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Abstract 
A new technique and a physical model for writing ex-
tremely short length Bragg gratings in optical fibers have 
been developed. The model describes the effects of diffrac-
tion on the spatial spectra and therefore, the wavelength 
spectra of the Bragg gratings. Using an interferometric 
technique and a variable aperture, short gratings of vari-
ous lengths and center wavelengths were written in optical 
fibers. By selecting the related parameters, the Bragg grat-
ings with typical length of several hundred microns and 
bandwidth of several nanometers can be obtained. These 
short gratings can be apodized with selected diffraction 
patterns and hence their broadband spectra have a well-
defined bell shape. They are suitable for use as miniatur-
ized distributed strain sensors, which have broad applica-
tions to aerospace research and industry as well. 
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INTRODUCTION 
Optical fiber Bragg gratings (FBG’s) have a broad range of 
application from wave filters, reflectors, and fiber amplifi-
ers for telecommunications to Bragg grating sensors, for 
sensing. The application of FBG’s to strain measurements 
has been of great interest to industries. Fiber optic stain 
sensors, compared to conventional strain gauges, have 
similar sensitivities, but are much lighter weight and re-
quire simpler wiring. These advantages are especially im-
portant to aerospace applications. However, as strain sen-
sors encounter micro-strains–where the strained area is 
smaller than the dimensions of the sensors–strain gauges 
average over their finite area and are therefore insensitive 
to the variation of micro-strains. In contrast, the spectra of 
Bragg grating sensors are distorted by micro-strains, which 
may complicate strain measurements. Bragg gratings with 
shorter length certainly can avoid this problem. The very 
short gratings also allow the sensors to be miniaturized. 
The questions are then: How does the width of spectra 
change with the length of gratings? Are the broadened 
spectra resulting from the shorter length still suitable for 
the strain measurements? 
For some applications of FBG other than strain sensors, 
fiber Bragg gratings with broader spectra are required, for 
example, a broadband reflector with a typical bandwidth of 

several nm. It is of interest to ask if short Bragg gratings 
can be created to contain well-defined spectra with the 
same order of bandwidth. 

This paper presents a study of diffraction effects on both 
the spatial and wavelength spectra of fiber Bragg gratings 
and a new technique to fabricate extremely short Bragg 
gratings in optical fibers with well-defined spectra for vari-
ous applications. 

THEORIES 

Inscription and Properties of Bragg Gratings 
In general, as a photosensitive fiber is exposed to a pair of 
interfering ultraviolet (UV) laser beams, a Bragg grating is 
created along the fiber core. The resulting periodic changes 
of refractive index along the fiber core sets the Bragg con-
dition for wave propagation in the fiber. This is equivalent 
to a Bragg wavelength λB. The length of interference pat-
tern created by the laser beams determines the length of 
Bragg grating and thereby the line width centered at λB. In 
general, the spectrum of the reflected light from, or trans-
mitted through a Bragg grating is narrower as the length of 
grating is longer, and vice versa. For example, the Bragg 
gratings used for creating fiber lasers have a length, typi-
cally of tens of mm and those used for strain sensors are 
least several mm long to maintain a line width of a couple 
tenths of nm. 
There are two major techniques used to write Bragg grat-
ings in optical fibers. The first uses of a phase mask, which 
is a UV transparent plate with etched surface grooves, re-
sembling a grating of specific period [1]. As the UV laser 
beam passes through the mask it is diffracted into various 
orders. The pair of first-order diffracted beams, normally 
containing most of the laser energy, forms an interference 
pattern right behind the mask. An optical fiber is placed in 
that area to get masked and thereby inscribed with the 
Bragg grating. This technique is simple for a well-defined 
Bragg wavelength. However, to write gratings of various 
wavelengths requires various phase masks. 
Another technique involves an optical system, splitting the 
laser beam and steering the two split beams to interfere 
with each other, as shown schematically in Figure 1. This 
type of set-up is basically an interferometer [2, 3]. This 
technique is therefore referred to as an interferometric 
method. The angle between the two interfering beams, now 



adjustable, determines the period of the interference fringes 
and thereby the grating, as the fiber is placed in the inter-
ference region. 
For a Bragg grating with a length L, the bandwidth of its 
reflection spectrum, defined as the full width between two 
first minimums, is given approximately by [4] 
 
