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Abstract 

Laminar flow control (LFC) is one of the key enabling 
technologies for quiet and efficient supersonic aircraft.  
Recent work at Arizona State University has led to the 
development of a novel concept for passive LFC on 
crossflow dominated flow configurations.  It employs 
distributed leading-edge roughness to limit the growth of 
naturally dominant instabilities that would otherwise lead 
to an earlier onset of transition. LFC technology 
development under DARPA’s Quiet Supersonic Platform 
(QSP) and NASA’s Supersonic Vehicle Technology 
(SVT) programs includes both wind-tunnel and flight 
experiments aimed at further development of roughness 
based LFC at close to full-scale Reynolds numbers, and 
design studies for integrating this new concept into the 
overall vehicle design. Companion theoretical studies at 
NASA Langley Research Center have the objective of 
providing both an enhanced physical understanding to 
facilitate the optimization of roughness based LFC, and a 
physics based transition prediction capability for this and 
other LFC configurations.  This paper outlines the 
findings based on a preliminary exploration of the 
parameter space, in terms  of receptivity plus linear and 
nonlinear development of stationary crossflow 
instabilities on an infinite-span swept airfoil at a free-
stream Mach number of 2.4 and chord Reynolds number 
of 16.3 million.  The findings are used to advocate a 
holistic approach for transition prediction, which 

accounts for all major stages within transition (namely, 
receptivity, linear growth, nonlinear interactions and 
secondary instability) in an integrated manner.   
 

1.  Introduction 
 
Given the recently renewed quest for long-range 
supersonic flight, both DARPA and NASA have 
partnered with industry and universities to help develop 
the next generation of supersonic vehicles after 
Concorde.  Future efforts under DARPA’s Quiet 
Supersonic Platform (QSP) program[56] will focus on a 
long-range strike military vehicle, while NASA’s 
Supersonic Vehicle Technology (SVT) program is 
geared towards key technologies that would enable the 
future fleet of supersonic transports to be 
“indistinguishable from its subsonic counterpart in terms 
of safety and environmental capabilities.[25]” Common to 
both programs is the pursuit of aggressive performance 
goals, to help meet the mission requirements of a 
military vehicle and to ensure the economic and 
environmental viability of a civilian transport.   
 
Laminar flow control (LFC) is one of the key 
technologies being addressed under the above programs.  
Bushnell[3] points out the cascading benefits from LFC, 
namely, drag reduction, reduced weight, increased range, 
lower sonic boom, and reduced noise levels and 
emissions.  The relevant LFC concepts include both 
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traditional techniques involving either passive control 
based on tailoring of the inviscid pressure gradient,[30] 
active stabilization via surface suction[1] and/or surface 
cooling[7, 44]; and the recently proposed concept of using 
artificially introduced surface roughness to delay 
crossflow-induced transition[47, 50].  The latter technique, 
proposed by Saric and his coworkers at Arizona State 
University (ASU), is particularly noteworthy for being 
the only passive technique that is applicable to crossflow 
dominated transition and incurs minimal additional 
penalties associated with control.  Another potential 
concept for LFC involves the use of surface 
permeability, which has been shown to damp the growth 
of second mode instabilities at hypersonic speeds.[21, 35]  
Conceivably, analogous benefits may accrue in the case 
of first mode and/or non-stationary crossflow instabilities 
after suitable tuning of the surface impedance 
characteristics.  Given the merits and limitations of each 
individual LFC technique, an optimal implementation of 
supersonic LFC (SLFC) would likely involve a 
synergistic combination of multiple concepts (i.e. a 
hybrid approach analogous to subsonic LFC), either on 
the same aerodynamic surface or on the vehicle as a 
whole.    
   
As discussed by the National Research Council panel on 
Breakthrough Technology for Commercial Supersonic 
Aircraft[39],  stringent requirements for component 
performance plus economic and environmental 
challenges for a supersonic aircraft leave little room for 
inefficiencies in airframe design. Therefore, irrespective 
of the choice of LFC technique(s), it is necessary to have 
accurate and reliable prediction tools for the transition 
process. Although N-factor correlations based only on 
linear growth characteristics have been shown to be 
reasonably accurate in a broad range of flows, they offer 
rather limited scope for further refinement.  More 
significantly, their limitations for transition prediction in 
crossflow dominated flows have become particularly 
apparent during recent studies based on low-speed wind 
tunnel experiments at ASU[42, 47] and at NASA Langley 
Research Center [13, 31, 53].   
 
The studies mentioned above have shown that linear 
stability alone is unlikely to predict the dominant 
spectrum of instability modes in swept-wing boundary 
layers because of the preferential excitation of stationary 
crossflow modes in a sufficiently benign unsteady 
disturbance environment[14].  Furthermore, the extended 
length of nonlinear interactions during crossflow-
dominated transition, together with the prolonged region 
of laminar breakdown at higher speeds, indicates a strong 
need for embedding the nonlinear stage into the 
transition prediction process for supersonic swept-wing 
flows.  For example, in the context of controlled 
laboratory experiments at low speeds, an N-factor 
criterion based on the linear amplification of secondary 

instabilities has been shown to provide more accurate 
transition onset predictions than either a linear N-factor 
or an absolute amplitude criterion based on the primary 
instability alone[33].   
 
The ASU concept for roughness based transition 
control[47] clearly illustrates the emerging need for 
advanced transition prediction techniques, initially as a 
source of supplementary information and eventually 
towards high-fidelity analysis during aerodynamic 
design.  The ASU concept utilizes controlled leading-
edge roughness to introduce subdominant (stationary) 
crossflow modes that are unlikely to cause transition on 
their own.  However, because of their stronger 
amplification immediately downstream of the location of 
excitation, these modes tend to suppress the initial 
growth of naturally dominant modes and, hence, delay 
the onset of transition.  Because this concept is 
predicated on the process of nonlinear mode competition, 
which in turn is achieved via artificial receptivity, this 
new LFC concept inherently relies upon physical 
mechanisms not reflected in the linear stability based 
predictions. Finally, in addition to the potential practical 
benefits derived from this mode of LFC, the ASU 
concept also provides for a relatively “controlled” 
transition process; this makes it easier to apply an 
advanced transition prediction approach that mimics the 
actual transition process in terms of most or all of its 
major stages.  In other words, roughness based control 
also provides a useful test bed, intermediate in 
complexity, against which to calibrate the holistic or 
integrated transition prediction approach.   
 
The individual ingredients of such an approach have 
previously been developed and tested in the context of 
swept airfoil configurations, both within our group[5, 8-10, 

13, 15, 28, 32-33, 40, 46, 51-52] and elsewhere.[17-18, 23-24, 26-27, 38, 41]  
Integration of these ingredients in the context of a purely 
natural disturbance environment was attempted during 
the analysis of measured data from the NASA/Boeing 
Hybrid Laminar Flow Control (HLFC) experiment.[13, 31, 

53] Disturbance measurements downstream of the leading 
edge were used in conjunction with computations to 
estimate the initial spectrum at an upstream location, 
which in turn served as the starting point for further 
investigation[13] based on nonlinear parabolized stability 
equations[2, 24] (PSE) and secondary instability 
calculations . 
 
Much of the previous work, especially pertaining to 
roughness-based control, has been carried out for low-
speed configurations and relatively small chord Reynolds 
numbers (Rec = O(2-3 x 106)).  The physics of stationary 
crossflow modes is not particularly sensitive to Mach 
number effects, at least through the low supersonic 
range. However, higher Reynolds numbers coupled with 
supersonic flow speeds pose inherent hurdles to any form 
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of LFC.  The challenges at higher Reynolds numbers 
include both technical aspects (related to highly unstable 
boundary layers) and those related to practical 
implementation (because of magnified sensitivity to 
various factors that cannot be easily controlled in a 
realistic flow environment, particularly when the form of 
control is purely passive) [Bushnell, private 
communication, 2001]).   
 
Considerable work is currently in progress under the 
QSP and SVT programs to address and overcome the 
high-Reynolds-number challenges in the context of 
roughness based LFC, including wind tunnel 
experiments at intermediate and full-scale Reynolds 
numbers.  Related work at NASA Langley Research 
Center involves the development and application of 
higher fidelity transition prediction tools.  Major aspects 
of the tool development are addressed in a companion 
paper[8].  The objective behind the present work is to 
examine design and optimization of roughness-based 
LFC within the framework of the holistic approach to 
transition.  A comprehensive theoretical study to meet 
this goal is currently underway.  The present paper 
outlines the findings from the initial phase of this study, 
which was aimed at assessing the capability of the 
advanced design tools at higher Reynolds numbers; 
identifying specific areas for validation; and  formulating 
a strategy for a systematic parametric study in follow-on 
work. 
 
To help meet these objectives, we examine the highest 
Reynolds-number condition (Rec = 16.3 million based on 
mid-span, streamwise chord) from the ASU Mach 2.4 
wind tunnel experiments documented by Saric and 
Reed[50].  The feasibility of roughness based transition 
delay has already been demonstrated for this 
configuration. The theoretical findings reported herein 
are intended to provide a posteriori insights into the 
details of the underlying flow phenomena.   Linear and 
nonlinear development of crossflow instabilities in the 
boundary layer over this configuration is examined in 
Section 2 below.  These results establish the potential 
significance of the initial amplitudes of  both the control 
input and the naturally occurring crossflow instabilities 
towards their subsequent nonlinear development and, 
hence, the onset of transition. Accordingly, the 
generation of stationary crossflow instabilities in a 
supersonic boundary layer by short-scale non-
uniformities in surface geometry is studied in Section 3.  
An initial attempt to characterize the surface roughness 
over a representative aerodynamic surface is outlined in 
Section 4.  Concluding remarks and an outline of future 
work, is presented in Section 5.   
 
All of the stability results reported in this paper have 
been obtained using the Langley Stability and Transition 
Analysis Code (LASTRAC). LASTRAC is a third-

generation PSE code developed by Chang and 
coworkers,[5, 6, 8] designed to improve on its previous 
versions via better algorithms and modern software 
engineering practices.  Currently, it includes modules to 
solve the quasi-parallel stability equations and linear and 
nonlinear versions of PSE for compressible shear flows 
that are invariant along one spatial direction (e.g., 
infinite-span airfoil flows and axisymmetric bodies at 
zero angle of attack).  However, we envision that 
LASTRAC will eventually include a suite of codes 
allowing transition prediction at hierarchical levels of 
prediction accuracy, required input data and/or 
computational resources (Fig. 1).       
 
 
2. Linear and Nonlinear Development of Crossflow 

Modes in a Supersonic Swept-Wing Boundary 
Layer 

   
The LFC experiments reported in ref. [50] were 
conducted in the M 2.4 ASU 0.2-m Supersonic Tunnel.  
The swept-wing model had a leading-edge sweep of 73 
degrees, 0.3 meter streamwise chord at the mid-span 
location and a symmetric cross section with thickness-to-
chord ratio of 4%.  The cross section of this airfoil was 
designed to be conducive to the passive, roughness-based 
control strategy.  Specifically, it features a small enough 
leading-edge radius (to ensure laminar flow along the 
attachment line) and a favorable pressure gradient 
extending through at least 80% of the chord (to promote 
crossflow modes over first mode, i.e. streamwise 
instabilities). Three different Reynolds numbers were 
considered in the experiments, ranging from Rec = 8.7 
million to 16.3 million. Because the present work 
focuses on higher Reynolds number effects, the Re = 
16.3 million configuration is used for the results 
presented herein.   
 
For the current study, the mean flow was modeled as 
(locally) invariant along the span.  In reality, of course, 
the presence of tunnel walls may have caused the surface 
pressure distribution to deviate from the conical or 
infinite-span approximation (which would be more 
relevant to external flight conditions). Based on the 
surface pressure prediction in Fig. 2 of ref. [50] and 
assuming adiabatic thermal conditions at the model 
surface, the mean boundary-layer flow was computed 
using the BLSTA code[55] and was subsequently used 
during the linear and nonlinear stability calculations 
described in this section.   
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2.1 Linear stability characteristics  
 
2.1.1 Stationary crossflow modes and the effects    
of  nonparallel mean flow and surface curvature 
 
Because the stability predictions used to design the 
control scheme for the ASU experiments were based on 
quasi-parallel stability theory without the effects of 
surface curvature, it is useful to begin with an assessment 
of mean-flow nonparallelism and surface curvature on 
the predicted linear growth characteristics of the 
stationary crossflow modes.  Figures 2(a) and 2(b) 
display the N-factor predictions (i.e., integrated 
amplification ratios relative to an approximate neutral 
location) based on linear PSE including the effects of 
surface curvature (NPWC) for spanwise wavelengths 
ranging from less than 1 mm to 12 mm.  Figure 3 shows 
a comparison of the associated growth rates  with those 
based on the quasi-parallel approximation, both with and 
without surface curvature effects (QPWC and QPNC, 
respectively), and nonparallel predictions without 
curvature (NPNC) for selected wavelengths of the 
disturbance modes. 
 
Figure 2(a) illustrates the large magnitudes of N factors 
involved (reaching N=9 by 30% chord and N=23 by 85% 
chord) and the relatively broad range of wavelengths (2 
mm to 6 mm) corresponding to high amplification ratios 
over a dominant portion of the chord.  Both of these 
features are symptomatic of high Reynolds-number 
flows and are indicative of the challenges involved in 
successfully implementing LFC in such flows.  The 
results from Fig. 2(b) also suggest that the composition 
of the surface roughness, especially narrow peaks in its 
spatial spectrum, are likely to play an important role in 
determining the identity of the naturally dominant 
mode(s), i.e., the targets of control action during LFC. 
 
As expected, effects of both nonparallel mean flow and 
the surface curvature are most significant near the 
leading edge.  Because this region plays a crucial role in 
the roughness based LFC technique, it seems desirable to 
include both of these effects during the preliminary 
design process, even if purey linear tools are used for this 
purpose.  Overall, the destabilizing effects of nonparallel 
mean flow are partially nullified by the stabilizing 
influence of convex curvature.  This cancellation brings 
the growth rate predictions based on QPNC in close 
alignment with the nonparallel growth rates including the 
effects of curvature (NPWC), except at the larger 
wavelengths for which nonparallel effects are relatively 
more significant. These findings are consistent with a 
number of earlier studies in the context of low-speed 
flows. 
 

The LASTRAC predictions for linear disturbance 
evolution in a variety of canonical flow configurations 
have been cross-validated against a high-order DNS 
code, DNSUTA, developed at the University of Texas at 
Arlington[29]. A detailed comparison based on this study 
will be reported in a separate forthcoming paper[28].  
Herein, we simply indicate the comparison pertaining to 
linear amplification of a stationary crossflow mode in a 
supersonic, swept-wing boundary layer.  
 
