value of the polynomial approximation

and the mesh size locally where errors are large. For the hierarchical p-version finite

element method, directional error indicators indicate which parameters will efficiently

improve the solution by providing a measure of the modelling error and the finite

element error separately.

1.2 Review of Previous Research

The hierarchical p-version finite element method was pioneered by Babuška, Szabó,

and Peano in the mid to late 1970’s and early 1980’s [3] and [4]. Hierarchical mod-

elling helps to simplify the problem by reducing the dimension by one before the

p-version finite element method is applied. An optimal set of basis functions for

the through-thickness direction that account for the piecewise continuous behavior

of the solution to multi-layered problems was developed by Vogelius and Babuška in

1981 [5]. Another method for approximating the solution in multi-layered problems

is the Zig-Zag method developed in 1996 by Averill and Yip [6], which uses a single

polynomial approximation through the thickness with a piecewise linear function su-

perimposed on it. The coefficients for the piecewise linear function are determined

from continuity conditions at the interfaces of the layers. The optimal basis functions

are used with the hierarchical p-version finite element method for multi-layered mate-

rials in this research since the use of the Zig-Zag method requires more computation

when using p-enrichment for the through thickness polynomial approximation.

The subject of a posteriori error estimation has grown in popularity since the

pioneering work of Babuška and Rheinholdt in the late 1970’s. The first a posteriori

error estimates for linear elliptic problems were developed by Babuška and Rheinholdt

to guide local mesh refinement [7] and obtain accurate results without refining the

entire mesh. Since then, a posteriori error analysis has been developed for parabolic
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and hyperbolic partial differential equations. One method of a posteriori error esti-

mation is the flux-projection method, which is based on the smoothing of the fluxes

and comparing them with the finite element fluxes [2]. The method used in this work,

called the element residual method, was first introduced in 1984 at a conference in

Lisbon [8] and uses the residuals of the finite element solution. The element resid-

ual method requires element boundary conditions. One method of approximating

the element boundary fluxes is the equilibrated flux method, which is based on the

work by Ladeveze and Leguillon [9], Kelly [10], and Bank and Weiser [11] and is used

in this research. Ainsworth and Oden advanced the element residual method using

equilibrated fluxes for application to different types of problems [12].

The basic techniques for a posteriori error estimation were established in the early

1990’s. In recent years, a new approach in the study of a posteriori error estimates has

emerged called goal-oriented error estimation. The error is measured with respect to

a specific goal of the analysis, called the quantity of interest, instead of in the energy

norm, and techniques have been established to obtain upper and lower bounds of

the error. This approach requires the solution of the adjoint problem, or the dual

solution, to compute an influence function which relates the residual to the error

in the quantity of interest [13]. Therefore, it is more computationally expensive.

Currently, the emphasis is on the study of robustness of existing estimators and the

identification of limits on their performance.

1.3 Purpose

The purpose of this research is to apply a posteriori error analysis to two-dimensional

heat conduction for single and multi-layered materials. The three primary goals of

this research are to (i) compare the results of a posteriori error estimates using two

methods of approximating the interior boundary flux, an average flux and an equi-
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librated flux, for single-layered materials, (ii) extend and examine the performance

of the error estimate for multi-layered materials, and (iii) develop directional error

indicators to distinguish between the modelling error and the finite element error.

1.4 Scope

The hierarchical p-version finite element method for solving steady state heat con-

duction problems is presented in Chapter 2. The weak form of the boundary value

problem is developed followed by the hierarchical modelling in the through-thickness

direction and the spatial p-version finite element method. Basis functions are de-

scribed, and element matrices are defined. Finally, the method for enforcing the

boundary conditions and solving the global system of equations are discussed.

The element residual method of a posteriori error estimation is discussed in Chap-

ter 3. The derivation of the element boundary value problem for the error is presented.

The element boundary conditions are discussed with two methods of approximating

the interior element flux, the average flux and the equilibrated flux method. The

solution for the error in the energy norm is presented next with some numerical

examples. Finally directional error indicators are introduced with some numerical

examples to verify the error estimates. Chapter 4 presents the application of element

residual a posteriori error estimation to multi-layered materials. The finite element

method for multi-layered materials is discussed with the choice of optimal through-

thickness basis functions for hierarchical modelling. The boundary value problem for

each layer is discussed followed by a discussion of the equilibrated flux method used

to approximate the interior element boundary flux. Finally, some numerical examples

are presented for a two layer problem. A review of the work presented in the thesis

is discussed in Chapter 5. A summary of the first four chapters is presented followed

by conclusions and recommendations for future work.
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Chapter 2

Finite Element Thermal Analysis

In all but some simple cases, the exact solution of structural problems is complex

and requires an approximate solution using numerical techniques. The finite element

method is a powerful tool for numerically approximating the solution to a wide range

of engineering problems. There are numerous methods available for constructing a

finite element approximation. Traditional finite elements use linear approximations

of field variables over each element. By increasing the number of elements using mesh

refinement, the approximate solution converges to the exact solution. An alternative

to this approach, the p-version finite element method, is to use higher-order elements,

which assume a polynomial of order p for the approximation on each element. By

increasing the value of p, or p-enrichment, the approximation can be improved without

increasing the number of elements. The drawback to this method using conventional

higher-order elements is that the mesh must be regenerated for increased values of p

since the number of nodes in an element depends on p. Mesh refinement is also an

option for the p-version method.

A more practical method which has been developed is the hierarchical modelling

combined with p-version finite elements method. This method uses elements with

a fixed number of nodes by adding more basis functions to the existing nodes when

the approximation order is increased. The use of hierarchical modelling allows the
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reduction by one dimension of the domain which reduces the complexity. The benefit

of this approach is that when the approximation order is changed, mesh regeneration

is not required. This chapter describes the hierarchical modelling combined with p-

version finite elements approach used for this research to approximate the solution

for a heat conduction problem with specified heat flux and temperature boundary

conditions.

2.1 Boundary Value Problem for Conduction Heat

Transfer

The goal is to solve for the temperature, u, in a built-up structure using the general

heat conduction equation. According to the conservation of energy, the rate of heat

entering and leaving a body, the rate of heat generation inside the body, and the rate

of heat stored by the body must be balanced

ρcp
∂u

∂t
+ ∇Tq = Q (2.1)

where q is the heat flux vector defined as [qx, qy, qz]
T , ∇ is the gradient operator

defined for a rectangular coordinate system as
[

∂
∂x
, ∂

∂y
, ∂

∂z

]T
, and ρ and cp are the

density and the specific heat of the material, respectively [14]. The internal heat

generation, Q, is a scalar function of position and is associated with conversion of

some other form of energy, such as chemical, electrical, or nuclear, to thermal energy.

The heat flux is related to the temperature gradient by Fourier’s Law

q = −κ∇u (2.2)

where κ is the thermal conductivity tensor, which is defined for an anisotropic mate-

rial as the following matrix of thermal conductivities

κ =


 kxx kxy kxz

kyx kyy kyz

kzx kzy kzz


 (2.3)
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Since heat flows in the direction of decreasing temperature, and the gradient points

in the opposite direction, the minus sign is included in (2.2) to make the heat flow

a positive quantity. Substitution of (2.2) into (2.1) results in the partial differential

equation for temperature

ρcp
∂u

∂t
− ∇T (κ∇u) = Q (2.4)

To allow for comparison with exact solutions, the steady state heat conduction in

a simple two-dimensional domain made of an orthotropic material will be considered

in this research. The simplification to two dimensions from three dimensions is made

by assuming the domain is infinitely long in the y-direction. The domain, Ω =

(0, L) ×
(−d

2
, d

2

)
, is shown in Figure 2.1, and has length L and thickness d with the

boundary denoted by ∂Ω. The thermal conductivity of a two-dimensional orthotropic

x

z

Ω
x=0 x=L

d⁄2

-d⁄2

z=

z=

∂Ω = ΓD ∪ Γ N

nΩ

Figure 2.1: Two-dimensional domain Ω for an orthotropic material.

material is different in the two principle directions, in this case the x and z directions,

and is assumed to be constant.

κ =

[
kx 0
0 kz

]
(2.5)

For steady-state conditions, (2.4) becomes a second-order elliptic partial differential

equation. For this research, the boundary conditions are defined on each edge as either
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a Dirichlet or a Neumann boundary condition. A Dirichlet boundary, denoted by ΓD,

is defined as a boundary on which the temperature is specified and is also called an

essential boundary condition. A Neumann boundary, denoted by ΓN , is defined as a

boundary on which the heat flux is specified and is also called a natural boundary

condition. The outward unit normal to the boundary is denoted by nΩ = [nx, 0, nz]
T .

The boundary value problem for the temperature, u(x, z), in the domain is given by

−∇T (κ∇u) = Q in Ω

−(κ∇u)TnΩ = qs on ΓN

u = us on ΓD (2.6)

where qs and us are not necessarily constant.

