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Abstract

The Finite Element Method (FEM) is extensively used as an engineering analysis
tool because of its versatility and flexibility. However, the method suffers from
drawbacks such as discontinuous secondary variables across inter-element boundaries
and the need for remeshing in large deformation problems. Therefore, researchersin
recent years have begun to explore the possibility of developing new and innovative
analysistools that do not have these drawbacks, and yet have all the advantages of the
FEM.

Recent literature shows extensive research work on meshless or element-free
methods. One such method isthe Meshless Local Petrov-Galerkin (MLPG) method.
This method is based on alocal weak form of the governing differential equation and
allows for achoice of trial and test functions from different spaces. By ajudicious choice
of the test functions, the integrations involved in the weak form can be restricted to
regular domains. The MLPG method is currently implemented for 2-D potential and
elasticity problems.

In this report, the method is further developed for bending of beams— C*
problems. A generalized moving least squares (GMLYS) interpolation is used to construct
thetrial functions, and spline and power weight functions are used as the test functions.
The MLPG method for beam problems is applied to problems for which exact solutions
are available to evaluate its effectiveness. Additionally, a Petrov-Galerkin
implementation of the method is shown to greatly reduce computational time and effort,
thus demonstrating that this Petrov-Galerkin approach is preferable over the previously

developed Galerkin approach. The MLPG method for beam problems yields continuous



secondary variables without the need for elaborate post-processing techniques, and the
accuracy of the method is demonstrated for problems with load discontinuities and

continuous beam problems.

This report describes the work that was performed in partial
satisfaction of the requirements met by Dawn R. Phillips for the
degree of Master of Science from the George Washington

University Joint Institute for Advancement of Flight Sciences.
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Chapter 1: Introduction

Aerospace structures are very complex in construction. Structural elements used
are usually built up from doubly-curved shells and stiffeners made up of metallic,
composite, or sandwich materials. Further, aerospace structures are expected to be
durable and damage tolerant, are required to have minimum weight, and are expected to
provide superior performance. These structures are also expected to be in service over a
wide range of operating conditions and in extreme environments. Satisfying these
requirements while maintaining cost effectiveness is a complicated but possible task.
The only efficient way to obtain such a system is through very accurate and high fidelity
analyses and validation of the resultant design configurations through innovative test

techniques.

1.1 Motivation

The Finite Element Method, because of its versatility and flexibility, is
extensively used as an engineering analysis tool in civil, automotive, marine, off-shore,
and aerospace industries. However, the FEM suffers from drawbacks such as
discontinuous secondary variables (such as stresses) across inter-element boundaries and
the need for remeshing in large deformation problems. As stresses are discontinuous
across inter-element boundaries, post-processing techniques are required to achieve
smooth stress distributions. Four commonly used smoothing techniques are (Cook et al.,
2002) the element smoothing technique, the nodal averaging method, the global
averaging method, and patch recovery. These methods involve post-processing the FE

output to obtain smooth secondary variables.



The second disadvantage of the FEM isin geometric or material nonlinear
analysis. In nonlinear analysis, severe mesh distortions can occur. These mesh
distortions lead to poorly shaped or ill-shaped elements. These ill-shaped elements
perform poorly and hence remeshing of the deformed analysis region is needed. The
remeshing and the associated interpolation of the current nonlinear solution onto the new
mesh is atedious process. Any method that avoids ill-shaped elements, that provides
smooth secondary variable distributions, and that retains the advantages of the FEM is
very attractive. Meshless Methods (MM) appear to show promise in these directions.
For MM to successfully compete with the FEM, the MM need to be applicable to built-up
structures. Meshless Methods so far have been applied to one- and two- dimensional C°
problems. Thus the next step is to apply the MM to C problemsinvolving one
dimension. In thisreport, one of the MM, the Meshless Local Petrov-Galerkin (MLPG)

method is applied to beam problems.

1.2 Background

With the goal of eliminating the disadvantages of the FEM, researchersin recent
years have begun to explore the possibility of developing new and innovative analyses
tools that do not have the drawbacks, yet retain most of the advantages of the FEM.

Nayroles et al. (1992) developed the concept of a diffuse approximation of the
finite eement method. They proposed replacing the finite element interpolation function
with a smooth function that is diffused and using a moving least squares formulation to
arrive at the interpolation. A moving least squares (MLS) interpolation uses the local

weighted least squares function to evaluate the dependent variable at a point in the



domain of the problem. Coefficientsin thisleast squares function are found by
minimizing the sum of the squares of the error between the interpolation and the value of
the dependent variable at the nodes. In the FEM, Dirac delta functions are used to
perform this minimization. For the current Diffuse Element Method, continuous
weighting functions that vanish at a certain distance from the nodes over which they are
centered are used. Two very important attributes of the Diffuse Element Method are
noted by Nayroles et al.(1992): 1) a collection of nodes, without a mesh, and boundary
conditions are all that are needed to develop the system matrices, and 2) accurate
solutions are obtained for both regular and irregular nodal spacing. Figure 1.2.1 shows

the ways in which domains are modeled in the FEM and MM.

nodes
7NN
/A‘ZN%NVA\
ININANY
N ‘!EV
(&) FEM: nodes and elements (b) MM: only nodes

Figure 1.2.1: Modelingin the FEM and MM

Belytschko et al. (1994) took the ideas of the Diffuse Element Method further and
developed the Element Free Galerkin (EFG) Method. In developing their equations, they
made the important observation that the coefficients in the MLS interpolation should not
be regarded as constants. As aresult, when evaluating the derivatives of the shape
functions obtained from the MLS interpolation, two very important terms neglected by

Nayroles et al. (1992) were included. The accuracy of the EFG method thus showed



significant improvement over the accuracy of the Diffuse Element Method. Additionally
in the implementation of the EFG method, Lagrange multipliers were used to enforce
essential boundary conditions (EBCs), and a*“shadow” cdll structure was overlaid on the
domain to integrate the system matrices. The convergence rate of the EFG method
depends on the choice of weight function in the interpolation, but significantly exceeds
that of the finite element method. Several observations were also made about the
background integration mesh of Belytschko et al. (1994). Because the cells are used
solely for the purpose of carrying out the numerical integrations, they do not need to
satisfy the requirements of finite elements, and they can be easily refined in alocal region
(unlikein the FEM).

Mukherjee and Mukherjee (1997) made important contributions in the imposition
of essential boundary conditions in meshless methods. They recognized that MLS
interpolants lack the Kronecker delta property of the usual FEM shape functions. Asa
result, imposition of EBCsis not straightforward. Mukherjee and Mukherjee proposed
that the values of the dependent variable be replaced by fictitious nodal valuesto
accurately satisfy the EBCs at boundary nodes. The resulting system of equations are
solved for these fictitious nodal values, which are in turn used in conjunction with the
nodal shape functionsto arrive at the numerical solution to the problem.

While the overlaid cell structure does not have requirements as stringent as the
finite element mesh, the cell structure is still a mesh that is needed for the EFG models.
Therefore, one of the advantages of the EFGM islost. Atluri and Zhu (1998) developed a
truly meshless method that does not require the shadow cell structure to perform the

numerical integrations. They proposed using a Local Weak Form (LWF), in which



calculations begin from the weak form in alocal sub-domain. Essential boundary
conditions are imposed by means of a penalty method. The Petrov-Galerkin method is
used, as opposed to the Galerkin method used by previous researchers, where the trial and
test functions are taken from the same space. By a suitable choice of the test function,
the method can be made local. As such, no overlaying cell structure is required to

perform the numerical integrations.

1.3 Objective

In this report, the MLPG method is first applied to C° problems to understand
various features of this method. The method is further developed for 1-D C* problems
involving Euler-Bernoulli beams. A Petrov-Galerkin formulation for the beam problems
ispresented. The formulation is applied to several beam problems for which exact
solutions are available to evaluate its effectiveness. Various features of the method are
studied and the performance of the method to ranges of important parameters are

discussed.

1.4 Scope

The C! problems presented in this report are Euler-Bernoulli beams. Thus, the
MLPG method is devel oped using the Euler-Bernoulli beam conventions. These
conventions are stated as follows: 1) Euler-Bernoulli beams undergo small deformations,
2) plane sections normal to the neutral axis before deformation remain planar and normal

to the neutral axis after deformation, and 3) deflection is afunction of the axial



coordinate alone. A more detailed explanation of Euler-Bernoulli beam theory is

presented in Chapter 3.

1.5 Overview

In the chapters that follow, the phrase “machine accuracy” appears several times.
“Machine accuracy” means that the absolute value of the difference between the exact
solution and the numerical solution is of the order of 10, using double precision
arithmetic.

In Chapter 2, the MLPG method for C° problems, the problems that are described
by a second order ordinary differential equation, are considered. In C° problems, the
dependent variables are continuous, but their derivatives may not be continuous. A local
weak form of the governing differential equation is developed. Approximations to the
solution known astrial functions are formed using the moving least squares interpolation.
The Petrov-Galerkin formulation for these C° problems is presented. A system of
algebraic equationsis derived by using the MLS interpolation and the Petrov-Galerkin
test functions in the local weak form. Numerical examples, including patch test
problems, mixed boundary value problems, and atypical heat transfer problem are
worked to evaluate the effectiveness of the method.

In Chapter 3, the MLPG method for C* problems, specifically for Euler-Bernoulli
beams, is presented. These problems are described by fourth order ordinary differential
equations. In C! problems, the dependent variables and their first derivatives are
continuous, but higher order derivatives may not be continuous. A local weak form

(LWF) of the governing differential equation is developed. The moving least squares



interpolation scheme is generalized to include derivatives of the dependent variables, and
is used to construct thetrial functions. Test functions are chosen from a different space
than the trial functions, making the method a Petrov-Galerkin method. Thetrial and test
functions are then used in the LWF to derive a system of algebraic equations.

Numerical examples of beam problems are presented in Chapter 4. A local
coordinate approach is developed, problem parameters are established, and patch tests are
performed. Several mixed boundary problems are considered, and the continuity
requirements for the Petrov-Galerkin test functions are established. Finally, a continuous
beam problem is studied.

In Chapter 5, conclusions drawn from the report are presented and summarized.

Several suggestions for future work are also made.



Chapter 2: MLPG for C° Problems

A Meshless Local Petrov-Galerkin (MLPG) method has been developed for C°
problems. The method was applied to potential problems by Atluri and Zhu (1998) and
to axisymmetric problems by Raju and Chen (2001). Before C* problems can be
discussed, C° problems must be understood. This chapter presents a description of the
method applied to C° one-dimensional (1-D) problems.

First, alocal weak form is developed from the classical weighted-residual form of
the governing differential equation. A moving least squares interpolation is used to
construct the approximations to the solution known astrial functions. Test functions are
chosen from a different space than the trial functions, making the method a Petrov-
Galerkin method. Essential boundary conditions are enforced by a penalty method
similar to the penalty method employed by the FEM. A system of algebraic equationsis
derived by substituting the trial and test functions into the local weak form. The method
is evaluated by applying it to several patch test and mixed boundary value problems.
Finally, atypical example of a heat transfer problem is analyzed using the MLPG

method.

2.1 Weak Form for 1-D C° Problems
Consider a1-D C° problem (Reddy, 1993) governed by

—i(b(x)%]+c(x)u = f(x) (2.1.2)
dx dx
indomain Q (0< x< 1) with boundary I", where b(x) and c(x) are problem parameters

that may be functions of the coordinate x, and f(x) is some “loading,” which may also be

afunction of x. The essential and natural boundary conditions are of the form



u=y onT, , g=q onT (2.1.2)
u q q

where

gq= b% (2.1.3)
dx

and I'y and I'y denote the boundary regions where the primary variable, u, and the
secondary variable, q, are prescribed, respectively. In 1-D problems, these boundary
regions are the points x=0 and x=1. The variables u and q represent different physical
guantities depending on the type of problem considered. For example, in the problem of
axial deformation of a bar, the primary variable u islongitudinal displacement, b=EA
where E isthe modulus of elasticity and A isthe cross-sectional area, f isthe applied body
force on the surface of the bar (such asfriction, self-weight, etc.), and b- (du/dx) , the
secondary variable, isthe axial force. For aheat transfer problem, u istemperature, bis
the thermal conductivity, f is heat generation, and b- (du/dx) isthe heat flux (Reddy,
1993).

To obtain an approximate solution to Eq. (2.1.1), aweighted residual techniqueis
employed. As an approximate solution for u is sought, thereis an error; that error

(residual) is

R:—i(b%j+cu—f : (2.1.9)
dx\ dx

Control of the errorsis affected by multiplying the residual by a weight function v(x),

integrating over the whole domain, and setting the integral to zero:

B A B T IR
O_é“v{ dx[bdxj+cu f}dx. (2.1.5)



Equation (2.1.5) represents the classical weighted residual form of the governing
differential equation. An approximate solution for u is chosen such that each term in the
approximate solution must be twice differentiable and satisfy all the boundary conditions
(Eq. 2.1.2). Whilethese requirements are easy to satisfy in 1-D problems, for higher
dimensions, they are difficult to satisfy. Therefore, aformulation that accepts weaker
requirements on u is sought. The weak form of the weighted residual equation is set up
by transferring the differentiation from the primary variable u to the weight function v.
Thisis achieved by integrating by partsin 1-D and by application of the divergence

theoremin 2-D and 3-D. Integrating Eq. (2.1.5) by partsyields

0= b%ﬂolwr jcvudx jfvdx {vbdu} . (2.1.6)
dx dx ax |

Integration by parts produces a boundary term [v-b- (du/dx)]y-. The prescription of the
secondary variable b- (du/dx) on T" is the natural boundary condition (NBC) and is now

part of the weak form. The requirements on the approximate solution have thus been
weakened, i.e., u must be differentiable once and must satisfy only the essential boundary
conditions as the NBCs are included in the weak form. In Eq. (2.1.6), called the weak
form of the governing differential equation, the chosen approximating functions for u and
v are called the trial and test functions, respectively. (The secondary variables are
identified as the coefficients of the weight functions and their derivativesin the boundary
expressions of the weak form (Reddy, 1993, p. 31).) Thisweak form is the starting point

of the Finite Element Method (FEM).
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In the FEM, u is chosen as a piecewise linear function as shown in Figure 2.1.1.

Ny N

-1 j j+1
Figure 2.1.1: Finite element trial (shape) functions at node

Thetria functions for element e are chosen as;

e)

(€) (€)

ul® = N, + Nl 2.1.7)

Ney
where N; and N, are shape functions of the " dement and u= > u(® where Ny are the
e=1

number of dementsin the model. Thetest function v is chosen as the variation of u:
v = 1 = N + Nl (2.1.8)

This choice of V@ as 8u®® makes the FEM a Galerkin method. These choicesyield
several advantagesto the FEM: (1) because thetrial functions are piecewise linear, the
FEM has alocal character, and thus the stiffness matrix is banded, (2) the choice v=¢du
yields a symmetric stiffness matrix, and (3) the stiffness matrix becomes positive definite
after the imposition of boundary conditions because the first integrand in Eq. (2.1.6)
represents an “energy” quantity.

The secondary variables are usually the quantities sought in an analysis. For the
C° problems considered here, the secondary variableis

g= b% . (2.1.9
dx

11



The secondary variable g; for the trial function u; (see Figure 2.1.1) is the Slope at nodej.
The slopes at node | for elements e and e+1 are obviously unequal. In general, all the
secondary variablesin the FEM are discontinuous across e ement boundaries because of
the piecewise nature of the approximation for the shape functions. Post processing
techniques are required to achieve smooth distributions for the secondary variables. This
is considered one of the disadvantages of the FEM.

To overcome the discontinuity problem of the FEM, a diffused element
formulation was proposed by Nayroles et al. (1992). Later utilizing these concepts,
Belytschko et al. (1994) developed the Element-Free Galerkin method. In these methods
no elements are present, and trial functions u are formed by passing a smooth function
through fictitious nodal values (discussed in section 2.2). Thesetrial functions are

written as in the EFG methods as (M ukherjee and Mukherjee, 1997)
n
u(x) EZO j9i (%), (2.1.10a)
j=1

where n isthe number of nodes in the domain of definition of thetrial function, G; are

j
fictitious nodal values of displacement, and ¢; (x) are shape functions. Asthetrial
functions are smooth, the secondary variables are continuous at every point in the domain
of thetrial functions. Using the Galerkin methodology, the test functions are chosen as

the variation of u, v=4u, and are written in the same manner asthetrial functions as
v(¥) = 1t 7 (%), (2.1.10b)
where ,ui(“) are arbitrary constants for displacement, and ;(i(“) are components of the test

functions. The details of the development of the trial and test functions are discussed in

12



section 2.2. Thetria function for node j and test function for nodei in the EFG method
for a1-D problem are shown in Figure 2.1.2. The domain of integration for thei-j term
in the weak form (Eq. 2.1.6) isthe intersection of thetrial and test functions and is shown

by the shaded region, Qg, in Figure 2.1.2.

Test function Trial function

t 1 *~—8
»i J

A, A

P
¢ 0,

Figure2.1.2: Trial and test functions and domain of integration

This domain can be large, and its shape may be difficult to determinein 2-D and 3-D
problems. Because a well-defined shape is desirable for the purpose of integration, a
background mesh (also called a shadow mesh) — usually rectangular meshesin 2-D
(Belytschko et al., 1994) —isrequired. Asaresult, while the formations of thetrial and
test functions do not require elements, the use of a background mesh to perform
integrations negates the advantage of the EFG method and thus the EFG method is not a
truly meshless method.

To develop atruly meshless method, Atluri and Zhu (1998) suggested the choice
of the test function from a different space, and hence,

V#dU, (2.1.11)
and, for example, a weight function whose nonzero values define a well-defined shape
can be used. Common shapesin 2-D include circles, ellipses, and rectangles. A common
test function v; for nodei in 1-D (in comparison with atrial function for nodej) is

presented in Figure 2.1.3. These test functions can be chosen to vanish at a certain

13



controllable distance, R,, from nodei. Thislocalized property of the test functions gives

the method its local character.

Trial function of node |

Test function
of node i

Domain of ithe
test function

7]

|

|

|

|

|

|

|

|

|

!4
Domain of the trial function (2R)

v ___

Figure 2.1.3: Comparison of thedomains of thetrial and test functions

Additionally, because the test functions have well-defined shapes and zero value outside

the local sub-domain Qs, the integrations can be restricted to Qs, determined from the

extent of the test functions (see Figure 2.1.3). This choice thus eliminates the need for a

shadow mesh. The freedom to choose the test function from a different space than the

trial function makes this a Petrov-Galerkin method. The proposed method isthus called a

Meshless Local Petrov-Galerkin (MLPG) method (Atluri and Zhu, 1998).