            

 
 
 
 

 

 

 

 

 

∆λ =
λB

2

πLneff
(κ 2L2 + π 2 )1/ 2 ,   (1)  

where neff is the effective refractive index of the fiber core, 
and κ, the coupling coefficient, is on the order of ∆n/λ, and 
∆n is the amplitude of the periodic change of refractive 
index along the fiber core. 
For a finite length grating with a weak coupling coefficient, 
i.e., κL << 1, Eq. (1) is reduced to 

∆λ =
λB

2

neff L
.     (2) 

This expression states that the width of the wavelength 
spectrum for a grating is inversely proportional to its spa-
tial length. However using a simple number L to describe 
the spectrum is assuming the ∆n is more or less uniform 
along the length. In some cases a fine structure of the pro-
file of ∆n needs to be considered. 

Diffraction Effects on Bragg Gratings 
In practice, an aperture or a slit is used to regulate the spot 
size of the UV laser beam in order to get the desired grat-
ing length. However, as the opening of the aperture gets 
smaller and smaller, diffraction effects become more sig-
nificant, the spot size of the UV beam, and thereby the 
grating length are not simply proportional to the linear di-
mension of the aperture any more. 
Not only the aperture size but also the distance of the aper-
ture to the object becomes critical for considering diffrac-
tion effects. To investigate the effects, one has to determine 

if it is the case of far field effect–Fraunhofer diffraction, or 
the near field one–Fresnel diffraction. 

Fraunhofer Diffraction 
Suppose an aperture is normally illuminated by a mono-
chromatic plane wave. Figure 2 describes the diffraction 
geometry of an aperture. The diffracting aperture, A is as-
sumed to lie in the (ξη) plane, and is illuminated in the 
positive z direction, and (x, y) is the observation plane, 
parallel to the (ξη) plane and at normal distance z from it. 

 
 
 
 
 
 
 
 
 
 
Based on the Huygens-Fresnel principle, the diffraction can 
be described by the Fresnel-Kirchhoff (F-K) diffraction 
integral, [5]  

U(x, y) =
z
jλ

U (ξ ,η)
exp( jkr01)

r01
2

dξdη
A
∫∫ ,  (3) 

where r01 is the distance from P0 to P1 and given by  

 r01 = [ z 2 + (x − ξ )2 + (y − η)2 ]1/ 2    (4) 

To reach this expression, there is an assumption that the 
observation distance is much larger that the wavelength, 
i.e., r01 >> λ. To reduce the F-K Integral to a simpler 
expression, further approximations can be introduced. The 
well-known Fraunhofer approximation assumes that 

z >> (ξ 2 + η2)max λ     (5) 

is satisfied and retains only the  first term of the binomial 
expansion of r01, Eq. (4). 
For the case of a single slit with a width of b, this condition 
can be expressed as z >> b2/λ. The solution of the F-K in-
tegral, using Eq. (3), contains a sinc function and the inten-
sity of the diffraction pattern can be expressed as 

I(x) = U(x)
2 = I 0(sin β / β)2 ,   (6) 

where β = 1/2 kbsinθ, and k is the wavenumber. This is the 
well-known Fraunhofer diffraction pattern. 
The first minimun occurs for β = π, i.e., sinθ = λ/b. If the 
directional angle, θ is assumed to be small, the width of the 

Figure 1. A schematic representing the interferometric 
technique for generating fiber Bragg gratings. The 

Bragg wavelength λB is determined by the adjustable 
θB. Figure 2. Diffraction geometry  of an aperture . 
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central lobe of the diffraction pattern can then be expressed 
as ∆W = 2zsinθ = 2zλ/b. Thus it varies inversely with the 
slit width. For the ongoing and later discussion, it is 
convenient to define a factor, 