2.2 Weak Formulation

The finite element method is based on the weak form, or the variational form, of the

boundary value problem (2.6). A weak form is a weighted-integral statement of a

differential equation in which the differentiation is distributed among the dependent

variable and a weight function and includes the natural boundary conditions of the

problem [15]. To obtain the weak form of the boundary value problem for heat

conduction, (2.6) is multiplied by a scalar test function v and integrated by parts

∫
Ω
−∇T (κ∇u) v dΩ =

∫
Ω
Qv dΩ (2.7)

−(κ∇u)TnΩv
∣∣∣
∂Ω

+
∫
Ω

(κ∇u)T ∇v dΩ =
∫
Ω
Qv dΩ (2.8)

−(κ∇u)TnΩv
∣∣∣
ΓD

−(κ∇u)TnΩv
∣∣∣
ΓN

+
∫
Ω

(κ∇u)T ∇v dΩ =
∫
Ω
Qv dΩ (2.9)

The test function is required to be zero on ΓD, which simplifies (2.9) to a general

problem statement for the temperature in the domain where the boundary conditions

in (2.6) have been applied. Find the temperature u = u(x, z) such that u = us on ΓD

10



and

∫
Ω

(κ∇u)T ∇v dΩ =
∫
Ω
Qv dΩ −

∫
ΓN

qsv ds (2.10)

for all admissible test functions v where s denotes a boundary. If B(u, v) and L(v)

are defined as

B(u, v) =
∫
Ω

(κ∇u)T ∇v dΩ

L(v) =
∫
Ω
Qv dΩ −

∫
ΓN

qsv ds (2.11)

then the problem statement can be expressed in abstract form. Find u ∈ V (Ω) such

that u = us on ΓD and

B(u, v) = L(v) for all admissible v ∈ V (Ω) (2.12)

where V (Ω) is defined as a subspace ofH1(Ω), the Hilbert space consisting of functions

with square integrable first derivatives [16].

2.3 Finite Element Method

The solution to (2.12) is also the solution to (2.6) and is not an approximation. But

since the solution space V (Ω) is infinite-dimensional, it is difficult to solve for the

exact solution. The finite element method is used to construct a finite-dimensional

subspace of V (Ω), denoted by V̂ (Ω), by subdividing the domain into a collection of

elements and selecting a set of basis functions. The abstract form of the finite element

method is to find û ∈ V̂ (Ω) such that u = us on ΓD and

B(û, v̂) = L(v̂) (2.13)

for all admissible test functions v̂ ∈ V̂ (Ω). This allows an approximation to the exact

solution to be found, and the larger the choice for the subspace V̂ (Ω), the closer to

V (Ω) it becomes, therefore making the approximation more accurate. The following

11



sections describe the method used to approximate the solution to (2.12), hierarchical

modelling combined with p-version finite elements.

2.3.1 Hierarchical Modelling

In this research, hierarchical modelling refers to the process of describing the solu-

tion on a domain whose spatial dimension is reduced by one. The geometry of the

rectangular domain in Figure 2.1 can be described as a one-dimensional domain, a

straight line of length L with a constant thickness d. More general geometries can

be described in this manner by allowing the thickness to vary along the length. This

approach is commonly used in structural mechanics to represent beams, flat plates,

and curved shells.

The approach used in structural mechanics to represent the two-dimensional so-

lution on the one-dimensional domain is usually a global approach. The solution is

assumed to have a polynomial distribution through the thickness of the domain, and

the degree of the polynomial, denoted by pz, is assumed to be constant through-

out the domain. This assumption transforms a single partial differential equation

on the original domain into a system containing pz + 1 differential equations on the

dimensionally-reduced domain. The finite element method is then applied to each

differential equation in the system. In the hierarchical modelling approach used in

this research, the solution is assumed to have a polynomial distribution through the

thickness of the domain after the dimensionally-reduced domain has been subdivided

into elements. This allows the hierarchical model order, pz, to vary along the length

of an element, and therefore throughout the domain. Also, the hierarchical model

order, pz, can be easily increased as part of the finite element method.

For simplicity, the hierarchical modelling approach will be described for a two-

node linear finite element. The extension to higher-order (p-version) finite elements

12



will be described in the next section. The one-dimensional domain representing the

rectangular plate is divided into N elements as shown in Figure 2.2. As with tradi-

x

z

Ω
x=0 x=L

d⁄2

-d⁄2

z=

z=

ΩN

1-1x1x0
element Ωeelement Ωe

ξ

Ωe

Figure 2.2: Discretization of the domain for the finite element method.

tional finite element methods for one-dimensional problems, the solution on a typical

element, Ωe, is assumed to vary linearly along the length of the element, and is written

in terms of a local coordinate system

û|Ωe =
1

2
(1 − ξ)u0 +

1

2
(1 + ξ)u1 (2.14)

The mapping for each element in the global domain from (x0, x1) to the local domain

(−1, 1) is given by

ξ =
2(x− x0)

x1 − x0

− 1 (2.15)

However for hierarchical modelling, the nodal unknowns u0 and u1 are not constants,

they are functions of the through-thickness direction

û|Ωe =
1

2
(1 − ξ)u0(z) +

1

2
(1 + ξ)u1(z) (2.16)

13



where the subscripts 0 and 1 denote the left and right nodes of the element respec-

tively. The unknown functions u0(z) and u1(z) are assumed to be polynomials of

degree pz0 and pz1

u0 =
pz0∑
i=0

ψi(η)u0i

u1 =
pz1∑
i=0

ψi(η)u1i (2.17)

where pz0 and pz1 are positive integers, η = 2z
d

is a normalized through-thickness

coordinate, ψi are polynomial basis functions, and uji are the unknown constants, also

called the element degrees of freedom. The complete expression for the approximate

solution on an element is obtained by substituting (2.17) into (2.16) to get

û|Ωe =
1

2
(1 − ξ)

pz0∑
i=0

ψi(η)u0i +
1

2
(1 + ξ)

pz1∑
i=0

ψi(η)u1i (2.18)

The basis functions for the through-thickness polynomial approximations are the

integrated Legendre polynomials, which are shown to be well suited for computer

implementation and have favorable properties for numerical stability by Babuska et.

al in [4] and are given by

ψ0 = 1

ψ1 = η

ψi =

√
2i− 1

2

∫ η

−1
Pi−1(ξ) dη

=
1√

2(2i− 1)
(Pi(η) − Pi−2(η)), i = 2, 3, . . . , pz + 1 (2.19)

where Pi is the Legendre polynomial of the first kind of order i given by [17]

P0(η) = 1

P1(η) = η

Pi(η) =
1

i
[(2i− 1)ηPi−1(η) − (i− 1)Pi−2(η)] i = 2, 3, . . . (2.20)
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The integration in (2.19) is accomplished by applying the properties of Legendre

polynomials. Note that the usual linear approximation for a one-dimensional element

is a special case of the hierarchical model, obtained when pz0 = pz1 = 0 in (2.18).

When the degree of the through-thickness polynomial does not vary along the element

length, that is when pz0 = pz1 = pz, (2.18) can be written as

û|Ωe =
pz∑
i=0

[
1

2
(1 − ξ)u0i +

1

2
(1 + ξ)u1i

]
ψi(η)

=
1∑

j=0

pz∑
i=0

φj(ξ)ψi(η)uji (2.21)

2.3.2 P-Element Approximation

The traditional approach to higher-order one-dimensional finite elements requires

that an element with a polynomial approximation of degree px contain px + 1 evenly-

spaced nodes. The basis functions for such an element are the Lagrange polynomials,

and the element is referred to as a Lagrange element. A Lagrange polynomial basis

function is associated with each node of the element along with a corresponding degree

of freedom which is the value of the unknown at that point. Quadratic and cubic

Lagrange elements and the corresponding basis functions are shown in Figure 2.3.

The p-version approach to higher-order, one-dimensional, finite elements is to add

a single node in the middle of the element, and a set of higher-order polynomials

that are zero at the endpoints are added to the usual linear basis functions associ-

ated with the end nodes. The number of basis functions, and hence the number of

unknown coefficients, associated with the middle node is determined by the degree

of the polynomial approximation px. Specifically, there are px − 1 basis functions

associated with the middle node. Elements of this type are often referred to as hier-

archical p-elements, because increasing the order of the elements is accomplished by

simply adding a basis function to the existing set, as indicated in Figure 2.4, without
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-1
ξ

N

1

(b)

Figure 2.3: One-dimensional (a) quadratic Lagrange element and (b) cubic Lagrange
element with corresponding basis functions.

the requirement of mesh regeneration. The finite element approximation in a typical

element is written

û|Ωe =
1

2
(1 − ξ)u0 +

1

2
(1 + ξ)u1 +

px∑
i=2

φi(ξ)ai =
px∑
i=0

φi(ξ)ai (2.22)

The degrees of freedom corresponding to the middle node do not represent the value

of the solution at the midpoint and are therefore denoted by the symbol ai. The

unknowns u0 and u1 are combined into the set of unknowns, ai. In other words,

a0 = u0 and a1 = u1. The basis functions used for the one-dimensional element,

i.e., for the polynomial approximation in the x-direction, are similar to the through-

thickness basis functions and are given by

φ0 =
1

2
(1 − ξ)

φ1 =
1

2
(1 + ξ)
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Figure 2.4: Element basis functions, φ and ψ, for p = 1 through 7.

φi =

√
2i− 1

2

∫ ξ

−1
Pi−1(ξ) dξ

=
1√

2(2i− 1)
(Pi(ξ) − Pi−2(ξ)), i = 2, 3, . . . , px + 1 (2.23)

The procedure for combining hierarchical modelling with p-version elements is the

same as described in the previous section. The constant unknowns in (2.22) are

replaced by polynomial functions in the through-thickness direction

û|Ωe =
1

2
(1 − ξ)u0(z) +

1

2
(1 + ξ)u1(z) +

px∑
i=2

φi(ξ)ai(z) =
px∑
i=0

φi(ξ)ai(z) (2.24)

where

u0 =
pz0∑
i=0

ψi(η)u0i

u1 =
pz1∑
i=0

ψi(η)u1i

aj =
pz2∑
i=0

ψi(η)aij (2.25)
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Again, if the hierarchical model order is constant for the element, pz0 = pz1 = pz2 = pz,

then the approximate solution in an element can be written

û|Ωe =
pz∑
i=0


1

2
(1 − ξ)u0i +

1

2
(1 + ξ)u1i +

px∑
j=2

φj(ξ)aji


ψi(η)

û|Ωe =
px∑

j=0

pz∑
i=0

φj(ξ)ψi(η)aji (2.26)

The finite element approximation for the temperature distribution in an element is

determined by the unknown coefficients, aji. The basis functions, φj(ξ) and ψi(η) are

polynomials of degree px and pz, respectively. The number of unknown coefficients

for the element is determined by (px + 1) × (pz + 1).

2.3.3 Element Matrices

The weak form of the boundary value problem, (2.13), is an integral equation over the

entire domain, which can be represented by a sum of integrals over each element in the

domain. The domain of an element, denoted by Ωe, is defined as (x0, x1) × (−d
2
, d

2
),

where x0 and x1 are the x-coordinates of the end nodes. The local contributions

from the elements are combined into a global problem to allow for the solution to

the finite element approximation. Note that an element end node is shared by a

neighboring element. Since the unknown coefficients are associated with a node, the

approximate temperature solution is continuous across element interfaces. Equation

(2.13) is written as a sum of element contributions

Nel∑
e=1

∫
Ωe

(κ∇û)T ∇v̂ dΩe =
Nel∑
e=1

∫
Ωe
Qv̂ dΩe −

∫
∂Ωe∩ΓN

qsv̂ ds (2.27)

provided that

Nel∑
e=1

Ωe = Ω (2.28)

Nel∑
e=1

∂Ωe ∩ ΓN = ΓN (2.29)
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Here Nel denotes the total number of elements in the mesh and ∂Ωe ∩ ΓN denotes

the part of the boundary of an element which lies on ΓN . To simplify the derivation

of the finite element matrices the approximate solution in (2.26) can be written in

compact notation using outer tensor products

û|Ωe =
px∑
i=0

pz∑
j=0

φi(ξ)ψj(η)aij = (φ⊗ψ)Tae = χTae (2.30)

The symbol ⊗ represents the outer tensor product, and φ is a vector of length (px+1),

ψ is a vector of length (pz +1), and χ and ae are vectors of length (px +1)× (pz +1).

The outer tensor product [17] of an n×n matrix A with an m×m matrix B is given

by



A11 A12 · · · A1n

A21 A22 · · · A2n
...

... · · · ...
An1 An2 · · · Ann


⊗



B11 · · · B1m
... · · · ...

Bm1 · · · Bmm


 =



A11B A12B · · · A1nB
A21B A22B · · · A2nB

...
... · · · ...

An1B An2B · · · AnnB




(2.31)

There are a variety of choices for the test function, v̂, which results in a system of

equations from (2.27). The Bubnov-Galerkin method, commonly referred to simply as

the Galerkin method, defines the test function to be the same as the functions used in

the approximation of the solution, û, and will be used in this paper [18]. Substituting

the approximate solution (2.30) for û and χi, i = 1, . . . , (px + 1)× (pz + 1) for v̂, into

(2.27) results in the system of equations

Nel∑
e=1

[∫
Ωe

∇χ (κ∇χ)T dΩe ae

]
=

Nel∑
e=1

[∫
Ωe
Qχ dΩe −

∫
Γe

N

qsχ ds

]
(2.32)

Here the gradient of the vector χ is defined as the gradient operating on each element

of the vector. This equation can be written in matrix form as

Nel∑
e=1

(AΩeae) =
Nel∑
e=1

F Ωe (2.33)
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The element matrix AΩe is defined in terms of a local mass and stiffness matrix using

the outer tensor product as

AΩe =
∫
Ωe

∇χ (κ∇χ)T dΩe

=
∫
Ωe

[
kx
∂χ

∂x

∂χT

∂x
+ kz

∂χ

∂z

∂χT

∂z

]
dΩe

= kx

∫ x1

x0

∂φ

∂x

∂φT

∂x
dx⊗

∫ d
2

− d
2

ψψT dz +

kz

∫ x1

x0

φφT dx⊗
∫ d

2

− d
2

∂ψ

∂z

∂ψT

∂z
dz

= kxKx ⊗M z + kzMx ⊗Kz (2.34)

where M denotes a local mass matrix and K denotes a local stiffness matrix. The

element load vector, F Ωe , is defined as

F Ωe =
∫
Ωe
Qχ dΩe −

∫
Γe

N

qsχ ds (2.35)

2.3.4 Global System of Equations

The global system equations, (2.33), are written

Aa = F (2.36)

where A and F are the global matrices formed by assembling each AΩe and F Ωe ,

respectively, and a is the global vector of unknowns. The element vector of unknowns,

ae, in (2.30), (2.32), and (2.33) is an element ordering of a with entries only for the

unknowns associated with the nodes of the elements. The process of assembly is

rather straightforward and can be found in any finite element textbook, such as [15],

[19], and [20]. The approximate solution, û, is determined by applying boundary

conditions to the global system of equations and solving the matrix equation for the

unknowns a.
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The Dirichlet boundary conditions in (2.10) are enforced on the system of equa-

tions using the penalty method [19]. Recall the form of û from (2.26)

û|Ωe =
pz∑
i=0


1

2
(1 − ξ)u0i +

1

2
(1 + ξ)u1i +

px∑
j=2

φj(ξ)aji


ψi(η) (2.37)

If the specified temperature is on the left side of an element, at ξ = −1, then φj(ξ) is

zero for j = 2, . . . , px and û becomes

û|Ωe (ξ = −1) =
pz∑
i=0

ψi(η)u0i (2.38)

The value of û at this boundary is specified to be us, therefore

(1)u00 +
pz∑
i=1

ψi(η)u0i = us (2.39)

To enforce this boundary condition, we set u00 = us and u0i = 0 for i = 1, . . . , pz. If

the specified temperature is on the right side of an element, at ξ = 1, we set u10 = us

and u1i = 0 for i = 1, . . . , pz. Using the penalty method, the local coefficient matrix

AΩe and the local load vector F Ωe are modified by using a large number, C, which

is several orders of magnitude larger than the components of A. A general rule of

thumb for choosing the value of C is to use C = max|Aij| × 104. The constant C is

added to each of the diagonal elements inAΩe corresponding to the degrees of freedom

on the Dirichlet boundary, and C is multiplied by the specified temperature on the

boundary and added to the corresponding components in the load vector, F Ωe . For

example, to enforce the Dirichlet boundary condition on the left end of an element

AΩe
ii

= AΩe
ii

+ C for i = 0, . . . , pz

FΩe
i

= FΩe
i
+ Cus for i = 0 (2.40)

The Neumann boundary conditions, or natural boundary conditions, in (2.6) are

included in the right hand side of the weak form (2.10) and are thus included in F Ωe .
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Enforcement of the boundary conditions along ΓD causes the system of equations to

be nonsingular so that a solution to the global system of equations exists.

The numerical accuracy of the solution of the global system of equations depends

on the conditioning of the A matrix and the choice of the value of C. The condition

number of a matrix is defined as the ratio of the largest eigenvalue to the smallest

eigenvalue. A matrix is singular if its condition number is infinite since at least one

eigenvalue is zero, and although the A matrix is not singular due to the enforcement

of the Dirichlet boundary conditions, a large condition number limits the accuracy

to which a solution can be obtained. If the value of C in the penalty approach is

chosen to be large enough, then u ≈ us on ΓD. Generally this boundary condition

is satisfied to machine numerical precision with the proper choice for C and a low

condition number. Gauss elimination can be used to solve the system of equations

which involves row reduction to obtain an upper triangular matrix. The system

matrices are sparse, having a relatively small number of nonzero entries, due to the

choice of the basis functions. The derivatives of the basis functions are orthogonal to

each other except for the nodal basis functions, denoted with the 0 and 1 subscript in

(2.23) and (2.19). The local stiffness matrices, defined as Kx and Kz in (2.34), use

the derivatives of the basis functions, and therefore are almost diagonal. There are

off-diagonal nonzero entries in the first and second rows and columns since the nodal

basis functions do not have the property of orthogonal derivatives. The zero entries

in the stiffness and the small number of zero entries in the local mass matrices create

a sparse AΩe matrix when the outer tensor product, defined in (2.31), is used.

The relatively small number of nonzero entries makes it inefficient to store the

zero entries. To save memory and time, the global system is solved using a sparse

gauss matrix solver [21].
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Chapter 3

A Posteriori Error Estimation

There are essentially two types of error estimates, a priori and a posteriori. A priori

estimates are theoretical bounds on the error in an approximate solution, and establish

the rate of convergence of the error for a particular method. These bounds are a

function of the exact solution and the parameters that influence the accuracy of the

approximate solution. For p-version finite element methods, these parameters are the

mesh size, h, and the degree, p, of the polynomial approximation in an element. A

posteriori error estimates use the approximate solution itself to estimate its error.

They fall into two categories: implicit and explicit. Explicit error estimates are

fast and computationally inexpensive as they typically involve post-processing of the

finite element solution. Implicit error estimates are obtained by solving an additional

boundary value problem for the error with the approximate solution as input data.

Implicit error estimates are more expensive than explicit error estimates, but they are

also more reliable and more accurate. This research focuses on the element residual

error method, which is an implicit type a posteriori error estimate. The global residual

is defined as

R(v) = L(v) −B(û, v)

It provides information on how close the approximate solution is to satisfying the

boundary value problem. This chapter discusses the method and approach to pre-
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dicting the global error in the finite element solution to the two-dimensional boundary

value problem in (2.12). The global error estimate is a sum of element error estimates

obtained by solving an element boundary value problem with the element residual

analogous to a heat source term. The element residual error method developed by

Ainsworth and Oden [1] for the total error is first described. The performance of

the error estimate is then demonstrated on two example problems. When using the

hierarchical modelling approach, the mesh size h, the through-thickness polynomial

order pz, and the in-plane polynomial order px are parameters that affect the accuracy

of the solution. A directional error estimate is proposed to distinguish the modelling

error (pz) from the finite element error (px and h). Its performance is investigated on

two example problems.

3.1 Element Residual Method

The error in the finite element solution is the difference between the exact and the

finite element solutions, e = u − û. The weak form of the boundary value problem

for the error is obtained by subtracting B(û, v) from both sides of (2.12).

B(u, v) −B(û, v) = L(v) −B(û, v)

B(e, v) = L(v) −B(û, v)

B(e, v) = R(v) ∀v ∈ V (Ω) (3.1)

The solution of this global equation yields the actual error, but the solution space

V (Ω), defined as a subspace of H1(Ω), is of infinite dimension. The finite element

approximation described in Chapter 2 for the temperature can also be used to approx-

imate the solution to (3.1) for the error. However, if the subspace used to approximate

the error is the same subspace V̂ (Ω) that was used for the finite element approxima-

tion, the result will be that the error is zero. Since the right hand side of (3.1) with

24



v ∈ V̂ (Ω) is precisely what was solved for the finite element solution, R(v) = 0 for

every v ∈ V̂ (Ω). Therefore to obtain a nontrivial approximation for the error, a larger

subspace must be used. A simple approach to constructing a larger subspace is to

increase the polynomial degree of the approximation on each element in both the

through-thickness and in-plane directions. Solving the global error problem on this

enriched polynomial space would, however, require more computation time than orig-

inally required to solve the heat conduction problem. A more efficient approach is to

solve a local (or element) boundary value problem to provide an estimate of the error

on each element. The local boundary value problem for the error in each element is

derived from the original differential equation for the temperature. The global differ-

ential equation (2.6) holds true for any point in the solution domain. Therefore this

differential equation also holds true for any collection of points defining an arbitrary

subdomain or element, making (2.6) valid for any element. With the finite element

solution, û, in hand, the quantity ∇T (κ∇û) is added to both sides of (2.6) defined

on each element

+∇T (κ∇û) − ∇T (κ∇u) = Q+ ∇T (κ∇û)

−∇T (κ∇e) = Q+ ∇T (κ∇û) on element Ωe (3.2)

Appropriate boundary conditions for this equation will be considered with the weak

formulation, obtained by multiplying (3.2) by a test function v and integrating by

parts

−
∫
Ωe

∇T (κ∇e)v dΩe =
∫
Ωe
Qv dΩe +

∫
Ωe

∇T (κ∇û)v dΩe

−
[∫

∂Ωe
(κ∇e)TnΩev ds−

∫
Ωe

(κ∇e)T ∇v dΩe
]

=
∫
Ωe
Qv dΩe +

∫
∂Ωe

(κ∇û)TnΩev ds

−
∫
Ωe

(κ∇û)T ∇v dΩe (3.3)
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Substituting û = u− e into the boundary integral terms simplifies (3.3) to

∫
Ωe

(κ∇e)T ∇v dΩe =
∫
Ωe
Qv dΩe −

∫
Ωe

(κ∇û)T ∇v dΩe +
∫

∂Ωe
(κ∇u)TnΩev ds

BΩe(e, v) = FΩe(v) −BΩe(û, v) +
∫

∂Ωe
(κ∇u)TnΩev ds (3.4)

where FΩe(v) is the linear function associated with the source term defined as
∫
Ωe Qv dΩe.

The subscript Ωe on BΩe and FΩe denotes a local domain. Equation (3.4) is the weak

form of the local error problem. This equation is the element contribution to the

global error problem in (3.1), since the exact boundary flux terms in (3.4) sum to

zero along interior element boundaries. The actual error satisfies (3.4), but the exact

flux in the last term, (κ∇u)TnΩe , is not known. Therefore an approximation must

be made for the flux boundary conditions on each element:

q̂Ωe ≈ −(κ∇u)TnΩe (3.5)

Using this approximation for the exact boundary flux in (3.4) results in the local

problem to be solved in each element. Find e ∈ V (Ωe) such that

BΩe(e, v) = FΩe(v) −BΩe(û, v) −
∫

∂Ωe
q̂Ωev ds (3.6)

for all admissible v ∈ V (Ωe). The next section discusses two approaches to construct-

ing an approximate boundary flux, q̂Ωe , using the finite element solution.

3.2 Element Boundary Conditions

The boundary flux (κ∇u)TnΩe must be determined for each type of element bound-

ary. Three possible types of element boundaries are considered: Dirichlet boundary,

Neumann boundary, or interior element boundary. The boundary conditions for the

edge of an element that is coincident with a global boundary is straightforward. For

an element boundary that is coincident with ΓD, where the temperature is specified
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as a constant, the finite element solution satisfies the essential boundary condition

exactly

u = û = us on ∂Ωe ∩ ΓD

e = u− û = 0 on ∂Ωe ∩ ΓD
(3.7)

and the test function in (3.6) is required to be zero on ∂Ωe ∩ ΓD. For an element

boundary that is coincident with ΓN , the applied heat flux is specified in the problem

statement as qs. For this natural boundary condition,

−(κ∇u)TnΩe = qs on ∂Ωe ∩ ΓN (3.8)

The third type of boundary that must be considered is the interior element bound-

ary (the interface between two neighboring elements) where an approximation to the

exact flux must be made. The choice of the approximate boundary flux determines

the accuracy of the error estimate. The next sections discuss two methods of approx-

imating the exact flux on the interior element boundaries, the average flux method

and the equilibrated flux method.

3.2.1 Average Element Boundary Flux

The finite element approximation results in a flux that is discontinuous across inte-

rior element boundaries. One approach to approximating the exact flux on an interior

element boundary is to average the fluxes computed from the finite element approxi-

mation on the boundary between neighboring elements. Let Ωe′ denote the neighbor

to element Ωe and let γ denote the shared edge, then the average flux on the shared

edge is given by

q̂Ωe|γ =
1

2

(
−κ∇ûΩe|γ − κ∇ûΩe′ |γ

)T
nΩe (3.9)

where nΩe is the outward unit normal vector to the edge of element Ωe. The aver-

age flux, applied to the shared boundary of the neighboring elements, satisfies the
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continuity condition

q̂Ωe|γ + q̂Ωe′ |γ = 0 on the shared edge γ = ∂Ωe ∩ ∂Ωe′ (3.10)

since nΩe = −nΩe′ and

q̂Ωe′ |γ =
1

2

(
−κ∇ûΩe′ |γ − κ∇ûΩe |γ

)T
nΩe′

= −1

2

(
−κ∇ûΩe′|γ − κ∇ûΩe|γ

)T
nΩe

= −q̂Ωe|γ (3.11)

3.2.2 Equilibrated Flux

Another method for approximating the fluxes on the interior element boundary is to

develop boundary fluxes that, in addition to satisfying continuity (3.10), satisfy an

equilibrium condition for that element [1]. The equilibrated flux method as described

in [1] is applicable to general two-dimensional meshes of quadrilateral and triangular

p-elements. It simplifies considerably for hierarchical modelling.

The equilibrium condition for an element is derived by integrating (2.6) over an

element

∫
Ωe

−∇T (κ∇u) dΩe =
∫
Ωe
Q dΩe

∫
∂Ωe

−(κ∇u)TnΩe ds =
∫
Ωe
Q dΩe (3.12)

In the second step, integration by parts is used on the left hand side. For steady state

conditions, the flux around the boundary of an element must be in equilibrium with

the internal heat source. Therefore, the approximate flux must be constructed such

that for every element in the mesh

∫
∂Ωe

q̂Ωe ds =
∫
Ωe
Q dΩe (3.13)

Note that (3.13) is equivalent to setting v = 1 in (3.6), that is,

0 = FΩe(1) −BΩe(û, 1) −
∫

∂Ωe
q̂Ωe ds (3.14)
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since BΩe(e, 1) and BΩe(û, 1) are zero. The term BΩe(û, 1) is retained in (3.14) because

it is part of the element residual and plays an important role in constructing the

equilibrated approximate flux. The equilibrium condition (3.14) can be extended

to higher orders by replacing 1 in (3.14) with a set of two-dimensional nodal basis

functions, θn, defined at each node n.

FΩe(θn) −BΩe(û, θn) −
∫

∂Ωe
q̂Ωeθn ds = 0 for n = 1, . . . , nγ (3.15)

The θn’s represent basis functions associated with the nodes on the boundary of an

element. The specific form and the required number, nγ , of the nodal basis functions

along an edge, to be discussed later, will depend on the approximation selected for

q̂Ωe .

The approximate flux must satisfy the equilibrium condition (3.15) along with

the continuity requirement (3.10) and the Neumann boundary condition (3.8). For

hierarchical modelling of a two-dimensional problem, there are only one-dimensional

elements in the x-direction. In order to apply the equilibrated flux method to the

hierarchical model, an element is conceptually expanded in the through-thickness

direction into a rectangular element. The node and edge numbers are defined on

the expanded local element as shown in Figure 3.1. For this expanded element, the

top and bottom boundaries of each element are coincident with the global domain

boundary, Γ, and therefore an approximate flux is only required for the left and right

boundaries, denoted by γ2 and γ4 in Figure 3.1.

The approximation for the left and right element boundary flux is assumed to

be a polynomial of degree pz, the same as the polynomial degree of the hierarchical

model. The approximate flux on an edge, γ, of the boundary of element Ωe is written

in terms of the nodal basis functions, θ, as

q̂Ωe|γ =
pz+1∑
i=1

αiθi|γ (3.16)
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Figure 3.1: Convention for node and edge labels for an expanded local element.

where i represents the degrees of freedom on the edge γ and αi are unknown coeffi-

cients. Due to this choice for the approximate boundary flux, the number of nodal

basis functions required for the left edge or the right edge is nγ = pz+1. The complete

set of two-dimensional basis functions, θ, is given by

θ =




φ0(ξ)φ0(η) } node 1
φ1(ξ)φ0(η) } node 2
φ1(ξ)φ1(η) } node 3
φ0(ξ)φ1(η) } node 4
φ2(ξ)φ0(η)
φ3(ξ)φ0(η)

...
φpx(ξ)φ0(η)




edge γ1

φ1(ξ)φ2(η)
φ1(ξ)φ3(η)

...
φ1(ξ)φpz(η)




edge γ2

φ2(ξ)φ1(η)
φ3(ξ)φ1(η)

...
φpx(ξ)φ1(η)




edge γ3

φ0(ξ)φ2(η)
φ0(ξ)φ3(η)

...
φ0(ξ)φpz(η)




edge γ4

(3.17)

The two-dimensional basis functions, are based on the finite element basis functions
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used for the finite element approximation in the x-direction (2.23). They are essen-

tially a tensor product of one-dimensional basis functions for a quadrilateral element.

There are pz + 1 two-dimensional basis functions associated with the nodes of an

edge, which is where the flux is being approximated: one for each vertex node and

pz − 1 for the edge node. Therefore there are pz + 1 equations that must be solved

to determine the coefficients αi in (3.16). The set of two-dimensional basis functions

associated with the nodes of edge γ is a subset of the complete set given in (3.17 and

defined as

θγ =




θγ
1

θγ
2

}
vertex nodes of γ

θγ
3

θγ
4
...

θγ
pz+1




edge nodes of γ
(3.18)

The first four two-dimensional basis functions for edge γ2 are shown in Figure 3.2.
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γ1

γ3

γ4

θ3
γ2

4

1

2

γ3
γ2

γ1γ4

θ2
γ2

Figure 3.2: First four two-dimensional basis functions for edge γ2.

The last term in (3.15) is an integral over the entire boundary of an element, and
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can be written as a sum of integrals over each edge of the element:

FΩe(θn) −BΩe(û, θn) −
[∫

γ1

qbθ
γ1
n ds +

∫
γ2

q̂Ωeθγ2
n ds+

∫
γ3

qtθ
γ3
n ds

+
∫

γ4

q̂Ωeθγ4
n ds

]
= 0 (3.19)

where qt is the heat flux specified on the top boundary of an element, and qb is the heat

flux specified on the bottom boundary of an element since γ1 and γ3 are coincident

with ΓN . Substitution of (3.16) into the boundary integral terms in (3.19) which

include the approximate boundary flux, q̂Ωe , yields

∫
γ
q̂Ωeθγ

n ds =
∫

γ


pz+1∑

i=1

αiθ
γ
i


 θγ

n ds for n = 1, . . . , pz + 1 (3.20)

This equation is true for each node, n, along γ, and can be rewritten in terms of a

mass matrix as

∫
γ
q̂Ωeθγ ds = M γα (3.21)

where M γ is the mass matrix along edge γ with entries

Mij =
∫

γ
θiθj ds for i, j = 1, . . . , pz + 1 (3.22)

In order to solve for the coefficients, α, (3.19) is written using (3.21) and moving the

other terms to the right hand side. Due to the properties of the nodal basis functions,

the sum of boundary integrals in (3.19) is simplified. For a nodal basis function at a

vertex node, there are two edges along which the basis function is nonzero. Whereas

for a nodal basis function at an edge node, there is only one edge along which the

basis function is nonzero. This can be seen in Figure 3.2 where the first two plots

show the basis functions for γ2, and the third and fourth plots show the edge basis

functions for γ2. Each of the higher-order basis functions associated with the edge

node is nonzero only on the edge containing the edge node. Using this information
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about the nodal basis functions, and substituting (3.21) into (3.19) results in the

following equations. For γ2,

M γ2α =




FΩe(θγ2
1 ) −BΩe(û, θγ2

1 ) − ∫γ1
qbθ

γ2
1 ds

FΩe(θγ2
2 ) −BΩe(û, θγ2

2 ) − ∫γ3
qtθ

γ2
2 ds

FΩe(θγ2
3 ) −BΩe(û, θγ2

3 )
...

FΩe(θγ2
pz+1) −BΩe(û, θγ2

pz+1)




(3.23)

For γ4,

M γ4α =




FΩe(θγ4
1 ) −BΩe(û, θγ4

1 ) − ∫γ1
qbθ

γ4
1 ds

FΩe(θγ4
2 ) −BΩe(û, θγ4

2 ) − ∫γ3
qtθ

γ4
2 ds

FΩe(θγ4
3 ) −BΩe(û, θγ4

3 )
...

FΩe(θγ4
pz+1) −BΩe(û, θγ4

pz+1)




(3.24)

Equations (3.23) and (3.24) are used to determine the approximate flux on each

respective edge. The system of equations that must be solved to determine the coef-

ficients α will always have a unique solution since the mass matrix in these equations

is positive definite.

3.3 Error Indicator

The error residual problem, shown in (3.4), can be used to approximate the error

after choosing the method of approximating the true flux on the element boundaries

and choosing an appropriate subspace V (Ωe). The approach to approximating the

error is the same as the approach used for the finite element approximation in Section

2.3.3. The approximation of the error in an element is

ê =
px+σ∑
i=0

pz+σ∑
j=0

φi(x)ψj(z)bij (3.25)

The Bubnov-Galerkin method is used so that the test functions, v̂, are the same as

the approximating functions,

v̂ = χi for i = 1, . . . , (px + 1 + σ) × (pz + 1 + σ) (3.26)
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Upon the substitution of (3.25) and (3.26) into (3.4), the approximate solution to the

error residual problem for each element becomes a system of equations and can be

written in matrix form as

BΩe(ê, v̂) = FΩe(v̂) −BΩe(û, v̂) +
∫

∂Ωe
q̂Ωe v̂ ds (3.27)

Aeb = F e (3.28)

where Ae represents the coefficient matrix based on the chosen subspace, VΩe , b is

a vector of unknown constants, and F e is the load vector consisting of the element

residual term and the boundary flux term. This system of equations is solved for the

unknown coefficients, b. The finite element solution satisfies the essential boundary

condition on ΓD. Therefore the error must be zero on this boundary. The penalty

method, described in Chapter 2, is used to enforce this essential boundary condition

in (3.28) for elements with boundaries coincident with ΓD. This system of equations

is singular except on those elements with a Dirichlet boundary where the error is set

to zero. Singular value decomposition is used to find the the solution for b which

minimizes r ≡ |A b−F | where the number r is called the residual of the solution [21].

In other words, the least-squares best compromise solution is found. The singular

values are zeroed out when they are less than some tolerance. Therefore discretion

in choosing a value for the tolerance must be used.

The error indicator for each element is obtained by calculating the energy norm

of the error function. The energy norm is defined by the weak formulation

εΩe = |‖ê‖|Ωe (3.29)

|‖ê‖|Ωe =
√
BΩe(ê, ê) =

[∫
Ω
(κ∇ê)T ∇ê dΩ

] 1
2

(3.30)

The global error estimate is calculated by computing the sum of the squares of the
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local error indicators

ε =

[∑
Ωe

(εΩe)2

]1/2

(3.31)

3.4 Numerical Examples for the Total Error

The performance of the error estimates will be examined in this section. Example

problems are chosen such that the exact solution is known. The problems are not

meant to be realistic problems. The use of problems with exact solutions allows

the actual error in the finite element solution to be computed and compared to the

estimated error computed from (3.31). The first example problem has a smooth

solution composed of a sine and a cosine function. The second example problem has a

rough solution composed of an arctangent function. The finite element approximation

for the first example will generally provide a better approximation (less error) than the

second example problem for the same orders of approximation and mesh size because

of the smoothness of the exact solution to the first example problem. The problems

are developed using an inverse approach by first choosing a closed form solution, u,

which satisfies the desired boundary conditions. Then the internal heat generation,

Q, required to obtain the closed form solution is determined by substituting the exact

solution into the heat conduction equation (2.6).

The examples will consider the two dimensional heat conduction problem shown

in Figure 3.3. The heated plate has dimensions L by d with the following boundary

conditions:

u = 0 along the edges x = 0 and x = L

−kz
∂u

∂z
= 0 along z = −d

2

−kz
∂u

∂z
= qt along z =

d

2
(3.32)

The plate has an internal heat source Q, and the heat load qt applied along the
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boundary at z = d
2

is a function of x. The bottom of the plate is insulated, and

the sides are held at a constant temperature of zero. For all results presented in this

section, kx = kz = 1.4, L = 1, d = 1, and the value of σ = 1 in (3.25) are used.

Z
qt(x)

L=1

d=1

qb=0

u=0
u=0Q(x,z)

X

Figure 3.3: Two-dimensional plate for numerical examples.

3.4.1 Case I: Smooth Solution

The exact solution to the heat conduction equation (2.6) is chosen to be the analytic

function

u = α
[
1 − cos

(
2πx

L

)] [−2d

kzπ
sin
(
πz

2d
− π

4

)]
(3.33)

This closed form solution satisfies the boundary conditions in (3.32) with the following

heat load applied to the top boundary

qt(x) = 1 − cos
(

2πx

L

)
(3.34)

The required internal heat source determined from (2.10) is

Q(x, z) =
απ
[
kzL

2 − (16d2kx + kzL
2) cos(2πx

L
)
]
sin[π(d−2z)

4d
]

2dkzL2
(3.35)
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The contours of the exact solution for the heated square plate with α = 10 is shown

in Figure 3.4. The solution is symmetric about the center line at x = 0.5 and exhibits

a very smooth behavior.
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3.41
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0

2

qt

Figure 3.4: Exact solution for Case I.

The error estimate is computed using the average flux approximation, (3.9), and

compared with the actual error in the energy norm in Figure 3.5. The graphs in Figure

3.5 show the rate of convergence of the error in the finite element approximation with

respect to the length of the elements, h, in a uniform mesh. The error in the energy

norm is plotted versus the inverse of the mesh size, which for a uniform mesh is the

same as the number of elements, so that the error curves have a negative slope. Each

graph represents a fixed particular value for px. Each line in a graph represents a

different value of pz varying from one to six. Each point on a particular line represents

a uniform mesh of 1
h

one-dimensional elements. As px increases, the error converges

faster (with fewer elements). The rate of convergence of the error, indicated by the

slope of the solid line in each plot is equal to the value of px. For the constant part

of a convergence curve where the lines level off, the hierarchical modelling error is

dominating. In this region, refinement of the mesh does not improve the finite element
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solution, and an increase in the chosen value for pz is required to improve accuracy.

When the hierarchical modelling error dominates, the estimated error (denoted by

dashed lines in Figure 3.5) is only slightly larger than the actual error for all values of

px. When the finite element error dominates, difference between the estimated error

is significantly larger than the actual error, but exhibits correct rates of convergence.

The discrepancy between the estimated and actual error is more pronounced for even-

orders of px.

The error estimate computed using the equilibrated flux is compared to the actual

error in Figure 3.6. Comparing Figure 3.6 with Figure 3.5 shows that the equilibrated

flux method provides more accurate error estimates, particularly when the error is

dominated by the finite element approximation error. The estimated and actual errors

using the equilibrated flux method are virtually indistinguishable for all values of px,

pz, and mesh size.
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Figure 3.5: Error for Case I using the average flux method.
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Figure 3.6: Error for Case I using the equilibrated flux method.

40



3.4.2 Case II: Rough Solution

The performance of the error estimates for a problem with a rough solution will now

be examined. The closed form solution is given by

u = α(L− x) [arctan [α(x− x0)] + arctan(αx0)]

[−2d

kzπ
sin
(
πz

2d
− π

4

)]
(3.36)

This solution satisfies the boundary conditions (3.32) with the applied heat load along

the top of the plate defined by

qt(x) = α(L− x) [arctan [α(x− x0)] + arctan(αx0)] (3.37)

The internal heat source required to deliver the solution in (3.36) is determined from

(2.6) to be

Q(x, z) =
απ(L− x) [arctan[α(x− x0)] + arctan[αx0]] sin

(
π
4
− πz

2d

)
2d

−
2αdkx

[
− 2α sin(π

4
−πz

2d )
π[1+α2(x−x0)2]

− 2α3(L−x)(x−x0) sin(π
4
−πz

2d )
π[1+α2(x−x0)2]2

]
kz

(3.38)

where α = 30 and x0 = 0.3. This exact solution has steep gradients in the x-direction

in the vicinity of x = x0 as seen in the contours of the exact solution shown in Figure

3.7.

The actual error is compared with the estimated errors using the average and

equilibrated boundary flux methods in Figures 3.8 and 3.9. The actual error in the

energy norm is not as well behaved as in Case I because the solution for this case

is not as smooth. Smaller mesh sizes are required to reach the expected rate of

convergence of px [4] as shown in Figures 3.5 and 3.6. The error estimates obtained

using the average flux method are much larger than the actual error. In comparison

of the error estimates obtained using the average and equilibrated flux methods for

Case II, the equilibrated flux method provides noticeably better error estimates than

the average flux method. A contour plot of the pointwise error in a finite element
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Figure 3.7: Exact solution for Case II.

solution obtained with 32 elements and px = pz = 2, shown in Figure 3.10, shows

that the greatest errors occur after x = x0 where the steep gradients occur. The

element error indicators, obtained with the average and equilibrated flux methods

are compared with the actual element error in Figures 3.11 and 3.12. The actual

and estimated errors in the finite element solution for px = pz = 2 with 32 elements

are shown. For this case, the global error for the equilibrated flux provides a much

better estimate of the error than the average flux method. The average flux method

severely over-estimates the error for each element in the region near x = x0, while the

equilibrated flux method provides an accurate indicator of the error for each element.
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Figure 3.8: Error for Case II using the average flux method.
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Figure 3.9: Error for Case II using the equilibrated flux method.
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3.5 Directional Error Indicators

The element error indicator described in the previous section gives an estimate of the

accuracy of the approximate solution on each element. There are various approaches

to improve the finite element solution. Some of these techniques include refining the

mesh, increasing the order of the approximation, and using different basis functions.

When using the hierarchical modelling approach, the through-thickness polynomial

degree, the mesh size, and the in-plane (or x-direction) polynomial degree are pa-

rameters which will affect the accuracy of the solution. A directional error indicator

provides an estimate of the error in the hierarchical model and finite element ap-

proximation separately. The directional error indicator indicates which parameters

to change to efficiently improve the approximate solution. According to Figure 3.6,

the error in approximating the solution in the z-direction with a polynomial of order

pz is dominant at the points where the lines are flat. In this circumstance, increasing

the value of pz will improve the approximate solution while refinement of the mesh

will not. If the approximate solution has an error which is located on the part of the

lines where the slope is px, then the error in the finite element method is dominant,

and refinement of the mesh would be the appropriate choice to reduce the error in

the solution. Directional error indicators could be used to distinguish between these

circumstances by determining which contribution to the error, the hierarchical model

or the finite element method, is the largest.

The error in the solution is composed of the error in the hierarchical model, eModel,

and the error in the finite element approximation of the hierarchical model, eFE.

eModel = u− uModel (3.39)

eFE = uModel − û (3.40)

The solution uModel is the exact solution to the hierarchical model, that is the exact
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solution to the system of differential equations resulting from the assumption that the

solution is a polynomial of pz in the through-thickness direction of the entire domain.

The finite element error is associated with the polynomial approximation pf degree

px in the x-direction. The total error can be expressed as the sum of the modelling

error and the finite element approximation error

e = u− û

e = u− uModel + uModel − û

e = eModel + eFE (3.41)

The energy norm, defined in (3.30) from the weak formulation, is used to measure

the error in the approximate solution

|‖e‖|2 = B(e, e) (3.42)

Substituting the definition of e in (3.41) into (3.42) and expanding yields

B(e, e) = B(eModel + eFE, eModel + eFE)

B(e, e) = B(eModel, eModel) +B(eFE, eFE) +B(eModel, eFE) +

B(eFE, eModel) (3.43)

B(·, ·) is symmetric, and the modelling error is orthogonal to the finite element ap-

proximation error [5], meaning

B(eModel, eFE) = 0 (3.44)

B(eFE, eModel) = 0 (3.45)

Using (3.44) and (3.45), the last two terms in the definition of the energy norm of

the total error in (3.43) become zero, so that

B(e, e) = B(eModel, eModel) +B(eFE, eFE)

|||e|||2 = |||eModel|||2 + |||eFE|||2 (3.46)
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This equation shows how the directional errors are related to the total error.

The total element error for the model problem is approximated using the following

polynomial, as discussed in Section 3.3,

ê =
px+σ∑
i=0

pz+σ∑
j=0

φi(x)ψj(z)bij σ ≥ 1 (3.47)

Recall that σ must be greater or equal to 1 to ensure that the result for the error

estimate is nontrivial. The finite element error is the error in the solution which is

controlled by the mesh size and the polynomial order in the x-direction, h and px.

The modelling error is controlled by the through-thickness polynomial order, pz. To

approximate each of the directional error indicators, the opposing σ is set to zero in

(3.47). The directional error polynomial approximations are

êFE =
px+σ∑
i=0

pz∑
j=0

φi(x)ψj(z)bij

êModel =
px∑
i=0

pz+σ∑
j=0

φi(x)ψj(z)cij (3.48)

Using each of these approximations separately in the element residual error equation

(3.28) with either the average and equilibrated flux methods described in Sections

3.2.1 and 3.2.2, the approximate solution for each of the errors can be found. The

directional error indicators are computed using the energy norm of the approximate

error functions:

|||e|||2Ω = B(e, e) =
∑
Ωe

BΩe(e, e) (3.49)

εFE = |||êFE|||Ω =
√
B(êFE, êFE) =

√∑
Ωe

BΩe(êFE, êFE) (3.50)

εModel = |||êModel|||Ω =
√
B(êModel, êModel) =

√∑
Ωe

BΩe(êModel, êModel) (3.51)
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3.6 Numerical Examples for the Directional Error

Estimates

Results for Case I and II are examined using the directional error indicators. The

equilibrated flux method is used to approximate the element boundary fluxes. Figure

3.13 shows the actual error, the model error estimate, and the finite element error

estimate plotted versus the inverse of the mesh size for the problem in Case I. The

pz value is varied with uniform mesh refinements for a fixed px value. The graphs

in Figure 3.13 show that the estimated error in the finite element approximation

(denoted by triangles) has a slope of px, and follows the convergence rate of the actual

error. The actual hierarchical modelling error for each value of pz is determined by the

horizontal portion of the actual error line. The estimated hierarchical modelling error

is accurate for sufficiently small mesh sizes, which are determined by the value of px.

At each point on each line, the most effective method of improving the approximate

solution is determined by which error indicator is larger.

The directional error indicators for Case II are shown in Figure 3.14. The actual

error, model error estimate, and finite element error estimate are plotted versus the

inverse of the mesh size. The actual error norms are not as well behaved as in

Case I due to the roughness of the problem, however, the finite element error is

accurately predicted by the directional error estimates. The estimated hierarchical

modelling error is slightly higher than the actual hierarchical modelling error for low

values of pz and for large mesh sizes. The results of these examples show that the

directional error indicators accurately determined which error dominates, the model

or the finite element error, for a smooth and a rough solution. Knowledge of which

error is dominant in the approximate solution indicates the most effective way to

improve the approximate solution.
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Figure 3.13: Directional error estimation for Case I using the equilibrated flux
method.
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Figure 3.14: Directional error estimation for Case II using the equilibrated flux
method.
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Chapter 4

Extension to Multi-layered
Materials

Structural concepts for aerospace vehicles often consist of panels made of multi-layer

materials. Examples include skins of composite laminates or metallic thermal pro-

tection systems. Accurate and efficient analysis methods are required to aid in the

design of such concepts. Hierarchical modelling, p-version finite elements, and error

estimation are extended to multi-layered materials in this chapter.

4.1 Boundary Value Problem

Section 2.1 presents the boundary value problem for a single layer. The two-dimensional

domain for a multi-layered material for a plate with length L, thickness d, and nL lay-

ers of material is shown in Figure 4.1. The boundary value problem must be satisfied

by the solution for the temperature in each layer, ui, with the boundary conditions

described on the boundary of the global domain:

−∇T (κi∇ui) = Q i = 1, . . . , nL

−(κi∇ui)
TnΩ = qs on ΓN

ui = us on ΓD (4.1)

For layered materials, continuity at the boundaries of the layers must also be satisfied.
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Figure 4.1: Two-dimensional domain for a multi-layered material.

At each layer interface, the temperature and the heat flux are required to be equal

ui|zi
= ui+1|zi

−(κi∇ui)
Tni

∣∣∣
zi

= −(κi+1∇ui+1)
Tni+1

∣∣∣
zi


 i = 1, . . . , nL − 1 (4.2)

where i denotes the layer of interest, zi represents the z-coordinate of the layer inter-

face, and the outward unit normal vector to the boundary of layer i is ni.

4.2 Finite Element Method for Multi-Layers

The finite element method used in this research for materials with multiple layers

is similar to the method described in Chapter 2. The through-thickness direction is

modelled by a polynomial function of degree pz, reducing the spatial dimension of

the domain by one, a mesh is created for the dimensionally-reduced domain, and the

p-version finite element method is used to complete the approximation. The thermal

conductivity for the orthotropic multi-layered materials is assumed in this research

to be a piecewise constant function in the through-thickness direction,

κi =

[
(kx)i 0

0 (kz)i

]
(4.3)
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4.2.1 Weak Formulation

The weak form of (4.1) is constructed by multiplying by a test function and integrating

by parts. The test function is required to be zero on ΓD.

∫
Ω
(κ∇u)T ∇v dΩ =

∫
Ω
Qv dΩ −

∫
ΓN

qsv ds (4.4)

In abstract form, the problem is to find u ∈ V (Ω) such that u = us on ΓD and

B(u, v) = L(v) for all admissible v ∈ V (Ω) (4.5)

The subscript i has been dropped in (4.4) and (4.5) with the understanding that the

thermal conductivity is a piecewise constant function of z, and the exact solution is

piecewise defined on each layer. The hierarchical modelling combined with p-version

finite element method is used to approximate the solution to (4.5). The p-version

method for multi-layers is identical to the method described in Section 2.3.2 for a

single layer, where the basis functions, φ, in (2.23) are used. However, since one

approximate solution is computed for all layers in each element, the hierarchical

modelling method is modified by choosing a more efficient set of through-thickness

basis functions to approximate the exact solution using piecewise polynomials.

4.2.2 Optimal Hierarchical Model

Piecewise constant thermal conductivities in the boundary value problem in (4.1)

result in a piecewise exact solution in the through-thickness direction. The work

of Vogelius and Babuska [5] shows that the optimal choice of basis functions for

hierarchical modelling of the boundary value problem (4.1) are piecewise polynomials.

The choice of basis functions are optimal in the sense that the approximate solution

converges to the exact solution at the expected rate as the polynomial order, pz,

approaches infinity and as the plate thickness, d, approaches zero. The basis functions

for hierarchical modelling in single-layered materials are referred to as homogenized
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basis functions. The set of optimal basis functions, ψ̂, is constructed by scaling the

odd-degree through-thickness homogenized basis functions, ψ, by the conductivity

of each layer and shifting the resulting polynomial to enforce continuity at the layer

interfaces:

ψ̂2j = ψ2j j = 0, . . . ,
pz

2

ψ̂2j−1 =




ψ̂1
2j−1 −1 ≤ η ≤ η1

ψ̂2
2j−1 η1 ≤ η ≤ η2
...

ψ̂nL
2j−1 ηnL−1 ≤ η ≤ 1




j = 1, . . . ,
pz

2
(4.6)

where

ψ̂1
2j−1 =

1

(kz)1

ψ2j−1

ψ̂i
2j−1 =

1

(kz)i

(ψ2j−1 − ψ2j−1(ηi−1)) + ci i = 2, . . . , nL

c2 =
1

(kz)1

ψ2j−1(η1)

ci+1 = ci +
1

(kz)i

(ψ2j−1(ηi) − ψ2j−1(ηi−1)) i = 2, . . . , nL − 1 (4.7)

and i is the layer of interest, ψ̂i
2j−1 is the optimal polynomial of degree 2j − 1 in the

ith layer, and ψj are given in (2.19). These basis functions provide more accurate

approximations for layered materials than the single layer through-thickness basis

functions described in Section 2.3.1. An example of these basis functions are shown

in Figure 4.2 for a three layer material with (kz)1 = 1, (kz)2 = 10, and (kz)3 = 1 for

the polynomials of degree 0 through 7. Note that the odd degree basis functions have

discontinuous derivatives at the layer interfaces.

4.2.3 Element Equations

The finite element solution, û, on an element is written as a linear combination of the

basis functions

û|Ωe =
px∑
i=0

pz∑
j=0

φi(ξ)ψ̂j(η)aij = (φ⊗ ψ̂)Tae = χ̂Tae (4.8)
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Figure 4.2: The optimal basis functions for a three layer material with (kz)1 = 1,
(kz)2 = 10, and (kz)3 = 1.

The variational problem in (4.4) is written as a sum of integrals over each element

N∑
e=1

∫
Ωe

(κ∇u)T ∇v dΩe =
N∑

e=1

∫
Ωe
Qv dΩe −

∫
∂Ωe∩ΓN

qs ds (4.9)

The Bubnov-Galerkin method chooses the test function to be the same as the approx-

imating functions, and substituting (4.8) for u and χ̂i, i = 1, . . . , (px + 1) × (pz + 1)

for v into (4.9) yields a system of equations which can be written in matrix form as

(
N∑

e=1

AΩe

)
a =

N∑
e=1

F Ωe (4.10)

where the element matrix and the load vector are defined as
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AΩe =
∫
Ωe

∇χ̂(κ∇χ̂)T dΩe

=
nL∑
i=1

∫ x1

x0

∫ zi

zi−1

∇χ̂(κ∇χ̂)T dzdx

=
∫ x1

x0

∂φ

∂x

∂φT

∂x
dx⊗

nL∑
i=1

∫ zi

zi−1

(kx)iψ̂ψ̂
T
dz +

∫ x1

x0

φφT dx⊗
nL∑
i=1

∫ zi

zi−1

(kz)i
∂ψ̂

∂z

∂ψ̂
T

∂z
dz (4.11)

F Ωe =
∫
Ωe
Qχ̂ dΩe −

∫
∂Ωe∩ΓN

qsχ̂ ds

=
nL∑
i=1

∫ x1

x0

∫ zi

zi−1

Qχ̂ dzdx−
∫

∂Ωe∩ΓN

qsχ̂ ds (4.12)

4.3 Multi-Layer A Posteriori Error Estimation

The element residual method is applied to multi-layered materials. A local boundary

value problem for the error is developed, and the equilibrated flux method is mod-

ified for application to multi-layered materials. The solution to the error equation

is approximated and used in the definition of the energy norm to compute the error

indicator for each element. Numerical results are presented for multi-layered materi-

als. According to the literature search performed, numerical results for applying the

element residual method to multi-layered materials have not yet been presented.

4.3.1 Element Residual Method

The weak form of the local error residual problem derived in Section 3.1 is used for

the multi-layer problem.

∫
Ωe

(κ∇e)T ∇v dΩe =
∫
Ωe
Qv dΩe −

∫
Ωe

(κ∇û)T ∇v dΩe +
∫

∂Ωe
(κ∇u)TnΩev ds

BΩe(e, v) = FΩe(v) −BΩe(û, v) +
∫

∂Ωe
(κ∇u)TnΩev ds

e = 0 on ΓD (4.13)

The last term in the variational form of the element error residual problem is the exact

flux, and an approximation must be made since the exact solution is not known. The
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next section discusses the modified equilibrated flux method of approximating the

boundary fluxes on an interior element boundary for multi-layer problems.

4.3.2 Equilibrated Boundary Flux Approximation

The equilibrated flux method is used to approximate the element boundary flux, but

the method must be modified for multi-layered materials. The exact flux in the x-

direction is discontinuous along the boundary of an element (not across the boundary)

in the through-thickness direction because of the piecewise constant thermal conduc-

tivity. Figure 4.3 shows an example of the discontinuous boundary flux on an element

with four layers. Therefore the method chosen to approximate the exact boundary

flux should also be discontinuous. To develop an equilibrated discontinuous flux, the

x0 x1

d⁄2

1

3 (kx)3

(kx)2

-d⁄2

qx=-(kx)i
∂u
∂x

(kx)1

(kx)4

2

4z

x

Figure 4.3: Example of a discontinuous exact boundary flux in the x-direction on a
four layer element.

equilibrated flux method is modified by defining the approximate flux on each element

as

q̂Ωe = q̄Ωe + q̃Ωe (4.14)
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where q̄Ωe is the average flux and q̃Ωe is the deviation from the average required

to equilibrate the flux. The average flux is discontinuous since it is computed by

averaging the finite element fluxes from neighboring elements as described in Section

3.2.1

q̄Ωe =
1

2
(κ∇ûΩe |∂Ωe + κ∇ûΩe′|∂Ωe)

T nΩe (4.15)

The equilibrium condition for the equilibrated flux in a single layer is used to find

q̃Ωe . The definition for q̂Ωe in (4.14) is substituted into (3.15)

FΩe(θn) −BΩe(û, θn) −
∫

∂Ωe
q̄Ωeθn ds−

∫
∂Ωe

q̃Ωeθn ds = 0

for n = 1, . . . , nγ (4.16)

For the boundary of an element that coincides with ΓN ,

q̄Ωe + q̃Ωe = qs on ∂Ωe ∩ ΓN (4.17)

The approach to solve (4.16) for q̃Ωe is the same as described in Section 3.2.2 to solve

(3.15). The deviation from the average flux, q̃Ωe , is written in terms of the nodal basis

functions, θn, (see (3.18)) with the same through-thickness polynomial degree used

in the hierarchical modelling of the plate, pz, as

q̃Ωe|γ =
pz+1∑
i=1

αiθi|γ (4.18)

Equation (4.18) is substituted for q̃Ωe in (4.16), resulting in a system of equations for

the unknown coefficients. For the edge γ2,

M γ2α =




FΩe(θγ2
1 ) −BΩe(û, θγ2

1 ) − ∫γ2
q̄Ωeθγ2

1 ds− ∫γ1
qbθ

γ2
1 ds

FΩe(θγ2
2 ) −BΩe(û, θγ2

2 ) − ∫γ2
q̄Ωeθγ2

2 ds− ∫γ3
qtθ

γ2
2 ds

FΩe(θγ2
3 ) −BΩe(û, θγ2

3 ) − ∫γ2
q̄Ωeθγ2

3 ds
...

FΩe(θγ2
pz+1) −BΩe(û, θγ2

pz+1) −
∫
γ2
q̄Ωeθγ2

pz+1 ds




(4.19)
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For γ4,

M γ4α =




FΩe(θγ4
1 ) −BΩe(û, θγ4

1 ) − ∫γ4
q̄Ωeθγ4

1 ds− ∫γ1
qbθ

γ4
1 ds

FΩe(θγ4
2 ) −BΩe(û, θγ4

2 ) − ∫γ4
q̄Ωeθγ4

2 ds− ∫γ3
qtθ

γ4
2 ds

FΩe(θγ4
3 ) −BΩe(û, θγ4

3 ) − ∫γ4
q̄Ωeθγ4

3 ds
...

FΩe(θγ4
pz+1) −BΩe(û, θγ4

pz+1) −
∫
γ4
q̄Ωeθγ4

pz+1 ds




(4.20)

where M γi
is a mass matrix along γi defined in (3.22). Equations (4.19) and (4.20)

are solved for αi, which determines the deviation, q̃Ωe . The solution for q̃Ωe and the

definition for the average flux in (4.15) are substituted into (4.14) to determine the

equilibrated flux applied to the interior element boundaries.

4.3.3 Multi-Layer Error Indicator

The error function in the error residual problem (4.13) is approximated by using the

equilibrated flux method for in the last term. The approximate error function, ê,

is defined as a linear combination of the basis functions used in the finite element

approximation

ê =
px+σ∑
i=0

pz+σ∑
j=0

φi(x)ψ̂j(z)bij (4.21)

where σ ≥ 1. The definition for ê is substituted for e and (3.26) is substituted for v

in (4.13), creating a system of equations that is written in matrix form:

BΩe(ê, v̂) = FΩe(v̂) −BΩe(û, v̂) −
∫

∂Ωe
q̂Ωe v̂ ds

Aeb = F e (4.22)

The error indicator for each element is determined using the energy norm of the

approximate error function ê defined as

εΩe = |‖ê‖|Ωe =
√
BΩe(ê, ê) =

[∫
Ω
(κ∇ê)T ∇ê dΩ

] 1
2

(4.23)
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The global error indicator is calculated by computing the sum of the squares of the

local error indicators

ε =

[∑
Ωe

(εΩe)2

]1/2

(4.24)

4.4 Numerical Examples

Results are shown for a two-layer plate with length L = 2, thickness d = 1, no internal

heat generation, (kx)1 = (kz)1 = 1, (kx)2 = (kz)2 = 10, and σ = 1, shown in Figure

4.4. The layers are of equal thickness, and the boundary conditions are

u = 0 along the edges x = 0 and x = L

−kz
∂u

∂z
= 0 along z = −d

2

−kz
∂u

∂z
=

4q0x(L− x)

L2
along z =

d

2
(4.25)

where q0 = −10. The exact solution is an infinite Fourier series defined for each layer

x

z

1

2

(kx)1=(kz)1=1

(kx)2=(kz)2=10
d=1

0.5

L=2

qb=0

u=0
u=0

0.5

qt(x)=
4q0x(L-x)

L2

Figure 4.4: Two-dimensional plate with two layers for numerical results.

u =
∞∑

n=1

sin
(
nπx

L

){
An sinh (α1

nz) +Bn cosh (α1
nz) −d

2
≤ z ≤ 0

Cn sinh (α2
nz) +Dn cosh (α2

nz) 0 ≤ z ≤ d
2

(4.26)
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where

αi
n =

nπ

L

√√√√(kx)i

(kz)i

An = − 32Lq0 tanh
(

d
2
α1

n

)
n4π4

√
(kx)2(kz)2

[
sinh

(
d
2
α2

n

)
+ cosh

(
d
2
α2

n

)√
(kx)1(kz)1
(kx)2(kz)2

tanh
(

d
2
α1

n

)]

Bn =
An

tanh
(

d
2
α1

n

)

Cn = An

√√√√(kx)1(kz)1

(kx)2(kz)2

Dn =
An

tanh
(

d
2
α1

n

) (4.27)

The contours of the exact solution for the plate problem is shown in Figure 4.5.
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Figure 4.5: Exact solution for the two layer example.

To illustrate the improvement in the accuracy of the finite element solution ob-

tained with the optimal hierarchical model, the actual error obtained using the new

through-thickness basis functions is compared with the actual error obtained using

the homogenized basis functions in Figure 4.6. Each graph shows the actual error in

the energy norm versus the inverse of the mesh size for a fixed value of px. Each line

in each graph represents a fixed value of pz with uniform mesh refinement. For each
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value of px, the results show that the error is less when using the optimal through-

thickness basis functions except when pz = 1. The rate of convergence of the error is

px for the optimal basis functions as seen in the first graph in Figure 4.6. The hier-

archical modelling error becomes dominant after only a few mesh refinements when

using the single-layer (homogenized) basis functions. The hierarchical modelling er-

ror is much larger for the homogenized basis functions than for the optimal ones for

the same model order, pz. Also, the hierarchical modelling with the homogenized

basis functions fails to converge with pz as the modelling error does not decrease

significantly as pz is increased.

The performance of the error estimate for the multi-layer example is shown in

Figure 4.7. The comparison of the actual error and the estimated error shows that

the error estimate predicts the error in the solution reasonably well.
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Figure 4.6: Actual error in solutions obtained for two layer example.
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Chapter 5

Concluding Remarks

An overview of the research presented in this thesis is discussed in this chapter. A

summary of the main topics of this paper is first presented followed by the conclusions

resulting from this research. Finally, recommendations for future work in this area of

research are given.

5.1 Summary

Finite element methods are widely used in engineering analysis of many types of

problems. Hierarchical modelling combined with p-version finite elements is an ad-

vanced method of approximating solutions to a number of engineering problems, and

are applied to heat conduction in this work. Error estimation provides a qualitative

measure of the accuracy of the finite element solution. A posteriori error estimation

is necessary for adaptive schemes, where mesh refinement or polynomial enrichment

is automatically controlled to efficiently improve the accuracy of the solution. For

hierarchical modelling combined with the p-version finite element method, additional

information about the error can be determined through the use of directional er-

ror indicators, which distinguish between the hierarchical modelling error and the

finite element error. Application of a posteriori error estimation is important to

single-layered as well as multi-layered materials, such as metallic thermal protection
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systems and composite laminates. One of the goals of this research is to investigate

a posteriori error techniques applied to multi-layered materials.

5.2 Conclusions

It is shown that a residual based a posteriori error estimate method can be effectively

applied to a two-dimensional orthotropic material under steady-state conditions. The

equilibrated flux method provides more accurate results for the error estimates than

the average flux method. Although somewhat more computationally expensive than

the average flux method, the accuracy of the results from using the equilibrated flux

method are worth the additional effort. The error estimates for this research are

determined by performing the analysis on a two-dimensional domain, and while the

procedure for three-dimensional domains may be more complex to implement, com-

parable accuracy is expected. The directional error indicators are shown to provide

some insight to separating the error created by the hierarchical model and the finite

element method, which will be useful in developing an adaptive scheme. Finally, it

is determined that it is necessary to modify the application of the equilibrated flux

method to multi-layered materials by using a discontinuous approximate boundary

flux to obtain accurate results. One such modification is developed and investigated,

and the error estimates are shown to predict the error in the solution reasonably well.

5.3 Recommendations

The research presented in this work may be extended in several different ways. The

application of this research was limited to two-dimensional steady-state problems. It

is recommended that future work include three-dimensional work with hierarchical

modelling in the through-thickness direction. Additionally, extension to transient

analyses would be the next step. Development of an adaptive scheme using the er-
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ror estimates discussed in this research should be investigated. The error estimates

provide the information needed to determine when and where a more accurate ap-

proximation is needed, and the adaptive scheme can use the error estimates for au-

tomatic mesh refinement, p-enrichment, or a combination of both. Finally, for the

multi-layered problems, other methods of approximating the heat flux on the ele-

ment boundary to provide more accurate error estimates should be investigated. One

suggested approach is equilibrating the flux on each layer of the element.
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