The weak form is therefore written for the local sub-domain Qs as

du dv

0= J.b——dx+ J.cvudx— J.fvdx {vbd

S S

14
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Additionally, the essential boundary conditions are enforced by a penalty method (Zhu
and Atluri, 1998). The penalty method is discussed in section 2.4. Thus, the weak form

iswritten as

0= J‘b%d—dx+ vaudx— vadx+au[(u—t7)v]r {ngu} (2.1.13)
r
S QS S

where ¢, is the penalty parameter to enforce the EBCs, and I's, is the boundary whereu is
prescribed on the local boundary (T (1T,). Recallingthat g = b-(du/dx), Eq. (2.1.13)

iswritten as

0= Ib%ydx+ Icvu dx— J‘fvdx+05u [(U—J)V]rsu —[VQ]FS- (2.1.14)
S QS

Recognizing that the local boundary T's could intersect the global boundary T, Tsis
broken into subsets that cover every possibility of boundary condition prescription:

I NI, , TsNTy , TI's(Qgcompletely within interior of Q). (2.1.15)
For example, I' 1T, meanstheintersection of I'sand I',. Equation (2.1.14) then

becomes

0= J.b%d—dx+ jcvudx— J.fvdx+ozu[(u—L7)\/]1~Su
0 o (2.1.16)

—[VQJrsﬂru _[Vq ]rsﬂrq —[VQ]FS

As mentioned previously, the test function, v, can be chosen to vanish on I's (see Figure

2.1.3). Theterm [vq]r,istherefore evaluated as zero, and Eq. (2.1.16) is reduced to the

local weak form (LWF) for the MLPG method:

15



0= J.b%d—dx+ jcvudx— J.fvdx+ozu[(u—L7)\/]1—Su
0 o (2.1.17)

- [VQJFSU - [Vq ]qu
where T, represents I's (T, and I'y; represents T I'y. Theweak form of Eq. (2.1.17)

islocal because the integrations are performed over the local sub-domain Qs. If thetria
and test functions of Eq. (2.1.17) are chosen from the same space via a Galerkin method,
evaluation of the terms of Eq. (2.1.17) yields symmetric stiffness matrices. Thusthe
weak form could be called alocal symmetric weak form. (Thisisthe casein the study of
beam problems by Atluri et al. (1999).) In thisreport, a Petrov-Galerkin method is used.
The resulting stiffness matrices are not symmetric, and thus the term “symmetric” is
omitted from “local symmetric weak form”. Substitution of thetrial and test functions
into Eq. (2.1.17) yields a system of equations of the form

K (node)a +K (bdry)a _f (node) _f (bdry) _ 0 (2.1.18)

where the superscript “bdry” denotes boundary, and G are the fictitious nodal values Oj

(see EQ. 2.1.104). The formation of the system of equationsis presented in detail in
section 2.3.

Consider now the last two terms of the LWF,

[vq]rS‘u and [vg ]qu . (2.1.19)
These terms need to be evaluated at the boundary points. The details of these evaluations
are explained with the aid of a 1-D domain modeled with 17 equally spaced nodes as

shown in Figure 2.1.4. The nodal spacing in this model isAx =1/16. The primary

variable, u, is assumed to be prescribed at node 1, and the secondary variable, g, at node

16



17. In Figure 2.1.4, the test functions are shown at various nodes in the model. These

test functions are assumed to have an (R,/ ) of 2Ax.

v, at node 1

v,anodel ,

4

vzatnodel 7

29 ]| |
Fawey TsoTseTse LR

Figure2.1.4: Test functions at various nodesin a 17-node model

Ls@

17

Consider theterm [vq]r . Thisterm must be evaluated for every node in the model

whose Qs intersects I'y. In the model of Figure 2.1.4, there are three such nodes, nodes 1,

2, and 3. Thekey to the contribution of each of nodes 1, 2, and 3 to the term [vq]r lies

in the values of vy, v», and vz at node 1, where x = 0. First consider node 3;

vz =0 at node 1,
and therefore
[vadlrg, = 0.
Now consider node 1:
vi = 1 at node 1,
and, utilizing Egs. (2.1.9 and 2.1.10a),
dx dx  dx

[quL“SU :[Q]rsu ={b du}r :b{dL¢l dgy

17

dén
dx

L.

(2.1.20)

(2.1.21)

(2.1.22)

(2.1.23)



Finally, consider node 2:

O0<wv,<1latnodel, (2.1.24)
and therefore
dgy, dg, dﬂ G
V. =ph —= X< ... = ~ |V . 2.1.25
[vaally { o o ax |, o| G2 2lyo ( )
Upn

Note that the terms b[(d¢w/dX) (d¢»/dx) ... (dgw/dX)]ry, in Egs. (2.1.23 and 2.1.25) are

evaluated at node 1 and contribute to the K ™™ of Eq. (2.1.18) (see Eq. 2.3.11b). The

contribution of node 2 to the term [vq]r, and ultimately to K™, is of extreme

importance and cannot be neglected.

Now consider theterm [vg ]qu . This term contributes to the f® of Eq. (2.1.18)

and must be evaluated for every node in the model whose Qs intersectsI'y. For anode
whose v = 0 at node 17,

[vzi]qu =0. (2.1.26)

For anodewhose v 0 at node 17, [vg | isnot evaluated as zero unless the

1—‘SUI
prescribed secondary variableis zero. The contribution of such nodes to the term

[vg ]rsq , and ultimately to the f®), is of extreme importance and cannot be neglected.

A proper understanding of how the terms of Eq. (2.1.19) are calculated provides
users of the MLPG method with considerable freedom in choices of nodal spacing and
sizes of test functions. For the case presented in Figure 2.1.4 of amodel with equally

spaced nodes, a choice of asmaller (R,/ |) for nodes 2 and N-1 (for example, here

18



(Ro/ ) = Ax for nodes 2 and 16) ensures that [vq]FSU =0 and thus may be preferable.

However, note that nodes need not be equally spaced. Likewise, the size of Q¢ for each v,
need not be uniform. When thisis the case, a ssimple choice of asmaller (R,/ |) for nodes
2 and N-1 may not ensure that all the terms of Eq. (2.1.19) areidentically zero for
additional nodes near the boundaries. In other words, users of the MLPG algorithm
cannot assume that a simple reassignment of (R,/ 1) will account for the terms of Eq.
(2.1.19) asin the example above. In order to exploit the full usefulness of the method,

the terms of Eq. (2.1.19) must be evaluated.

2.2 Moving Least Squares Interpolation

Several interpolation schemes are available for constructing trial functions at
randomly located nodes. The Moving Least Squares (MLS) approximation is one such
scheme that boasts high accuracy and ease of extension to multi-dimensional problems
(Nayroles et al., 1993, Belytschko et al., 1994, Atluri and Zhu, 1998, Raju and Chen,
2001).

An MLS interpolation is a scheme that passes a smooth function through an
assumed set of fictitious nodal values. The interpolation is performed such that the least
sguares error between the smooth function and the nodal valuesis aminimum (see Figure
2.2.1). The MLS interpolations are used to form the trial functions, u, in the current
implementation of the MLPG method. The trial functions are assumed to be smooth and
are nonzero over a controllable distance R, from nodej. Thisdistance R; is usually
chosen to extend over a much larger extent than the FE shape functions (see Figure

2.2.2). The extent of thetrial functions can be denoted by Q. An MLS approximation
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can then be made for u”, the value of u in domain Q. Thevaluefor u"is zero outside of

the domain Q..

u
A
T
Ugy (X) =P (X)a(x) fictitious nodal values
TT Q/ least squares fit
| A
[
R : “errﬂ
Uil 1 [Y
|
[
|
* Yor o — oo > X
X j

Figure2.2.1: Moving least squares (MLYS) inter polation

FE trial function MLPG trial function

Figure 2.2.2: Comparison of extentsof FE and MLPG trial functions

RS SR S ———

Yy

<
<%

The MLS approximation for u in the global domain © may therefore be written as the

MLS approximation for u"in Qn as

ue) =u"0 =p' (ax) 2.2.1)

where

p (0)=[p(), P2, or Pm(X)] (2.22)
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is a complete monomial m" order basis function, and

ax) =[ag(x), a(®), ..., an()]’ (2.2.3)
isavector of undetermined coefficients. Because the coefficients a(x) may be functions

of the spatial coordinates,
x=[x vy, 2", (2.2.4)
the values of a(x) can vary with the position of x, y, and zin Q. Theglobal MLS

approximation is therefore constructed by superposing local MLS approximationsin a

local neighborhood, X of x, where X =X —x; . Thelocal MLS interpolation isthen
written as
T -
ux)=ug(x)=p (Xa(x). (2.2.5)
where p(x) is the basis function, and a(x) and uy(x) arethe vector of undetermined

coefficients and the value of u"(x) in thelocal neighborhood X, respectively. Examples

of basis functionsfor 1-D problemsinclude
p' ()=[L x|, linear,m=2 and (2.2.6a)
T 2 :
p (x):[l, X, X } quadratic,m= 3. (2.2.6b)

For 2-D problems, basis functions are obtained from Pascal’ s triangle (Cook et al., 2002,

Zienkiewicz and Taylor, 1989) as

p )=l x ], linear,m=3 and (2.2.74)
T 2 2 :
p (x):[], X, Y, X, Xy, Yy } guadratic,m==6. (2.2.7b)

For 3-D problems, basis functions are obtained from Pascal’ s tetrahedron as
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p ()=[L x vy, 2z, linear,m=4 and (2.2.84)

T 2 2 2
p (X)=[l X, Y, Z, X, ¥, Z, X, Yz ZX]
(2.2.8b)
guadratic,m=10 .
The values of the coefficients a(X) in Eqg. (2.2.5) arefound by minimizing a
weighted discrete L? error norm defined as (Nayroles et al., 1992)
L 2
J(X) = Zﬂj (X)[pT(xj )a(x) — GJ ]
=t (2.2.9)
=[P-a®-a]" - A-[P-a®) -]
where 4, (X) areweight functions that vanish at a certain distance from x;, and nisthe

number of nodes that fall within thelocal neighborhood X of x; where 4;(X) >0. Also

in Eqg. (2.2.9), Pisan (n,m) matrix, and A isadiagonal (n,n) matrix defined as

Pl=| pT0w) P0) o B O |7 (2.2.10)
A
A= A2(%) , (2.2.11)
i)
and
G=[0y, Gy, ..., Gnl". (2.2.12)

Note that the values U; in Egs. (2.2.9) and (2.2.12) arefictitious nodal values and, in

general, are not equal to the nodal values of thetrial function u"(x) in Eq. (2.2.1) (See

Figure2.2.1).
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Equation (2.2.9) can be written as

J(i):[aTPT—GT}- A-[Pa—]

:aTPT kPa—ZaTPT AQ +GT A0 .

The error norm L? is minimized using

23(%) _

0, j=12,...n.
aaj =1

Equation (2.2.14) can be rewritten as

aJ(?):O,
oa
or,
N _ 2T ypa-2p" Ai=0.
-
oa
Thisleadsto
[A] {a} = [B] {0}
(mm)(m1) (mn)(nl)
where
T : T
[Al=P & P =[B] P = 4Xpx)p (X))
(mm) (Mmn)(n,n)(nm)  (mn)(n.m i
and

Bl =P & =[4®p(x), A(FP(x2),

(m,n) (m,n) (n!n)

Solving for {a} in Eq. (2.2.16),

fa} =[a]* [B] {0} .

(m1 (m,m)(m,n)(n2)

23

v An(RP(n)] -

(2.2.13)

(2.2.14)

(2.2.15a)

(2.2.15h)

(2.2.16)

(2.2.17)

(2.2.18)

(2.2.19)



Substituting Eg. (2.2.19) into the approximation Eq. (2.2.1) yields

"0 =p' [AT [B] {a} . (2.2.20)
@m) (m,m)(m,n)(n)

The MLS trial functions can then be written as

n
uh(x):(I)T(x)-O:Z¢j (X)d; (2.2.21)
j=1
where
@' ()=p' (IATB] or ¢;(x)= > g (x)[A_lB}gj . (2.2.22)
g=1

In this report, X = x as 1-D problems are considered. The ¢; (x) are called the shape

functions of the MLS approximation. Also note that ¢ (x) = 0 when 4;(X) =0 (See Egs.

2.2.17 and 2.2.18). Severa weight functions, 4;, were used to construct the trial

functions, u;. These weight functions are power weight functions,

[1-@2/R2)]” i o<d <R

i (%)= (2.2.23)

0 if dj>R;,

where d; is the Euclidean distance between x and x; denoted by d; = |x — ||, and o= 1, 2,

3, and 4, a 3-term spline,

d ) (d)
. 1-3| —| +2| — if OSdJ < RJ
Aj(X) = R| N (2.2.24)
0 if dj > Rj,

and a4-term spline,
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d ) (a7 (d4;)"
_ 1-6| — | +8 — | -3|— if OSdJSRJ
Aj(X) = R| R R| (2.2.25)
where R, is a user-defined parameter that controls the extents of thetrial functions (see
Figure 2.1.3) and is termed the “ support of the nodej.” (In two dimensions, the “ supports

of the nodal points” are usually chosen as circles of radius R;.)

Consider the N-node model presented in Figure 2.2.3, where N = 9.

1 2 3 5 9
® @ @ @ @ @ @ L @
|—>x

0 I
Figure2.2.3: A 9-node model of a bar

Figure 2.2.4a presents typical shape functions ¢ at nodesj = 1, 3, and 5, evaluated using
the weight function of Eq. (2.2.23) with = 4, and Figure 2.2.4b presents the derivative
dg;/dxforj =1, 3, and 5. Thesefunctionswere evaluated with a quadratic basisfunction
and with (R /I) chosen as (R / I) = 0.6. Note that shape functions located equal distances
on either side of the center nodes of models with uniform nodal spacing are mirror
images of each other. For example, for the 9-node model presented above, ¢ and ¢, @

and ¢, etc. are mirror images about the center.
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-0.1- 1
. > X x/1
(a) Shape functions, ¢
P
s
99
dx
0 : : : :
—» X x/1 1

(b) Derivative of the shape functions, dg/dx

Figure 2.2.4: Typical shape functionsand their derivatives
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2.3 System Equations

As mentioned previoudly, the approximations for u are called thetrial functions,
and v are called the test functions. The assumed trial and test functions (Egs. 2.1.10) are
subgtituted into the weak form of Eq. (2.1.17),

0= j b%ﬂ dx+ Icvu dx— j fvdx+afu-o )V]Fsu - [vq]FSU ~lvgl- . (231)

s
s QS

to establish the system matrices. The detailed derivation of this system of equationsis
presented below.

The primary variable, u, is approximated using Eqg. (2.2.21):

n
h N
u"(x) :Zq)j (X)0; (2.3.2)
j=1
where ¢ are the shape functions, and U; are thefictitious nodal values of u. Substitution

of Eq. (2.3.2) into Eq. (2.3.1) requires the derivative of u"(x). Since ( j isnot dependent

on x, the derivativeis carried out over ¢(X) as

h n
du Z dg; .
j=1

The derivative of ¢(X) isobtained as (Belytschko et. al., 1994)

Pix= [pg,x(A‘lB)gj +pg(A7B x—ATIA LATIB)y ] (2.3.4)
g=1
where
()« E%- (2.3.5)
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The stepsinvolved in the evaluation of the derivatives of the shape functions are
presented in Appendix A. Asthere are n trial functions used to approximate the primary
variable, n independent test functions (v, i = 1, 2, ... n) need to be chosen to set up the
system matrix. Substitution of Egs. (2.3.3) and (2.3.2) into Eqg. (2.3.1) yields
0= jb%i%"aj [ o Zn:¢jaj - [ o
Q. j=1 Q. i1 Q.

(2.3.6)

(=12, ..n).

n
+| OV Z¢j0j _[aJVi ]rsu _[Vi Q]rsu _[Vi i]rsq
=1

1—‘Su
Asdiscussed in section 2.1, the test functions are chosen as weight functions,
similar to those presented in Egs. (2.2.23 — 2.2.25), whose shapes are well-defined. The

various test functions, v;, chosen are power functions,

[1—(di2/R§)]ﬁ if 0<d; <R, (237
0 if d >Ry

Vi (x) =

withd = |x—=x||land =1, 2, 3, and 4, a 3-term spline,
2 3
b8P 8 ] i osasn,
Vi () = Ro Ro (238)
10 if d >Ry,

and a4-term spline,

aV¥ (&) (d¢)
1_6(_'J +8(—'] _3[_'} t 0<d <R,
v®=1 \R) \R) IR (239)

0 it d >R,
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In Egs. (2.3.7 —2.3.9), R, isauser-defined parameter that controls the extents of the test

functions (see Figure 2.1.3). A typical plot of the test function of Eq. (2.3.7) with =4

for node 5 of a 9-node model and (R,/ 1) = 2Ax of abar is shown in Figure 2.3.1.

1,

Zs(X) 05
0 ‘ ‘
0 x/1 1
o—eo—o0o— 0o ®
5 9

1
—> x

Figure 2.3.1: Test Function (of Eq. (2.3.7) with = 4) at node 5 of a 9-node

model of a bar

Substitution of the trial and test functions into Eqg. (2.3.6) leads to the resulting system of

equations

K (node) G+K (bdry)a _f (node) _f (bdry) ~0

(2.3.10)

where the superscript “bdry” denotes boundary, and G are the fictitious nodal values of

the primary variable u, and

. do;
K?nwe): Jb%ﬁdm jcw¢jdx
ij 0 dx dx A

Q]

Qg Qg

and

bd dg;
Kiﬁ ) - [0Ni¢j L(i) —[Vi d—xj} 0
su r
su
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and

g (node) _ j fu; dx (2.3.122)
|
o0
S
and
£, 0 = o oy +vg T - (2.3.12h)
su S

The “stiffness’ matrix K, composed of K ™® and K®™ is clearly not symmetric.
Unsymmetric matrices are not necessarily undesirable. Several numerical methods, for
example, the boundary element method and the sub-domain collocation method, result in
unsymmetric matrices. In this meshless formulation, an unsymmetric K is not incorrect
because, unlike in the FEM, the K matrix in MM is not evaluated from the strain energy
of the problem, but is obtained by requiring that the weighted residual is zeroin an
integral sense.

Numerical integration is used to integrate the system of equations as closed-form
integration of thetermsin Egs. (2.3.11aand 2.3.12a) is extremely complicated. Inthe
Gaussian quadrature integration scheme, an n-point Gaussian will integrate a 2n-1 degree

polynomial exactly. Equations (2.2.22, 2.3.4, 2.2.17, and 2.2.18) are repeated here for

convenience:
- 1
0; (0= pg (X)[A— B} (order 2 if quadratic basisis (2.3.13)
g=1 ai used, i.e, if pisquadratic)
m
Pix= Z [pg,x(A_lB) g T Pg (A_lB,x - A_lA,XA_lB) gi ] (2.3.14)
g=1

(order 2 if p is quadratic)
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n
Al=P" WP=[6lP=> 4 (X)POGP (%)) (2.3.15)
j=1

Bl=P" A=[4(R®P(0). LEIPOR). i An(KIPO)] (2.3.16)
The order of Gaussian integration required for acceptable results depends on the basis
function and weight functions used. The highest order basis function considered is
quadratic (x°). The highest order weight function available for use as atest function and
for constructing the trial functionsis the weight function of Eq. (2.3.7) with =4, and is
of the order X®. Using thisinformation in Egs. (2.3.11a, 2.3.12a, and 2.3.13-2.3.16), it is
found that the highest order integrand is of the order x'°. Therefore, a 6-point or higher
Gaussian quadrature would successfully integrate the terms of Egs. (2.3.11aand 2.3.12a).
Numerical experimentation showed that an 8-point Gaussian quadrature consistently
yielded very good results, and is hence used in the numerical implementation of the

problems presented in section 2.5.

2.4 Penalty Method for Enforcing Essential Boundary Conditions

Imposition of essential boundary conditions (EBCs) in the EFG and MLPG
methods is difficult because the shape functions from the moving least squares
approximation (discussed in section 2.2) do not have the Kronecker delta property.
Namely, the Moving Least Squares (MLS) shape functions do not pass through the
fictitious nodal values used to fit them, and unlikein the FEM,

9j (%) # 0 jk (2.4.1)

where ¢; (X) is the shape function for node j evaluated at nodal point k, and di is the

Kronecker delta. Because the EBCs cannot be directly enforced, a penalty method is
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employed. In the sections that follow, first, the penalty method in the FEM is explained,
then, the penalty method used in the MLPG method is presented.

2.4.1 Penalty Method in the FEM

In the FEM, a system set of equations is constructed to solve for unknown nodal
displacements and forces.

