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TERMINATION OF STRING REWRITING RULES

THAT HAVE ONE PAIR OF OVERLAPS�

ALFONS GESERy

Abstract� This paper presents a partial solution to the long standing open problem of termination of

one�rule string rewriting� Overlaps between the two sides of the rule play a central role in existing termination

criteria� We characterize termination of all one�rule string rewriting systems that have one such overlap at

either end� This both completes a result of Kurth and generalizes a result of Shikishima�Tsuji et al�

Key words� semi�Thue system� string rewriting� one�rule� single�rule� termination� uniform termination�

overlap

Subject classi�cation� Computer Science

�� Introduction and Related Work� Termination of one�rule string rewriting systems �SRSs� is a

long standing open problem ���� �	� ��� �
� ��� �� �
� ��� �� 	� ��� The �rst systematic approach was started

by Kurth ���� He introduced a number of termination criteria to solve termination for all � � r where

jrj � 
��

Most of Kurth�s criteria �
 out of ��� and indeed most of the criteria introduced since� are based on two

sets� the set of overlaps of the left hand side �from the left end� with the right hand side �from the right

end�� and the set of overlaps of the right hand side �from the left end� with the left hand side �from the right

end�� Kurth�s Criterion D states that we have termination if one or both of the two sets are empty�

In the case where both sets are singletons� we say that the one�rule SRS has one pair of overlaps�

Kurth ��� provides Criterion F speci�cally for this case� As Criterion F can only prove termination of rules

that are left barren or right barren� it is incomplete as we will show �Example ��� Shikishima�Tsuji et al� ��
�

Theorem �� show that a con�uent one�rule SRS with one pair of overlaps terminates if and only if there are

no loops of lengths � or �� As a consequence termination of such SRSs is decidable�

This paper completely solves the termination problem for one�rule SRSs with one overlap pair� We prove

that such an SRS terminates if and only if it has no loop of lengths �� � or 	 �Theorem ����� This implies

decidability of the termination problem�

It turns out that the extension is non�trivial� There are two behaviours that were observed neither by

Kurth nor by Shikishima�Tsuji et al� Loops of length 	 is one of them� the other is terminating non�tame

rules�

This paper makes the following original contributions�

�� Termination of one�rule SRSs with one overlap pair is shown decidable�

�� Termination of one�rule SRSs with one overlap pair is shown equivalent to the non�existence of loops

of length 	 or less�

	� Terminating one�rule SRSs with one overlap pair are shown to have linear derivation lengths�

�� The �rst termination criterion for a class of non�tame one�rule SRSs�

�This work was supported by the National Aeronautics and Space Administration under NASA Contract No� NAS�������

while the author was in residence at ICASE	 NASA Langley Research Center	 Hampton	 VA 
�����
���	 USA�
yAddress
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The paper is organized as follows� After the preliminaries �Section �� and an introduction to left barren

and tame rules �Section 	�� we focus on the interesting non�tame case� In Section �� we derive a pattern that

describes the non�tame rules� In Sections 
 and 
� we solve the non�terminating and terminating non�tame

rules� respectively� Section � �nally shows the main theorem of the paper and its rami�cations�

�� Preliminaries� A string rewriting rule is a pair � � r of strings� �� r � �� where � is a given

alphabet� A set of string rewriting rules is called a string rewriting system �SRS�� An SRS R induces a

rewrite step relation � de�ned by s� t if there are u� v � �� and a rule �� r in R such that s � u�v and

t � urv� The SRS R is said to terminate if there is no in�nite sequence of rewrite steps s� � s� � � � � �

A string u is called a factor of v if v � sut for some s� t � ��� a pre�x if v � ut for some t � ��� a su�x

if v � su for some s � ��� The pre�x or su�x u of v is called proper if u �� v� The set of overlaps of a string

u with a string v is de�ned by

OVL�u� v� � fw � �� j u � u�w� v � wv�� u�v� �� �� u�� v� � ��g�

The length of a string u is denoted by juj�

�� Left Barren Rules� For a �xed one�rule SRS f� � rg let A � OVL�r� �� and B � OVL��� r�� In

what follows we consider A and B as disjoint� For all � � A� the strings �� and r� are de�ned by � � ���

and r � r��� respectively� Likewise� for all � � B� the strings �� and r� are de�ned by � � ��� and r � �r� �

respectively�

The following de�nition of �left barren� is after McNaughton�s corrected version� The original de�nition

is renamed to �left s�barren� �see De�nition 	���� following a suggestion of Kobayashi et al� ����

Definition ��� �Left barren� right barren ������ A one�rule SRS f� � rg is called left barren if � is

not a factor of r and no ��� � � A is a pre�x of any concatenation r�� � � � r�k where ��� � � � � �k � B� k � ��

Dually� f�� rg is called right barren if � is not a factor of r and no ��� � � B is a su�x of any concatenation

r�� � � � r�k where ��� � � � � �k � A� k � ��

A one�rule SRS f�� rg is called non�overlapping if OVL��� �� � ��

Theorem ��� ������� Every non�overlapping� left barren� one�rule SRS terminates�

Theorem ��� ��	��� Every left barren one�rule SRS terminates�

By symmetry w�r�t� reversal of strings also every right barren one�rule SRS terminates�

Definition ��� �Left s�barren� right s�barren ���� ���� A rule �� r is called left s�barren if no ��� � � A

is a pre�x of any r� � � � B� Dually �� r is called right s�barren if no ��� � � B is a su�x of any r�� � � A�

A left barren rule is left s�barren� but the converse usually does not hold� Indeed we will encounter

left s�barren� not left barren rules later in this paper� They belong to a class of rules whose termination is

particularly di�cult to show� Next we will de�ne this class�

In the following de�nition we consider A�B as �disjoint� alphabets� For � � ���� � � � �k � A� we de�ne

�� by �� � ������ � � � ��k � And dually� for � � ���� � � � �k � B� we de�ne �� by �
�
� ������ � � � ��k �

Kobayashi et al� ��� introduced the notion of tame� non�overlapping one�rule SRSs�

Definition ��� �Tame �	��� Let f�� rg be a one�rule SRS� The sets C and D are de�ned by

C � fr� � �� j r � ���r
�� � � B�� � A�g�

D � fr� � �� j r � r��
�
�� � � A� � � B�g�

Then �� r is called tame if � is neither of the form

�r�r� � � � rkw� �	���






for any � � A� k � �� r�� � � � � rk � C� and non�empty pre�x w of an element of C� nor of the form

wr�r� � � � rj�� �	���

for any � � B� j � �� r�� � � � � rj � D� and non�empty su�x w of an element of D�

The following result is implicit in Kobayashi et al� ��� Cor� 
����

Theorem ��	� Every non�overlapping� tame� left s�barren one�rule SRS is left barren�

Theorem ��
 ��	��� Every tame� left s�barren one�rule SRS is left barren�

By symmetry� every tame� right s�barren one�rule SRS is right barren�

Proof� For a proof by contradiction� assume that � � r is not left barren� i�e�� some �� is a pre�x of

some concatenation r��r�� � � � r�n � Let n be minimal� If n � � then � � r is not left s�barren� So n � �

whence �� is of the form r��r�� � � � r�n��w where w is a nonempty pre�x of r�n � Hence � is of the form �	���

and so �� r is not tame�

�� A Reduction of the Problem� Throughout the remainder of this paper we assume a one�rule SRS

f�� rg that has one pair of overlaps� i�e�� jOVL�r� ��j � jOVL��� r�j � �� Let then �� � � �� be de�ned by

OVL�r� �� � f�g and OVL��� r� � f�g�

We will devote the greater part of the paper to solving the interesting case� rules that are left s�barren

but neither left barren nor right s�barren� According to Theorem 	��� these are non�tame� speci�cally they

are of the form �	���� In this section we will derive the general pattern of such rules� Let us henceforth

assume that � is not a factor of r and that j�j � jrj�

The �rst pattern is derived without the right�s�barren hypothesis�

Lemma ���� Let �� r be left s�barren but not left barren� Then j�j � j�j and �� r is of the form

��ww��n��w � �ww� �����

for some n � �� w� � ��� and w � ���

Proof� Let �� r be left s�barren but not left barren� Then we get by the respective de�nitions that ��

is not a pre�x of r� and that �� is a pre�x of rn� form some n � �� Hence r� is a proper pre�x of ��� So

let �� � rn��� w where n � �� and w is a non�empty pre�x of r� � Let w
� � �� be de�ned by r� � ww�� By

back�substitution we get the form ������ From j�r� j � jrj � j�j � j�rn��� wj we conclude j�j � j�j�

If we add the right�s�barren hypothesis� then we can rule out the case where � and � overlap in ��

Lemma ���� If �� r is left s�barren but neither left barren nor right s�barren� then j�j� j�j � j�j�

Proof� For a proof by contradiction assume j�j� j�j � j�j� Let �� r be left s�barren but not left barren�

By Lemma ��� we get that � � r has the form ������ Then by j�j � j�j � j�j there is a non�empty su�x u

of � such that � � u�ww��n��w� De�ne �� � �� by � � ��u� The string �� is non�empty by � �� �� Thus �

and r are of the form

� � ��u�ww��n��w�

r � u�ww��n��www��

for some n � �� w� � ��� and ��� u� w � ���

Now let moreover �� r not be right s�barren� i�e�� let �� be a su�x of r�� This is expressed equivalently

by the string equation z��� � r for some z � ��� Using �� � �� this instantiates to

z����u � u�ww��n��www��

�



Letm � � be maximal such that ��ww��n��www��m is a su�x of u� De�ne u� � �� by u � u���ww
��n��www��m�

Then u� is a proper su�x of �ww��n��www�� and the equation reduces to z����u� � u��ww
��n��www�� If

m � � then ��u� � OVL�r� ��� a contradiction� So m � � and u � u��

If u� is a su�x of ww� then u�w � OVL��� r�� a contradiction� So ww� is a proper su�x of u�� Let

u� � �� be de�ned by u� � u�ww
�� The equation reduces to z����u� � u��ww

��nw�

By de�nition of u�� u� is a proper su�x of �ww��n��w� Then u� � OVL��� r�� a contradiction�

If � and � do not overlap in �� then we can narrow the pattern for the rule�

Lemma ���� Let �� r be left s�barren but not left barren� If j�j� j�j � j�j then �� r is of the form

�wxy�w � y�wwxy� �����

for some x � �� and y� �� w � ���

Proof� Let �� r be left s�barren but not left barren� By Lemma ��� we get that �� r has the form ������

Case �� � � w���w�w�i for some � � i � n � �� and some non�empty su�x w�� of w� If i � � then

w�� � OVL��� r�� a contradiction� So i � � and � � w��� Then

jrj � j�j � jw��j� jwj� jw�j � �j�j� njwj� �n� ��jw�j� � ��

again a contradiction�

Case �� � � w��w�w�w�i for some � � i � n � �� and some nonempty su�x w�� of w�� If i � � then

w��w � OVL��� r�� a contradiction� So i � � and � � w��w� Let w� � xw�� for some string x� Then we have

� � ��wxw���n��w�

r � w��wwxw���

and so

jrj � j�j � �jw��j� �jwj� jxj � �j�j� �n� ��jw��j� �n� ��jxj� njwj�

� �	� n�jw��j� ��� n�jwj� ��� n�jxj � j�j�

If n � 	 then jrj � j�j � �� So n � � and jrj � j�j � jw��j � j�j � � whence jw��j � j�j� By de�nition of � now

� is a proper su�x of w��� Let w�� � y� for some y � ��� We conclude that �� r is of the form ������

Putting Lemma ��� and ��	 together allows us to narrow the rule pattern further�

Lemma ���� If �� r is left s�barren but neither left barren nor right s�barren then �� r is of the form

�wx�y�wx�m���w � y�wx�wwx�y�wx�m���� ���	�

for some m � �� x � ��� and ��w� y � ���

Proof� Let � � r be left s�barren but neither left barren nor right s�barren� By Lemma ��� we get

j�j� j�j � j�j� By Lemma ��	 we get that �� r has the form ������

The property that � � r is not right s�barren means that �� � �wx is a su�x of r� � y�wwxy� Then

we have to solve the string equation

z�wx � y�wwxy �����

for z� x � ��� �� w� y � ���

Let m � � be maximal such that ym is a su�x of x� De�ne x� � �� by x � x�y
m� Then z�wx� �

y�wwx�y and x� is a proper su�x of y� De�ne y� � �� by y � y�x�� Then z�w � y�x��wwx�y��

�



If y� is a su�x of w then y� � OVL��� r�� a contradiction� So w is a proper su�x of y�� De�ne y� � ��

by y� � y�w� Then the equation reduces to z� � y�wx��wwx�y��

If y� is a su�x of � then y�w � OVL��� r�� a contradiction� So � is a proper su�x of y�� De�ne y� � ��

by y� � y��� The equation reduces to z � y��wx��wwx�y� which is trivial�

By back�substitution we get

y � y�x� � y�wx� � y��wx��

x � x�y
m � x��y��wx��

m�

� � �wxy�w � �wx��y��wx��
m���w�

r � y�wwxy� � y��wx��wwx��y��wx��
m����

and thus the form ���	� by the renaming x� 	� x� y� 	� y�

The following is interesting to note� It explains why rules of the form ���	� were not observed by

Shikishima�Tsuji et al�

Theorem ���� All rules of the form ���	� are non�con�uent�

Proof� A one�rule SRS f�� rg where j�j � jrj is con�uent if and only if OVL��� �� 
 OVL�r� r� by a result

of Wrathall ����� A rule of the form ���	� satis�es �w � OVL��� ��� If �w � OVL�r� r� then �w � OVL�r� ���

a contradiction to OVL�r� �� � f�g� So �w � OVL��� �� nOVL�r� r� whence �� r is not con�uent�

In the next two sections we are going to identify the non�terminating and the terminating instances of

the form ���	��

�� The Non�terminating Case� A rule of the form ���	� loops in the following case�

Lemma ���� Let � � r be left s�barren but neither left barren nor right s�barren� If ���� is a su�x of

r�� then the one�rule SRS f�� rg has a loop of length ��

Proof� Like in the proof of Lemma ���� we get �� � rn��� w and r� � ww� for some w � ��� w� � ��� n � ��

In the proof of Lemma ��	 we showed n � �� With r� � v���� for some v � ��� we then get a loop�

��� � r���� � r�r � v�����r� � v��rr� � v���r�r� � v�r�r�

� v���w
��

These loops are also instances of Kurth�s criterion for loops of length 	 ��� Theorem �� Case A�� The

following little result provides an alternative criterion to Lemma 
���

Lemma ���� If �� r has the form ���	� then the following are equivalent	


� ���� is a su�x of r��

�� m � � and y � y��wx for some y� � ���

Proof� Obviously ��� implies ���� Next we show the converse by contradiction� Let � � r have the

form ���	� and let ���� be a su�x of r�� De�ne v � �� by r� � v���� � If m � � then y is a su�x of y�w

and then y�w � OVL��� r�� a contradiction� With m � �� the string �wx is a su�x of �wwxy� If y is a

su�x of �wx then y�w � OVL��� r�� a contradiction� So �wx is a proper su�x of y� i�e�� there is y� � ��

such that y � y��wx�

Example �� The one�rule SRS

abdababab� dabababbdababa

�



has a loop of length �	

abdabababbdababab�

dabababbdabababdababab�

dabababbdababdabababbdababa�

dabababbd abdabababbdababab dababa�

Redexes are underlined� The re�occurrence of the start string is indicated by a box� This example provides

the smallest non�terminating witness �jrj � ��
 of Lemma ����

	� The Terminating Case� For this section let us assume a rule of the form ���	� where ���� is not

a su�x of r�� We are going to reduce termination of such a rule to termination of an SRS R over a di�erent

alphabet� Termination of R will be easy to prove�

De�ne r� � r���� and r��� by

r � r����� r � �r����� r � �r�������

These de�nitions are sound as witnessed by

� � y�wx�w�

�� � �wx�y�wx�m �

r� � y�wx�wwxy�

r��� � wx�y�wx�m�� �

r��� � wxy�

Lemma 	��� Let �� r have the form ���	�� Then the following rewrite steps exist	

r�r ���r r�rr� � r�r� ���r r�rr���� r�r� ���r r�rr��� �

r���r ���r r���rr� � r���r� ���r r���rr���� r���r� ���r r���rr��� �

Proof� Routine�

Lemma 	��� Let �� r have the form ���	� and let ���� not be a su�x of r�� Then � is not a factor of

any of the following	 �

 ri�r� ��
 rr� � ��
 rr���r
i
�r for any i � ��

Proof� For Claim �� let i � � be least such that � is a factor of ri�r� Then �� is a su�x of ri� because �

is the only overlap of � with r� Since ���� is not a su�x of r� � r��� � �� is not a su�x of y� Hence y is a

proper su�x of �� and so of y�wx� So y�w � OVL��� r�� a contradiction�

For Claim �� let � be a factor of rr� � Because � is the only overlap between r and �� we have j��j � jr� j�

a contradiction�

For Claim 	 assume that � is a factor of rr���r
i
�r for some i � �� By Claims � and �� � is neither a factor

of r���r
i
�r nor of rr��� � so � is of the form ��r���r

j
��
�� for some � � j � i and some non�empty su�x �� of r

and some non�empty pre�x ��� of r� Thus � is of the form �r���r
j
��� If j � � then wx�y�wx�m � wxy which

contradicts y� � � ��� So j � � and y is a proper su�x of ��� We get a contradiction by y�w � OVL��� r��

The six�rule SRS R over � � fa� b� c� d� e� fg is de�ned as follows�

R � fg�g�� � h�fh�� j �g�� h�� � f�a� d�� �c� e�g�

�g��� h��� � f�a� c�� �d� e�� �f� b�gg

�



De�ne the weight wt��x� of a string x by wt�a� � wt�c� � 	� wt�b� � wt�d� � wt�e� � wt�f� � �� and

wt��x� � � � xk� �
Pk

i�� wt�xi�� Then R terminates by

wt��u�� wt��v� � �wt�g��� wt�h���� wt�f� � �wt�g���� wt�h���� � �� � � � � �

for all rewrite steps u�R v�

Let the string homomorphism 	 � �� � �� be de�ned by 	�a� � r�� 	�b� � r� � 	�c� � r���� 	�d� �

r� � 	�e� � r���� 	�f� � r� By Lemma 
��� u�R v implies 	�u����r 	�v� for all u� v � ��� However we will

need the converse direction� To this end let us de�ne the regular languageM by

M � �a� d�fe�� � d�fe��fc���af � d�fe��f�cf � b�� � f�

Let 	�M� denote the set f	�u� j u � Mg� We are going to show that f�� rg�reduction steps on 	�M� can

be simulated by R�reduction steps� First we show that R�reduction preserves 	�M��

Lemma 	��� If u �M and u�R v then v �M�

Proof� Let �g�� h�� � f�a� d�� �c� e�g and �g��� h��� � f�a� c�� �d� e�� �f� b�g� Let u � u�g�g��u�� � M and

v � u�h�fh��u��� Then we derive

u� � �a� d�fe�� � d�fe��fc�� if g� � a�

u� � �a� d�fe�� � d�fe��fc��d�fe��f if g� � c�

Case �� g�� � a� If g� � a then u�� � M whence v � u�dfcu�� � M� If g� � c then u�� � f whence

v � u�efcu�� �M�

Case �� g�� � d� Then

u�� � ��fe�� � �fe��fc��a� d�fe�� � d�fe��fc���af � d�fe��f�cf � b��

� �fe��f�cf � b��

If g� � a then v � u�dfeu�� �M� If g� � c then v � u�efeu�� �M�

Case 	� g�� � f � If g� � a then u�� is the empty string and v � u�dfbu�� � M� If g� � c then u�� is again

the empty string and v � u�efbu�� �M�

Next we derive a few properties of u �M if 	�u� contains a factor ��

Lemma 	��� Let u � M and s�� s�� � ��� If 	�u� � s��s�� then u � u�g�g��u��� j	�u��j � js�j � j	�u�g��j�

j	�u���j � js��j � j	�g��u���j for some u�� u�� � ��� g� � fa� cg� g�� � fa� d� fg�

Proof� Suppose that u � M� s�� s�� � ��� and 	�u� � s��s��� Let u� � �� be the longest pre�x of u such

that j	�u��j � js�j� Let u�� � �� be the longest su�x of u such that j	�u���j � js��j� By j	�u�j � j	�u�u���j

there is v � �� such that u � u�vu��� De�ne t�� t�� � �� by s� � 	�u��t� and s�� � t��	�u���� Then

	�u� � 	�u��	�v�	�u��� � 	�u��t��t��	�u����

whence 	�v� � t��t��� The case jvj � � implies that � is a factor of r� so jvj � �� We distinguish cases on the

form of v�

Case �� v � ���a � c��a � d � f���� Let g� � fa� cg� g�� � fa� d� fg� v�� v�� � ��� and let v � v�g�g��v���

We further distinguish cases whether v�� v�� are empty strings or not�

Case ���� jv�j � jv��j � �� Then v � g�g��� By de�nition of u� we get jt�j � j	�g��j� By de�nition of u�� we

get jt��j � j	�g���j� The claim follows�

�



Case ���� jv�j � �� jv��j � �� By jrj � j�j and jr�j � j�j and u � M we get v � �a � c�d��a � d � f��

Let v � v�g� for some v� � �a � c�d�� and g� � fa� d� fg� Then there are ��� ��� � �� such that � � ������

	�v�� � t���� and 	�g�� � ���t��� Since 	�g�� is a pre�x of r� we obtain ��� � OVL��� r�� so ��� � � and �� � ���

By de�nition of v�� now 	�d� � r� � y�wx�wwxy is a su�x of �� � �wx�y�wx�m � So m � � and y is a

su�x of y�wx� Then y�w � OVL��� r�� a contradiction�

Case ��	� jv�j � �� jv��j � �� Let v � v�g� for some v� � ���a � c�� and g� � fa� d� fg� Then there

are ��� ��� � �� such that � � ������ 	�v�� � t���� and 	�g�� � ���t��� Since 	�g�� is a pre�x of r� we obtain

��� � OVL��� r�� so ��� � � and �� � �� � Then

j�� j � j	�v��j � j	�c�j � jr���j � j�� j�

a contradiction�

Case ���� jv�j� jv��j � �� By jrj � j�j and jr�j � j�j and u � M we get g� � c and g�� � d� So 	�cd� � r���r�

is a factor of �� whence jr���r� j � j�j� a contradiction�

Case �� v � �� n���a� c��a� d� f���� De�ne the set of fragments F�z� of a string z � �� as follows�

If z � �� n ffg�� then F�z� � fzg� Else z � z�fz� � � � fzn for some n � � and unique z�� � � � � zn � �� n ffg���

then

F�z� � fz�f� fz�f� � � � � fzn��f� fzng�

From u �M then

F�u� � �a� d��f � f�e� c��a� d��f � fb�

Because jrj � j�j� and � is not a factor of r� we obtain v � F�u�� So

v � F�u� n���a� c��a� d� f��� � d�f � fed�f � fb�

By Lemma 
��� 	�v� has no factor �� so this case is void�

Now we are ready to state the simulation lemma�

Lemma 	��� Let u �M and t � ��� If 	�u����r t then 	�v� � t and u�R v for some v � M�

Proof� Let u � M and s�� s��� t � ��� and let 	�u� � s��s�� and t � s�rs��� By Lemma 
�� there

are u�� u�� � ��� g� � fa� cg� g�� � fa� d� fg such that u � u�g�g��u�� and j	�u��j � js�j � j	�u�g��j and

j	�u���j � js��j � j	�g��u���j� De�ne t�� t�� � �� by s� � 	�u��t� and s�� � t��	�u���� Then

	�u� � 	�u��	�g��	�g���	�u��� � 	�u��t��t��	�u����

so 	�g��	�g��� � t��t��� By js��j � j	�g��u���j we get jt��j � j	�g���j� De�ne ��� � �� by 	�g��� � ���t��� De�ne

�� � �� by � � ������ So 	�g�� � t���� By js�j � j	�u�g��j we get jt�j � j	�g��j and so �� � ���

Since 	�g��� is a pre�x of r� we obtain ��� � OVL��� r�� so ��� � � and �� � ��� De�ne h
�� h�� � � by

h� �

��
�
d if g� � a�

e if g� � c�
h�� �

�����
����

c if g�� � a�

e if g�� � d�

b if g�� � f�

Then g�g�� � h�fh�� is in R� and moreover 	�g�� � 	�h���� � t��� and 	�g��� � �	�h��� � �t��� So

t� � 	�h�� and t�� � 	�h��� and so

t � s�rs�� � 	�u��	�h��	�f�	�h���	�u��� � 	�v�

�



for v � u�h�fh��u��� So u�R v� By Lemma 
�	 we get v �M�

We are about to prove termination of � � r by a reduction to termination of R� For this purpose we

still need f� � rg�reductions that start in 	�M�� Such reductions are provided by forward closures ���� ��

as we will show next� We use the following characterization of forward closures by Hermann�

Definition 	�	 ��
� Corollaire ���
��� The set of forward closures of a string rewriting rule �� r over

alphabet � is the least set FC��� r� of �� r�reductions such that

fc
� ��� r� � FC��� r��

fc�� if �s� �
� t���

�� � FC�� � r� and � � ����� for some ��� ��� � �� then �s��
�� �� t���

���� �� t��r� �

FC��� r��

fc�� if �s� �
� t���t

��

�� � FC��� r� then �s� �
� t���t

��

� �
� t��rt

��

� � � FC��� r��

Lemma 	�
� Every forward closure of a rule � � r of the form ���	� where ���� is not a su�x of r��

has a right hand side in 	�M��

Proof� By induction along the de�nition of forward closure� Let �s �� t� � FC�� � r�� In Case �fc��

we have t � r � 	�f�� In Case �fc	� the claim follows from Lemma 
�
� This leaves to prove Case �fc���

Suppose that s � s��
��� t � t��r� �s� �

� t���
�� � FC�� � r�� and � � ����� for some ��� ��� � ��� By

inductive hypothesis� there is u � M such that t���
� � 	�u�� By de�nition of M� u has su�x f or fb�

Case �� u has su�x fb� De�ne g� � �� by u � g�fb� Then

g� � �a� d�fe�� � d�fe��fc��d�fe��

by de�nition of M� We distinguish cases whether j��j � jr� j or not�

Case ���� j��j � jr� j� The string t���
� has su�x 	�fb� � rr� � By j�j � jrj and j��j � jr� j we get �

� � zr�

for some non�empty su�x z of r� Now z � OVL�r� ��� so z � �� So t���
� � 	�g��rr� � 	�g��r��

�� whence

t�� � 	�g��r� � 	�g�a�� So t��r � 	�g�a�r � 	�g�af� for g�af �M�

Case ���� j��j � jr� j� Then �� is a su�x of r� and so of r� So �� � OVL�r� �� whence �� � �� So

t���
� � 	�g�f�r� � 	�g�f�r����

�� whence t�� � 	�g�f�r��� � 	�g�fc�� So t��r � 	�g�fc�r � 	�g�fcf� for

g�fcf �M�

Case �� u has su�x f � De�ne g� � �� by u � g�f � Then

g� � �a� d�fe�� � d�fe��fc��

by de�nition of M� By j�j � jrj we get that �� � OVL�r� ��� whence �� � �� So t���
� � 	�g�f� � 	�g��r �

	�g��r��
�� whence t�� � 	�g��r� � 	�g�a�� So t��r � 	�g�a�r � 	�g�af� for g�af �M�

Lemma 	��� A rule �� r of the form ���	� terminates if ���� is not a su�x of r��

Proof� If � � r is non�terminating then there is an in�nite rewriting sequence s� ���r s� ���r � � �

starting from a right hand side of a forward closure ���� By Lemma 
�� s� � 	�M�� i�e�� there is u� � M

such that 	�u�� � s�� By induction on i� using Lemma 
�
� one easily proves that for every i there is an

ui�� � M such that both ui �R ui�� and 	�ui��� � si��� Hence we get an in�nite reduction sequence

u� �R u� �R � � � � Contradiction to termination of R�

Example �� For every m � �� the one�rule SRS

ab�dab�m��ab� dababb�dab�m��a

is terminating by Lemma ���� With m � � we get the smallest terminating witness �jrj � ��
 of Lemma ����

This example also proves that Kurth�s ��� Criterion F is incomplete� for Criterion F applies only to the

left barren or right barren cases �	� Theorem 
�	���

�



We note moreover that the maximal length of a derivation starting with s � �� is linear in jsj� This is

a direct consequence of the decreasing weight associated with a step u�R v�


� The Main Theorem� Now we have all material together to prove our claim�

Theorem 
��� Let jOVL�r� ��j � jOVL��� r�j � �� Then f� � rg terminates if and only if it has no

loop of lengths 
� �� or ��

Proof� Let OVL�r� �� � f�g and OVL��� r� � f�g� If � is a factor of r then f� � rg has a loop of

length � ���� Else if j�j � jrj then f� � rg terminates� If � � r is left barren or right barren then f� � rg

terminates� So suppose that � is not a factor of r� that j�j � jrj� and that � � r is neither left barren nor

right barren� We distinguish cases�

Case �� �� r is neither left s�barren nor right s�barren� Then r � r���� and r � ���r
�� for some strings

r�� r��� There is a loop of length ��

��� � r�� � r������ � r����� r���r � r������r
�� � r����r

���

Case �� � � r is left s�barren but not right s�barren� Then � � r has the form ���	�� If ���� is a su�x

of r� then f�� rg has a loop of length 	 by Lemma 
��� Else f�� rg terminates by Lemma 
���

Case 	� �� r is not left s�barren but right s�barren� This case is symmetric to Case �� We have a loop

of length 	 if ���� is a pre�x of r� � otherwise termination�

Case �� � � r is both left s�barren and right s�barren� Then Lemma ��� and its dual apply� showing

j�j � j�j and j�j � j�j� a contradiction� So this case does not exist� This �nishes the proof�

Kurth ��� has proved decidability of the existence of loops of lengths �� �� or 	 for one�rule SRSs� Indeed�

for every SRS and every n � �� the existence of loops of lengths less or equal n is decidable �
��

Corollary 
��� Termination is decidable for one�rule SRSs f� � rg that satisfy jOVL�r� ��j �

jOVL��� r�j � ��

�� Conclusion� We proved that termination of one�rule SRSs with one pair of overlaps is equivalent to

the non�existence of loops of length less than or equal to 	� Thus we showed that termination is decidable

for one�rule SRSs with one pair of overlaps� A surprising observation in this investigation was the emergence

of non�tame rules� some admitting loops of length 	� and some terminating� Such rules were not covered by

the two precursor results by Kurth and by Shikishima�Tsuji et al�

Acknowledgements� Robert McNaughton gave the author an appreciation of the intricacy of the

problem�

REFERENCES

��� N� Dershowitz� Termination of linear rewriting systems� in Proc� �th Int� Coll� Automata� Languages

and Programming� LNCS ��
� Springer� ����� pp� �����
��

��� A� Geser� Decidability of termination of grid string rewriting rules� SIAM J� Comput�� 	� �������

pp� ��

���
��

�	� � Is termination decidable for string rewriting with only one rule�� habilitation thesis� Wilhelm�

Schickard�Institut� Universit at T ubingen� Germany� Jan� ����� ��� pages�

��� � Loops of superexponential lengths in one�rule string rewriting� in Proc� �	th Int� Conf� Rewriting

Techniques and Applications� S� Tison� ed�� LNCS �	��� Springer� ����� pp� �
������

�
� A� Geser and H� Zantema� Non�looping string rewriting� Theoret� Informatics Appl�� 		 �������

pp� ����	���

��



�
� M� Hermann� Divergence des syst�emes de r�e�ecriture et sch�ematisation des ensembles in�nis de termes�

habilitation� Universit!e de Nancy� France� Mar� �����

��� Y� Kobayashi� M� Katsura� and K� Shikishima
Tsuji� Termination and derivational complexity

of con�uent one�rule string rewriting systems� Theoret� Comput� Sci�� �
� ������� pp� 
�	�
	��

��� W� Kurth� Termination und Kon�uenz von Semi�Thue�Systemen mit nur einer Regel� dissertation�

Technische Universit at Clausthal� Germany� �����

��� � One�rule semi�Thue systems with loops of length one� two� or three� RAIRO Inform� Th!eor�� 	�

����
�� pp� ��
�����

���� D� S� Lankford and D� R� Musser� A �nite termination criterion� tech� rep�� Information Sciences