MF = ∆W /b = 2zλ /b2 ,    (7) 

which can be interpreted as a magnification. The 
Fraunhofer approximation requires that MF >> 1. Hence the 
Fraunhofer diffraction pattern becomes much wider than 
the size of the aperture. It seems ironic that if one pursues 
using the aperture to reduce the spot size of the laser beam 
the opposite occurs when Fraunhofer diffraction is in ef-
fect. 
However the conditions required for Fraunhofer diffraction 
are severe. In a practical situation, for example, at a wave-
length of 0.25 µm (an Excimer laser beam) and an aperture 
width of b = 250 µm, and a point of observation at z = 
250mm. The ratio of z/(b2/λ) = 1. At this distance, z is not 
much greater than b2/λ. There is another alternative, less 
stringent condition for a valid Fraunhofer approximation, 
known as the “antenna designer’s formula”, which only 
requires that z > 2D2/λ, where D is the linear dimension of 
the aperture. However, for the near field diffraction pat-
terns, one should consider the more general Fresnel Dif-
fraction. 

Fresnel Diffraction 
The Fresnel approximation retains the first two terms of the 
binomial expansion of r01, Eq. (4). Neglecting the higher 
order terms, the condition requires that 

z 3 >>
π

4λ [(x −ξ )2 + (y − η)2]max
2 .   (8) 

Actually the Fresnel approximation yields highly accurate 
results even at distances that are very close to the aperture 
[6]. 
Suppose a square aperture of width b is illuminated by a 
monochromatic plane wave. The F-K diffraction integral 
can be reduced as 

U(x, y) =
ejkz

jλz
exp j

π
λz

(x − ξ)2 + (y − η)2[ ] 
 
 

 
 
 

dξdη
−b / 2

b / 2

∫∫
.      (9) 

This integral doesn’t have a unique solution, however it 
can be expressed as tabulated functions of Fresnel inte-
grals, which can be defined as 

C(s ) = cos(πt 2
0

s∫ / 2)dt     (10) 

and 

S(s ) = sin(πt 2
0

s∫ / 2)dt .    (11) 

For further simplicity, considering only a single slit of 
width b, the intensity of the wave field is therefore given 
by 

I(x) =
1
2

C (α2 ) − C (α1)[ ]2 + S(α2 ) − S(α1)[ ]2{ }. (12) 

where 
 

α1 = −
2

λz
b
2

+ x 
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 
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2
λz

b
2
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Figure 3 shows a series of graphs representing the Fresnel 
diffraction intensity distribution along the x-axis for vari-
ous slit widths, b at fixed distance, z, and fixed wavelength, 
λ. To simplify the description, it is convenient to define the 
Fresnel number,  

NF =
(b / 2)2

λz
,     (13) 

and the normalized distance variable, u = x/(λz)1/2. It 
should be noted that the comparison for fixed b and various 
z is the same. 
It is interesting to see that, as the NF becomes large (large b 
or small z) the diffraction pattern is shaped like a top hat, 
approaching the shape of the aperture itself. As the NF be-
comes small (small b or large z) the diffraction pattern be-
comes Fraunhofer-like, and the width of the diffraction 
pattern is much wider than the actual aperture size. 
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APODIZATION 
If an aperture is used for regulating the spot size of a laser 
beam then the resulting diffraction pattern modulates the 
interference pattern for writing gratings. In other words, a 
diffraction pattern determines the physical shape (the spa-
tial spectrum) of a Bragg grating and hence its wavelength 
spectrum. 
For a long grating with the spatial spectrum resembling the 
shape of a top hat, the wavelength spectrum typically re-
sembles a sinc function. The spatial length of the grating 
only affects the width of its spectrum, i.e., its linewidth. 
However as the grating becomes physically shorter, the 
wavelength spectrum is more complicated. If a well-
defined spectrum is the goal for fabricating a Bragg grating 
then special attention must be paid to shaping the pattern.  
Apodization is a conventional technique for shaping the 
spectrum of a grating. It is well known that the Fourier 
transform of a top hat function is a sinc function. If the top 
hat is replaced by a cosine function the resultant Fourier 
transform is still like a sinc function but with the amplitude 
of its side lobes substantially reduced [7]. Hence this effect 
is called apodization. In practice, apodization could be ac-

complished, for example, by means of an amplitude-varied 
mask placed over the aperture [8]. However this technique 
is more suitable for writing longer, especially chirped grat-
ings with a typical length of several centimeters. 
Alternatively for writing short gratings, one can use the 
diffraction patters of a small NF (as NF = 0.1 in Figure 3) 
with its sinc-like central lobe to shape the gratings. Thus 
the resultant wavelength spectra are apodized. One can call 
this self-apodization. 

EXPERIMENTAL 
A pulsed Excimer laser of 248 nm with maximum output of 
450 mJ was used to write all the gratings discussed here. 
Both standard telecommunication fiber and some boron-
germanium co-doped photosensitive fiber were used. Typi-
cal exposure was a 20 Hz pulse rate for a duration of less 
than 5 minutes. For the standard telecommunication fiber 
only very weak gratings with reflectivities, R, lower than 
0.1% were obtained as expected. For the photosensitive 
fiber, the short grating length kept the reflectivity low, typi-
cally less than 15%. In general very strong gratings with R 
> 99% were avoided. For those high reflectivity gratings, 
the spectrum would broaden and deviate from a sinc shape, 
whose width would be otherwise inversely proportional to 
the grating length. 
For varying the wavelength of Bragg gratings, the interfer-
ometric technique of writing gratings was employed. A 
phase mask was used as a beam splitter and a pair of mir-
rors was used to recombine the two split beams forming an 
interference pattern. A single slit aperture was placed in      
front of the phase mask to regulate the width of the incom-
ing laser beam. The width of the slit varied from several 
millimeters to about 50 µm. 
A Frequency domain demodulation system [9] was used to 
read out the gratings. The detected signals were further 
processed (FFT and inverse-FFT) to display both the spa-
tial and wavelength spectra of gratings. 

RESULTS 
Figure 4 shows a Bragg grating written in a standard fiber. 
The slit width was 2 mm. The spatial spectrum of this grat-
ing, Figure 4(a), shows the typical features of a top hat. Its 
wavelength spectrum, Figure 4(b), has the characteristic 
shape of sinc function. Also shown in the figure is a com-
puted Fresnel diffraction pattern, using all the parameters 
from actual grating writing (with NF = 16.4). A slight off-
center observation position was introduced to simulate the 
small misalignment in reality. This results in the asymmet-
ric form of the spectrum. This diffraction pattern is charac-
teristically similar to the spatial spectrum of the grating. 
 

Figure 3. Fresnel diffraction patterns  from a single slit 
of various widths at a fixed distance. Two gray lines in 

the respective graphs indicate the actual aperture 
sizes.
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As the previous discussion stated, simply reducing the ap-
erture size to write short gratings will encounter the com-
plication of the wavelength spectra.  Figure 5 shows the 
spatial and wavelength spectra of a Bragg grating, written 
with a slit size, b, of 700 µm at a distance, z, of 0.2 m (with 
NF = 2.5). Apparently the wavelength spectrum, Figure 
5(b) contains large side lobes. 
The spectra of a series of short length gratings are shown in 
Figure 6. These gratings were written at a fixed distance (z 
= 0.246 µm) with aperture size, b, changing from 400 µm 

down to 50 µm. Their equivalent NF’s and MF’s are given 
in Table 1. 
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It is clear that at large NF the wavelength spectrum of a 
particular grating still has some side lobe because of its less 

Figure 4. (a) is the wavelength spectrum and (b) the 
spatial spectrum of a written Bragg grating with a slit 
width of 2 mm. Using the same parameters, a Fresnel 

diffraction pattern is calculated and shown in (c). 

(a) 

(c) 

(b) 

Figure 5. The spatial (a) and wavelength (b) spectra of 
a Bragg grating written at a distance, z, of 0.2 m and a 

slit width, b, of 700 µm (with NF = 2.5). 

(a) (b) 

Spatial Spectra Wavelength Spectra

Figure 6. A series of fiber Bragg gratings written at a 
fixed distance, z, and various slit widths, b. Shown in 
the left column are the spatial spectra and in the right 

their respective wavelength spectra. 

b  

400 µm 

300 µm 

200 µm 

150 µm 

100 µm 

50 µm 

Table 1. The calculated Fresnel number, NF, and the 
magnification number, MF, for a series of written 

Bragg gratings as shown in Figure 6. 



well-defined spatial spectrum. At smaller NF (for b less 
than 300 µm), the spatial spectrum of a grating becomes 
smoother and more like a sinc function. Its wavelength 
spectrum is hence apodized, with the side lobes well sup-
pressed. 
Shown in Figure 7 are the spectra of another series of grat-
ings written at a constant aperture size (b = 100 µm) with 
various distances z. Their equivalent NF’s are in the range 
of 0.029 to 0.069. The relatively small NF for each grating 
keeps its respective wavelength spectrum a smooth bell 
shape. However, for a larger z, the width of the spatial 
spectrum is broader (and the wavelength spectrum nar-
rower.) This broadening of spatial spectra can also be eas-
ily seen with its respective MF, ranging from 7.3 to 17.2. 
The larger MF is the broader the spatial spectrum.  
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DISCUSSION 
Suppose that the goal, as mentioned previously, is to fabri-
cate Bragg gratings that have spatial lengths as small as 
possible and at same time have the well-defined, self-
apodized wavelength spectra. Then from the analysis of the 
Fresnel diffraction patterns and the above experimental 
results one can set up a kind of criterion such that the goal 
can be reached. 
Although there is no sharp transition for the characteristic 
changes of the spectra resulting from varying NF, it is ob-

vious, to obtain satisfactory self-apodized gratings, one can 
keep the NF smaller than 0.25, i.e., 

NF < 0.25.     (14) 

Since MF = 1/2NF. The above condition is equivalent to 

MF > 2,      (15) 

or z > b2/λ. This is very close to the “antenna designer’s 
formula”, though slightly less stringent. From the previous 
section on apodization, it is stated that in order to produce 
self-apodized gratings, the diffraction pattern needs to be 
Fraunhofer-like. 
Now some formulae developed in the discussion of Fraun-
hofer diffraction can be used here.  Since MF = ∆W/b, Eq. 
(15) reduces to 

∆W > 2b .     (16) 

The physical length (spatial width) of a self-apodized grat-
ing will be broader than the width of aperture that is used 
to create the grating. 
On the other hand, keeping ∆W small is also the goal to 
keep the sensor size small. Then from Eq. (16), b needs to 
be small. However, since ∆W = 2λz/b, in order to keep 
both the ∆W and b small, z must be small at the same time 
(and still meet the criterion). Therefore, using the smaller 
aperture size to make shorter length self-apodized gratings 
one needs to bring the aperture closer to the object. 
Certainly there is a physical limitation for pushing ∆W to 
be small. First, using the interferometric technique to write 
gratings requires a minimum length of the optics behind the 
aperture, and thereby a lower limit for z. Secondly, the pe-
riodicity in ∆n for most Bragg gratings discussed here is on 
the order of 1 µm. If a grating only contains a few periods 
it becomes too weak to be measurable and usable.  

APPLICATIONS 
As stated in previous sections, these short length fiber 
Bragg gratings with well-defined spectra apparently can be 
used as strain sensors just like ordinary length gratings. 
Their physical dimension is an advantage compared to the 
latter in some applications requiring short length sensors. 
In Figure 8, shown is an example of a miniature distributed 
strain sensing device, using short length gratings. An opti-
cal fiber inscribed with 16 Bragg gratings was bonded to a 
piece of micro mechanical sensor. The fiber runs across 
both sides of the H-shape bridge, which is 3 cm long. The 
gap distance forming the H-shape is 500 µm, which allows 
the bridge to move in plane. This design is intended to 
measure the tangential force. The details and results will be 
presented in other studies. 

SUMMARY 
This study has developed a new technique to fabricate ex-
tremely short length fiber Bragg gratings which are suitable 

Figure 7. A series of fiber Bragg gratings written at vari-
ous distances, z, and a fixed slit width, b. Shown in (a) 
are the spatial spectra and in (b) their respective wave-

length spectra. 

(a) 

(b) 



for distributed strain sensing. The spatial width of the grat-
ings can be as small as a few hundred microns. This type of 
grating allows the sensor system to be miniaturized. A sim-
ple formula has also been developed to give the guideline 
of controlling related parameters in order to fabricate short 
length gratings with self-apodized spectra.  
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Figure 8. A miniature distributed strain sensor. An opti-
cal fiber written with short length Bragg gratings is 

bonded to a piece of micro mechanical sensor.