K D}={R} (24.2)
where [K] isthe assembled stiffness matrix, { D} isthe nodal displacement vector, and
{R} isthe vector of nodal forces. EBCs are input as known displacements, and loading
and natural boundary conditions (NBCs) are input as known forces. To solve the system

of eguations, the matrices are reordered as

{KUU KUN}JDU}:{RN} (2.43)
Kno KanJIPn] [Ru

where a subscript U denotes values that are unknown, and a subscript N denotes values
that are known. The resulting equation

KuyuDuy+KunDn =RpN (2.4.4)
can be solved for Dy, after which

KnuDu +KnnDn =Ry (2.4.5)
can be used to evaluate the unknown reactions, Ry. This process of reordering works
well for small problems and for learning the FEM, but is not used in numerical
implementation because the process of reordering the matrices requires large amounts of
memory and run time. A penalty method is therefore employed to solve the system of

equations.
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The penalty method in the FEM involves choosing a penalty parameter, ¢, asa
very large number (usually 10 or 10%). Thediagona stiffness term Kji, wherei=j
(corresponding to the known displacement, D;), is multiplied by this penalty parameter.
Similarly, the unknown forces R are replaced with aK“lS,» where [5 arethe EBCs. This

inclusion of the EBCs with the force terms rather than with the displacement terms results
in asystem of equationsin which the nodal displacements are the quantities sought.

Consider the i™ equation for an M-degree of freedom FE model,
Ki1D1+Ki2D2+“'+KiiDi+"‘+Ki|\/| DM :Ri' (246)

This equation can be modified as

KiiDy + Ki2Dy +...+ 0K Dj +...+ Kipg Dy = aKii D . (2.4.7)
The left hand side of Eqg. (2.4.7) can be approximated to oK;D; as this term dominates the
rest of the terms. Equation (2.4.7) can then be written as

oKDy = aKii (2.4.84)
or

D =] . (2.4.8b)

N

Using this procedure, the prescribed value, 5 , for D; is calculated to an accuracy of the

order (/o).

2.4.2 Penalty Method in the MLPG Method

The penalty method in the MLPG method works in a similar manner to that in the
FEM. The “assembled” system of equationsis
Ka=f (2.4.9)

It isdesired that
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o, Kiibi = o Kiith (2.4.10)
or
oy Kiiti —o Kiidk =0
oy Kii (U —)=0 (2.4.11)
oy (Ui -)=0 .
Asin the weighted residual sense, because oy, (u; — & ) is not equal to zero, thetermis

multiplied by aweight function v(x) (asin section 2.1) and integrated over the boundary:
jau (u-w)dr=o. (2.4.12)

Iﬂsu
Thisterm for the imposition of the EBCs isincluded and carried throughout the
development of the LWF of the governing equation.

In two- and three-dimensional problems, the boundaries of the domain are 1-D
(length) and 2-D (area), respectively, and the integral in Eq. (2.4.12) is evaluated over
that local boundary segment. In one-dimensional problems, the boundaries are points.
Theintegral in Eq. (2.4.12) is evaluated with the dirac deltafunction as

j o= WS(x=xp, ) dr = (=G W] - (2.4.13)

Ty
Equation (2.4.13) isthe form of the penalty method that appears in the development of
the weak form in section 2.1. Recall the discussion of the terms of Eq. (2.1.19) in section
2.1. The system of equationsis of the form (see Eq. 2.1.18)

K (node)ﬁ +K (bdry)ﬁ _f (node) _f (bdry) _ 0. (2.4.14)
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Also recall the 17-node model of a 1-D domain in Figure 2.1.4, repeated in Figure 2.4.1

for convenience.

v, a node 1

v,anodel ,

/
v, at node 1 \'kg
/

/

29 ]|

Taaen Tso T Tso I
Figure 2.4.1: Test functions near global boundary
The primary variable, u, is prescribed at node 1, where x = 0. Using Eq. (2.1.10a),
n
u(x) :Z¢j (4 , (2.4.15)
j=1

eguation (2.4.13) can be rewritten as

- Uy -
lewu-a N =aulr ¢ - dnlr | g, Myco iMoo - (2.4.16)
U

Theterm of Eg. (2.4.16) must be evaluated for every node in the model whose Qs
intersectsI'y. Inthe model of Figure 2.4.1, these are nodes 1, 2, and 3. Similarly to the
terms of Eqg. (2.1.19), the key to the contribution of each of nodes 1, 2, and 3 to the term
of EqQ. (2.4.16) liesin the values of vy, v,, and vs a node 1. For node 3, vslx=o = 0. For
node 1, vilk=o=1. For node 2, 0 <vy|x=0< 1. Theterm of Eq. (2.4.16), evaluated with
each successive value of Vi o for nodesi = 1, 2, and 3 contributes to both the K ®) and

the f®™ of Eq. (2.4.14) (see Egs. 2.3.11b and 2.3.12b). As previously discussed for the
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terms of Eq. (2.1.19), a proper understanding of how the term of Eq. (2.4.16) is calculated
provides users of the MLPG method with considerable freedom in choices of nodal

spacing and sizes of test functions.

2.5 Numerical Examples
In this section, to demonstrate the validity of the MLPG algorithm, the method is
applied to examples of 1-D C° problems. The following exact solutions are considered
for “patch tests”:
[)  u=constant
) u=x (2.5.1)
iy u= x>
To perform a patch test, each exact solution is prescribed as the essential boundary
conditions in the problem, and the problem is analyzed with the MLPG algorithm. To
pass the patch test, the MLPG algorithm must reproduce the exact solution at all interior
nodes of the model to machine accuracy. In addition to the patch test problems, an
example problem of heat transfer through arectangular fin is studied.
Problem Parameters
A uniform bar of length | isconsidered. The bar ismodeled using 5, 9, 17, and 33
equally spaced nodes. The 17-node modd is presented in Figure 2.5.1.
< | >
12 9 16 17
—> x

Figure2.5.1: A 17-node model of a bar of length |
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A linear basis function (1, x) should reproduce linear (x*) and lower order
solutions exactly, and is therefore used for problems| and Il of Eq. (2.5.1). Similarly, a
quadratic basis (1, x, X%) should reproduce quadratic (x°) and lower order solutions
exactly, and is therefore used for problem Il of Eq. (2.5.1). A quadratic basisisalso
used for the heat transfer problem. The weak form (recall Eq. 2.1.17) requires that the
approximating function, u, be differentiable at least once. The linear basis function isthe
lowest order basis function that meets this requirement, and therefore the lowest order
basis function that can be used in the MLPG method for C° problems.

Recall that the governing differential equation is

—i(b%j+cu =f. (2.5.2)
dx\ dx

Here, b and c are user-defined constants. The patch tests are performed for various
chosen values of these constants.
|. Patch Test —I: b = 1; ¢ = 0; u = constant = 1, where 3; is some arbitrary constant.
Substitution of these valuesinto Eq. (2.5.2) yieldsf = 0. EBCs are prescribed at nodes 1
(x=0)and N (x = I) of an N-node model as

Uyo =51

(2.5.3)

Uy =Ar-
This patch test corresponds to an unstressed rigid body displacement (of magnitude £) of
thebar. Valuesof (R,/ 1) and (R;/ 1) were chosen as (R,/ 1) = 2Ax and (R /) = 1.0. For
the 5- and 9-node models, the algorithm calculated the exact solutions for both the
fictitious nodal values and the interpolated primary and secondary variables. For the 17-

node model, the algorithm failed to calculate the exact solution for the fictitious nodal
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values, but the interpolated values were exact. The value of (Rj/ 1) was then reduced to
(R/1) = 8Ax, and with this value and the 17-node model, the algorithm calculated the
fictitious nodal values exactly. Similar results were obtained for the 33-node model.
This suggests that the algorithm is capable of reproducing exact interpolated values, but
exact fictitious nodal values depend on the parameter (R;/1). The values of (R,/ |) and
(R;/ 1) are henceforth chosen as (R,/ I) = 2Ax for al modelsand (R;/ 1) = bar length for
the 5- and 9-node models and (R;/ 1) = 8Ax for the 17- and 33-node models.
I[1.Patch Test—I1l:b=1;¢c=0; u= x/l
Substitution of b, ¢, and u into Eq. (2.5.2) yields the loading f = 0. EBCs are prescribed
at nodes 1 (x=0) and N (x = I) of an N-node model as

U,_o=0

(2.5.9)
u,_ =1.
x=l

The 5-, 9-, 17, and 33-node models yielded the exact solution with these boundary
conditions at the nodes and every internal point in the domain, thus passing the patch test.
The problem can also be worked as the case of a uniform bar with an end load, ¢ (see

Figure 2.5.2), i.e., with an EBC prescribed at one end and an NBC prescribed at the other

end.

Figure 2.5.2: Uniform bar of length | with end load of magnitudeg

The prescribed boundary conditions and applied loading are
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weo=U =0

p U =g =1 where b=EA
dx x=| (255)
and

f=0.

Once again, the MLPG algorithm with each of the four models reproduced the exact

solutions for the mixed boundary conditions.

IIl. Patch Test—1ll: b=0;c=1

The exact solution is

2
u= (Ifj . (2.5.6)

Substitution of b, ¢, and Eq. (2.5.6) into Eq. (2.5.2) yidlds the loading f = (x/)%. This

analysis can be performed using three different sets of boundary conditions.

)

i)

To perform the patch test, EBCs are prescribed at x=0and x= | as

(2.5.7)

(2.5.8)
= 2bx/1 =0 .

Thirdly, mixed boundary conditions are prescribed as

pdu
dx

=0
x=0 (2.5.9)
u|X:I =1.
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As expected, the MLPG analysis reproduced the exact solutions for all three cases for all
nodes of the four models considered.

Recall the discussions of the boundary terms of Egs. (2.1.19 and 2.4.16). In these
discussions, it was noted that the size of Qs for each v need not be uniform and that a
simple choice of asmaller (R,/ 1) for nodes 2 and N-1 may be preferable. For example,
consider the choice (R,/ 1) = 2Ax for the 17-node model of Figure 2.5.1. To account for
the terms of Egs. (2.1.19 and 2.4.16), where0 < v, <1and 0 < v < 1, the (R,/|) for
nodes 2 and 16 is chosen as (R,/ 1) = Ax = 0.0625 for a bar of length | = 1. With this
choice, the only nodes that contribute to the terms of Egs. (2.1.19 and 2.4.16) are nodes 1

and 17. Figure 2.5.3 presents a visualization of the above assignments of (R,/ 1).

« | >
NN

s

(@) Q for the 1%, 39, jth, (n-2)", and nt" nodes

(b) Q for the 2"¢ and (N-1)% nodes
Figure 2.5.3: Q, definitionsfor various nodes

The patch tests 1, 11, and |11 were performed with these new assignments of (R,/ 1). As

expected, the MLPG analysis reproduced the exact solutions to machine accuracy, thus
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passing the patch tests. These results demonstrate the fact that there is no numerical
difference between the two choices of (R,/ 1), i.e. (R,/ 1) =2Ax uniform for all nodesvs.
(Ro/ 1) = Ax =0.0625 for nodes 2 and N-1, aslong as the terms of Egs. (2.1.19 and
2.4.16) are evaluated correctly.

In the discussions of the boundary terms of Egs. (2.1.19 and 2.4.16), it was also
noted that nodes need not be equally spaced. Consider the 15-node model with unequal

nodal spacing shown in Figure 2.5.4.

« | >

[ X 2 —& @ 9—0—00—06 —© 000
12 6 12 15
}—)x

Figure 2.5.4: A 15-node model with unequally spaced nodes

This model was generated by randomly placing nodesin theregion O< x< 1. The(R,/1)
for each node was assigned a different value,

AX< (Ry /1) < 2A% (2.5.10)

where Ax is the distance between the nodes of the corresponding 17-node model with
equal nodal spacing. For example, for the 17-node model of Figure 2.5.1, Ax = 0.0625.
The (R,/ 1) for each node in the model of Figure 2.5.4 was chosen somewhere between
Ax =0.0625 and 2Ax = 0.125. The patch tests|, I, and 11l were performed with (R, / I)
for each node assigned as stated above. As expected, the MLPG analysis reproduced the
exact solutions at al interior nodes in the model and at all interior pointsin the bar, thus

passing the patch tests.
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Example: Heat transfer through rectangular fin

Consider the rectangular cooling fin shown in Figure 2.5.5. If the variations along

the y-direction are negligible, the fin can be modeled as abar asin Figure 2.5.6, where A

isthe cross-sectional area, P isthe perimeter, w isthe width, | isthe length, and t isthe

thickness.

wall
¥
t
7F
AVAY
Figure 2.5.5: Rectangular cooling fin
\ P A
AR — B A X
war{ & =0~
< I

Figure 2.5.6: Bar model of rectangular cooling fin

The governing equation is (Reddy, 1993, pp. 133-134)

d°T

p
———+=(T-T.,)=0
ax’ K

subjected to boundary conditions

T(0) =Twai

[

=0

x=I
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where T istemperature, k isthermal conductivity, gisthefilm coefficient T_ isthe

ambient temperature, and Twa) IS the temperature of thewall. The equations are recast

viathe non-dimensional quantities

2 1/2
o= 1= e X No|AL (2.5.12)
Twall — T | kt
as
d2® 2
~=2+N%@=0 (2.5.13)
dg
subjected to
0(0) =1
(2.5.14)

=0.
£=1

{%

The exact solution of the problemis

B coshN(I - &)
OO =00 Nt
. (2.5.15)
H =p9© - _pySnhN(=¢)
d& coshN |

In the numerical analysis of the problem, the value of N was chosen asN = 4. Thetest
function was chosen as Eq. 2.3.7 with = 4. Thetrial function was constructed from the
weight function of Eq. 2.2.23 with o= 4 and a quadratic basis function. The parameters
(Ro/ 1) and (R;/ I) were chosen as 2Ax and 8Ax (not exceeding the bar length),
respectively. The integrations were performed using a 10-point Gaussian integration, and
the penalty parameter was chosen as 10°. The bar was analyzed with four models with 5,

9, 17, and 33 equally spaced nodes. Table 2.5.1 presents the values of the primary and
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secondary variables obtained with the 5-, 9-, 17-, and 33-node models at stations

£=0, 0.5, and 1.0 aong the length of the bar. The values of the exact solutions are also

included in this table at these stations. All models yielded very good results and the

accuracy of the solutions improved with mode refinement.

Table 2.5.1: Comparison of the ML PG solution with the exact solution

Exact solution MLPG mode with:
(Eq. 2.5.15) 5 nodes 9nodes | 17 nodes | 33 nodes

£=0 1.0 1.0 1.0 1.0 10
() | &05 0.1378 01360 | 0.1377 | 01377 | 0.1378
£=1.0 0.0366 0.0420 0.0369 0.0360 0.0366
&0 -3.9973 -4.1308 -4.2705 -4.0322 -3.9843
do/dé | £=05 -0.5312 -0.5502 -0.5310 -0.5309 -0.5305
£=1.0 0 0.2737 0.0468 -0.0415 0.0024

Since the exact solution for this problem is not a simple polynomial, the MLPG method

did not reproduce the exact solution. Error norms defined as

1
leo]|= VZ(G MLPG ~ © Exact )é (2.5.164)
and
Ly
len = VZ(H MLPG ~ H Exact )é (2.5.16b)
g=1

were computed at M uniformly spaced points along the bar. These interior points need
not be coincident with nodes in the model. A value of M = 50 was used. The norms ||eg||

and ||eq|| are presented in Table 2.5.2. As expected, all models yielded accurate solutions

(within 4%), and the error norms improved with model refinement.



Table2.5.2: Error norm ||¢]| for the 5-, 9-, 17-, and 33-node models

Number of nodes in the model
Error norm 5 9 17 33
llesl| 0.3127e-2 0.6711e-3 0.2195e-3 0.2154e-4
llenl| 0.3844e-1 0.6590e-2 0.5813e-2 0.3301e-3

Some post-processing is required to evaluate the secondary variables from the fictitious
nodal values. To calculate the secondary variables at an interior point, one has a choice
of two methods. In the first method, the nearest neighboring node to thisinterior point in
the domain is evaluated. All the nodesin the domain of influence of this node are
determined. The nodal shape functions of all these nodes are evaluated at the interior
point. These shape functions' values and the fictitious nodal values are then used to find

the value of the solution u by direct application of Eq. (2.2.21):

n
u(x) = Za 19 (9. (2.5.17)

=1

Secondary variables may be found in the same direct manner via Eq. (2.3.3):

(2.5.18)

The derivatives of the shape functions are computed at the same time as the shape
functions themselves, and hence no additional procedures are required. In the second
method for calculating secondary variables, a shape function is formed over the interior
point, and all the nodes in the domain of influence of thisinterior point are determined.
The fictitious nodal values of these nodes are then used with the value of the shape
function to find the value of the solution u and the secondary variables viaEgs. (2.5.17
and 2.5.18). The MLPG and exact secondary variable distributions for the 17-node

model of the heat transfer problem are presented in Figure 2.5.7, and these values agree
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with the exact solution at all points along the bar. This example demonstrates that one

can obtain a smooth distribution of the secondary variable.

|« | >

1 2 9 16 17

Figure 2.5.7: Comparison of the MLPG and exact secondary variable
distributionsfor a 17-node model with uniform nodal spacing

The same heat transfer problem was then worked using the 15-node model of
Figure2.5.4. The(R,/1) and (R; / I) were chosen asin the 17-equally spaced nodal
model. The MLPG and exact secondary variable distributions are presented in Figure
2.5.8. Fromthisfigure, it is seen that the MLPG solution in theregion 0< x<1/2 isnot
as accurate as the MLPG solution in theregion 1 /2< x <1 . Thisinaccuracy isdueto the
large distance between nodesin theregion 0< x<1/2. Toimprovethe accuracy in this
region, two additional nodes were “sprinkled” into the domain of the problem (see Figure
2.5.9). The MLPG solutions before and after model refinement and the exact solution are
compared in Figure 2.5.9. Theinclusion of the two additional nodes significantly

improves the solution in theregion 0< x<1/2.
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Figure 2.5.8: Comparison of the ML PG and exact secondary variable
distributionsfor a 15-node model with non-uniform nodal spacing

1 _
x/ |
0 ee o
ol
-1 A
bd_G MLPG before
d& refinement

-3 o MLPG after

d refinement

— Exact
i

Figure 2.5.9: Comparison of the ML PG secondary variable
distribution before and after model r efinement

2.6 Concluding Remarks

This chapter presented the MLPG method applied to C° one-dimensional (1-D)
problems. In the local weak form (LWF) of the governing differential equation, a
moving least squares (MLYS) interpolation was used to form the approximations to the
solution known as trial functions. Test functions, also needed for the LWF were chosen

from a different space than the trial functions, making the method a Petrov-Galerkin
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method. This choice of test functions led to unsymmetric stiffness matrices. The
essential boundary conditions were enforced by a penalty method, and numerical
integration was used to evaluate the integrals in the system matrices. The MLPG method
was applied to and passed several patch test problems. The method was then applied to a
typical heat transfer problem. Very good results for both the primary and secondary
variables were obtained. A smooth distribution of the secondary variable was obtained

without the use of elaborate post processing techniques.
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Chapter 3: MLPG for C* Problems
In Chapter 2, the MLPG method was studied for the deformation of bars— C°

problems. In this chapter, the MLPG method is further developed for bending of beams —
C! problems. A local weak form is developed from the classical weighted-residual form
of the governing differential equation. A generalized moving least squares interpolation
schemeis used to construct the approximations to the solution known astrial functions.
Under the Petrov-Galerkin paradigm, the test functions are chosen from a different space
than the trial functions as combinations of simple weight functions and their derivatives.
System matrices are derived by substituting the trial and test functions into the local weak

form.

3.1 Beam Theory

The MLPG method for C* problems presented in this report was developed using
the Euler-Bernoulli beam conventions. Consider the beam shown in Figure 3.1.1. Under
the Euler-Bernoulli bending assumptions, plane sections normal to the neutral axis before
deformation remain planar and normal to the neutral axis after deformation. The
deflection w in the z-direction is a function of the x-coordinate alone, i.e.,

w=w(x), u=u(x), and v=0. (31.1)

In Figure 3.1.1b, consider AADC in which

tang =2 =AW (3.1.2)
AC Ax
AsAx = 0, and for small angles, tand =8 gives
0 _dw (3.1.3
dx
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where @isthe slope of the neutral axis. Consider the AABC in Figure 3.1.1c.

/BAC=ZCAD=6

because normals before deformation remain normal after deformation.

normal after
deformation
neutral axis
W+ AW
W
neutral axis
Z
j USRS, VU URURUREY i, AR / ______ > X
dx
normal before
deformation

(a) Beam configuration before and after defor mation

z
D_ u
A 9 | Aw C B
C a D
w (W+ Aw) AN

A C
AX

(b) (€)
Figure 3.1.1: Euler-Bernoulli beam

In AABC of Figure 3.1.1c,

BC _

—=tand
AB

or
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u——ztan9~—zd—W (3.1.5b)
adx

The strains that correspond to u = —z(dw/dx), v = 0, and w = w(x) can then be evaluated as

2

£ _a_u__zd_VV _a_U+ﬁ_O
X7 ox dx Ty dy ox
ov ov ow
=0 =—+—=0 3.1.6
Ey = ay Vyz oz oy ( )
_ ) w, ou_dw_dw
£ 9z Yo = ox 0z dx dx

Thus all strains except & are zero. Using the constitutive relationships, the stresses can

be evaluated. The stress o corresponding to & can be evaluated as

dzw
Oy = ESX = —EZ—2 . (317)
dx

Now consider the beam segment subjected to amoment in Figure 3.1.2. The moment, M,

required to return the beam to its undeformed state is

M=- J.(O'deZ)Z

A
2
I Ezzb—dz (3.1.8)
dx?
= E— Ibzzdz .

Theterm Ibzzdz is the second moment of the area about the y-axis and is usually
A

termed as the moment of inertia, |y,
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M =Ely——. (3.1.9)

Customarily in this beam theory, the subscripts yy are dropped and the moment of inertia

iswrittenas|. Hence, M = El -(d 2w/dxz). Similarly, the shear, V, is

d3W
V=-El —. (3.1.10)
3
dx

In this report, examples for thin Euler-Bernoulli beams that undergo small displacements

are considered.
z
M M
L
dz
T
|< - S|

Figure 3.1.2: Beam segment subjected to a moment

3.2 Local Weak Form for Euler-Bernoulli Beam Problems

The governing equation for an Euler-Bernoulli beam is

4
El d_\:lv: f indomanQ (0< x<1) with boundary I (3.2.1)
dx
where| isthe length and El isthe flexural rigidity of the beam, and f is the distributed
load on the beam. The boundary conditionsat x = 0 and x = | can have severa

combinations. The essential boundary conditions (EBCs) are of the form
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w=w onl, and

dw x (3.2.2)
—= on rg ,
dx
and the natural boundary conditions (NBCs) are of the form
V=V only, and
(3.2.3)

~

M=M on FM
where V and M are the shear force and bending moment, respectively, and are related to

the deflection w as (see Egs. 3.1.9 and 3.1.10)

d3W d2W
V=-El— and M =El — (3.2.4)
dx dx

and Iy, 'y, Iy, and I'y denote the boundary points where deflection (w), slope (6), shear

(V), and moment (M) are prescribed, respectively. Notethat w and V and 8 and M are

mutually digoint (Atluri et al., 1999 and Gu and Liu, 2001), i.e., when w=w , the shear

force V becomes the corresponding reaction, and when 6 = ) , the moment M becomes
the corresponding reaction.
The weak form of the governing differential equation is obtained in asimilar

manner as for C° problems. Theresidual error to be minimized is

d 4W
R=El——-—f. (3.2.5)
4
dx
The classical weighted residual form of the governing differential equation for fourth
order problemsis formed by multiplying the residual by a weight function v(x),

integrating over the whole domain, and setting the integral to zero:
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d4w
0= || El ———f |vdx. (3.2.6)
4
dx
Q

An approximate solution for w is chosen such that each term in the approximate solution
must be four times differentiable and satisfy all the boundary conditions (Egs. 3.2.2 and
3.2.3). Theserequirements are difficult to satisfy. Therefore, a formulation that accepts
weaker requirements on w is sought. The weak form of the weighted residual equation is
set up by transferring the differentiation from the variable w to the weight function v.

Thisis achieved by integrating by partstwice. Integrating by parts once yields

3 3
0=—8 |9V |t vaxen | Wy (3.2.7)
dx3 dx ax3 r

Q Q
where n,[EI (d 3w/dx3)v]r Isintroduced as a boundary term and ny isthe direction

cosine of the unit outward drawn normal to €2 with respect to the x-axis. The ny thus
takesvalues £1 in 1-D problems. The prescription of the secondary variable
El(d*w/dx®) on T is a natural boundary condition and is now part of the weak form.
Integrating by parts a second time to equalize the derivatives of w and v yields
0= El j‘gd—zgdx— If vadx+ nX[EI @v} —nX[EI @Vﬂ} (3.2.8)
dx“ dx L dx* dx |

Q Q
where n,[EIl (d 2W/dX2)(dV/ dx)]r isintroduced as an additional boundary term. The

prescription of the secondary variable El(d?v/dx?) on T is also a natural boundary
condition and is now part of the weak form. The requirements on the approximate
solution have thus been weakened, i.e., w must now be differentiable twice and must

satisfy the essential boundary conditions. Additionally, the essential boundary conditions
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are enforced by a penalty method (Atluri et al., 1999). Asin section 2.4, the penalty

terms are written as

awlw-whlr, (3.2.9a)
and

dw Z\dv

where o4, and o are the penalty parameters to enforce the deflection and slope boundary

conditions, respectively. Thus, including the penalty terms, Eq. (3.2.8) iswritten as

2. 42 -
0=El J.d—wudx— fvdx+oyl(w-whr, +a9{(d—w—9jﬂ}
Ty

dx2 dx2 dx dx
S Q (3.2.10)
3 i 2
+ny El d—‘é"v —ny| El d—‘é"ﬂ
dx® | dx< dx r

In EQ. (3.2.10), called the weak form of the governing differential equation, the chosen
approximations for w are called the trial functions, and v are now called the test
functions.

As discussed in Chapter 2, the test functions are chosen independently from the
trial functions. Test function components chosen in this report for the primary variable w
in 1-D C* problems are the same as those chosen for uin 1-D C° problems. Test function
components chosen for #in 1-D C* problems are the first derivatives of the components
chosen for w, as 8= dw/dx is also a primary variable (see section 3.3). A typical
component of the test function v; for nodei in 1-D (in comparison with atrial function
component (shape function) for nodej) is shown in Figure 3.2.1a. Asfor C° problems,

these components vanish at a certain controllable distance from nodei.
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Figure 3.2.1: Comparison of the domains of thetrial and test functions

The derivatives of these components also vanish at the same distance from nodei (see
Figure 3.2.1b). Thislocalized property of the test functions preserves the local character

of the method. The integrations over Q become integrations over alocal sub-domain, Q,
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and the Qs can be determined from the extent of the test functions (see Figures 3.2.1).

The weak form is therefore written for the local sub-domain Qs as

2.0 42 ~
O=El J.d—wgdx— J-f vdx+ aw[(w—d?)v]rw +0(9Kd—w—6jy}
I'sg

dx? dx? dx dx
Q¢ Q.

3 2
+ny Eld—\évv “ny| El d—‘é"ﬂ
| dx” o |

S

(3.2.11)

S

where I'sy and I'sp are the boundaries where w and & are prescribed on the local boundary

(TsNT,, and TxNT,). Notethat if thelocal boundary s does not intersect I'y, or 'y

(i.e. when the Qs is completely within the interior of ), the penalty terms are not

considered for that local boundary. Recalling Egs. (3.2.4), Eq. (3.2.11) iswritten as

2 2
dwdv ~ dw Z)\dv
0=El J.—Z—de— J-f vdx+aw[(w—w)v]1~SN+a9[[——6j—}r
s6

dx“ dx dx dx
Qg Qg (3.2.12)
dv
—Nny|VVl —ny| M—
vk, - |

When the local boundary I's intersects the global boundary T", four boundary conditions

are possible (Atluri et al., 1999):

Fsﬂr 1 Fsﬂra1

(3.2.13)

Utilizing these subsets, Eq. (3.2.12) becomes
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2 2
dwdv ~ dw z\dv
0=El J‘—Z—de— jf vdx+aw[(w—u/)v]l~w+059K——GJ—L
s6

dx” dx dx dx
QS QS
dv
-n,|V —-ny,| M —
Y Vlr, ’{ de (3.2.14)

— Ny [V V]rsnrv —nylV V]rsmrw

e,
X dX rsmrM X dX rsﬂra

As mentioned previoudly, the test function, v, and its derivatives can be chosen to vanish

onIs (see Figures 3.2.1). Equation (3.2.14) then is reduced to the local weak form

(LWF) for the MLPG method:
d°wd?v dw Z)\dv
0=E |5 ——dx— |fvdx+ey[(w-w)] +a{[——6j—}
I dx2 dx2 J- sw dx dx Te
QS QS
(3.2.15)
vi ~dv d>w d?wdv
—nX[Vv]]-V —nX{M—} Ny El == v |  —ny El———=
) X Jrg, x> |- ox” WX

sw s

where, asin Eq. (3.2.11), I'sy represents I'; (1T, and I'sg represents I's (T, , and
similarly, T'sy represents T's NI, and I'ev represents I's T, . Now ny isthe direction

cosine of the unit outward drawn normal to Qg, n, = 1 if the boundary is on theright side
of Qg, and ny = -1 if the boundary ison the left side of Qs. Theweak form of Eq. (3.2.15)

islocal because the integrations are performed over the local sub-domain Qs.

Thetrial functions are written as

W(x) = Z(wj " 0 +6,p1" (x)) , (3.2.163)
j=1
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and the test functions are written as

V) = 1" 1" 00+ 1l 7P (9. (3.2.16)
Asdiscussed in Chapter 2, if the trial and test functions of Egs. (3.2.16) are chosen from
the same space via a Galerkin method, symmetric stiffness matrices are obtained from
Eqg. (3.2.15). Again, thisisthe casein the study of beam problems by Atluri et al. (1999).
In this report, a Petrov-Galerkin method is used, and thus the resulting stiffness matrices
are not symmetric. The details of the development of thetrial and test functions are
presented in sections 3.3 and 3.4. Substitution of the trial and test functions into Eq.
(3.2.15) yields a system of eguations of the form

K (node) d+K (bdw)a _f (node) _f (bdry) _ 0 (3.2.17)

where the superscript “bdry” denotes boundary. Note that the locality of the MLPG
method (as integrations are performed over Qs) makes the stiffness matrices of Eq.
(3.2.17) banded. Thisis one of the advantages of the FEM that is retained by the MLPG
method. The detailed formation of the system of equations of Eq. (3.2.17) is presented in
section 3.4.

3.2.1 Boundary Termsin the LWF

Asin Chapter 2, the boundary termsin the weak form need special attention. The
issues related to these boundary terms are discussed below.
Consider the boundary terms of the LWF:

3 2
nX[EI d—‘;"v] , nX[EI d—‘;"@] (3.2.184)
dx dx> dx
T, |

Sw
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Vv, n){/ﬁy (3.2.180)

Irgy
aw[(w—u7)v]rw , 0!3|: 2—\)’(\/—6}%} (3.2.18¢)
FS

The terms of Eq. (3.2.18a) resemble the term [vd]r of Eq. (2.1.19), and the terms of Eq.

(3.2.180) resemble theterm [vg ], of Eq. (2.1.19). Likewise, the terms of Eg. (3.2.18c)
q

resemble the terms of Eq. (2.4.16). These terms need to be evaluated at the boundary

points. The boundary term evaluations are explained with the aid of atypical 17-node

model of a beam as shown in Figure 3.2.2.

2 3
Fswv@23: GwTolse  Tso L Iv.Im
T'so1,2,3)

Figure 3.2.2: Test functions at various nodesin a 17-node model

The primary variables, w and 6, are assumed to be prescribed at node 1, and the

secondary variables, V and M, at node 17. Recall that w and V and 8 and M are
mutually digoint, i.e., for example, w and V cannot be prescribed on the same boundary

point. In Figure 3.2.2, thetest functions with an (R,/ |) of 2Ax located at nodes 1, 2, 3,

and 9 in the model are shown. Consider the term nx[EI (d 3W/ dstst of Eq. (3.2.18a).

Thisterm must be evaluated for every node in the model whose Qg intersectsT'y,. Inthe

model of Figure 3.2.2, there are three such nodes, nodes 1, 2, and 3. The key to the
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contribution of each of nodes 1, 2, and 3 to the term n, |El (d 3w/dx® )VJFSN liesin the

values of v1, v,, and vs at node 1, wherex = 0 and ny, =—1. First consider node 3:

v =0at node 1, (3.2.19)
and therefore,
d 3W
ny| El —3 V3 =0. (3.2.20)
dx r
Sw

Now consider node 1:

v, =1at nodel, (3.2.21)

and, substituting Eq. (3.2.16a) into the term nX[EI (d 3w/ dx3>\/]rw,

3 3
nX[EI d—‘;"vll - nX[EI d—‘é"] =
dx r dx” |-

SwW Sw

3 w) 3 (W) 3 (W)
g9 dyve’  dyn Wo | (3.2.22)
3 3 3 .
dx dx ™ ] g
W
3 (@ 3 (@ 3 (0 51
g S R )
1-El 6>
3 3 3
dx dx dx” | ol :
On
Finally, consider node 2:
<V, <1 at nodel, 2.
0 d (3.2.23)

and therefore,

61



3 3

(3.2.24)

dx3 dx3

d3y W A 6) (6
I G
«ol| :

3 (0 3 (0
-1.El dwl() dlﬂé)
dx3 dx3

Note that the terms
3 3
dx dx
and
3 (6 3 (8
3 3
dx dx

d3y 0 0) (6
] ol it
x=0]| :

d3Wr(1W)
dx3 =0

3 (6
d‘//r(w)]
x=0

dx3

in Egs. (3.2.22 and 3.2.24) are evaluated at node 1 and contribute to the K ®™ of Eq.

(3.2.17) (see Eq. 3.5.4¢).

The remaining terms of Egs. (3.2.18) are evaluated in the same manner as the

terms of Egs. (2.1.19 and 2.4.16) and using the trial and test functions of Egs. (3.2.16) as

discussed above. Consider the term n, |El (d 2w/ dXZde/dx)Jrsa of Eq. (3.2.18a). This

term must be evaluated for every node in the model whose Qs intersectsI's. In the model
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of Figure 3.2.2, these arenodes 1, 2, and 3. The key to the contribution of each of nodes

1,2, and 3 totheterm n, [El (d2w/ax? (dv/c)|_ liesin the values of (dvi/dx), (dva/d),

and (dvs/dx), at node 1, where x = 0 and ny = —1. First consider node 3:

(dvs/dx) = 0 at node 1, (3.2.25)
and therefore,
nX[EI [d 2w/ dxzj(dv3 /dx)J —0. (3.2.26)
Fse

Now consider node 1:

v =1 and (dvi/dx) = 0 at node 1, (3.2.27)
and therefore,
nX[EI (d 2w/ dxzj(dvl /dx)} _0. (3.2.28)
Iﬂsé?

Finally, consider node 2:

(dvo/dx) isnonzero at node 1 (in fact, dvo/dx < 0 in Figure 3.2.2), (3.2.29)

and, substituting Egs. (3.2.16) into the term nX[EI (d 2w/ dx? )(dv/ dx)]]. ,

s@
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d2w dvy (3.2.30)
x| El 5 o
dx“ dx Te
S
iy ]
2 2 0
_ g8 A dy (M Wy || (w) drs" 0 95”
2 2 v 2 H2 gy 2 dx
dx dx dx =0 =0 =0
| Wn
_él_
2, (6 2, (6 2 - (w) (9)
LE d Wl( ) d Vfé) d %y ¥ 6y |, (w972 N ) 972
2 2 2 H2 dx H2 dx
dx dx dx =0 o0 o0
6n.
Note that the terms
7 e d’yy"”
> > >
dx dx dx =0
and
2 (6 2 (0 2 (0
_1,E|dv11() d’yy” d’yyy)
2 2 2
dx dx £ S

in Eq. (3.2.30) are evaluated at node 1 and contribute to the K ®™ of Eq. (3.2.17) (see

Eq. 3.5.4¢).

Now consider the term ny [\7 le-sV of EQ. (3.2.18b). Thisterm must be evaluated

for every node in the model whose Qs intersects Iy, wherex = | and n, = 1. For anode

whosev =0 at node 17,

Vv, =o. (3.2.31)
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For anode whose v 0 at node 17, nxl\7 le-Sv is not evaluated as zero unless the
prescribed shear is zero. Substitution of Eqg. (3.2.16b) into the term nxl\7 vksv yields

Vv, _v( 4 W6 )

Ai

] (3.2.32)
x=I

x:l
Similarly, the term an(dV/dX)JrsM of Eq. (3.2.18b) must be evaluated for

every node in the model whose Qs intersects 'y, wherex = | and ny = 1. For anode

whose (dv/dx) = 0 at node 17,
n (vl =o. (3.2.33)
For anode whose (dv/dx) #0 at node 17, n, W(dv/ dx)]FsM is not evaluated as zero

unless the prescribed moment is zero. Substitution of Eq. (3.2.16b) into the term

n, M(avian), vieds

(W) @)
nx[/w(olv/olx)]r Sy S R Ok (3.2.34)
dx dx
x=I x=I
Note that the terms
(w) )
(W) ©®) dy dzi
i H i ] b d
d x=I A x=I dx I an dx I
X= X=

in Egs. (3.2.32 and 3.2.34) are evaluated at node 17 and contribute to the f ®™ of Eq.
(3.2.17) (see Eq. 3.5.490).

Now consider the penalty term e, [(w—w V], of Eq. (3.2.18c). Thisterm must

be evaluated for every node in the model whose Qs intersects I'y. Again, these are nodes

1, 2, and 3. Thekey to the contribution of each of nodes 1, 2, and 3 to theterm
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awl(w—w )] liesin thevalues of vi, v, and vs a node 1, where x = 0. Substitution of
Eq. (3.2.16a) into the penalty term yields

(ZW[(W— W)V]Fa/v

A

Wiy
T L 7 L B LA VT
x=0| :
W
(3.2.35)
o1
0 0 0 A
+06w[v11() vy . Wr(l):| 2 [Vilyoo
x=0 :
b

— oW Vi|y g -

For node 3, vslk=0 = 0. For node 1, vix=o = 1. Theterm of Eq. (3.2.35) is evaluated with
each of these values. For node 2, 0 < v,k = < 1, and substitution of Eq. (3.2.16b) into Eq.

(3.2.35) yidds
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oy [(W-w)vlp, (3.2.36)

SwW

= 80 o) % [ e,

+ aW[W1(0) l/jgg) l//r(16’) x=0 o2 (ﬂgW)XSW)‘x=O+ﬂ£€)l£€)‘x=0)

(w) (W)

a0 i)

‘x=0
Finally, consider the penalty term oy [((dw/ dx)— ) de/ dX)Jrsg of Eq. (3.2.18c).

This term must be evaluated for every node in the model whose Qs intersects I'y. Again,

theseare nodes 1, 2, and 3. The key to the contribution of each of nodes 1, 2, and 3 to the
term | (cw/cx) - cv/dx), liesin the values of (dvy/dx), (dva/d), and (dvs/chd), at

node 1, where x = 0. Substitution of Eq. (3.2.16a) into the penalty term yields
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6 o0
dl//l( ) dz//g )
+0{9
dx dx
_ap M
dx =0

dVi
dx

x=0
(3.2.37)

dVi
dx

x=0

For nodes 3 and 1, [dvi/dX]x=0 =0 (i =1, 3), and therefore

Qg l((dw/ dx)—6 de/ dX)Jrsg =0. For node 2, (dv-/dx) is nonzero, and substitution of Eq,

(3.2.16b) into Eq. (3.2.37) yields
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dw
o[-

3
dx r

s@

(w) (w)
—u dyp °  dyy dy, r(1w) W
=ay 2
dx dx dx :
x=0

(9) (9) ) &
+ Qg dl/ll dl/lz de 02
dx dx dx )
x=0 j
el’l
6
- RIAL dzs" s
o 2 dx 2 dx
x=0 x=0
Theterms
dyr” dys”  dyy”
dx dx dx
x=0
and
6 0 6
dy”  dyd” dyy”
dx dx dx
Xx=0

(3.2.38)

w) 477 ©) drs
+
#2 dx #2 dx
(W ©)
(w) 475 ©) a7,
2 dx 2 dx
x=0 x=0

of Egs. (3.2.35 — 3.2.38) contribute to the K ®™ of Eq. (3.2.17) (see Eq. 3.5.4€). The

terms

dZi(W)

dx

0
dZi( :
dx

(W)

0
Xi @

and

) 1
x=I x=|

x=| x=I

of Egs. (3.2.35 — 3.2.38) contribute to the f ® of Eq. (3.2.17) (see Eq. 3.5.4g).
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Asdiscussed in Chapter 2, a proper understanding of how the terms of Egs.
(3.2.18) are calculated provides users of the MLPG method with considerable freedom in
choices of nodal spacing and sizes of test functions. The value of (R,/ 1) may be adjusted
in certain cases to account for the terms; however, in order to exploit the full usefulness

of the method, the terms of Eqg. (3.2.18) must be evaluated.

3.3 Generalized Moving L east Squar es I nter polation
Recall from section 2.3 the MLS interpolation scheme for constructing trial

functions for C° problems. Thelocal MLS interpolation iswritten as
u(x) = ug(x) = pT (xX)a(x) where p(x) isthe basisfunction, and a(X) isthe vector of
undetermined coefficientsin the local neighborhood X. Thevalues of a(X) are found by

minimizing aweighted discrete L error norm. The 1-D shape functions resulting from

n
this MLS interpolation scheme are u(x) = > ¢ i (x)a j - Notethat only the interpolation
j=1

for the primary variable, displacement, is performed.

In beam problems, both the deflection w and the slope 6 are the primary variables.
In the FEM, the Hermite functions are used as interpolation functions for the primary
variables. See Figure 3.3.1 for a comparison of the FEM Lagrangian and Hermite shape
functions. The additional information (i.e., the slope) used in the Hermite shape
functions must also be used in the approximation of the MLPG method. In order to

accomplish this, ageneralized moving least squares (GMLS) approximation is developed.
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W= Wy + GW, + oW + G0,
u=gu; + U,

Wy Wo
X U U, X /I\Ael /I\A‘gz
= o> —> ——
1 jthfinite element 2 1 " finite element 2

0 at al other nodes

i

h ¢

i

(a) CO problems - Lagrangian functions )

(b) C* problems - Her mitian functions

Figure 3.3.1: Comparison of FEM shape functionsfor C°and C* Problems

In this report, the spatial coordinatesy and zof x =[x y Z]" are not present as
1-D problems are considered, and therefore x = x. The GMLS approximation for win a
global domain Q may be written asin the MLS procedure as

w) =w'() =p " (a(x). (3.3.13)
Likewise, the local GMLS approximation is written as

W(X) =Wy (X) =p ' (X)a(x) (3.3.1b)
where X =x—X; , p(x) isthe basis function, and a(x), the vector of undetermined

coefficients, is found by minimizing a weighted discrete H " error norm (Nayroles et al.,

1992, Atluri et al., 1999):
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n
H h(a):z Zz,— (X)[D“pT(xj Ja—DW; ? (3.3.2)

=1 |ejch

where 4 is aweight function, D denotes the /" derivative, and Y indicates the

lel<h
summation of all derivatives up to order h.
For beam problems, the primary variables are the deflection w and slope €=

(dw/dx), and hence, the weighted discrete H * error norm is used:

Hl(a)=z le (Y)[D“DT(Xj)a— Dawj]z
=1 |ol<1
j (3.3.3

n 2
:ZJﬂ(jW)(Y)[pT(xj)a—\va] + A9 (x )[ P! (x i), éj]
j=1

In this report, ﬂ(jw) (X) and /1(j‘9) (X) are chosen as the same weight functions, and will

hereafter bereferred to as 4;(X) . In matrix form, Eq. (3.3.3) is

Hl(@) =[Pa-W]" A[Pa—W]+ [an— f]r X[an— f]

MR M)
=[Qa-3§|" A[Qa-3]

where P and Py are (n,m) matrices and A is a diagonal (n,n) matrix defined as

[P]{pT(xl) P (%) ... pT(xn)}T , (3354

[Px]{pl(xl) px (%) ... pl(xn@T , (3.3.5b)
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A= #2(X) . (3.3.6)
An(X)
where
pT(x)=[l X, X, ... xm‘l] (3.3.749)
T
ol (x) =P (X)z[o, L 2%, ... (m—l)xm_z} (3.3.7b)
dx

with (m-1) asthe order of the 1-D basis function p(x) used in the MLS approximation.

P W A O
S

are the basis function matrix, the nodal displacement vector, and the weight function

Also,

w»

matrix, respectively. Further manipulation of Eg. (3.3.4) leadsto
H1=|]aTQT -&T |AlQa-§

= [aTQTA—éTA][Qa—é]

(3.3.9)
=a'Q"AQa-a"QTAs-5"AQa+57AS
—a'QTAQa-2a"TQTAS+8TAS
The norm H* can be minimized using;
1
M o iz12..n. (3.3.10)
03

Equation (3.3.10) can be rewritten as
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&?=O ,OI‘,

aHl T T.n
—T=2Q AQa-2Q As=0.

(3.3.11)

oa

Equation (3.3.11) leads to

[A] {a} = [B] {8} (33.12)

(mm)y(m1) (m2n)(2n,1)
where

[Al= Q" A

(m,m) B (m,2n) (2n,2n) (2n,m)

(3.3.13)

=P A P+P, A P

(mny (n,n) (n,m) (M,n) (n,n) (n,m)
and
Bl =0Q" A =P A, P A |. (3.3.14)
(m,2n) (m,2n) (2n12n) (m!n) (n,n) (m, n) (n,n)

Solving for {a} using Eq. (3.3.12) gives

fal =[a]* [B] {8} (3.2.15)
(m1) (mm)(m,2n)(2n,1)

Substituting into the approximation Eqg. (3.3.1a)

w')=pT(x[AT* B] {8 . (3.3.16)
(Lm) (m,m)(m,2n)(2n,1)

Thetrial functions used for beam problems are finally written as a linear combination of

nodal shape functions:

n
W=y [v‘vj " (3 +6,p” (x)) (33.17)
=1
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where

m
vP0=Y"p A PTA]
o= (3.3.18)

m
WEH) (xX)= Z pg (Xj )[A_lp;{ )\'] </
g=1

Note that \ivj and éj in Eq. (3.3.17) arefictitious nodal values of deflection and slope,

respectively.

Asin Chapter 2, three types of weight functions 4, (X) are considered for

constructing the trial functions: power functions,

|1-[2/r2)]" it o0s<d, <R,

i (%)= (3.3.19)

0 if dj>Ry,

with d; = |[x — x||, the Euclidean distance between x and x;, and o= 1, 2, 3, and 4,

d ) ()
B 1—3 —_— +2| — If OS dj < RJ
Aj(X) = R R| (3.3.20)

a3-term spline with d; = || x —; ||, and a 4-term spline,

d V¥ (d) (a4}
1-6| — | +8| — | -3| — if OSdJSRJ
Aj(X) = R R R (3.3.21)

0 if dj>R;
where R, is a user-defined parameter that controls the extents of thetrial functions. These

weight functions are chosen to demonstrate the robustness of the MLPG method.

Consider the 17-node model presented in Figure 3.3.2.
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Figure3.3.2: A 17-node model of a beam of length 4l
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(b) Derivatives of the shape functions, dy,/ dx

Figure 3.3.3: Typical shape functionsand their derivatives

Figure 3.3.3a presents w}"") and t//}‘g) at nodej = 9, typical shape functions evaluated
using the weight function of Eqg. (3.3.19) with = 3. Figure 3.3.3b presents the
(d w}w) /dx) and the (d wj(e) /dx) for nodej =9. These functions were evaluated using a

quartic basis function. The value of (R;/I) was chosen as (R;/ ) = 3.5. From these plots,
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it is seen that while 8= dw/dx, @ = (dy™) /dx). Thisis because the derivative of
y™ involves the inverse of the [A] matrix. One should note that, while

w(® = (dy™ /dx) , the basis function used for ¥*? must be the derivative of the basis
function used for ™. For example, if aquadratic basis (1, x, X°) is used for y**, then (0,

1, 2x) must be used for y*?. These areimportant characteristics of the MLPG method for

Euler-Bernoulli beam problems.

3.4 Test Functions Used
The MLPG equations are derived using the weak form of the governing equation.

Recall the weak form from section 3.2;

20 42 ~
O=El J-d—wudx— J‘f vdx+aw[(w—bi?)v]rw+a9Kd—W—6jﬂ}
I'so

dx? dx? dx dx
Qg Qs
(3.4.0)
~ ~ 3 2
—nX[V V]l'sv —n){M%} +n{EI d—\évv} —nX{EI d—\ZN%}
XITgu dx ry, dx< OX r.,
Also recall Eg. (3.3.17), in which the trial function w is approximated as
n 5. (8

w9 =3 (i 09 +6,60 ) (34.2)

j=1
where wj and éj are thefictitious nodal deflections and slopes of the trial function,

and y™ and y*? are their corresponding shape functions, respectively, given by Egs.

(3.3.18). Thetest function, v, is approximated using

v(x) = 1™ 7" )+ 189 70 (%) (3.4.3)
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where ,ui(W) and ,ui(g) are the arbitrary constants for deflections and slopes of the test
function, and ;(i(w) (x) and ;(i(‘g) (x) are components of the the Petrov-Galerkin test

functions that are chosen from a different space than w%w)(x) and wj(e)(x). Recall that

the expressions for the shape functions are written asin Eq. (3.3.18) as

m
v§909= pg(la Pl
o (3.4.4)

m
w9 (0= Z Py (X] )[A—lplx] g
g=1

In a Galerkin approximation, the components of the test functions ;(i(w) (x) and ;(i(e) (x)
would take on the same form as the shape functions:
m
200= pgxplaeT A

g=1
(3.4.5)

m
2900=3 pgxpa Py 4.
g=1

As mentioned previoudly, Atluri et al. (1999) used the Galerkin approximation of Eq.

(3.4.5). However, in thiswork, a Petrov-Galerkin approximation is used and the

components of the test functions ;(i(w)(x) and ;(i(‘g)(x) are chosen from a different space

than the shape functions yfgw)(x) and t//}‘g)(x). The Petrov-Galerkin formulation is

further discussed in section 3.6. The test function components ;(i("") (x) arechosen as

simple weight functions similar to those of Egs. (3.3.19 — 3.3.21) as
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200 = [1—(di2/R§)]ﬂ it 0<d; <R, 346)
0 it di>R,

with d = |[x— x|l and A= 2, 3, and 4,

¢ V¥ (d )

r W (x= H(QJ +2[§) T osd =R (34.7)

0 if di >R,
with d; = [x — x|, and
2 3 4
) 1—6[d—ij +8(d—i] —3(i] if 0<d; <R,

X (X)= Ro Ro Ro (3.4.8)

0 if di >R0.

where R, is a user-defined parameter. Plots of the components of the test functions
,zi(w) (x) and Zi(e) (x) of EQ. (3.4.6) with 5= 4 for node 9 of a 17-node model of abeam

with (Ry/ |) = 2Ax are shown in Figure 3.4.1a. The corresponding derivatives,

(dz™ 1dx) and (dr\? /dx) are shown in Figure 3.4.1b. Notethat for the test

functions, 7\ = (dy™ /dx) .
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Figure 3.4.1: Typical test function components and their derivatives

3.5 Development of the ML PG Equations

To evaluate the integrands and the terms involved in the weak form, the

derivatives of w and v, thetrial and test functions, are needed. Since W, , éj : ,ui(W) , and

19 are constant values, the derivatives are carried out over ¥, y*9, " and 49 as
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2 2 (6
d2 _i | d EW) . d E )
dx” =1 bl bk

3 3 (6
d® _Z”: d*y " 5 (®)
X -1 bl Do

and
]
o wdg™ o) dy?
=l T T H
dx dx dx
2 2 2 (6
av_ wds"”  0dn”
2 _lul 2 ﬂ| 2
dx dx dx

Appendix A presents explicit expressions for all the derivatives of ¥ and y*?.

Substitution of Egs. (3.3.17, 3.4.3, and 3.5.1) into the weak form leads to
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2 (W) 21//(6)
J

2

2_(w)

n d |
0= IE' 3w, wd zi
j=1 dx

J[ﬂl I
g) (@
_ Jf(ﬂi(W)Zi(W) +,Ui( )Zi( )) dx

2
~ g) (6
j( ﬂi(W) Zi(w) + ﬂi( ) Zi( )j]

5 d
0]

RO
dx

@ _

dx

Z
Z|( )

2

]dx

WJl//J +0)v]
=1 Ty,
n dz//(-w) Adz//() d() d()
A j j w) axi =, (@) Oxi
: . _0
+OK{Z{WJ dx I dx Hi x4 X
J=1 Fs&
_n, \7( w0 0) ﬂ
- l—‘sV
I ( ) (6)
ol wdy T (0) Ay
Ny M[M X i dx J]
L rsl\/l
n 43 (w) 3 (0)
d y; ) (6 3.5.2
+ Ny EIZ j é (M(W))a(w) ( )Zi( )) ( )
i j=1 dx r
I 42 (w) ©)
n E|Zn: ; v wad e ad”
X Wi 0 > Hi dx [ X
j=1 dx re,
(i=12,...n).
Requiring that Eq. (3.5.2) be valid for arbitrary values of ,ui("") and ,ui(‘g) leads to the
MLPG equations as
K (node) a +K (bdry) a _f (node) _f (bdry) ~0 (35.3)

where “bdry” denotes boundary and
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are thefictitious nodal values of deflectionsw and slopes 6, and

K (node) _ [k i(jnode)]

i (bary) _ [k i(jbdry)}

with

2 2 (W) 2
a2 d%y] w [° 2" 4]

2 (9)

g 0, dx? dx? 0 X dx?
k% = |1 | 2 s

Vi rd y

2 () 42, (W) 2 (8) 42, ()
Zi()d i()d

dx d
. dx2 dx2 . dx2 dx2
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(3.5.4c)
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0
 ody) _ Zi(W)l//J(W) ;{.(W) (©)
' TUwl (e 0) (@
220" 4 )v/f ) 0
I 3 3 (0
w 9" (Mdﬂ)
ZI 3 i
+nyEl dX( w) d ©
© d ¥ C o d’ Vi
i .3 i 3 .
L dx dx>  Jp®
dx dx dx dx
+0{9
dy @ dWJ(VW 1) dy/( )
L dx  dx dx dx r®
s@
i 2 2 (6
dZi(W) d l//EW) dZ|(W) d ( )
—nyEl X gy’ dx dxze
W
di(‘g)dw() d(e)dl//()
IS - S V) O
s@
j ¢ dx
f(node) _ Q(Si)
j 9% dx
ol
dZi(W) W)
bd ~1,
i, | and )
g Ai 1ﬂisv
dX riSM
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wherei,j=1,2, ... n.
After these equations are solved for the fictitious nodal values Wj and éj , the

interpolated primary and secondary variables may be computed. The deflection, w, at

any point in the beam is calculated from Eq. (3.3.17),
(W) (©)
~ W ~
w(x):Z(ijj )+ (x)j | (35.5)
j=1

and post processing is accomplished by either of the methods discussed in section 2.5.

The slope 6, moment M, and shear V can just as easily be calculated from Egs. (3.5.14).

3.6 The Petrov-Galerkin Formulation

As stated in section 3.2, the test functions, v, of the LWF are chosen based on the
weighted residual (W-R) method being used. Two prominent W-R methods, namely the
Galerkin and Petrov-Galerkin methods, and their application to beam problems will now
be discussed.

In previous literature, a generalized moving least squares (GMLS) interpolation
scheme was used to develop a Galerkin formulation for solving beam problems (Atluri et
al., 1999). Thetrial and test functions in the meshless Galerkin formulation for beam

problems are chosen to beidentical, i.e., y; =y;. Thisformulation showed

discontinuities (“scissors’) at the boundaries of the supports of thetrial functionsin the
local sub-domain of the test function (Atluri et al., 1999). Due to these scissors,
elaborate numerical integration schemes were needed to integrate the weak form

accurately. The domain of dependence (£2s) was subdivided into subregions dependent
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upon where the support domains ended within the Qs. In each of these subregions, a 10-
point Gaussian quadrature was used to integrate the weak from accurately.

In the current work, the Petrov-Galerkin method is used, i.e., the test functions
are chosen to be distinctly different from the shape functions (;( | Y ) Recall the
weight functions chosen as test function componentsin Egs. (3.4.6 — 3.4.8), repeated here

for convenience.

J[l—(dileg)]ﬁ if 0<d <R, (3.6.1)
0 it d>R,

A" (=

with d; = [x— x| and #=2, 3, and 4,

d ) (g )

Zi(w)(x)= 1—3(§J +2(§j if 0<d; <R, (362)

0 if di >Ry,
and
2 3 4
W) 1—6£d—ij +8(d—iJ —3(ﬂJ if 0<di <R,

Xi o (X)= Ry Ro Ro (3.6.3)

0 if di >Ry,

where R, is a user-defined parameter.
The derivatives of the test functions can be evaluated at the center (d; /R, = 0) and

at the end points (di /R, = 1) as

Mo ,
oxMo Ro
(3.6.4)
m .
9wy, met
ox™ Ro
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The test functions are then C' continuous up to the order y wherey = min(my, ) (see
Atluri and Shen, 2002). With these definitions, the test functions from Eq. (3.6.1) with
B=2,3,and4areC*, C', and C3 continuous, respectively. Similarly, the splinefunctions
from Egs. (3.6.2 and 3.6.3) are C* continuous. As pointed out previously, the lengths R
and R, in Egs. (3.3.19 - 3.3.21 and 3.6.1 — 3.6.3) are user-controlled parametersin the
numerical implementation of the MLPG method.

To evaluate the validity of the MLPG method and the usefulness of each of the
trial and test functions derived from Egs. (3.3.19 — 3.3.21 and 3.6.1 — 3.6.3), the MLPG
method is applied to various patch tests and mixed boundary value beam problemsin

Chapter 4.

3.7 Concluding Remarks

The MLPG formulation was developed for bending of beams— C* problems. A
local weak form (LWF) was developed from the classical weighted-residual form of the
fourth order governing differential equation. The moving least squares interpolation
scheme was generalized to include derivatives. These generalized moving least squares
(GMLYS) approximations were used as the trial functions. The test functions were chosen
from a different space than the trial functions as combinations of simple weight functions
and their derivatives. This choice of test functions makes the method a Petrov-Galerkin
method. Substitution of these trial and test functions into the LWF yielded a system of
algebraic equations. Stiffness matrices were found to be unsymmetric and banded. The

continuity of the test functions was also discussed. In Chapter 4, several numerical
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examples are considered to study the effectiveness of the MLPG method for beam

problems.
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Chapter 4: Numerical Examples
Several numerical examples are used to study the effectiveness of the MLPG
method for beam problems. For the examples presented, a beam of constant flexural
rigidity El and alength of 4l isconsidered. The length 4l was specifically chosen to
avoid scaling by unity. Six modelswith 5, 9, 17, 33, 65, and 129 nodes uniformly
distributed along the length of the beam are considered. Figure 4.0.1 shows atypical 17-

node model.

S 4 »
12 9 16 17
|—)x

Figure4.0.1: A 17- node model of the beam

The distances between the nodes (Ax/I) in these models are 1.0, 0.5, 0.25, 0.125, 0.0625,
and 0.03125 for the 5-, 9-, 17-, 33-, 65-, and 129-node models, respectively. Three types
of basis functions, quadratic basis (1, x, X%), cubic basis (1, x, X%, X°), and quartic basis (1,
X, X%, 2, x*) areused. Asmentioned in Chapter 3, the system matrices for the MLPG
algorithm are of the form (Eq. 3.5.3):

K (node)a LK (bdry) d—f (node) _f (bdry) _ 0, (4.0.1)

where the superscript “bdry” denotes boundary. These matrices are developed with the
previously mentioned parameters. Problems studied in this chapter include both patch
test and mixed boundary value problems. First, ssimple patch test problems are studied
wherein alocal coordinate approach is developed to improve the accuracy of the method.
Error norms of the patch tests for both the global and local methods are compared to

demonstrate the validity of the local approach. Next, general rules of thumb for choosing
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the various user-defined problem parameters are discussed. Then, several mixed
boundary value problems are worked. Finally, the method is extended to continuous
beams, and an example problem is studied. Aswill be demonstrated, the MLPG method
for beam problems yields excellent results for both primary and secondary variables

without the need for elaborate post-processing techniques.

4.1 Patch Tests
The MLPG formulation for C* problems was evaluated by applying the

formulation to simple patch-test problems. The problems considered were

1. w(x)=cp, 6= Z—W =0; Rigidbody trandation

X
2. W(X) =X, 6=cy; Rigid body rotation (4.1.2)
3. w(X)= 02x2/2, 6 =CyX; Constant - curvaturecondition

where ¢y, €1, and ¢, are arbitrary constants. The third patch test could be looked upon as
the problem of a cantilever beam with a moment, M=EI(d “w/dx?)= Elc,, applied at x=4I.
These three problems are depicted in Figure 4.1.1. All three of these problems satisfy the
governing differential equation exactly and as such represent three ssmple exact solution
problems. The deflection w and the slope @ corresponding to problems 1, 2, and 3 were
prescribed as essential boundary conditions (EBCs) at x=0 and x=4I. With these EBCs,
the beam problem was solved using the MLPG method. If the MLPG method recovers
the exact solution at all the interior nodes and at every arbitrary point of the beam, then

the MLPG method passes the patch test.
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(a) Rigid body trandation

(b) Rigid body rotation

-3
i A

4

(c) Constant-curvature condition

Figure4.1.1: Patch testsfor beam problems

In preliminary evaluations, the ;(i(w) (X) test function component in the MLPG

weak form was chosen as

29 (9 = [1—(di2/R§)]4 if 0<d <R, “12)
0 if  d >R,
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whered; = || x—x; |l Theweight functions 4, (X) used to construct the trial functions

were
2/R2)|* <R
A= [1—(dJ/R,)] if  0<dj<R; (4.1.33)
0 it dj>R;,
and
q. 2 q. 3 q. 4 (4.1.3b)
- 1—6{—‘] +8(—Jj —3(—’} if 0<d; <R,
A (X) = R; R; R;
0 if dj > Rj,

whered; = [[x—x; | (Recall from section 3.3 that X = X—x; isused inthe GMLS

approximation to construct the trial functions in the local neighborhood X of x. Thus,

d; = |Ix — x|l could also be written as d; = |X|.) Theterm (R, /1) in the test functions (Eq.

4.1.2) in each of these six models was different and chosen equal to (2Ax). The(R; /1) in
Egs. (4.1.3) were chosen to be (R /1 = 3.5) for the 5-, 9-, and 17- node models and (R; /|
= 16Ax) for the 33-, 65-, and 129- node models. Therangesof (R,/ ) and (R /1) are
discussed later in this chapter, in section 4.4.

The displacement vectors {d} that correspond to each of the conditionsin Eq.
(4.1.1) (and in the absence of any other loading) when used in Eq. (4.0.1) should result in
anull right-hand vector if the K ™® s evaluated exactly. In general, the product results
in aresidual {r}vector as

K M%) (4.1.4)

Each of the components of the vector {r} is nearly equal to machine zero if K(™® js

evaluated accurately. To quantify the residual, an error norm of {r} is computed as
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1 Ng o
El = |— S .
Il = o

wherery isthe k™" component of the vector {r} in EQ. (4.1.4), and Nqis the degrees of

freedom in the modd!.

(4.1.5)

Table4.1.1: Error norm ||[E||, of theresidualsfor six models and for two basis functions

Number of W=Co W=CiX W=CpxX/2
nodesin Quadratic Cubic Quadratic Cubic Quadratic Cubic
the mod€ Basis Basis Basis Basis Basis Basis
5* 0.5040e-14 | 0.1278e-12 | 0.2099¢e-14 | 0.4547e-13 | 0.5733e-14 | 0.9196e-13
o* 0.7515e-13 | 0.1496e-11 | 0.2362e-13 | 0.5514e-12 | 0.3321e-13 | 0.9747e-12
17* 0.2774e-10 | 0.8211e-10 | 0.1109e-10 | 0.3067e-10 | 0.1582e-10 | 0.5352e-10
33 0.3609e-9 | 0.1062e-5 | 0.1266e-9 | 0.4479e-6 | 0.2587e-10 | 0.9057e-6
65 0.1691e-6 | 0.1435e-2 | 0.7735e-7 | 0.5855e-3 | 0.1726e-6 | 0.1193e-2
129 0.1796e-4 | 0.5599e+0 | 0.8154e5 | 0.2269e+0 | 0.1794e-4 | 0.4154e+0
*R/1=35

Table 4.1.1 presents the error norm |[E||; for the three conditionsin Eq. (4.1.1)

when the weight function in Eq. (4.1.3b) was used. (Similar results were obtained when

the weight function in Eq. (4.1.3a) was used.) As seen from the table, the error norm

|IE]l» deteriorates with model refinement and for higher order basis. Closer examination

of the residuals for each of the six models showed that the residuals were of machine

accuracy for nodes near the origin while the residuals were largest at nodes farthest from

the origin. This observation was confirmed by running different cases with the origin at

different locations along the length of the beam. The origin was moved to the center of

the beam so that the domain Q became — 2| < x<2l. The computed error norms ||E||; of
Table 4.1.1 were best at the center of the beam (at x = 0) and inferior at the two endpoints
x=-2l and x = 2I. The origin was then moved to the right end of the beam, i.e.,

—4l < x<0. Theerror norms ||E||; were found to be best at the right end of the beam

(x=0) andinferior at the left end of the beam (x = —4l). In fact, the same error norms of
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0.1794e-4 and 0.4154e+0 for the 129-node model and w = ¢,x%/2 were observed at

(x=-4l) when the origin was moved to the right end of the beam. Also, the residuals

were largest for the models with the largest number of nodes. This behavior is counter-
intuitive.

Closer scrutiny of computations showed that the numerical values of the shape
functions for nodes that are systematically located about the center of the beam (for
example, nodes 3 and 15, 2 and 16, and 1 and 17 in the 17-node model of Figure 4.0.1)
are not exactly identical as expected. These differences increased with model refinement
and when a higher order basiswas used. The reason for this behavior is explained in

section 4.2.

4.2 Local Coordinate Approach
In the MLS interpolation, the basis functions are in terms of the global coordinate
X. The[A] matrix thus formed using this basisis generally of the form (see Atluri et al.,
1999, Eq. 16)
d T 71
[A]=Z{/1k(2)p-p + (X Px - Px | (4.2.1)
k=1
where X = x—X;, and M are the number of nodesin the domain of definition of node

for which the [A] matrix is being computed. (For conveniencein presentation, the [A]
matrices thus formed will be referred to as the global method.) Asthe order of the
polynomial basisincreases, the conditioning of the [A] matrix deteriorates. For example,
the matrix [A] will havetermslike 1, X2, x*, x° on the diagonal for a cubic basis function.

The [A] matrices for nodes near the origin and the [A] matrices for nodes farthest from
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the origin will be different. The conditioning isworse for [A] matrices for nodes farthest
from the origin. This explains the differences in the error norms observed in Table 4.1.1.
The error normsin Table 4.1.1 can be improved by using higher precision computations
or inversion routines. However, amuch ssimpler alternative to improve the accuracy is
discussed.

The conditioning of the [A] matrix can be considerably improved if the MLS
approximation is defined not in terms of a global basis, but rather in terms of alocal
basis. Figure 4.2.1 shows two identical shape functions, one centered at node j, and the
other centered at node e.

wiY e

Figure4.2.1: Local coordinate definitions

The global approximation for

W(X) = pT(X)a(X) (4.2.2)

2 m
=g +apX+agX +...+aqX
can be rewritten in the neighborhood of node j, recognizing that x = x; + £where isa

local coordinate measured from nodej, as
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w(X) =a1+a2(xj +§)+a3(xj +§) 2.
= (a1+a2xj +a3xj2 +...)+(a2 + 285X +...)§+(a3+...)§2 (4.2.3)
= by +byf +bgE2 +.. + b g™t
whereb;, i =1, 2, ..., mare the new undetermined coefficientsin the MLS
approximation. (A similar local coordinate transformation can be affected for nodeein

Figure4.2.1 asx =xe + £) The[A] matrix then is computed in asimilar manner asin Eq.

(4.2.1), but with

o’ ()= &

L & &
T 2 (m-2)
and px(§)=[o, 1, 2& 3%, ... (m-1¢ } (4.2.4)

d d

The local coordinate approach was implemented in the evaluation of the shape
functions and their derivatives for al the nodes in the six MLPG models of the beam.
Table 4.2.1 compares the condition numbers of the [A] matrices at various locations on
the beam using global and local coordinate methods. The condition numbers were
evaluated using routines available in NAPACK and the procedure outlined in Bathe,
1996 and Chapra and Canale, 1988. A brief review of condition numbersis presented in
Appendix B. When the global coordinate method was used, the condition numbers of the
[A] matrices for nodes farthest from the origin were much larger (suggesting poor
conditioning) than the nodes closest to the origin. The conditioning numbers of the [A]
matrices vastly improved when the local coordinate method was used, clearly

demonstrating the advantages of the local coordinate method.
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Table4.2.1: Comparison of the condition numbers of the [A] matrices at various
locations on the beam using global and local coor dinate methods

Location Number of nodes in the model

on the 5 | 9 17* 33 | 65 129
beam (x/41) Global Method Conditioning Number

0.0 0.631e+3 0.106e+4 | 0.930et+3 | 0.271e+3 | 0.267e+3 | 0.18%e+4
0.5 0.231let5 | 0.268et5 | 0.272et5 | 0.785et5 | 0.904et6 | 0.131e+8
1.0 0.914e+6 | 0.771e+6 | 0.127e+7 | 0.422e+8 | 0.153e+10 | 0.365e+11

Local Method Conditioning Number

0.0 0.634e+3 | 0.106e+4 | 0.930e+3 | 0.271e+3 | 0.267e+3 | 0.189%e+4
0.5 0.478e+3 | 0.496e+2 | 0.411le+2 | 0.111e+2 | 0.153e+2 | 0.141e+3
1.0 0.632e+3 | 0.106e+4 | 0.930e+3 | 0.271e+3 | 0.267e+3 | 0.189%e+4
*R/1=35

The error norms shown in Table 4.1.1 were recomputed and the results are

presented in Table 4.2.2. As expected, all models and the quadratic and cubic basis

functions produced error norms close to machine accuracy, suggesting that the local

coordinate approach produces a significant increase in accuracy compared to the global

coordinate approach.

Table 4.2.2: Error norm ||E||, of theresiduals computed with the local coordinate approach

Number of W=Co W=C1X W=Cox/2
nodesin Quadratic Cubic Quadratic Cubic Quadratic Cubic
the mode Basis Basis Basis Basis Basis Basis
5* 0.1173e-14 | 0.3500e-13 | 0.2342e-15 | 0.1201e-14 | 0.3174e-14 | 0.3853e-13
o* 0.2521e-13 | 0.4900e-13 | 0.8357e-14 | 0.1699e-13 | 0.3659e-13 | 0.4146e-13
17* 0.1392e-12 | 0.2169e-12 | 0.4764e-13 | 0.1680e-12 | 0.2126e-12 | 0.8124e-12
33 0.4389e-12 | 0.1390e-11 | 0.1876e-12 | 0.5060e-12 | 0.4084e-12 | 0.2183e-11
65 0.4196e-11 | 0.3890e-11 | 0.1142e-11 | 0.1879e-11 | 0.2548e-11 | 0.5930e-11
129 0.4029e-10 | 0.2778e-10 | 0.1240e-10 | 0.8191e-11 | 0.2400e-10 | 0.2166e-10
*R/1=35

In the global MLPG implementation, the [A] matrix is calculated and inverted at

every nodein the model. When using the local coordinate methodology with uniform

nodal spacing, the shape functions are exactly identical for nodes whose R, places the

entire shape function in the interior of the domain of the problem. Hence, for those nodes

the[A] matrices areidentical. As such, considerable reduction in computational effort
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and cost may be achieved by the proposed local coordinate approach. The local
coordinate approach is used to evaluate the shape functions and their derivatives for all

numerical examplesin the remainder of this report.

4.3 Patch Tests Revisited
The three patch test problems,
1. w(x)=cp, 6= Z—VXV =0; Rigidbody trandation
2. W(X) =X, 6=cy; Rigid body rotation (4.3.2)
3. wW(X)= 02x2/2, 6 =CyX; Constant - curvaturecondition

outlined in section 4.1 are now studied.
For a displacement of w(x) = cp and c1x units, therigid body conditions were
modeled with boundary conditions

Trandlation: Rotation: (4.3.2)
W|x=0:CO Wlx:4|:CO W|x=0:O W|x=4I=4ClI
9|x:o=0 9')(:4|=0 9'x:0=C1 9')(:4|=C1

Since the exact solutions are constant and linear in X, respectively, the MLPG method
developed with a quadratic or higher order basis function must reproduce the solutions
exactly. (A linear basis cannot be used as the LWF requires second derivatives of the
trial functions.) As expected, the algorithm reproduces the exact solutions for w and €to
machine accuracy for both rigid body modes at the nodes and at any arbitrary point in the
beam.

For the constant — curvature condition, w = ¢,x?/2, the problem was modeled with

EBCs
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Wix=0=0  W|x=4=8cI° (4.3.3)
6')(:020 6')(:4|:4C2|

Since the exact solution is quadratic in x, the MLPG method devel oped with a quadratic
or higher order basis function must reproduce the solution exactly. As expected, the
algorithm reproduced the exact solution for the primary variables to machine accuracy at
al nodes and at any arbitrary point in the beam.

The above analyses were repeated with each of the test function componentsin
Egs. (3.4.6 — 3.4.8). The MLPG method reproduced exact solutions to machine accuracy,

thus passing all the patch tests.

4.4 Problem Parameters

As mentioned previoudly, the parameters (R, / I) and (R; / 1) in the MLPG method
are user-controlled. Ranges of values of these parameters were studied, and a general
rule of thumb was established. The previously mentioned lengths (R, / | = 2Ax) and
(R /1 = 8Ax) were used at all nodes of an N-node model, except at node 2 and node N-1
(see Figure 4.4.1). For these nodes, (R, / | = AX), was used to ensure a symmetric Qs and
account for the terms of Egs. (3.2.18) where, with (R, / | = 2Ax) for nodes 2 and N-1,
O<wvy,<land0<wyi< 1. Notethat with these assignmentsof (R, /1) the test functions
for al interior nodes have symmetric Qs configurations. As shown in Figure4.4.1, no
asymmetry isintroduced at nodes 1 and N as exactly half of their test functions are used.
When these symmetries are violated, the MLPG method requires additional terms as
discussed in section 3.2. When these terms are accounted for, the MLPG method passes

the patch tests.
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(b) Q, for the 24 and (N-1)% nodes
Figure4.4.1: Local sub-domain, Q definitionsfor various nodes

Asthe models are refined, the value of (Ax /) decreases and thus the size of Qg
and the extent of thetrial functions also decrease. For finer moddls, i.e. for the 33-, 65-,

and 129-node models, when 8Ax < R; /I <16Ax the MLPG method yielded very

accurate results. However, when R/ | > 16Ax the MLPG method failed the patch tests
for these models. Figure 4.4.2 shows the results of the rigid body rotation problem for
these two cases. When R, /| > 16Ax thetrial function is too diffused and the size of Qs
(Ro /1 = 2AX) istoo small in comparison to (R / 1). The combination of small Qs size and
large (R / 1) are apparently incompatible. While the finer models performed well over a
large range of (R; / 1), the coarser models performed well in a much smaller range of (R; /
). For good performance, (R, / I) needed to be approximately 8Ax but less than 98% of

the total beam length.
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(&) MLPG and exact solutionswhen 8A x < Rj/l <16Ax

—o—MLPG, satisfactory
value of R,

—=—MLPG, unsatisfactory
value of R,

(b) MLPG solutionswhen R; /I >16Ax

Figure4.4.2: Rigid body rotation - Comparison of resultsfor
different extents of trial functions

4.5 Mixed Boundary Value Problems

The MLPG method was applied to beam problems with mixed boundary
conditions. Recall from section 3.3 that the prescription of displacement and shear and
slope and moment are mutually digoint. When displacement is prescribed, the shear
cannot be prescribed. Likewise, when slopeis prescribed, the moment cannot be

prescribed.
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4.5.1 Cantilever beam with concentrated moment at the free end

The first problem considered was a cantilever beam with a concentrated moment

at thefreeend (i.e. M = Mg at x = 4l, see Figure 4.5.1).

4

A
v

AAAVANAN

Figure4.5.1: Cantilever beam with concentrated
moment at the free end

The exact solution for this problemisw = Mg/ 2El and 8= Mox/ El. For all trial
functions considered, the MLPG algorithm reproduced the exact solution when the test
function componentsin Eq. (3.4.6) with £ =3 and 4 and when the 4-term spline function
in Eq. (3.4.8) wereused. In contrast, the algorithm failed to reproduce the exact solution

when the test function component in Eq. (3.4.6) with £ = 2 and the 3-term spline function
of Eq. (3.4.7) wereused. This example suggests that ;(i(w) test function components with

at least C* continuity and with m, > 2 (see Eq. 3.6.4) are required for the MLPG

algorithm for beam problems.

4.5.2 Cantilever beam with tip load

The second problem considered was a cantilever beam with atip load (See Figure
4.5.2). Sincethe exact solution for this problem is cubic in terms of the x-coordinate of
the beam, all six models with a cubic basis function and atest function with C* continuity

and with m; > 2 reproduced the exact solution to machine accuracy.
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Figure 4.5.2: Cantilever beam with tip load

4.5.3 Simply supported beam subjected to uniformly distributed load

The third problem considered was a simply supported beam subjected to a

uniformly distributed load (see Figure 4.5.3).

Figure 4.5.3: Simply supported beam subjected to
auniformly distributed load

The exact solution for this problem is given by

daw_ g

L(—ZLXB+X4+L3XJ , =—
dx 24El

- [— 6L +4xX° + sz (45.1)
24El

where L = 41. Using symmetry, half of the beam was modeled. Since the exact solution
for this problem is quartic in terms of the x-coordinate of the beam, the MLPG method

with a cubic basis function did not reproduce the exact solution. Error norms defined as

||EW||2 \/QZ{(WMLPG Wexac'[)}k

1 Wexact
(4.5.2)
15[ (M Mexact) |
E — |= MLPG exact }
” M”2 gkzzi M exact K
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were computed at g uniformly spaced points along the beam. A value of g = 200 was
used. The norms ||Ey|lz and ||Ew||. are presented in Table 4.5.1. As expected, all models
(N >9) yielded accurate solutions (within 4% for w and M). As the number of nodesin
the models were increased, the ||E|l. norm changed marginally, suggesting the same
accuracy in the solutions for the various models. Also, the ||Eu|. norm was of the same
order as the |Ex|l. norm, suggesting the same accuracy for the primary and the secondary
variables. To obtain acceptable results using a Galerkin formulation (Atluri et al., 1999),
Qs would have to be subdivided into sub-regions within which, for example, a 10-point
Gaussian quadrature would be used to perform the integrations (see section 3.6). The
numbersin Table 4.5.1 were computed via a Petrov-Galerkin formulation using a 20-
point Gaussian integration in each of the single compact support domains Qs. When the
order of the basis function was increased to quartic, the MLPG method reproduced the
exact solutions (for w, &, M, and V) to machine accuracy.

Table 4.5.1: Error norm ||E||> for a simply supported beam subjected to a uniformly

distributed load with cubic basis used in the ML PG method. (Trial function using
Eq. (3.3.19) with =3 and test function using Eq.(3.4.6) with g=4.)

Number of nodes in the model
Error norm | 5 o* 17" 33" 65' 129"
IEwl2 0.1662e-1 | 0.1306e-2 | 0.4573e-2 | 0.3829e-1 | 0.1742e-1 | 0.2368e-1
[IEm]l2 0.2774e+0 | 0.1057e-1 | 0.1704e-1 | 0.3680e-1 | 0.1763e-1 | 0.2340e-1

*R/1=35 "R/l =8Ax

The previously discussed problem demonstrates an interesting phenomenon.
When the order of the basis function equals the order of the exact solution, the previously
discussed 8-point Gaussian quadrature in asingle Qs is sufficient to integrate the weak
form very accurately. However, when the order of the basis function isless than the
order of the exact solution, a higher order integration rule (such as a 20-point Gaussian

integration) is needed to obtain accurate results. For problems with complicated loading,
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where exact solutions are not known, the order of the basis function can easily be

increased until convergence of the solution is achieved.

The problem of the simply supported beam subjected to a uniformly distributed

load was modeled next using the full beam with non-uniform nodal spacing shown in

Figure 4.5.4.

L 4

[~ g

1 5 10 15 19
= x

Figure4.5.4: A 19-node model with unequally spaced nodes

This model was generated by randomly placing nodesin theregion 0< x< 2l and

symmetrically replicating these nodesin theregion 2l < x<4l. The order of the basis

function was increased to quartic. The MLPG and exact solutions for deflection,

moment, and shear are presented in Figure 4.5.5.

o MLPG
— Exact

0.5 1
x /4

(a) Deflection

Figure4.5.5: MLPG and exact solutionsfor a ssimply supported beam
subjected to a uniformly distributed load
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(b) Moment

o MLPG

—— Exact
V(x)
Vmax

(c) Shear

Figure 4.5.5 Concluded: ML PG and exact solutionsfor a simply
supported beam subjected to a uniformly distributed load

As expected, the MLPG method reproduced the exact solutions to machine accuracy for
both the primary and secondary variables despite the nodal arrangement.

4.5.4 Simply supported beam subjected to a central concentrated load

The fourth problem considered was a simply supported beam subjected to a

central concentrated load (see Figure 4.5.6).
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Figure 4.5.6: Smply supported beam subjected to a
central concentrated load

The exact solution for this problem is

2
El =—£x3+i
12 16 L
for 0< XSE (4.5.3)
2
g W_ge-_P,2 P
X 4 16
and
P3 PL2 3P P
Elw=—X — X +——X———
12 4 16 48 L
for > <x<L (4.5.4)
2
B M_ge-P 2 PL, 3Pl
dx 4 2 16

where L = 4l. The problem was analyzed in two different ways. First, symmetry was

used, and one-half of the beam was considered. Second, the full beam was modeled

without the use of symmetry.

For both representations of the beam, the problem was worked using a quartic
basis function, and a 20-point Gaussian integration was used to develop the system of
equations. The weight function of Eq. (3.3.19) with & = 3 was used to construct the trial
functions, and Eq. (3.4.6) with = 4 was used for the test functions. The value of (R, /1)

was chosen as (R, / I) = 2Ax for all nodes. For the symmetric representation of the beam,
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(R /1) was chosen as (R; / I) = 8Ax for the 33-, 65-, and 129-node models, and as (R, / 1) =
3.5for the 5-, 9-, and 17-node models. For the full representation of the beam, the values

of (R /1) arenoted in Table 4.5.2. The exact solution for the deflection under theload is

given by
3 3
PL”  P(4)
MK 48E1 ~ 48El (4535)
The exact solutions for the slopes at the end points are given by
2 2 2 2
PL°  P(4l) PL P4l)
Oly_n= = and 6|y_=- =— . 4.5.6
x-0 16El  16El x-a 16El 16El (456)

For the symmetric representation of the beam, the boundary conditions shown in
Figure 4.5.7 were used. As expected, the MLPG method reproduced the exact solutions

for al models at all nodes and at all interior points of the beam.

| 2l
|
lezj
w=0 V=-P/2
M=0 =0

Figure 4.5.7: Symmetric representation of a smply
supported beam subjected to a central concentrated load

The concentrated load at the center of the beam is expected to cause difficulty
when the full beam is considered. As such the full beam is modeled to study the
performance of the MLPG method. External loads contribute to the f ™ of Eq. (4.0.1)

(see EQ. 3.5.4f), repeated here:
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j 7 dx

f(node) _ Q(S')

(4.5.7)

In numerical implementation, if a concentrated load P is applied at node p, the integrals

of Eq. (4.5.7) are evaluated with the dirac delta function as

j 7t dx

f(node) _ Q(s')

j;(i(w)f 5(x=xp) dx

j;ﬁ(‘g’ F 8(x=xp) dx
ol

ol _ Ii(W)(Xp)Pl
A ,
22 ()P

(4.5.8)

To evaluate thef ™® all the nodes in the domain of influence of node p need to be

examined. The value of each test function, vi, in the domain of influence of nodep is

evaluated at node p. Asthe values of the test functions, v;, are computed as (see Eq.

3.4.3)

0 7]
Vi (xp) = 1 7 () + 10 7D (xp),

the corresponding 7" and (%) contributeto thef ™® asin Eq. (4.5.8).

(4.5.9)

For the full representation of the beam, the MLPG values of Winax and Gy for

each of the models studied are presented in Table 4.5.2.

Table 4.5.2: ML PG values of deflection and slope for models with various nodal arrangements

Number of nodesin the moddl; (R /1)
5; (3AX) 9; (4AX) 17; (6AX) | 33; (BAX) | 65; (8Ax) | 129; (8AX)
Wimax) /W(mex)exact 0.9746 1.0882 1.0368 0.9982 0.9992 1.0120
6 (max)! Gmex)exact 0.3717 1.1003 1.0380 1.0012 0.9975 1.0126

The MLPG and exact solutions for deflection and moment of the 65-node model are

compared in Figures 4.5.8.
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(a) Deflection
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Figure 4.5.8: MLPG and exact solutionsfor a ssimply supported beam
with a central concentrated load

These figures and the results presented in Table 4.5.2 demonstrate that the MLPG method
yields excdlent results for both primary and secondary variables. These results were

obtained without the use of elaborate post-processing techniques. As the number of
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nodes was increased from 17 to 129, the accuracy of the solutions did not appreciably
change, suggesting that a 17-node or 33-node modd is sufficient to obtain an accurate
solution. The MLPG method apparently handled the discontinuity caused by the central

concentrated load well.

4.6 Continuous Beams
The MLPG method was then applied to a continuous beam problem to evaluate its
effectiveness. A continuous beam with one additional support along the interior of the

beam (shown in Figure 4.6.1) is considered.

! q

Y

I‘ ,l‘

Figure 4.6.1: Continuous beam subjected to a uniformly distributed load
In applying the MLPG method to continuous beams, an additional penalty term,
aclw-wilr (4.6.1)

where o is the penalty parameter to enforce the continuous beam boundary condition, is
added to the weak form. The weak form of the governing differential equation then

becomes
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0= El d_‘é"ﬂd _vadx+aw[(w W, +“9Kd_w_éjdx}

d
5 ax dx? S X
(4.6.2)
+0‘c[(W—l/7)V] + nx[v g1 ¢ \4 -~ [SV El d—\zlq
dx™ | dx |
Asin section 3.2, utilizing the boundary condition subsets,
TsNTy, IsNTy,
(4.6.3)
leads to the local weak form (LWF) for continuous beam problems:
0= EIJ‘deV jfvdx
dx dx
+aoylw-wlr oy aw —éjﬂ + o [(w—w ] (4.6.4)
sw dx dx |- ) <
S

- 3
—nX[Vv]]-sV —nX{M? + Ny Eld—\évv —n,| El d \ZNSV
) dx” dx” |

sw s@

In comparing Eq. (4.6.4) with the LWF developed in section 3.2 (see EQ. 3.2.15), it is

noted that the only difference in the two equations is the term o [(w— 0i7)v]rc .

Therefore, the LWF of Eq. (4.6.4) can be used for all beam problems worked in this
report; when no continuous beam boundary conditions are present, o, = 0, and Eq. (4.6.4)
becomes Eq. (3.2.15). Following the development of section 3.5, the MLPG equations
are

K (ode) 5\ (bdry)q _ ¢ (node) _ . (bry) _ (4.6.5)

where K ™® and f"™®* remain as Eqgs. (3.5.4b, 3.5.4d, and 3.5.4f), and the expressions
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[
a0

| o i (4.6.63)
27" A0 Lo
and
WZ'(W)
oMot (4.6.6b)
wyi rlsc

are added to the k i(jbdry) of Eq. (3.5.4€) and the f*™ of Eq. (3.5.4g), respectively.

The exact solution for the problem shown in Figure4.6.1 is

W(X) :L[3Ix3—2x4—l3x} for 0<x<|
48El
(4.6.7)
W(X) = %[ﬂx‘g — 2x4 - 30l 2x2 + 29I 3x—lOI 4} for 1 <x<2

Asfor the problem with the central concentrated load, the center support is expected to
cause difficulty. The MLPG and exact solutions for deflection, slope, and moment
obtained from the 65-node moddl are shown in Figure 4.6.2. The MLPG method
obtained very accurate results for both the primary and secondary variables and handled

the discontinuity caused by the center support well.

1 *\(\
x
W) 609 . K
Wmax  Fmax \ #'d \ ~ Wiyt
0 ) e SV
) - N T o W
N 0.5 A 1 MLPG
N e /(2 q\ " e
QX
N
1 Sees

(a) Deflection and Slope

Figure4.6.2: MLPG and exact solutionsfor primary and secondary
variables of a continuous beam subjected to a uniformly distributed load
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Figure 4.6.2 Concluded: ML PG and exact solutionsfor primary and secondary
variables of a continuous beam subjected to a uniformly distributed load
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Chapter 5: Concluding Remarks

The Meshless Local Petrov-Galerkin (MLPG) method has been implemented for

2-D potential and elasticity problems. In this report, the method was implemented and

studied for 1-D C° problems and further developed for bending of beams — C* problems.

The following conclusions are drawn from the work presented in this report:

The MLPG method yields accurate solutions for C° and C' problems.

The MLPG method yields continuous secondary variables as demonstrated by the bar
and beam problems studied.

A local coordinate approach is developed and validated for improving the
conditioning of the [A] matrix that is needed to evaluate the trial functions for the
beam problems.

For beam problems, the Petrov-Galerkin approach is preferable over the Galerkin
approach.

Reasonable ranges of several parameters are required to obtain good results. The

ranges of these parameters suggest the robustness of this method.

Each of these conclusionsis discussed below.

5.1 Accurate Solutions by the ML PG Method

Asdiscussed in Chapter 1, for any new method to compete with the Finite

Element Method, the new method must retain the advantages of the FEM. Thisincludes,

most importantly, the ability of the method to yield accurate (to machine accuracy)

solutions. (As stated in Chapter 1, “machine accuracy” means that the difference

between the exact and numerical solutions is of the order of 10™* when double precision
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arithmetic isused.) For all the C° and C* problems presented in this report, the MLPG

method yielded accurate solutions for both the primary and secondary variables.

5.2 Continuous Secondary Variables

As discussed in Chapter 1, one of the disadvantages of the FEM isthe
discontinuity of the secondary variables across inter-element boundaries. The
discontinuities in the secondary variables arise because of the piecewise linear shape
functions that are used to construct the trial functions. Elaborate post-processing
techniques are needed to obtain smooth distributions of these secondary variables. In the
MLPG method, elements are eliminated, and nodes are utilized in the domain of the
problem. A diffused (i.e., not piecewise linear) trial function such as a moving least
squares (MLS) interpolation isused. These diffused trial functions are smooth, and
hence, smooth distributions of the secondary variables are obtained, thus eliminating the
disadvantage of the FEM. These results were confirmed in Chapter 2 by application of

the method to a C° problem and in Chapter 3 for C* problems.

5.3 Local Coordinate Approach

As discussed in Chapters 2 and 3, the trial functions used to approximate the
solution are formed from shape functions that are developed by a MLS interpolation.
The formation of these shape functions involves the evaluation of the [A] matrix. The
[A] matrix is evaluated using the weight functions and the basis functions. The
conditioning of the [A] matrix is determined by the order of the basis function used. As

the order of the basis function isincreased, the conditioning of the [A] matrix becomes
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poor, especially for nodes far from the origin, resulting in an inaccurate computation of
theinverse of [A] that leads to poor quality solutions. To improve the conditioning of the
[A] matrix, the MLS approximation is defined in terms of alocal basis rather than a
global basis. A comparison of the results of the global and local approaches applied to
patch test problems as presented in section 4.2 clearly demonstrates that the local
coordinate approach produces very accurate results in comparison to the global

coordinate approach.

5.4 The Petrov-Galerkin Approach

In the MLPG method, because the trial and test functions are chosen from
different spaces, the resulting system stiffness matrices are unsymmetric. This could be
perceived as a disadvantage. However, closer examination of the method reveals that this
isnot adisadvantage. Asdiscussed in section 3.6, when a Galerkin approximation is
used, the system matrix is symmetric. However, the Galerkin approach resultsin
discontinuities that arise at the boundaries of the supports of the trial functionsin the
local sub-domain of the test function. Because of these discontinuities, elaborate
numerical integration schemes are needed to integrate the weak form accurately. The
local sub-domain, €, of the test function is divided into sub-regions. The endpoints of
these sub-regions are determined by the ends of the support domains of thetrial functions
that intersect Qs. A 10-point Gaussian quadrature is used in each of the sub-regions to
accurately integrate the weak form. The sub-region procedure results in large computing
effort to integrate the weak form in each sub-domain Qs. Alternately, if a Petrov-

Galerkin approximation is used, the sub-region integration is not needed. A single higher

117



order integration rule (for example, a 20-point Gaussian) in asingle sub-domainis
sufficient to integrate the weak form accurately. This result was confirmed numerically
for several examplesin Chapter 4. Thus, while the unsymmetry of the stiffness matrices
in the Petrov-Galerkin method may be construed as a disadvantage, it is far outweighed
by the computational time and effort saved by the weaker requirements for numerical

integration.

5.5 Problem Parameters

In applications of the MLPG method, several parameters are user-defined. Over
certain ranges of these parameters, good performance is obtained. The minimum order of
Gaussian integration required depends on the basis functions and weight functions used.
Also, extremely high orders of Gaussian integration are unreasonable and unnecessary.
For the problems worked in this report, numerical experimentation showed that a 20-
point Gaussian, while not necessary for all simpler problems, was found to integrate the
weak form accurately. The algorithm performs best when the extents of the test functions

arein therange Ax< (R, /1) < 2Ax, where Ax isthe nodal spacing between nodes for a

uniformly distributed nodal arrangement. Similarly, the extents of the trial functions are

best chosen as 8Ax < (R; /1) <16Ax, but no larger than 98% of the domain of the

problem (for 1-D problems).

5.6 Contributions of this Research
M eshless methods are becoming increasingly popular as evidenced by the large

amounts of literature on the subject published in the last five years. However, much of
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the research that is being conducted on meshless methodsis on C° problems. In this
report, one particular meshless method, the Meshless Local Petrov-Galerkin (MLPG)
method, was extensively studied for C* problems. At the time this research was
conducted, the literature available on the MLPG method for beam problems utilized a
Galerkin approach. In thisreport, a Petrov-Galerkin approach was implemented and
shown to be far superior to the previously available Galerkin approach (see section 3.6).
Additionally, four maor contributions of this report to the general field of meshless
methods are: (1) alocal coordinate approach to be used in the formulation of thetrial
functions was proposed and validated in section 4.2, (2) the performance of several test
functions (presented in section 3.4) was studied, and well-defined continuity
requirements for prospective test functions were determined, (3) application of the
method to a problem with load discontinuity was demonstrated in section 4.5, and (4)
application of the method to continuous beams was also demonstrated (section 4.6). The
following publications came out as a result of the work performed in this report:
I. 1.S. RauandD. R. Phillips (2002): “A Local Coordinate Approach in the MLPG
Method for Beam Problems,” NASA TM-2002-211463, and
[1. 1.S. RauandD. R. Phillips (2002): “A Meshless Local Petrov-Galerkin Method for
Euler-Bernoulli Beam Problems,” Proceedings of the ICES’ 02 conference, Reno,

Nevada, July 31 — August 2, 2002, Paper No. 139.
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5.7 Suggestions for Future Work

The MLPG method is till in the early stages of its development. More work
needs to be performed before the method can reasonably compete with the FEM. The
following are the next steps to extend the research conducted in this report.

e The method could be extended to Timoshenko beam problems. (First order shear
deformation is accounted for. The assumption of normals before deformation
remaining normal after deformation is relaxed to “normals remain straight but need
not be normal after deformation.”)

e The method could be extended to two dimensions for plate bending.

e The method needs to be modified and applied to study built-up structures.

e The method could be studied for shell analysis.

e Themethod relies very heavily on the user-defined parameters, namely R,, and R,.
More research should be done to determine more robust ranges of these parameters so

the method consistently obtains good results.
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Appendix A: Computation of Derivatives of Shape Functions
This appendix presents a detailed derivation of the derivatives of the shape
functions used in the MLPG method. Section 1 presents the derivatives of the shape
functions for C° problems. Section 2 discusses the [B] matrix for C* problems. Section 3

presents the derivatives of the shape functions for C* problems.

A.1C°Problems

In this section, the derivatives of the shape functions for C° problems are derived
first in terms of the general spatial coordinates, Xk, and then reduced to one dimension. In
C? problems, the approximations for the solution, uh(x), can be written as

W) =p' (¥ax), (A.1.1a)
where p isan m" order basis functions and a is avector of undetermined coefficients, and

h : "
U ()= 9;090; (A.L1b)
j=1

where ¢(x) are shape functions, and 0 j arefictitious nodal values. In Egs. (A.1.1), X
represents the spatial coordinates,

x=[x % x]. (A.1.2)
For the local weak form, the derivative of u"(x) is needed. First consider the statement of

u(x) in Eq. (A.1.1a). Differentiating,

h T
ou (x) _ pT (%) oa(x) N op (X)

a(x) . A.1.3
an an an (X) ( )
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In Eq. (A.1.3), the second term is easy to evaluate; however, evaluation of da(x)/dx, in

thefirst termis not straightforward. The evaluation of this derivative requires closer
examination and is discussed below.
Consider the equation

[A] {a = [B] {}, (A.14)
(mm)(ml1) (m,n)(n2)

inwhich {0} arefictitious nodal values, and [A] and [B] are easily evaluated from

weight functions and basis functions using Egs. (2.2.17 and 2.2.18). Eq. (A.1.4) can be

differentiated as

w A2 Mgy -y A2 ABigy (A15)
Xk k X

In Eq. (A.1.5), thefictitious nodal values {0} are not functions of x, and thus the term
[B]- (0{{} /9%, ) vanishes. Rearranging Eqg. (A.1.5) one obtains

w42 Al Al (AL6)
oXg  OXg Xk

Thisleadsto

oa}

-l 1a[B]{ 0} ~[A]

LAl (A.17)
X

The vector {a} can be evaluated using Eq. (A.1.4),

{a =[A] " [B] {0} . (AL8)
(m1) (mm)(mn)(nl)

Substituting Eq. (A.1.8) into Eq. (A.1.7),

oa}

e =l 1a[B]{} [A] 1a[A][A] [BI{a} . (A19)

So, substituting Egs. (A.1.9 and A.1.8) into Eq. (A.1.3),
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au"x)

. =pVx)[[A]‘l@{o}—[A]‘lM[A]*[B]{a}}
Xi Xy Xy

apa (81 |

Now consider the statement of u"(x) in Eq. (A.1.1b). Differentiating,

au (x) dUl; a¢5j(><)A_ 995 (0)
Z[¢,() U _]Z_; ol
Equating the two expressions for the derivative of u(x), i.e.,

aul (x)
an

_odu "(x)
an

Eq.A.1.10 Eq.A.111

leadsto

pT(x){o}[[A]*?—[A]‘lM[AﬁB}}
Xi Xy

n

)
+ 92 Bay ey -
Xk

or,

d0¢;(x) 71
N @wm) (mm) (mn) (Lm)

where

a()

() o

k=123.

Finally,
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=p k[A] " [B]+p' [[A]_l[B],k—[A]_l[A],k[A]_l

(mm) (mn) (MM) (m,m) (Mm) (m,n)

(A.1.10)

(A.1.11)

(A.1.12)

(A.1.13)

(A.1.14)

(A.1.15)



m
Pik=Y pg,k([Al‘l[B])gj + Py [AT (B ~[AT Y[AL k(AT [B] | (AL16)
g=1

Note that in this report, there is only one spatial coordinate, x = X, as 1-D problems are

considered. Asaresult, xx = X, and the partial derivatives become full derivatives:

m
b= PoxlAT By + P LA B ~[A1 AL LA B, (AL17)
g=1

where

d( )
&) (A.1.18)

() x

A.2[B] Matrix for C* Problems

In section A.1, the [B] matrix isan (m,n) matrix given by Eq. (2.2.18) as

[B]= [PTL} . (A.2.1)
In C* problems, the [B] matrix is an (m,2n) matrix given by Eq. (3.3.14) as

[B]= [PTx, Py x} . (A.2.2)

Consider the equation

[A] {a}= [B] {5}. (A2.3)

(mm)(m1) (m2n)(2n])
inwhich, asin Eq. (3.3.8), {§ isavector containing {W} and {t}, the fictitious nodal
values of deflection and slope, respectively. Also, [A] and [B] are easily evaluated from
weight functions, basis functions, and derivatives of basis functions using Egs. (3.3.13

and 3.3.14). The approximations to the solution, w"(x), can be written asin Eq. (A.1.2a)

as

127



w'(x)=pT (Wa(x).

(A.2.4)

Solving for {a} in Eg. (A.2.3) and substituting into Eq. (A.2.4) yieds Eq. (3.3.16),

W) =pT (AL [B] {W} ,

@m) (mm)(m2n)

(2n,1)
or
W) =pT A BT (A [B] i}
@Lm) (mm)(mn)(nl) @m) (mm)(mn)(nl)
where

By Bt]z[PTk PIL]

From Eq. (A.2.6), the shape functions are as Egs. (3.3.18):

m
V0= py(x)lAPTRg
g=1

m
wi?(9=> " pg(x, )[A_lpgk] i
g=1

Substitution of [By] and [B¢] from Eq. (A.2.7) into EqQ. (A.2.8) yields

m
v} (0= pg(x e
g=1

m
V0= pgxplaTsy .
g=1
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(A.2.7)

(A.2.8)

(A.2.9)



A.3 C!Problems

Thefirst, second, and third derivatives of

v (0= i Py (A Bl
g=1

m
v009= pyxplate,
g=1

(A.3.1)

with respect to x are sought. The derivatives are found via the procedure outlined below.

In C* problems, the approximations for the solution, w(x), can be written as

w'(x)=p" (Na(x), (A3.22)

where p isan m" order basis function, and a is a vector of undetermined coefficients, and
heo N[ (W) (©)
W -
W (x) = Z(w,— (X)W +y) " (98] j , (A.3.2b)
j=1

where y/EW)(x) and y/](‘g)(x) are the shape functions (A.2.9), and \ivj and éj are

fictitious nodal values. For the local weak form, the first, second, and third derivatives of
W'(x) are needed. To evaluate these derivatives, a general procedure similar to that
presented in section A.1 for C° problemsis used.

A.3.1 First Derivatives

Differentiating Eq. (A.3.2a) with respect to x, one obtains

h T
dw (x) _ pT(x) da(x) N dp (X

dx dx dx

a(x). (A.3.3)

In Eq. (A.3.3), the second term is easy to evaluate; however, evaluation of da(x)/dx in the
first term is not straightforward. The evaluation of this derivative requires closer

examination and is discussed below.
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Consider Eg. (A.2.3):

[A] {a} = [B] {& . (A.3.4)

(mm)(ml1 (m,2n)(2n1)

Eq. (A.3.4) can berewritten as

[A] {a} =[Bw{W}+[B] {1}, (A:35)
(mm)(ml) (mn)(nd) (m,n)(nl)

where [By] and [By] are presented in section A.2. Differentiating Eq. (A.3.5) with respect
to X, one obtains

d{W} _ d[Byw]

] d{t} d[Bt]
W dx dx

da  dAl -
(A= + =, (8 =B

{W} +[B;] = + ——L{1}. (A.3.6)

In Eq. (A.3.6), because the fictitious nodal values {W} and {t} are not functions of x, the

terms [B,,]- (d{W}/dx) and [B,]-(d{f}/dx) vanish. Rearranging Eq. (A.3.6),

Thisleads to

A3 _pay* Ll a2 DBy a1 LBy (A38)
The vector {a} can be evaluated using Eqg. (A.3.5),

{a =[A] 1By I{W} +[A] [BI{T}. (A.3.9)
Substituting Eq. (A.3.9) into Eq. (A.3.8),

A% Loudygy par* il

dx
(A AT B, ) (A3.10)
_1d[A]

—[A] —[A] CHG
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So, substituting Egs. (A.3.10 and A.3.9) into Eq. (A.3.3),

h
e =pT(x>{ (A Lol gy pag Loy
—[A]‘1$[A]‘1[BW]{W}—[A]‘lM[A]‘l[Bt]{f}} (A.311)
X dx
L9 (%

-1 . 1 "
N [[A] [Bul{W} +[A] [Btl{t}]

Now consider the statement of w"(x) in Eq. (A.3.2b). Differentiating with respect to x,

h n (w) ~ ) A
aw (x) L dy () awg (w) ~ dy (X)) dEj (g
B R ot 2E0
(A.3.12)
n w) @)
S W} ; o (x)}.
i dx dx
Equating the two expressions for the derivative of w'(X), i.e.,
dw(:(x) _ w9 (A3.19
X Eq.A.3.11 Eq.A.3.12
leads to
.
o" (%) }[[A] 1 dBu] [A]‘l%[A]‘l[Bwl}M{W}[A]‘l[BW]
X dx
T
+pT(x){v‘v}{[A]‘1%—[A]‘lM[AﬁBt]}M{f}[A]‘l[Btl (A3.14)
X dx dx

_i A0 o v
2T gy Iy '

=1

Comparing the coefficients of Wj and 6 j on both sides of Eg. A.3.14 gives
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W) m

a2 o)

ool 9

(A.3.15a)
-1d[B

* Py {[A] ax

ABul gy ABpap [BW]}
gj

and

9=1 (A.3.15b)

+ g [[A]*M—[A]‘l%mrl[st]}

dx g

A.3.2 Second Derivatives

Differentiating Eq. (A.3.3) with respect to x, one obtains

dzwhz(x) L Zagx) 00 (0 da) d%p’(x)
dx

dx dx  dx dx?

a(x) . (A.3.16)

In Eqg. (A.3.16), the last term is easy to evaluate. The term da(x)/dx was found in section
A.3.1. Theevaluation of d?a(x)/dx? in the first term requires closer examination and is
discussed below.

Consider Eg. (A.3.7):

d{a} d[Bw] d[Bt]

m-dALy (A.3.17)

[A] o

{W} +

Differentiating Eq. (A.3.17) with respect to x, one obtains

132



(A ]d %3 L dAld{a} _d [Bw]r W + d [Bt]r}

dx2 dx dx X’ X’
(A.3.18)
d [A]r} d[A] d{a}
dx dx dx
Thisleadsto
P _ (a2 Bl gy a2 B
dx dx dx
(A.3.19)
2
gapidiAdE o, adAl
2A] o dx [A] o2 {a} .

Substitution of the expressions for {a} and d{ a}/dx from Egs. (A.3.9 and A.3.10) into Eq.
(A.3.19) yields
2 2 2
A8 _jar Bl a9 By
dx dx dx
AT d[A]{ (Lol iy oy il gy
(A.3.20)

-t a7 e, 00 (a1 [Bt]{t}}

1d [A]

dx

—[A] {[A] [Bwl{W}+[A] [Bt]{t}}

So, substituting Egs. (A.3.20, A.3.10, and A.3.9) into Eq. (A.3.16),
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d?w"(x)
dx?

1d[B]

2
- pT(x){ (a1 ek (A1 e

At d([jA] { [A]_ld[Bwl o A]_101[8 degy
X dx

—[Arl—dg‘\] AFE, 0w (A1 A A e 1 |

X dx [

—[A]”

1 diA] {IAT B 1(W) +[A] B, ]{t}}}

T
+2dp (X) [A]—l d[BW] 1d[B ]

dx {t}

—{ W +[A]”

—[A]*%[A]‘lww]{v“v}—[A]*M[Al‘l[st]{f} }
X dx

25T A.3.21
dgx 9% O [1a1 B, 100 +[A] B (D] - (A-320)

Now consider the statement of dw"(x)/dx in Eq. (A.3.12). Differentiating with respect to

X,
(w) 2. (0)
d X) ~ d7wi (X
d%w (x) w, (X) 6 w,z() _ (A3.22)
dx
Equating the two expressions for the second derivative of w'(x), i.e.,
2 h 2 h
dw—z(x) :dw—z(x) (A.3.23)
" lgqgaz2r X [ggaz22
leadsto
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pT(X){W}{ Al [Bw] P d[A]{ [A]‘lm—[A]‘l%mﬁBW] }

dX dx
1d [A]{A] [BW]}}
dx
S
+2 9P eyl ia 2 ABwl_pp Ay [BW]}
dx i dx
2 T _
+ 42l 1a1 e,
dx -

+pT(x){f}{ PNRMLO P 1d[A]{ [A]‘lﬁ—m]*%mﬁw}
dx? X dx

(a8 [A] {A1" B}
dx

dp (X) -1 d[B ]

{t}{[A] [A]‘l%[A]‘l[Bt]}
X

2T
UMY

dx

(A.3.24)
dx dx2

n 2 (w) 2 (0)
Z[ RAMCIPRCE (x)]

Comparing the coefficients of Wj and éj on both sides of Eq. (A.3.24) gives
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and

2 (6

=
dx g=1

|

1 dx2

| & (A1 Bu

0]

d _ _ _
+2ﬁ{[A] LABw] _p) gy 1[BW]}

dx dx gi
2
. pg{ At Bl ;Bzw] (A3.250)
X
B -1d[A] -1d[Bw] -1 d[A][ 412
AR S {[A] S [A] Al [BW]}
2
A A A s, } }
dx ai
2
d Pg -1
[A] B
dx2 ( t])gi
dpg [, ~1d[Bi] 2 dA], -1
+2K{[A] ™ —[A] F[A] [Bt]Lj
2
+ pg{ (A" dd[zt] (A.3.25h)
X
B -1d[A] -1d[Bt] [ ,-1d[A] -1
AR {[A] CU[Al Al [Bt]}
2
—[A]‘lﬁﬁ‘]{[A]‘ﬁBt]}}
dx gj
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A.3.3 Third Derivatives

Differentiating Eq. (A.3.16) with respect to x, one obtains

3 h 3 T 2
d w3(x) :pT(X)d a(3x)+3dp (x)d a(zx)

dx dx dx dx
(A.3.26)
2 T 3T
+3d p (X) da(x)+d p (X)
dx° dx axC

a(x) .

In EQ. (A.3.26), the last term is easy to evaluate. The term da(x)/dx was found in section
A.3.1, and the term d?a(x)/dx? was found in section A.3.2. Asin sections A.3.1 and

A.3.2, the evaluation of d®a(x)/dx® in the requires closer examination and is discussed

below.
Consider Eg. (A.3.18). Differentiating with respect to x, one obtains
A ]d (a) LdlAld {a} LdlAld {a} d’A] d{a
6 X ol | B gl gl o
_d [BW] i+ [Bt] {t} (A.3.27)
dx d
d [A] d{a} d [A]r ah - d[A]d {a} d [A] d{a}
Y dx gy ax?  dx
Thisleadsto
m—[A] 2d [Bw]{ iy +[A] S [Bt]{t}
dx dx dx
(A.3.28)
2 2 3
B -1d[A]d{a} -1d[A] d{a} d'[A],
qA] dX dX2 :{A] dX2 dX dx3 la} .

Substitution of Egs. (A.3.9, A.3.10, A.3.20, and A.3.28) into Eq. (A.3.26) yields
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3,,,h 3 3
- pT(x){ Ayt el a2 T8
3[A]_loI[A][ [A]_ld [BW]{ i+ AT 1d? [B ]{t}
—2[A]-1%{ [A]‘ld[Bw]{ -+ (A1 LBy
At YA A s i
dx
YRR G N BRI }
dx
_1a2d diA] {[A1 B, 1) +[A] B, ]{t}}}

B

_gapdAl [A]{ [A]—ld[Bwl{ W) +[A]
dx?
—[A]—l%mrﬂew]{m
X
AT A, }
X
3
At A a1, g0 + (AT B ()]
dx
A.3.2
R el R I PR L A e A3
dx dx? dx?
—2[A]_1${ At ABul iy 1A rld[ degy
X dx
SR R
X

- e, }
X

—[A]—ld [A]{[A]‘l[Bw]{W}HA]‘l[B ]{t}}}

2.T
o gxz<x){[ g 4Bl a1 B

—[A]*%{A]*[BW]{W}—[A]-lﬁtArl[Bt]{f} }
X dx

OI3IOT(X)

e {[A]_l[BW]{\fV}+[A]_1[Bt]{f} } :
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Now consider the statement of d*w"(x)/dx® in Eq. (A.3.22). Differentiating with respect

to X,
0 A.3.30
d°w (x) . d% (A-3:30)
Z Hi 3 '
dx’ dx

Equating the two expressions for the third derivative of w'(x), i.e.,

d3wh (%) d3wh (%) (A.3.31)

T3 -3 :

X g Az20 S

and comparing the coefficients of Wj and éj gives
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(A.3.323)

d®pg 3 d[By] [ ,a1dA] i1
T {[A] L a [BW]LJ_

d 2
dx dx?

—2[Ar1d[A”[Ar1d[Bw] (AT A Ay [Bwl}

1
At A Ay [Bwl}}
dx2

+ pg|: [A]—l d C::BSW]

1d[A]J[ ]_1d [B.]
dx?

—2[A]‘1%([A]'1%—[A]*%{Arlwwlj

9

-JAl”

2
—[A]*%{Arﬂsw] }
2
—qA]'l%{[Arl%—[Arl%[Arl[BW]}

3
(At A A } }
dx g
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and

I 9 -1
3 _gZ; 2 (A,

d?
437 Do {[A]‘ld{B d [A]‘ld[A] AT [Bt]}
dx? dx g

dp 1 d?[By]
+3— ™ { [A] e,

(A.3.32h)

Corar-tAIA] [ -1 dB] 1 dIA] A
2A] ™ {[A] ™ [A] o [A] [Bt]}

_a]@ d[A] {ar- [Btl}}
X

gj
3
+ pg|: [A]_lddEgt]

_1d[A 1 d?[By]
_qA]l [ ]{[A]l d2t

~oap diA] [[A]‘l Ao _par B iaris, ]j

A d[’j][Arl[Bt] }

3[A]-1d [A]{[A]_ld[B] [A]_ld[A][A] B, ]}

d
L d3A], .
~[A]TT =20 A] [Bt]} }
dx’ g
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Appendix B: Conditioning of Matrices
In this appendix, the conditioning of matricesis discussed. Properties of ill-
conditioned matrices are presented, followed by the definition of the condition number

and an application to an example problem.

B.111lI-Conditioning

An ill-conditioned matrix is onethat is nearly singular, i.e., the matrix has rows
that are almost scalar multiples of each other. Singular matrices cannot be inverted, and
thus the inversion of ill-conditioned (nearly singular) matrices yields poor results.

Consider a system of equations,

[DR}={P}, (B.1.1)

for which a solution is sought. The solution is found by inverting the [D] matrix,

{R}=[D] {P}. (B.12)
In numerical applications of equation solving, an accurate computation of [D]™* depends
on the accuracy to which the components of [D] are stored, i.e., the number of significant
digits maintained for each component of [D]. The condition number of [D], cond[D],
provides an estimate of the number of digitslost in computing thisinverse. Large
condition numbers usually indicate ill conditioning. The question arises, “How largeis
large in terms of condition numbers?” To answer this question, the method by which

condition numbers are calculated and an example is presented below.
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B.2 Conditioning Numbers

Consider the system described by (Cook et. al., 2002)

Ldél dl_ f ;J{:} B { II(J)l} (B.2.1)

If di >> ds, the second row of [D] is essentially the negative of thefirst row. Thusthe
matrix [D] is nearly singular and thusill-conditioned. The conditioning number of a

matrix [D] may be defined as (Cook et al., 2002)

cond[ D] = =Max
min

(B.2.2)

where Amax and Amin are the largest and smallest eigenvalues of [D]. The eigenvalues of

[D] are computed from

ID-A4|=0 (B.2.3)
where | istheidentity matrix. In numerical computations, truncation and round-off
errors result in the existence of errors 0D and J R, related to [D] and [R] by (Bathe,

1996)

SR=-D ".6D-R. (B.2.4)

Taking norms, EqQ. (B.2.4) becomes

[l p— L (B.2.5)

To evaluate these errors, assume t-digit precision in the computer, and s-digit precision in

the solution. Then,
__1-10 (B.2.6a)
and
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I 010 (B.2.6h)

Substitution of Egs. (B.2.6) into (B.2.5) yields an estimate of the number of accurate

digits maintained in the solution:
s>t —logyp[cond[D]]. (B.2.7)

In the system of EqQ. (B.2.1), consider d; =2 and d; = 1 (d; > dy):

pj=| 2 72 B.2.8
o1=| 5 | (8.28)

To compute the eigenvalues,
2 -2 |4 0 2-4 =2
D-Al = - = : (B.2.9)
-2 3 0 A -2 3-1
and, according to Eq. (B.2.3),

2-1 -2|_
-2 3-i

(B.2.10)
(2-4)@B-4)-4=0 .

The eigenvalues are therefore
A1 = 456155 (B.2.11)
A2 =0.43845

and the condition number is calculated as

4.56155

cond[D] =
0.43845

=10.4038. (B.2.12)

Assuming a double precision computer is used, t = 14, and the number of accurate digits
maintained in the solution can then be computed as

s>14-l0gy,[10.4038]| = 13. (B.2.13)
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Now consider the case d; >> d,, for example, d; = 2 and d, = 1x10°®;

2 -2
b= L 2 2.000001} |

From Eq. (B.2.3),

2-1 _2 o
—2  2000001-4

and the eigenvalues are
A1 = 4.0000005
A2 =0.0000005 .
The condition number is therefore calculated as

cond[D] = 4.0000005_ 8000001.

0.0000005

Using the same double precision computer, t = 14, the number of accurate digits

maintained in this solution is computed as

s>14-10g;,[8000001]= 7.

(B.2.14)

(B.2.15)

(B.2.16)

(B.2.17)

(B.2.18)

In the entry 2.000001 of Eqg. (B.2.13), the“1” that keeps the matrix from becoming

singular isin the seventh significant digit location. Because only seven digits are

maintained during subsequent computations (see Eq. B.2.17), theinverse of [D] in Eq.

(B.2.14) will be very inaccurate. Thus, the conditioning number of a matrix is a good

indicator of how well the matrix is conditioned.
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