Institute� Univ� of Southern California� Marina�del�Rey� CA� �����

���� Y� Matiyasevitch and G� S�enizergues� Decision problems for semi�Thue systems with a few rules�

in Proc� ��th IEEE Symp� Logic in Computer Science� New Brunswick� NJ� July ���
� IEEE Com�

puter Society Press� pp� 
�	�
	��

���� R� McNaughton� The uniform halting problem for one�rule Semi�Thue Systems� Tech� Rep� ������

Dept� of Computer Science� Rensselaer Polytechnic Institute� Troy� NY� Aug� ����� See also �Cor�

rection to "The Uniform Halting Problem for One�rule Semi�Thue Systems��� unpublished paper�

Aug�� ���
�

��	� � Well�behaved derivations in one�rule Semi�Thue Systems� Tech� Rep� �
��
� Dept� of Computer

Science� Rensselaer Polytechnic Institute� Troy� NY� Nov� ���
� See also �Correction by the author

to "Well�behaved derivations in one�rule Semi�Thue Systems��� unpublished paper� July� ���
�

���� � Semi�Thue Systems with an Inhibitor� J� Automated Reasoning� �
 ������� pp� �����	��

��
� G� S�enizergues� On the termination problem for one�rule Semi�Thue Systems� in Proc� �th Int� Conf�

Rewriting Techniques and Applications� H� Ganzinger� ed�� LNCS ���	� Springer� ���
� pp� 	���	�
�

��
� K� Shikishima
Tsuji� M� Katsura� and Y� Kobayashi� On termination of con�uent one�rule string

rewriting systems� Inform� Process� Lett�� 
� ������� pp� ����
�

���� C� Wrathall� Con�uence of one�rule Thue systems� in Word Equations and Related Topics� K� U�

Schulz� ed�� LNCS 
��� Springer� �����

���� H� Zantema and A� Geser� A complete characterization of termination of �p�q � �r�s� Applicable

Algebra in Engineering� Communication� and Computing� �� ������� pp� ���
�

��



REPORT DOCUMENTATION PAGE
Form Approved

OMB No� ���������

Public reporting burden for this collection of information is estimated to average � hour per response� including the time for reviewing instructions� searching existing data sources�
gathering and maintaining the data needed� and completing and reviewing the collection of information� Send comments regarding this burden estimate or any other aspect of this
collection of information� including suggestions for reducing this burden� to Washington Headquarters Services� Directorate for Information Operations and Reports� ���� Je�erson
Davis Highway� Suite ����� Arlington� VA �����	�
��� and to the O�ce of Management and Budget� Paperwork Reduction Project ��
��	������ Washington� DC ����
�

�� AGENCY USE ONLY�Leave blank	 �� REPORT DATE �� REPORT TYPE AND DATES COVERED

October ���� Contractor Report

�� TITLE AND SUBTITLE

TERMINATION OF STRING REWRITING RULES THAT HAVE
ONE PAIR OF OVERLAPS

�� AUTHOR�S�

Alfons Geser

	� PERFORMING ORGANIZATION NAME�S� AND ADDRESS�ES�

ICASE
Mail Stop ���C
NASA Langley Research Center
Hampton� VA ��������		


� SPONSORING�MONITORING AGENCY NAME�S� AND ADDRESS�ES�

National Aeronautics and Space Administration
Langley Research Center
Hampton� VA ��������		

�� FUNDING NUMBERS

C NAS��	
���
WU ����	�������


� PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No
 �������

��� SPONSORING�MONITORING
AGENCY REPORT NUMBER

NASA�CR���������	��
ICASE Report No
 �������

��� SUPPLEMENTARY NOTES

Langley Technical Monitor� Dennis M
 Bushnell
Final Report
To be submitted to STACS ����


��a� DISTRIBUTION�AVAILABILITY STATEMENT ��b� DISTRIBUTION CODE

Unclassi�ed�Unlimited
Subject Category ��� ��
Distribution� Nonstandard
Availability� NASA�CASI ����� ������	�

��� ABSTRACT �Maximum 
�� words	

This paper presents a partial solution to the long standing open problem of termination of one�rule string rewriting

Overlaps between the two sides of the rule play a central role in existing termination criteria
 We characterize
termination of all one�rule string rewriting systems that have one such overlap at either end
 This both completes
a result of Kurth and generalizes a result of Shikishima�Tsuji et al


��� SUBJECT TERMS ��� NUMBER OF PAGES

semi�Thue system� string rewriting� one�rule� single�rule� termination�
uniform termination� overlap

��

��� PRICE CODE

A��
�	� SECURITY CLASSIFICATION �
� SECURITY CLASSIFICATION �
� SECURITY CLASSIFICATION ��� LIMITATION

OF REPORT OF THIS PAGE OF ABSTRACT OF ABSTRACT

Unclassi�ed Unclassi�ed

NSN 	��������
������ Standard Form �

�Rev� ��

�
Prescribed by ANSI Std� Z
�	��
���	���


