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The accuracy of two grid adaptation strategies� grid redistribution and

local grid re�nement� is examined by solving the ��D Euler equations for the

supersonic steady �ow around a cylinder� Second� and fourth�order linear

�nite di�erence shock�capturing schemes� based on the Lax�Friedrichs �ux

splitting� are used to discretize the governing equations� The grid re�ne�

ment study shows that for the second�order scheme� neither grid adaptation

strategy improves the numerical solution accuracy compared to that cal�

culated on a uniform grid with the same number of grid points� For the

fourth�order scheme� the dominant �rst�order error component is reduced

by the grid adaptation� while the design�order error component drasti�

cally increases because of the grid nonuniformity� As a result� both grid

adaptation techniques improve the numerical solution accuracy only on the

coarsest mesh or on very �ne grids that are seldom found in practical appli�

cations because of the computational cost involved� Similar error behavior

has been obtained for the pressure integral across the shock� A simple

analysis shows that both grid adaptation strategies are not without penal�

ties in the numerical solution accuracy� Based on these results� a new grid

adaptation criterion for captured shocks is proposed�

Key Words� high�order accuracy� grid adaptation� local grid re�nement� grid redistribu�

tion� shock capturing� �nite di�erence scheme�

�� INTRODUCTION

Wave propagation phenomena in computational �uid dynamics� computational

aeroacoustics� computational electromagnetics� and large eddy or direct numerical

simulation of turbulence are characterized by the presence of both a lot of struc�

ture in the smooth part of the solution and strong discontinuities� For this class of

problems� attaining the design accuracy of high�order shock�capturing methods is

problematic� As has recently been shown for ��D unsteady and ��D steady shocked

�ows� the �rst�order error introduced by shock capturing can persist globally down�
�
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stream ��� ��� The result is that the numerical solution is just �rst�order accurate

downstream of the discontinuity� regardless of the design accuracy of the discretiza�

tion used� Similar degeneration in accuracy for captured discontinuities has also

been reported in �	��

One way of removing the �rst�order error component from the numerical solu�

tion is shock �tting� As shown in ��� ��� if a cell interface is aligned with the shock�

and a high�order conservative essentially nonoscillatory 
ENO� formulation based

on a Roe �ux which satis�es the Rankine�Hugoniot shock jump relations is used

to calculate the interface �uxes� then the design order of accuracy can be recov�

ered� Despite its simplicity� this method has serious disadvantages� Detection and

localization of multidimensional complex shocks� generalization of this approach to

moving and interacting shocks� and use of ENO type approximations in singular

regions where the smooth interpolants cannot be constructed make this approach

unreliable� and� therefore� little used in real numerical applications�

An alternative strategy is to reduce grid spacing locally near a shock rather

than re�ne the grid globally� The idea of this method is based on an assumption

that the �rst�order error is generated locally at the shock and then transported

downstream� This approach� known as a grid adaptation� has been extensively

used to improve resolution of captured discontinuities for at least twenty years�

e�g�� see ���� There are two basic strategies of grid adaptation
 local grid re�nement

and grid redistribution� In the �rst approach� grid nodes are added to locally enrich

the grid to achieve higher accuracy� In the second approach� the number of grid cells

is �xed and the position of grid points is adjusted to improve the numerical solution

accuracy� Until now� little attention has been paid to one of the most important

problems associated with the adaptive grid methods
 the essential e�ect of the grid

points distribution on error in the numerical solution� It should be emphasized

that concentration of grid points in regions which most in�uence the numerical

solution accuracy may at the same time introduce additional error because of the

grid nonuniformity ����

Most adaptive grid methods are based on the error equidistribution principle

developed in ���� ���� ���� which� in turn� is driven by one or another error estimation

technique� One of the widely used error estimators is gradient or local curvature of

the numerical solution ��� ��� ���� An alternative method is to equidistribute the

local truncation error estimate or the �nite element residual which is similar to the

�nite di�erence truncation error ���� �	�� Another class of error estimators is based

on evaluating the solution interpolation error ����� For second�order discretizations�

this method is reduced to estimation of the local curvature of the numerical solution�

Richardson extrapolation is also used to estimate error in the numerical solution

����� This procedure compares the solution obtained on the existing grid with one

computed on a grid that is twice as coarse in each spatial direction�

Although the error estimators mentioned above are quite di�erent� all of them

rely on certain smoothness of the di�erential solution that is not the case for dis�

continuous �ows� In fact� most grid adaptation criteria that can be found in the

literature become singular at discontinuities� To remove this singularity and to

make the adaptive grid su�ciently smooth� a grid smoothing procedure must be

used� As a result� the grid adaptation near discontinuities is driven by the grid

smoothing procedure rather than the error estimate itself�
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If grid cell interfaces are not aligned with a shock� the captured discontinuity

is always smeared over several grid points� which leads to the O
�� error near the

shock� Since the numerical solution is �rst�order accurate away from the shock� the

true error and its estimates achieve their maximumvalues at the discontinuity� As a

result� any grid adaptation procedure based on either the true error or its estimate

leads to excessive clustering of grid points or local grid re�nement near the shock�

This kind of a grid adaptation is intended to reduce the solution error in the vicinity

of discontinuities� but it does not necessarily guarantee improvement in accuracy in

regions where the solution is smooth� As shown in ����� the conventional adaptive

mesh re�nement procedure based on gradient or local curvature of the numerical

solution can lead to large error in the shock location caused by insu�cient accuracy

in smooth regions of �ow ahead of and behind the discontinuity�

In the present paper� the accuracy of the grid redistribution and local grid re�ne�

ment methods are studied� The ��D test problem used is the supersonic �ow around

a circular cylinder� for which a Chebyshev bow�shock �tting spectral method is em�

ployed to obtain a very accurate numerical solution ����� This solution is used as

the �exact� solution in all subsequent re�nement studies� The Euler equations are

approximated with second� and fourth�order linear shock�capturing schemes based

on the Lax�Friedrichs splitting of the �ux vector� The re�nement studies show that

for the second�order scheme� neither grid adaptation strategy improves the numeri�

cal solution accuracy compared to that calculated on a uniform grid with the same

number of grid points� For the fourth�order scheme� the dominant �rst�order error

component is reduced by the grid adaptation� while the high�order error component

drastically increases� because of the grid nonuniformity� As a result� the grid adap�

tation provides improvement in the solution accuracy only asymptotically� A simple

error analysis of the grid redistribution and local grid re�nement methods reveals

the main reasons why the grid adaptation methods do not improve the accuracy

of captured discontinuities� Summarizing the numerical and theoretical results� we

propose a new grid adaptation criterion for captured discontinuities�

The paper is organized as follows� Section � presents the blunt body problem

and the spectral solution� Section 	 presents the �nite di�erence methods used

in the studies� Section � presents the grid adaptation strategies� including grid

redistribution and local grid re�nement� Section � presents the error analysis for

the e�ects of grid adaptation on solution accuracy� Section � presents the second�

and fourth�order results� Section � presents the new grid adaptation criterion for

captured shocks� and Section � presents the conclusions of the work�

�� SETTING OF A PROBLEM AND ITS �EXACT� SOLUTION

We consider the steady�state supersonic inviscid gas �ow around a circular cylin�

der� This test problem is desirable because the bow shock is ��D� rather than simply

a ��D shock rotated into a ��D reference frame� Furthermore� the problem is simple

enough to obtain an �exact� solution�

The conservation law form of the ��D Euler equations written in Cartesian coor�

dinates 
x� y�� as follows


�U

�t
�
�F

�x
�
�G

�y
� �� 
��
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is used to describe the �ow�eld� The variables �� u� v� P � and e are the density� x�

velocity� y�velocity� pressure� and total speci�c energy� respectively� The governing

equations are closed with the equation of state for a perfect gas

P � 
� � ���

�
e� �

�

u� � v��

�
�

where � is the ratio of speci�c heats� which is assumed to have a constant value of

����

To use di�erent grid adaptation techniques� a di�erentiable one�to�one coordinate

transformation�

� � t

� � �
x� y�

� � �
x� y��


��

is applied to map a physical domain with curvilinear boundaries onto a unit square�

Note that the � and � coordinates do not depend on time and� therefore� moving

grids are not considered in the present study�

The Euler equations in the curvilinear coordinates 
�� can be written in conser�

vation law form as

� �U

��
�
� �F

��
�
� �G

��
� �� 
	�

�U �
�

J
U� �F �

�

J

�xF� �yG� � �G �

�

J

�xF� �yG� �

where the Jacobian of the mapping is given by

J �
� 
�� ��

�
x� y�
� �x�y � �y�x�

To close the governing equations� boundary conditions should be speci�ed� Be�

cause of the symmetry along the body centerline� only half of the domain is con�

sidered� The following boundary conditions are imposed along the symmetry line


vj��� � ��
�u

��

����
���

�
�P

��

����
���

�
��

��

����
���

� �� 
��

On the cylinder surface� the no penetration boundary condition�

uy� � vx� j��� � �� 
��

is imposed� At the supersonic in�ow� all �ow quantities are prescribed� The out�

�ow boundary is chosen so that the out�ow is fully supersonic and� therefore� no

boundary conditions are imposed�
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A spectrally accurate numerical solution to the blunt body problem described

above is found by using a Chebyshev bow�shock �tting algorithm ����� The shock

position always coincides with the in�ow boundary along which the Rankine�

Hugoniot relations are used� The physical domain changes continuously as the bow

shock moves to its steady state position� while the computational domain remains

unchanged� The Chebyshev collocation method is employed in both the radial and

circumferential directions to discretize the Euler equations� The equations are then

marched in time until a steady state solution is reached� Further details on the

Chebyshev shock��tting technique can be found in ����� As has been shown in

���� the spectral solution is exact to at least eight signi�cant digits� This solution�

which is further referred to as the �exact� solution� is spectrally interpolated to a

sequence of uniformly spaced grids to evaluate error in �nite di�erence solutions�

�� SECOND� AND FOURTH�ORDER NUMERICAL METHODS

Second�order fully upwind and fourth�order upwind�biased linear �nite di�erence

schemes based on the Lax�Friedrichs �ux splitting are used to discretize the Euler

equations� These approximations can be written in a semi�discrete form as

d �U

d�
�

�

�

	
D�
�
�F� �D�

�
�F�


�

�

�

	
D�
�
�G� �D�

�
�G�



� 
��

where D�
� and D�

� are linear �nite di�erence operators in � and �� respectively�

The Lax�Friedrichs �uxes are given by

�F� � �F� j�max
� j �U

�G� � �G� j�max
� j �U� 
��

where j�max
� j and j�max

� j are the maximum values over the entire domain of the

contravariant eigenvalues j�uj� �c and j�vj� �c� accordingly�

The following second� and fourth�order spatial operators� D�
� and D�

� � are used

in the present analysis


D�
� uj �

�
�h 
uj�� � �uj��� 	uj�

D�
� uj �

�
�h 
�	uj � �uj�� � uj����


��

D�
� uj �

�
��h 
�uj�� � �uj�� � ��uj��� ��uj � 	uj���

D�
� uj �

�
��h
�	uj�� � ��uj � ��uj�� � �uj�� � uj����


��

where h is a grid spacing either in � or in �� For the second�order scheme 
��� the

second�order boundary closure is employed at all boundary points� For the fourth�

order scheme� the third�order stencils used near the boundaries are the optimal

stencils derived from nearest neighbor information� biased where possible in an

upwind direction� These second� and fourth�order methods will be referred to as

�LF����� and �LF���	�� respectively�

All �nite di�erence grids considered in the present study are constructed such

that a corner grid point coincides with the stagnation point� It has been found

that this �nite di�erence formulation may lead to numerical instability if all the

boundary conditions on the symmetry line are imposed weakly through the �ux�
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This instability is caused by the weak formulation of the boundary condition for the

v component of the velocity vector� Imposing this boundary condition in the strong

sense eliminates the numerical instability� Numerical calculations have shown that

the present formulation is as robust as the staggered formulation typically adopted

by �nite di�erence algorithms near stagnation points�

On the supersonic in�ow� the entire state vector Uj��� is speci�ed� On the

out�ow boundary� the solution is calculated by using high�order fully upwind ap�

proximations� i�e�� no boundary conditions are imposed� which is consistent with

the characteristic analysis for the supersonic out�ow� On the impermeable wall�

the no penetration boundary condition is imposed weakly by solving the Riemann

problem approximately� Note that at steady state� the normal velocity at the wall

is nonzero� but converges to zero with an order property consistent with overall

formulation�

A three stage explicit Runge�Kutta method is used to drive the solution to steady�

state� To accelerate the convergence� the implicit residual smoothing method pro�

posed in ���� is employed�

�� GRID ADAPTATION METHODS

The main purpose of the present study is to evaluate the in�uences of grid adapta�

tion on overall solution accuracy� in the presence of the �rst�order error component

resulting from shock capturing� The grid re�nement studies presented in ��� ��

show that high�order shock�capturing schemes are �rst�order accurate downstream

of shocks� Hence� away from the shock� the pointwise error is proportional to the

grid spacing� and consequently decays like O
h� as the grid is re�ned� At the same

time� if a grid is not aligned with the discontinuity� any shock�capturing numerical

scheme gives a discrete shock pro�le with at least one intermediate point in the

shock� Thus� on su�ciently �ne grids� the true pointwise error achieves its global

maximum value of O
�� at the discontinuity� To demonstrate this error behavior�

the centerline pressure error distribution for the M� � 	 blunt body problem cal�

culated using the LF���	 scheme is shown in Fig� �� As one can see in the �gure�

the true pointwise error is singular at the shock located at x � ������ This con�

clusion is based on the property of shock�capturing schemes and does not depend

on grid spacing in the vicinity of the shock� As a result� any grid adaptation pro�

cedure based on the error equidistribution principle and the true error will always

concentrate grid points or re�ne the grid near discontinuities of the solution�

It should be emphasized that the error equidistribution principle is not valid

for problems with strong discontinuities� Actually� this principle is based on the

minimization of the integral norm of the solution error or its estimate� which� in

turn� is obtained as the solution of the Euler�Lagrange di�erential equation which

cannot be used for discontinuous functions�

Furthermore� all error estimators found in the literature� such as estimators based

on the truncation error� the �nite element residual� recovery techniques� and the

extrapolation� require certain smoothness of the solution of the original di�erential

problem� which is not a property of discontinuous �ows� As a result� these error es�

timators are singular in regions where the solution is discontinuous� This singularity

corresponding to the singularity of the true error at the shock leads to excessive

grid re�nement or clustering of grid points around the shock� Asymptotically� any



ACCURACY OF ADAPTIVE METHODS FOR SHOCKS �

x

P
-

P
ex

ac
t

-1.8 -1.6 -1.4 -1.2 -1
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

33x33 grid
65x65 grid
129x129 grid
257x257 grid

FIG� �� Pointwise error for the M� � � blunt body problem obtained with the LF����
scheme on uniform grids�

grid generator based on the error equidistribution principle and one of the error

estimation procedures mentioned above would generate an adaptive grid such that

the ratio of the local grid spacing at the shock to the neighboring one� generated in

regions where the solution is smooth� approaches zero� This degeneration in grid

spacing occurs because these error estimators become singular at the discontinu�

ity� In practical applications� this singularity is eliminated by excessive smoothing

of the error estimate function� As a result� the grid adaptation in the vicinity of

the shock is driven by the smoothing procedure rather than by the error estimate

itself� Therefore� instead of considering di�erent error estimators and di�erent grid

smoothing techniques� we generate C� adaptive grids which are clustered or lo�

cally re�ned near the shock� This kind of a grid adaptation is intended to reduce

the �rst�order error component caused by the shock�capturing procedure and to

increase the overall solution accuracy towards the design accuracy of the numerical

scheme used�

Because we know the exact solution� and consequently the exact shock location�

an adaptive grid can be generated analytically� Quasi�one�dimensional grid adap�

tation can be employed� assuming that one family of grid lines is aligned with the

bow shock� It can be done because the numerical solution error in the circumfer�

ential direction� which is aligned with the shock� is much smaller than that in the

radial direction� To demonstrate this property� we solve the blunt body problem

at M� � 	 by using the LF���	 scheme on two sequences of uniform grids� The

�rst one is obtained by doubling the number of grid points in both the radial and

circumferential directions� as follows
 		 � 		� �� � ��� ���� ���� and ���� ����

The second one is generated by re�ning the grid only in the radial direction� while

the number of grid points in the circumferential direction remains �xed and equal

to 		 for all the grids considered� Figure � shows that the numerical solution errors

obtained on these grids are practically identical� It indicates that the discretiza�

tion error in the direction parallel to the shock is several orders of magnitude less
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LF���� scheme on two sequences of grids� �	 uniformly re�ned in � and �� and 
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while the number of grid points in � is �xed and equal to ���

than that in the radial direction� Since the numerical solution error is strongly

dominated by the radial error component� we use ��D grid adaptation with the

grid points constrained to move along one family of �xed radial coordinate lines�

such that the grid is always aligned with the exact bow shock� Note that this grid

adaptation procedure does not produce skewed cells where the solution accuracy

may deteriorate because of small values of the Jacobian ����

���� Grid Redistribution Method

Uniform meshes employed for �nite di�erence calculations are constructed by

using polar coordinates


x � �r cos 	
y � r sin 	�


���

A mapping from the polar to the computational coordinates is given by

� � �� r�r�
r�����r�

� � 	
	max�

���

where r�� r�� and 	max are the radius of the in�ow boundary 
which� in the case

of the exact solution� coincides with the bow shock�� the radius of the cylinder�

and the maximum value of 	� respectively� Note that the in�ow boundary has been

chosen so that the bow shock stando� distance is equal to 	
�
r�
	� � r�� for all

meshes considered�

As mentioned above� an adaptive grid is constructed by redistributing grid points

in ��D fashion along the �xed radial lines� The following coordinate transformation
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is used to generate the adaptive grid


�� �

r�R
r

f�r���dr

r�R
r����

f�r���dr

�� � 	
	max �


���

with the monitor function f
r� 	� de�ned as

f
r� 	� � �q
��
�
d��d���� r�rs���

rs����r�

��
d� � d� �

d��d�
��e��r�rs����

�


�	�

where rs
	� is the bow shock radius� d�� d�� and � are parameters� Note that the

same monitor function Eq� 
�	� is used to generate all adaptive grids� independently

of the number of grid points� Such a choice of the monitor function provides that

the metric coe�cients are C� functions in the entire physical domain� which is

important for constructing high�order accurate �nite di�erence approximations on

nonuniform grids� The ratios of the adaptive grid spacing to the uniform one

corresponding to three sets of the parameters d� and d� 
d
���
� � ���� and d

���
� � �����

d
���
� � ��	 and d

���
� � 	��� d

���
� � ���� and d

���
� � ���� used in the numerical

calculations are shown in Fig� 	� The �gure shows that the adaptive grid spacing

achieves its minimum value at the shock� while away from the shock� it behaves

as a linear function� This linear dependence� which corresponds to the well�known

exponential stretching� provides that in smooth �ow regions� the leading truncation

error terms resulting from the grid nonuniformity and the approximation of �F� are

of the same order�
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���� Local Grid Re�nement Method

As shown above� for the blunt body problem in question� the radial error compo�

nent is much larger than the circumferential one� Therefore� the local grid re�ne�

ment method is also employed in a ��D manner� The resulting computational grid

is obtained as a sequence of structured quadrilateral nested grids that are aligned

with the shock and arranged in block structures� such that each of them has the

same family of radial lines� � � const� This local grid re�nement procedure en�

sures that there are no �hanging� nodes on the embedded interfaces and that the

smoothness of the original background grid is maintained� Taking into account that

the maximumpointwise error occurs at the shock and that the exact shock position

is known a priori� a family of the nested grids is generated only in the vicinity of

the exact shock location� while the original uniform grid is used in the rest of the

domain� The width of the region where the grid is locally re�ned is an adjustable

parameter that is chosen to be larger than a stencil of the numerical scheme used�

This local grid re�nement procedure is consistent with the error equidistribution

principle which says that the grid point distribution is asymptotically optimal if

some error measure is equally distributed over the �eld� However� for problems with

shocks� the error cannot be equidistributed� because the error function is singular at

the discontinuity� In this case� the stopping criterion for the local grid re�nement is

not trivial� In the present analysis� the adaptive mesh re�nement method is used to

recover the design accuracy of a high�order shock�capturing scheme downstream of

the shock� This condition can be used as the stopping criterion� which determines

how many levels of re�nement are required to guarantee that the numerical solution

error obtained on the adaptive grid is consistent with the design order of the scheme

employed� Using the heuristic model expressing the �rst�order nature of any high�

order shock�capturing scheme ���� one can represent the total error in the numerical

solution as follows


� � C�h �Cph
p� 
���

where h is a grid spacing� � is the solution error� p is the design order of the

numerical algorithm� and C� and Cp are problem dependent constants� If the

solution smoothness is consistent with the order of the approximation used� then

C� � � and Cp is proportional to the 
p � ��th derivative of the solution� On the

other hand� if there are unresolved features in the �ow such as shock waves and

contact discontinuities� the �rst�order error component is generated by the shock�

capturing procedure� so that C� �� �� Note that the shock error component may

in general include not only the �rst�order term� but also higher order terms in its

expansion� Asymptotically� the shock error component is dominated by the �rst�

order term C�h� whereas the design�order error component is dominated by the

leading truncation error term Cph
p� Therefore� only the leading shock error and

design�order error terms are retained in Eq� 
����

As follows from Eq� 
���� to obtain the pth order accurate solution� the local grid

spacing near the shock must be of the order of Hp� where H is a grid spacing of the

background mesh� Despite the simplicity of this criterion� the total number of grid

points� and consequently the complexity of the algorithm� can increase signi�cantly�

Actually� if a pth�order scheme is used to discretize the governing equations on the
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background uniform mesh with a grid spacing H� the local grid size in the vicinity

of the shock should be

h � O
Hp� 
���

to obtain a convergence rate of p�

Assuming that the local grid re�nement procedure starts from the background

mesh and a nested grid at the next level is re�ned in the radial direction by a factor

of �� the total number of levels of re�nement needed to satisfy Eq� 
��� is

l � �
p � �� log�H� 
���

Upon completion of this local grid re�nement procedure� the total number of grid

points becomes

Ntotal � � �
�

H
� �lNw� 
���

where Nw is a half�width of a region in which the background mesh is locally

re�ned� For example� if one uses a fourth�order scheme on a �� � �� background

mesh� the locally re�ned grid satisfying condition 
��� and corresponding to Nw � �

has 	�	 grid points in the radial direction� Thus� the total number of grid points

is increased by a factor of �� In practical applications� a grid is re�ned in both �

and �� therefore� the same increase in the number of grid points should be in each

spatial direction� Note that the time step �t is also re�ned by the same factor

so that ratios �t
�� and �t
�� are the same on all nested grids� ensuring the

stability with explicit �nite di�erence schemes� As follows from the above example�

the local grid spacing near the shock would be of the order of O
������ which makes

the grid re�nement study practically impossible� Therefore� instead of satisfying

Eq� 
���� we perform three series of calculations on locally re�ned grids that have

a di�erent number of levels of re�nement� During the grid re�nement study� the

background mesh is re�ned globally� From Eq� 
��� it follows that the number

of levels of re�nement is increased by one� For instance� if a locally re�ned grid

corresponding to a 		 � 		 background mesh has three levels of re�nement� then

on the next ��� �� background grid� one level of re�nement is added� so that the

total number of levels becomes four�

Remark �� The grid adaptation procedures described above are based on the

fact that the exact shock location is known a priori� However� in practice� the

exact shock position is unknown� which may introduce an additional error in the

numerical solution� As has been shown in ����� traditional grid adaptation methods

can provide that shocks are well resolved� but their locations are highly inaccurate

due to the lack of resolution of smooth portions of the solution�

	� ANALYSIS OF THE ERROR CAUSED BY GRID

NONUNIFORMITY

	��� Error Introduced by Grid Redistribution

Let us estimate the error in the smooth portion of the numerical solution� which

is introduced by concentrating grid points near the shock� Because grid points are
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redistributed in a ��D manner in the present study� we consider the following ��D

scalar equation



t � fx

� � �� 
���

which can be treated as a ��D analog of the hyperbolic portion of the ��D steady

Euler equations 
��� It can be shown by rewriting the Euler equations 
�� in non�

conservative form

�U

�x
�A

�U

�y
� �� 
���

where A �


�F
�U

��� 
�G
�U

�
� The type of the equations 
��� is governed by the

eigenvalues of the A matrix� which are

���� �
v
u

���� �
uv�cpu��v��c�

u��c� �

���

where c is the speed of sound� For the blunt body problem under consideration�

eigenvalues �� and �� are always real� regardless of the local Mach number� There�

fore� the �rst�order error generated by the shock�capturing procedure at the shock

propagates downstream along the streamlines v
u�

Assuming that the initial pro�le 

�� x� is discontinuous� the solution error of Eq�


��� downstream of the captured shock consists of the �rst�order error component

caused by the shock capturing and the design�order truncation error component�

Thus�

� � C��x� Tp
x�� 
���

where C� is a constant dependent on the solution� �x is a local grid spacing� and Tp
is the leading truncation error term of a pth�order shock�capturing scheme used for

approximation of Eq� 
���� Since our aim is to estimate the in�uence of the spatial

nonuniformity on the numerical solution accuracy� the temporal error component

is not considered� To the authors� knowledge� very little work has been done to

estimate the coe�cient C�� In the present analysis� it is assumed that the coe�cient

C� approaches a constant on su�ciently �ne grids� This assumption is corroborated

by the numerical calculations presented in Section ��

To evaluate the leading truncation error term on a nonuniform grid� a p�� times

di�erentiable one�to�one coordinate transformation�

t � �

x � x
���

between the physical and computational spaces is considered� The nonuniform grid

in the physical space is generated as images of nodes of a uniform mesh in the

computational domain Q


xj � x
�j�� �j �
j

J
� j � �� J� 
���
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It is assumed that x
�� is a C� function such that x� � � �� � Q� Transferring

the x�derivative in Eq� 
��� to the computational space� Eq� 
��� is rewritten as


� �
f�

�

x�
� �� 
�	�

Approximating f� and x� by some pth�order �nite di�erence formulas yields

L
�p�
h 
fx� �

j�n�P
n�j�n�

�nfn

j�m�P
m�j�m�

�mxm

� 
���

where Lh is a �nite di�erence operator� n�� n�� �n and m��m�� �m depend on

particular approximations used for evaluating f� and x�� respectively� It should

be stressed that the present analysis is performed in regions where the solution is

smooth� so it is assumed that all derivatives needed for the derivation are continuous

functions on � � ��� ��� Expanding the numerator and denominator of Eq� 
��� in

a Taylor series about �j and omitting the index j on the right hand side� we have

j�n�P
n�j�n�

�nfn � f� �Cf
p f

�p���
� ��p � O
��p���

j�m�P
m�j�m�

�mxm � x� � Cx
px

�p���
� ��p � O
��p����


���

where x
�p���
� � �p��x

��p�� � f
�p���
� � �p��f

��p�� � �� � �
J � and Cf
p and Cx

p are constants

dependent on �n and �m� respectively� Substituting Eq� 
��� into Eq� 
��� and

taking into account that x� � �� �� � ��� ��� one can write

Lh
fx� �
f� � Cf

p��
pf

�p���
�

x�

	
� �Cx

p
	�p

x�
x
�p���
�


 �O
��p���� 
���

If �� is chosen to be su�ciently small so that ��pjx�p���� 
x�j � �� Eq� 
��� can

be linearized as follows


Lh
fx� �
�

x�

	
f� �Cf

p��
pf

�p���
�


�
�� Cx

p

��p

x�
x
�p���
�

�
�O
��p���� 
���

Note that the error introduced by the linearization is of the order of O
���p��

Neglecting higher order terms in Eq� 
���� the leading truncation error term can

be recast as

Tp
x� � Lh
fx�� fx � Cf
p��

p
f
�p���
�

x�
� Cx

p��
p
x
�p���
�

x��
f� � 
���

With the �rst�order error component� the solution error downstream of the shock

becomes

� � C�x��� � Cf
p��

p
f
�p���
�

x�
�Cx

p��
p
x
�p���
�

x��
f�� 
���
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From the above equation it follows that the error in the smooth portion of the solu�

tion consists of three parts� The �rst one is due to the shock�capturing procedure�

The second one� which also exists on uniform meshes� arises from the evaluation

of f� � The third one is caused by the grid nonuniformity� When the grid is clus�

tered in the vicinity of the discontinuity� the metric coe�cient x� changes rapidly�

achieving its minimum value at the shock� As has been shown earlier� any grid

adaptation technique based on the error minimization or the error equidistribution

principle concentrates grid points near discontinuities of the solution� because the

true error and its estimates reach their maximum values at the singularity� From

Eq� 
��� it follows that this kind of grid adaptation reduces the �rst�order error

component� but at the same time� the second and� especially� the last term of the

numerical solution error increase drastically in regions where the x
�p���
� becomes

very large because of the strong grid nonuniformity� In other words� traditional grid

adaptation methods based on the grid redistribution technique transfer the error

from the �rst�order term to the design�order term� Although� asymptotically� the

solution error is dominated by the �rst�order shock error� numerical calculations

show that the coe�cient C� in Eq� 
��� may be very small� As will be shown in

Section �� when the blunt body problem is solved by using the second�order fully

upwind scheme based on the Lax�Friedrichs �ux splitting� the numerical solution

error downstream of the shock is dominated by the design�order error component

for all the grids considered� i�e�� jjC�hjj � jjCph
pjj� As a result� the �rst�order error

reduction owing to the grid adaptation is much less than the high�order error in�

troduced by clustering grid points near the shock� which ultimately decreases the

overall solution accuracy�

	��� Error Introduced by Local Grid Re�nement

In contrast to the grid redistribution method� the local grid re�nement approach

described earlier does not change the metric tensor of the mapping and� there�

fore� the error component resulting from the high�order derivatives of the metric

coe�cients remains the same as on the nonadaptive background mesh� Despite

this advantage� the local grid re�nement introduces additional error caused by an

abrupt change in grid spacing at interfaces between coarse and �ne grids and by

interface boundary conditions�

To illustrate the main problems associated with the local grid re�nement method�

we investigate wave propagation properties when there is a discontinuity in grid

spacing� A scalar linear equation�

�x � a�y � �� 
	��

is considered as a model problem� where a is a positive constant representing tangent

of the angle between the freestream �ow and the x�axis� In the numerical calcula�

tions� the parameter a was chosen to be ��	�� The model equation which can be

treated as a scalar analog of the Euler equations 
��� is solved on a unit square

with the following boundary conditions
 �
�� y� � eI�y and �
x� �� � e�I�ax� To

simplify the analysis� we seek the solution of Eq� 
	�� in the following form


�
x� y� � �
x�eI�y� 
	��
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where I �
p��� Substituting Eq� 
	�� in Eq� 
	�� yields

�x � Ia�� � �� 
	��

The above equation is approximated by using a second�order fully upwind scheme in

the interior and a two�point �rst�order upwind approximation at the in�ow bound�

ary� First� we consider a uniform grid with grid spacing h� In this case� the

corresponding discrete equations are

	

�
�j � ��j�� �

�

�
�j�� � Ia�h�j � �� j � �� J 
		�

and

�� � �� � Ia�h�� � �� 
	��

Introducing a parameter � � a�h� equation 
		� becomes

�
	

�
� �I

�
�j � ��j�� �

�

�
�j�� � �� 
	��

Substituting the solution of the form

�j � c�j 
	��

into the discrete equation 
	�� yields

�
	

�
� �I

�
�� � ���

�

�
� �� 
	��

The quadratic equation can easily be solved to give

���� �
��

q
�� �

�



�
� � �I

�
�
� � �I

� 
	��

Thus� the general solution of Eq� 
	�� is given by

�j � c��
j
� � c��

j
�� 
	��

The unknown coe�cients c� and c� are found by using the initial condition �jx�� �
�� and Eq� 
	��� as follows


c� � c� � ��

� � �I�
c��� � c����� c� � c� � ��


���

The exact discrete solution Eqs� 
	�� 	����� has been derived under the assump�

tion that the computational grid is uniform� However� the same approach can be

applied to construct the discrete solution on a locally re�ned grid� Without loss of

generality� only a two�level locally re�ned grid with a factor of two re�nement� i�e��

h�
h� � �� is considered� The exact discrete solution on the locally re�ned grid can
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be constructed as follows� Assuming that the coarse grid with grid spacing h� � h

covers the left half of the domain� and that the discontinuity in mesh size is located

at the midpoint x � �
�� the solution at this point is

�
���
J�� � c���

J��
�� � c���

J��
�� � 
���

where c�� � c�� c�� � c�� and ��� and ��� are roots of the characteristic polynomial

Eq� 
	�� corresponding to the background mesh h� � h� The above numerical

solution can be treated as an incident wave traveling from left to right� which

is then transmitted by the interface between the coarse and �ne grids� For the

hyperbolic equation 
	��� the solution of the Riemann problem at the interface is

trivial �right � �left� Since the same fully upwind scheme Eq� 
		� is used in the

right half of the domain� the discrete solution on the �ne nested grid can be written

in the same form as Eq� 
	������ However� instead of the grid spacing h� � h�

one should use the grid spacing h� � h
�� and the Direchlet boundary condition

at x � � should be replaced with the solution of the Riemann problem at the

midpoint� i�e�� ujx���� � �J��� where �J�� is given by Eq� 
���� Thus� the exact

discrete solution on the locally re�ned mesh is

�
���
j � c���

j
�� � c���

j
��� 
���

where ��� and ��� are de�ned by Eq� 
	�� with � � a�h�� and the coe�cients c��
and c�� are the solution of the following linear system of equations


c�� � c�� � �
���
J��


� � �I�
c����� � c������ � c�� � c�� � ��

�	�

The exact discrete solution Eqs� 
����	� calculated on the locally re�ned grid is

compared with the uniform grid solution at x � �� To determine the in�uence

of the grid discontinuity on the numerical solution accuracy� we compare the error

obtained at x � � on both the locally re�ned and corresponding uniform grids� The

error is calculated as the absolute value of the di�erence between the discrete and

analytical solutions of the original di�erential equation 
	��� which is

�
x� y� � e�Ia�xeI�y� 
���

The ratio of the error obtained on the locally re�ned mesh to the uniform

grid solution error corresponding to four grid spacings of the background mesh


h � ����� ����� ����� and ���
� is plotted versus ��h� in Fig� �� Note that the

parameter ��h� has been chosen so that it is proportional to the leading truncation

error term of the second�order scheme used� Therefore� for small values of ��h�

corresponding to the fully resolved solution� the error ratios calculated on grids

with di�erent background grid spacings are practically identical� The curves cor�

responding to di�erent mesh densities begin to diverge at a critical value of ��h�

that corresponds to the point where the error obtained on the locally re�ned mesh

becomes equal to the error obtained on the background mesh� Since this point

is asymptotically independent of the grid spacing� we can introduce the critical
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If � � � � � � ��� where � is a small positive constant� then the locally re�ned grid

provides better accuracy than the corresponding background mesh� Note that the

constant in the formula 
��� for the critical frequency �� depends on the numerical

scheme used� the angle between the freestream �ow and the x�axis� and the size

of the domain� Despite this dependence� for any stable second�order scheme� the

qualitative behavior �� � h���� always remains the same�

If the frequency of the exact solution exceeds the critical value ��� it cannot be
resolved on a uniform grid with the grid spacing h� As a result� the errors ratio

exhibits oscillatory behavior� Note� however� that for all the grids considered� there

exists the local maximumat ��h� � ��� corresponding to the frequency that is most

strongly ampli�ed by the abrupt change in grid spacing� as is evident in Fig� ��

The main reason for such a behavior is the hyperbolic nature of Eq� 
	��� Actually�

if error has been introduced on the coarse grid� it propagates downstream along the

characteristic� In the case of discontinuous solutions� such as shock waves� the cap�

tured discontinuity involves all frequencies and� therefore� cannot be fully resolved

on any grid� The error component corresponding to these unresolved frequencies

propagates downstream along the characteristics and ampli�es at interfaces� The

error ampli�cation occurs because of the discontinuity in grid spacing and the ap�

proximate interface boundary conditions� It should be emphasized that the error

ampli�cation becomes stronger� if either the number of interfaces or the grid re�ne�

ment factor increases� or the grid is globally re�ned�

As one can see in Fig� �� there is a boundary layer at ��h� 	 �� This deteriora�

tion in accuracy for the lowest frequencies is caused by reducing by one the order of

approximation at the �rst point of the coarse and �ne grids� To demonstrate this
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property� we estimate the ratio of the solution error obtained on the locally re�ned

mesh to one obtained on the corresponding uniform grid� when the exact solution

frequency is su�ciently small� i�e��

� � h����� 
���

If inequality 
��� holds� then the truncation error analysis can be applied� Taking

into account the fact that the error of integration of Eq� 
	�� is proportional to the

length of the integration interval� the ratio of the truncation errors can be estimated

as follows


��
��

�

������
�
C��xxh

� � C��xxxh
�


�
� � h

��
�
h
C��xx



h
�

��
� C��xxx



h
�

�� 
�
� � h

�

�i
C��xxh� �C��xxxh� 
�� h�

������ �

���

where C� and C� are constants dependent on the �rst� and second�order approxi�

mations used� e�g�� in our case C� � ��
� and C� � ��
	� In Eq� 
���� the �rst

term in the square brackets is the integration error on the coarse grid with grid

spacing h� and the second term is the integration error obtained on the �ne grid

with grid spacing h
�� Note that the C��xxh
� and C��xx
h
��� terms are due to

the �rst�order approximation used at the �rst grid points of the coarse and �ne

grids� respectively� With the exact solution Eq� 
���� Eq� 
��� is reduced to

��
��

�

�����


�C� � IC��



�
� � h

�
� IC�

�
�



�
� � h

�

�
C� � IC�� 
�� h�

����� � 
���

Letting h	 � yields

��
��

�
�

�
C�
� � C�

��
��

r
C�
� �

�

�
C�
��

� �
�

�
C�
�C

�
��

�� 
���

From the above equation it follows that for the lowest frequency � 	 �� the trun�

cation error calculated on the globally uniform grid is � � times less than that ob�

tained on the locally re�ned grid having one and a half times as many grid cells as

the corresponding uniform mesh� As the wave frequency increases� the errors ratio

tends to its asymptotic value of �
�� Note that if the governing equation is approx�

imated with a second�order scheme in the entire computational domain� then the

�rst�order terms in Eq� 
��� vanish� providing that ��
�� � �
�� �� 
 � � h�����
Remark �� In solving the ��D Euler equations� two additional sources of errors�

which are not present in the test example considered above� can arise� The �rst one

is due to an approximate solution of the Riemann problem at interfaces between

the coarse and �ne grids� The second source of error is caused by the re�ection

of waves going through interfaces� Note that in the above example� there is no

numerical re�ection� because the fully upwind formulation� which is consistent with

the characteristic of Eq� 
	��� is employed�


� RESULTS AND DISCUSSION

The inviscidM� � 	 �ow around a circular cylinder is used to test the accuracy of

the grid redistribution and local grid re�nement methods� A grid re�nement study
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is performed to investigate the in�uence of the grid adaptation on the numerical

solution accuracy downstream of the captured bow shock� The following sequence

of grids is used in the grid re�nement study
 		 � 		� �� � ��� ��� � ���� and

���� ���� Error in the smooth portion of the solution is measured in the L� sense�

as follows


k�� �exkL� �

vuuut
KP
k��

JP
j��

	
�kj � �exkj


�

KJ
� 
���

where �kj and �exkj are the numerical and exact values of � at point 
k� j�� and K

and J are the number of grid points in the domain of interest� The norm of wall

quantities is formed in a manner similar to Eq� 
���� but only the wall points are

used in the formula�


��� Grid Redistribution Method

An adaptive grid is generated by equidistributing the monitor function Eq� 
�	��

as described in Section ���� Three sets of the parameters d� and d� 
���� and �����

���� and ����� ���� and ���� in Eq� 
�	� generate three families of the adaptive grids�

These three sets of parameters d� and d� provide that the ratio of the adaptive

grid spacing to the uniform grid spacing at the shock is equal to ���� ���� and ��

respectively� A sample �� � �� adaptive grid generated by this grid redistribution

procedure is shown in Fig� �� The region around the shock is well resolved by

reducing the local grid spacing by a factor of ��� compared with the uniform mesh

with the same number of grid points� Figure � shows the pressure contours obtained

with the LF���� scheme on the �� � �� uniform 
left� and adaptive 
right� grids�

As one might expect� the grid adaptation improves the shock resolution� To give

greater insight into how the grid clustering in�uences on the shock smearing� the

centerline pressure distributions computed on these adaptive and uniform grids
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��	 generated by the grid redistribution
method�
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are depicted in Fig� �� For all the grids considered� the bow shock is captured

within � cells� which is typical for the Lax�Friedrichs �ux splitting employed� At

the same time� the shock thickness� which is proportional to the local grid spacing

in the physical space� becomes thinner as the clustering of grid points increases�

Locally near the shock� the numerical solution pro�le� which remains practically

unchanged� is scaled according to the local grid spacing� Note that the numerical

solutions obtained with the LF���	 �nite di�erence scheme demonstrate similar

behavior�

Grid re�nement studies using three families of adaptive grids and one family of

uniform grids that have the same number of grid points are presented in Figs� ���	�

The L� norm of the wall pressure error is shown in Fig� �� As one can see in the

�gure� the convergence rate obtained for the smooth problem is consistent with the

design order of the scheme used� The smooth problem is formulated in the region
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FIG� 	� Grid re�nement study at M� � �� showing the pressure error in the half of the
domain closest to the body obtained with the LF�
�
 scheme on uniform and adaptive grids�

bounded by the exact shock wave and the cylinder� so that there is no discontinuity

in the domain� The in�ow boundary condition at the bow shock is implemented by

solving the Riemann problem between the numerical state and the exact post�shock

conditions from the spectral solution�

Although the shock resolution is improved by clustering grid points around the

shock� the error in the pressure on the body surface increases by a factor of ����

compared with that calculated on the uniform grid with the same number of grid

points� It should be noted that the higher the concentration of grid points in the

vicinity of the shock� the larger the error that is introduced into the numerical

solution by the grid nonuniformity� The grid adaptation results in the metric coef�
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FIG� ��� Grid re�nement study at M� � �� showing the pressure error in the half of the
domain closest to the body obtained with the LF���� scheme on uniform and adaptive grids�

�cients drastically increasing near the shock� which� in turn� considerably decreases

the accuracy in regions where the solution is smooth� These numerical calculations

corroborate the analysis presented in Section ���� Surprisingly� the shock�capturing

solutions obtained on uniform grids not only are more accurate than the corre�

sponding solution of the smooth problem� but also exhibit higher convergence rate

on �ne meshes� This anomalous behavior present in the shock aligned cases did not

generalize to non�shock aligned meshes� Nevertheless� this superconvergence is not

yet well understood and requires additional investigation�

The L� norm of the pressure error calculated in the half of the domain closest to

the body is presented in Fig� �� Such a choice of the domain enables us to exclude
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any point close to the captured shock� where the pointwise error is of the order

of O
��� The error behavior obtained in the �eld is very similar to that exhibited

by the wall pressure error� As in the foregoing comparison� the grid adaptation

signi�cantly increases the error in the smooth portion of the solution� Note that for

the LF���� scheme� the �rst�order error component is comparable with the design�

order error� giving the appearance of the second�order convergence rate on all the

grids considered�

Error convergence plots obtained with the fourth�order upwind�biased LF���	

scheme are depicted in Figs� �� and �� which are analogous to Figs� � and ��

accordingly� In contrast to the second�order scheme� the fourth�order method using

uniform grids quickly approaches the asymptotic limit and exhibits just the �rst�

order convergence on �ne grids� In spite of the fact that the solution error is

dominated by the �rst�order error component� the grid adaptation improves the

numerical solution accuracy only asymptotically� On one hand� the concentration

of grid points near the shock reduces the �rst�order error component� so that the

convergence rate increases towards the design order limit� as shown in Figs� ��

and ��� On the other hand� the high�order error component signi�cantly increases

because of the grid nonuniformity� As a result� the solution error is dominated

by the design�order error component� Despite some improvement in accuracy on

the coarsest adaptive grids� the L� norm of the solution error obtained on �ner

adaptive grids is larger than that calculated on the corresponding uniform grids�

As shown in Section ���� the main reason for such a behavior is that the design�

order error component� resulted from the approximation of the metric coe�cients�

drastically increases� owing to the clustering of grid points near the shock� Although

the adaptive grid solution exhibits a higher convergence rate� the errors obtained

on the corresponding adaptive and uniform grids become comparable only on the

�nest ��� � ��� mesh� Hence� the grid redistribution method based on the LF�

��	 scheme provides improvement in accuracy only on extremely �ne grids which

are very seldom found in practical applications� because of the computational cost

involved� Note that the adaptive grid solution error su�ers from the �rst�order

degeneration but with much lower �rst�order error constant� as follows from Eq�


����

In the grid convergence studies presented above� the solution error is measured

in regions where the solution is smooth� However� it appears intuitively that the

grid adaptation should reduce the solution error in the vicinity of the shock� One

can argue that calculation of the lift or the drag for discontinuous �ows results in

an error in these integral quantities of O
�Ps�xs�� where �Ps and �xs are the

pressure jump across the shock and the grid spacing at the shock� respectively�

This assumption is the basis for using grid adaptation methods to reduce the �rst�

order shock error in the lift and drag which are two of the most important integral

quantities obtained from the solution of the Euler equations�

To check whether the grid adaptation improves the accuracy of the integral quan�

tities� we compare errors in the pressure integral across the bow shock along line

y � � calculated on the same adaptive and uniform grids� Two integration al�

gorithms have been used to compute the integral� The �rst one is a standard

two�point second�order trapezoidal rule quadrature formula� The second one uses

a piecewise cubic spline to �t the discrete pressure� Then� the spline is integrated
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FIG� ��� Grid re�nement study for the pressure integral error obtained with the LF�
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scheme on uniform and adaptive grids�
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FIG� ��� Grid re�nement study for the pressure integral error obtained with the LF����
scheme on uniform and adaptive grids�

analytically� providing a fourth�order accurate integration formula for su�ciently

smooth functions� Although the fourth�order integration procedure imposes more

severe constraints on smoothness of the integrated function� pressure integral er�

rors obtained with second� and fourth�order quadrature formulas are practically

identical� Therefore� only the results calculated using the fourth�order integration

procedure are presented�

Figures �� and �	 show the grid re�nement study for the pressure integral ob�

tained with the LF���� and LF���	 shock�capturing schemes� respectively� In con�

trast to conventional wisdom� the pressure integral calculated with the LF����

scheme on clustered grids is less accurate than that computed on uniform grids
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with the same number of grid points� Figure �� shows that the accuracy of the

pressure integral deteriorates as the concentration of grid points in the vicinity of

the shock increases� For the LF���	 scheme� slight improvement of the pressure

integral accuracy can be observed on both the coarsest and �nest adaptive grids�

while similar deterioration in accuracy occurs on ��� �� and ���� ��� meshes�

It should be emphasized that the error in the pressure integral across the shock

behaves very similarly to the L� norm of the wall pressure error� This is no surprise

because these quantities are closely connected� To show this relation� we integrate

the ��D steady Euler equations over the entire domain to give

Z
V


Fx �Gy� dV �

Z
�

F 
 nd! � �� 
���

where F is the �ux tensor� ! is the boundary of the physical domain V� n is an

outward pointing unit vector normal to !� As follows from Fig� �� ! � AB�BC�

CD �DA� Thus�

Z
AB

F 
nd! � �
Z
BC

F 
nd!�
Z
CD

F 
 nd!�
Z
DA

F 
 nd!� 
���

Because the �nite di�erence schemes used are fully conservative� Eq� 
��� holds not

only for the exact analytical solution� but also for the discrete solution� As follows

from Eq� 
���� the accuracy of the solution integral along the centerline AB is

determined by the accuracy of the integrals calculated along the other boundaries

including the body surface BC� This indicates that the integral L� norm of the

wall pressure error is closely related to the accuracy of the pressure integral along

the centerline�


��� Local Grid Re�nement Method

As follows from the analysis presented in Section ���� the most troublesome parts

of the local grid re�nement method are the grid discontinuity and the interface

boundary conditions� Therefore� special attention has been paid to implementation

of the interface boundary conditions and their accuracy� In the present study�

the Roe�s approximate Riemann solver is used to build a �ux at grid interfaces�

The left and right states at a grid interface are obtained as solutions of the Euler

equations calculated separately in each subdomain� The numerical �ux built this

way is then used to construct the second� and fourth�order approximations� Eqs� 
��

��� This implementation of the interface boundary conditions maintains stability�

conservation� and accuracy in multiple dimensions for both second� and fourth�

order methods� Because only matching nested grids are considered� there are no

hanging nodes in the domain�

To verify the accuracy of the interface boundary conditions described above� two

calculations of the smoothM� � ��� blunt�body problem are performed� The �rst

grid re�nement study is done on a sequence of uniformly spaced grids� Each grid

is divided on eight subdomains containing the same number of grid points in both

the radial and circumferential directions� as shown in Fig� ��� Pressure contours

computed with the LF���	 scheme on this multiblock grid are also shown in Fig� ���
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left	 and pressure contours 
right	 of the
smooth M� � 
�� �ow calculated with the LF���� scheme�

Although the present formulation of the interface boundary conditions results in

the numerical solution being discontinuous at interfaces� the absolute value of the

solution jump at the interface is of the order of the truncation error of the scheme

used� For example� the characteristic interface pressure jump calculated with the

LF���	 scheme on a ��� 		 uniform ��block grid is O
������
The second series of calculations is performed on a sequence of locally re�ned

grids similar to those which are used in the shock�capturing formulation� As in

the previous test case� only the �ow between the bow shock and the cylinder is

considered� i�e�� there are no discontinuities in this subproblem� A three�level locally

re�ned grid corresponding to a ���		 background mesh and the pressure contours

calculated on this grid are shown in Fig� ��� Qualitatively� the solutions obtained on

uniform and nested multiblock grids are very similar� However� the corresponding

L� pressure error norms calculated in the half of the domain closest to the body

are quite di�erent� as seen in Fig� ��� As shown in Section ���� the presence of

interfaces in the domain introduces additional error in the numerical solution� On

the coarsest ��block uniform grid� the solution is less accurate than that obtained on
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the domain closest to the body obtained with the LF���� scheme on the ��block uniform and 
�
to ��level locally re�ned grids�

the corresponding single�block uniform grid� This reduction in accuracy is due to

the fact that all grid points in each subdomain are treated as the boundary points�

Therefore� the third�order boundary closure approximation is used on the entire

coarsest mesh� On �ner meshes� the multiblock uniform grid formulation exhibits

the design�order convergence rate and provides practically the same accuracy as

on the single�block uniform grid� In contrast to multiblock uniform grid results�

the locally re�ned grid formulation leads to both one order of magnitude reduction

in accuracy and deterioration of the convergence rate to 	 on �ne meshes� These

numerical results corroborate the theoretical analysis which shows that the error

components corresponding to the lowest fully resolved and the high unresolved

frequencies are ampli�ed by the grid discontinuity� Such a reduction in accuracy is

also caused by the approximate solution of the Riemann problem and by spurious

re�ection of waves traveling through the interfaces�

To test the accuracy of the local grid re�nement method� the LF���� and LF���	

schemes are used to capture the bow shock around a Mach 	 circular cylinder� A

typical three�level �	� � �� locally re�ned grid used in both second� and fourth�

order formulations is shown in Fig� ��� This adaptive grid corresponding to �����

background uniform mesh is locally re�ned near the exact shock location� such

that the local grid spacing of the �nest nested subgrid is � times smaller than

that of the background mesh� Figure �� shows the pressure contours calculated on

these uniform and locally re�ned grids� As expected� the shock wave front becomes

much sharper on the adaptive grid� To demonstrate the improvement in the shock

resolution owing to the local grid re�nement� the centerline pressure distributions

computed on the three�level and �ve�level locally re�ned grids are compared with

the uniform grid results in Fig� ��� The comparison shows that the bow shock is

smeared over six grid cells for all the grids considered� while the shock thickness in

the physical space is reduced proportionally to the local grid spacing�
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FIG� ��� Pressure contours obtained with the LF���� scheme on the ��� �� uniform 
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Despite improved shock sharpness� there is no reduction in the L� error norm

measured in smooth portion of the numerical solution calculated with the second�

order method� as is evident in Figs� �� and �� which are analogous to Figs� � and ��

Figure �� shows that the L� norm of the wall pressure error obtained with the LF�

��� scheme on locally re�ned grids increases by a factor of ������� compared with

the uniform grid results� The pressure error measured in the half of the domain

closest to the body exhibits similar behavior� as is evident in Fig� ��� Note that

for the second�order scheme� the error convergence rate of the local grid re�nement

method is less than the design order�

In contrast to the second�order method� the numerical solution error obtained

with the LF���	 scheme is dominated by the �rst�order error component� Figures

�� and �	 show that the local grid re�nement near the shock reduces the �rst�order

error component generated by the LF���	 shock�capturing procedure� so that the

design�order error component becomes dominant on the adaptive grids� Although
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FIG� �
� Grid re�nement study at M� � �� showing the wall pressure error obtained with
the LF�
�
 scheme on uniform and locally re�ned grids�

the error convergence rate is almost recovered to the design order� the L� norm of

the wall pressure error obtained on locally re�ned grids becomes comparable with

the uniform grid results only on the �nest mesh� For coarser grids� the superiority

of uniformly spaced grids is evident� The same conclusion can be drawn for the

pressure error measured in the �eld away from the shock� except that the solution

errors obtained on the locally re�ned and uniform grids become comparable on

the coarser ��� � ��� grid� as one can see in Fig� �	� The numerical results

obtained with both the second� and fourth�order schemes show that as the number

of interfaces between coarse and �ne meshes increases� the deterioration in accuracy

also increases� which qualitatively corroborates the analysis presented in Section ����
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FIG� ��� Grid re�nement study at M� � �� showing the wall pressure error obtained with
the LF���� scheme on uniform and locally re�ned grids�

Error convergence plots of the pressure integral along the centerline calculated

using the LF���� and LF���	 schemes on the same sequences of locally re�ned

and uniform meshes are depicted in Figs� �� and ��� respectively� Note that the

error convergence on uniform grids is monotonic� whereas the error convergence on

adaptive grids exhibits nonmonotonic behavior� Figure �� shows that the local grid

re�nement method based on the LF���� scheme does not reduce the pressure integral

error compared with the uniform grid results� Certain improvement in accuracy of

the pressure integral computed with the LF���	 scheme can be observed on �ne

locally re�ned grids� as shown in Fig� ��� However� this gain in accuracy decreases

as the background mesh is globally re�ned� and it practically vanishes on the �nest
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FIG� ��� Grid re�nement study for the pressure integral error obtained with the LF�
�

scheme on uniform and locally re�ned grids�

adaptive mesh� Although only the error in the pressure and its integral have been

presented in this study� similar convergence behavior is observed for the other �ow

quantities�

The results presented above have been obtained under the assumption that one

family of grid lines is parallel to the bow shock� However� in practical applications�

generation of shock�aligned grids is a complicated problem� because the exact shock

location is unknown� To gain greater insight into the error behavior when the grid

is not aligned with the shock� we perform a grid re�nement study on uniform grids

generated by the mapping Eq�
��� with r�
	� � const� In this case� circumferential

grid lines are circular arcs which are not aligned with the bow shock� Figure ��
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FIG� ��� Grid re�nement study for the pressure integral error obtained with the LF����
scheme on uniform and locally re�ned grids�
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scheme on this grid�

shows a uniform ����� grid and isobars of the blunt body �ow calculated with the

LF���� scheme on this grid� Note that the maximum angle between the bow shock

and circumferential grid lines� which occurs at the point where the shock crosses

the out�ow boundary� is about ���� The L� norm of the wall pressure error and the

pressure error norm measured in the half of the domain closest to the body surface


obtained on the nonaligned uniform grids� are compared with the shock�aligned

uniform and most accurate adaptive grid results in Figs� �� and ��� respectively�

As follows from the grid re�nement study� when the grid is aligned with the bow

shock� the coe�cient in front of the �rst�order error component is negligibly small�

giving the appearance of a second�order convergence rate� However� this coe�cient
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FIG� ��� Grid re�nement study at M� � �� showing the wall pressure error obtained with
the LF�
�
 scheme on nonaligned uniform� shock�aligned uniform and adaptive grids�
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FIG� ��� Grid re�nement study at M� � �� showing the pressure error in the half of the
domain closest to the body obtainedwith the LF�
�
 scheme on nonaligneduniform� shock�aligned
uniform and adaptive grids�

becomes much larger on nonaligned grids that makes the �rst�order shock error

component dominant on much coarser grids� Despite the fact that the L� norm of

the pressure error obtained on the �nest nonaligned uniform mesh is one order of

magnitude less accurate than that on the corresponding shock�aligned uniform grid�

the nonaligned uniform grid solution is still more accurate than the best adaptive

grid results� As one can see in Figs� �� and ��� the error convergence obtained

with the LF���� scheme is very similar to that calculated with the LF���	 scheme

on shock�aligned grids� Figure �� shows that the grid adaptation can improve the

numerical solution accuracy only asymptotically�
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�� GRID ADAPTATION CRITERION FOR CAPTURED SHOCKS

Based on the results presented in Sections ��� and ���� we propose the following

grid adaptation strategy for captured shocks� The most general error convergence

behavior shown schematically in Fig� �� is characterized by the presence of three

di�erent regions in the error convergence plot� The �rst region corresponds to

coarse meshes such that the shock error component is of the order of O
��� In

this region� the grid adaptation near the shock is desirable because it reduces the

most troublesome part of the error generated by the shock�capturing procedure� It

should be stressed that the grid adaptation not only reduces the shock error� but

also localizes the captured shock� which minimizes interaction of Gibbs oscillations

with the boundary conditions and other features of the �ow� This is one of the main

reasons why high resolution shock�capturing schemes� such as ENO and weighted

ENO schemes� provide better accuracy on coarse grids compared to high�order

linear algorithms�

In the second region� which corresponds to su�ciently �ne grids� the coe�cient

C� in Eq� 
��� approaches its asymptotic value which� as has been shown for

the LF���� scheme� may be very small� For these grids� the design�order error

component dominates the �rst�order error component� i�e� kCph
pk � kC�hk� As

a result� any clustering of grid points or local mesh re�nement in the vicinity of

the shock reduces only that part of the error which is not dominant� ultimately

reducing the numerical solution accuracy in smooth portions of the solution� The

main reason for such a behavior is the fact that both grid adaptation strategies

are not without penalties in the solution accuracy� As follows from the truncation

error analysis� for the grid redistribution method� the main source of error is due

to the high�order derivatives of the metric coe�cients which drastically increase on

nonuniformmeshes� The numerical analysis performed for the local grid re�nement

technique has shown that� in this case� the error accumulation occurs because of

discontinuities in grid spacing and the coupling between coarse and �ne meshes�

herein calculated as an approximate solution of the Riemann problem� Because
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FIG� �	� Error convergence diagram for a high�order shock�capturing method�
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of these penalties in the solution accuracy� the grid adaptation increases the total

error in the numerical solution if it is used in the second region�

The third region corresponds to the �rst�order asymptotic limit� In this region�

the grid adaptation near the bow�shock would be the most e�cient use of the com�

puter resources� However� as has been shown numerically� there is a transition zone

where the error convergence rate is O
h�� but the grid adaptation does not provide

improvement in the numerical solution accuracy compared with the corresponding

uniform grid results� This is because both the grid redistribution and local grid

re�nement methods introduce additional error in the numerical solution� caused by

the grid nonuniformity� Note that the transition zone becomes larger if the com�

putational cost is used instead of the number of grid cells in the error convergence

plots�

From the above analysis it follows that the grid adaptation is desirable if the

following inequality holds


kC�hk � kCph
pk� 
�	�

where the norm is measured in regions where the solution is smooth� The above

inequality can be used as a grid adaptation criterion for captured discontinuities�

It should be noted that the constants C� and Cp depend on both the problem

and the numerical scheme used� As has been mentioned earlier� the coe�cient

Cp can be treated as the leading truncation error term� To our knowledge� there

are no theoretical results for evaluation of the coe�cient C�� Therefore� to use

the criterion 
�	� in practical applications� global grid re�nement or coarsening is

required� The global coarsening can be used if the grid is �ne enough to correspond

to the second and third regions in the error convergence diagram� However� if the

grid is very coarse that corresponds to the �rst region� the coarsening cannot be

used� and the grid re�nement is the only way to evaluate the error convergence

rate� This approach becomes quite expensive in three dimensions� From this point

of view� it is very important to be able to predict a priori the error introduced by

the shock�capturing procedure� This quanti�cation together with the criterion 
�	�

will provide guidance for grid adaptation for captured discontinuities�

It is instructive to speculate on the generality of this work� particularly on two

practical questions
 �� are the conclusions and suggestions 
see Fig� ��� valid for any

general discontinuous �ow� and �� are the present results 
second� and fourth�order

Lax�Friedrichs schemes� general for any high�order numerical algorithm" Although

a precise answer does not presently exist to either question� we make the following

conjecture
 Similar qualitative results and an equivalent grid adaptation criterion


�	� will be obtained for any �ows containing multidimensional shocks� indepen�

dent of the high�order numerical method 
central di�erence with scalar dissipation�

Roe� TVD� and ENO�� This assertion is based on the observation that for any

captured discontinuities� the numerical solution error obtained with any high�order

shock�capturing method consists of two parts
 the �rst�order shock error C�h and

the design�order error component Cph
p� Although the coe�cients C� and Cp are

problem and scheme dependent� asymptotically� these coe�cients do not depend

on the grid spacing h� Consequently� for any high�order method� such that p � ��

and any �nite values C� and Cp� the solution error is asymptotically dominated by
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the �rst�order error component� corresponding to the third region in Fig� ��� If

C� � Cp� the solution error exhibits high�order convergence on su�ciently coarse

grids� and corresponds to the second region in the error convergence diagram� If

the grid is very coarse� such that C�h � O
��� the solution error corresponds to

the �rst region in Fig� ��� Note� however� that the �rst and second regions may

be very small or even nonexistent if C� � Cp� whereas the third region always ex�

ists� regardless of the discontinuity strength and the high�order numerical algorithm

used�

Although the results presented above have been obtained for steady state �ows�

the same conclusions can be drawn for time�dependent problems as well� An essen�

tial e�ect of the grid nonuniformity on the numerical solution accuracy remains one

of the most important sources of error for unsteady problems with shocks� Since

time�dependent �ows involve both the temporal and spatial errors� additional errors

caused by mesh movement and dynamical re�nement coarsening are introduced

into the numerical solution� The main source of error for moving�grid methods is

the inability to satisfy the geometric conservation law in the presence of moving dis�

continuities� One of the main problems associated with time�dependent local grid

re�nement methods is the need to interpolate� Note that any high�order interpo�

lation across a strong discontinuity can cause a perceptible loss of spatial accuracy

and can produce strong oscillations because of the Gibbs phenomenon� Another

very important issue� particularly for unsteady problems� is a mutual in�uence of

the temporal and spatial error components�

�� CONCLUSIONS

The accuracy of the adaptive grid redistribution and local grid re�nement meth�

ods is examined and analyzed for captured shocks� The grid re�nement study using

second� and fourth�order �nite di�erence schemes based on the Lax�Friedrichs �ux

vector splitting is performed to solve the supersonic inviscid �ow around a circular

cylinder� The numerical calculations show that if the solution error is dominated

by the �rst�order error component� the grid adaptation near the shock increases the

error convergence rate towards the design order of the numerical algorithm used� At

the same time� it has been shown theoretically and corroborated numerically that

the design�order error component drastically increases because of the grid nonuni�

formity� As a result� either clustering of grid points or local grid re�nement near the

shock improves the numerical solution accuracy only asymptotically on very �ne

meshes that are not reasonable for modern computers� Furthermore� it has been

found that neither grid adaptation strategy practically reduces error in the pres�

sure integral across the shock compared with that obtained on the corresponding

uniform grid� From the present analysis it follows that grid adaptation is desirable

if the �rst�order error component measured in the smooth part of the solution is

much larger than the design�order error component� This inequality can be used

as a grid adaptation criterion for captured discontinuities�
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