The model geometry used for this comparison is based 
on a moderate-Re, subsonic-leading-edge configuration 
designed for hybrid laminar flow control.  It involves a 
leading-edge sweep of 80.8 degrees and mimics a 
specific cross-section of the F16-XL glove used during a 
previous flight experiment involving suction based 
LFC.[1] It also mimics the zero-suction delta-wing 
configuration used for related precursor experiments in 
the Supersonic Low Disturbance Tunnel at NASA 
Langley Research Center.[4] Earlier simulations 
pertaining to this case were presented in Ref. [40]. 
Compared with the higher-Re ASU configuration 
examined in the present paper, this other configuration 
allows a well-resolved simulation without requiring an 
excessively large number of computational grid points.  
In the DNS computation, the stationary vortex mode was 
excited by a spanwise-periodic array of roughness 
elements analogous to those used for passive LFC 
applications.  The N-factor comparison in Figure 4 
clearly demonstrates satisfactory agreement between 
LASTRAC predictions and the DNS computations (after 
the DNS results merged with the eigensolution at x > 
0.14).  Because of the relatively earlier asymptote of the 
temperature perturbations to an eigenmode behavior, N 
factors based on the peak temperature perturbation have 
been used for the comparison shown in Fig.  4.   
 
2.1.2   Non-stationary crossflow modes 
 
Linear growth predictions for non-stationary (i.e., 
traveling) crossflow modes are shown in Figs. 5(a) and 
��E��IRU�VSDQZLVH�GLVWXUEDQFH�ZDYHOHQJWKV�RI� z = 3 mm 
DQG� z = 1.5 mm, respectively.  The disturbance 
ZDYHOHQJWK� RI� z = 3 mm corresponds to the most 
unstable stationary crossflow mode from Fig. 2(a).  The 
wavelength of 1.5 mm is appropriate for the stationary 
control input used for roughness-based LFC.     
 
Consistent with previous experience based on a large 
body of swept-wing flow configurations, the growth 
factors for traveling modes are significantly larger than 
those for the stationary modes.  Similar to their 
stationary counterparts, traveling modHV� DW� z = 3 mm 
continue to amplify throughout the chordwise region 
shown in Fig. 5(a), whereas the traveling modes at the 
shorter spanwise wavelength (Fig. 5(b)) begin to decay 
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somewhat upstream of the upper branch neutral location 
for the stationary modes (f =0).   
 
The disparity between the linear growth of traveling and 
stationary modes is particularly striking in this example 
because of the already large N-factors for the stationary 
crossflow modes. The difference between peak N factors 
for the stationary and non-stationary modes is as large as 
���IRU� z� ��PP�DQG�DOPRVW����IRU� z = 1.5mm.  Indeed, 
the peak N factors are more than doubled in the latter 
case.   Thus, again, the issue of whether (or when) and 
why such enormously large linear growth potential might 
be suppressed in favor of stationary modes cannot be 
answered without further knowledge of the unsteady 
disturbance environment and the associated receptivity 
mechanisms. In the context of the nonlinear calculations 
presented later, we attempt to gain additional clues in 
this regard by considering the evolution of relatively 
small amplitude traveling modes in the presence of 
higher amplitude stationary vortices.   
 
2.2     Nonlinear development of stationary modes 
 
As demonstrated in the course of the ASU wind tunnel 
experiments, linear stability results can provide useful 
information for preliminary design of roughness based 
LFC, particularly with respect to location and spacing of 
the artificial roughness elements.  Of course, purely 
linear tools are insufficient to arrive at an optimal set of 
parameters for the control scheme.  Furthermore, due to 
the intrinsically nonlinear nature of this control concept, 
linear theory fails to indicate to what extent laminar flow 
is achievable for the chosen scheme.  Nonlinear modal 
interactions must be considered for this purpose. To gain 
some insights into the effects of disturbance nonlinearity 
in the configurations of interest, we now examine 
elementary classes of nonlinear interactions between 
stationary (and, to a lesser degree, non-stationary) 
crossflow modes in this section.  Again, we emphasize 
that the primary purpose behind these cases is to pave the 
way to a comprehensive parametric investigation 
pertaining to higher-Re swept-wing configurations.  
Consequently, no attempt has been made to model the 
observed transition locations (either without or with 
control) during the ASU experiment at this stage. 
 
Purely for convenience, most of the nonlinear 
calculations described herein have been initiated with 
linear eigenfunctions (together with a specified 
amplitude spectrum) at x/c ≈ 0.075, which is the first 
location where an unstable eigenmode could be easily 
found for the longest wavelength mode (12 mm) 
included in this study.    
 
 
 
 

2.2.1   Single mode development 
 
Previous work on low-speed configurations (the NLF-
0415(b) airfoil used in ASU investigations[42, 47] and the 
FLOW-9 model employed in the NASA/Boeing HLFC 
experiment[13, 31, 53]) indicates that the natural evolution of 
stationary crossflow instabilities tends to be dominated 
by the most unstable linear modes.  Accordingly, we first 
consider the nonlinear evolution of a single stationary 
mode with a spanwise wavelength of 3mm.  Chordwise 
evolution of the fundamental and its first harmonic for 
various initial amplitudes (measured in terms of the peak 
perturbation in chordwise velocity relative to the free-
stream speed) is shown in Fig. 6(a).  For sufficiently 
large initial amplitudes (cases A(xi) = 10-4 and 10-5 in 
Fig. 6(a)), the fundamental amplitude reaches a peak at 
amplitudes in excess of 12 percent (on this scale), then 
decreases somewhat before continuing to increase further 
and achieving another peak.  The chordwise location of 
the local minimum and the subsequent maximum in the 
fundamental evolution correspond approximately to a 
maximum and minimum, respectively, in the 
accompanying evolution of the first harmonic.  This 
behavior suggests a cyclic energy exchange between the 
two modes. When the initial amplitudes are low (cases 
A(xi) = 10-6 and 10-7 in Fig. 6(a)), the fundamental 
evolution does not display any local minimum, at least 
within the range of computations plotted in Fig. 6(a).  
The fundamental amplitude continues to increase in a 
monotonic fashion until reaching disturbance amplitudes 
of about 15 percent.  Overall, the amplitude evolution 
curves indicate a relatively uniform upstream shift (at 
least through the initial rise of the primary amplitudes) as 
the initial vortex amplitude is increased across the range 
considered in Fig. 6(a). 
 
The above features of nonlinear development are at least 
partially analogous to those observed in previous 
literature in the context of lower-Re configurations.  The 
major difference appears to be in the relative rates at 
which the peak amplitudes are achieved.  For the lowest 
initial amplitude, for example, the fundamental 
amplitude ascends from just 1% to nearly 15% across 
only 12 percent of the overall chord.  In less unstable 
configurations such as the low-speed ASU configuration 
based on NLF-0415(b) airfoil section,[23, 33, 47] the 
primary vortex amplitude was found to vary at a 
relatively slower rate (indicating an extended quasi-
equilibrium state).  Consequently, a small but finite lag 
was noted between the onset of a high-frequency 
secondary instability[33] and the measured transition 
location[42, 47]. Given the seemingly faster rise in 
fundamental amplitudes in the present configuration, it 
will be interesting to see whether this lag is considerably 
reduced, causing transition to occur rather immediately 
after the secondary instability sets in.   
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The potentially shorter region of secondary instability on 
the present class of high-Re configurations would have 
an interesting implication for transition prediction within 
the holistic framework. Secondary instability is known to 
exhibit a threshold behavior with respect to primary 
disturbance amplitudes.  If it can be established that the 
primary amplitudes along the rapidly rising portion of 
the primary amplitude curve are large enough for the 
secondary instability to set in, then the complicated and 
time-consuming task of secondary instability predictions 
could be abandoned in favor of a simpler transition 
criterion based on the amplitude of the primary 
disturbance alone.  
 
Indeed, the normalized velocity contours plotted in Fig. 
6(b) indicate a strong possibility that the onset of 
secondary instability will occur well before the peak 
amplitudes in Fig. 6(a) have been reached.  The contours 
shown in Fig. 6(b) correspond to a chordwise location of 
x/c ≈ 0.62 for the case of A(xi) = 10-7 in Fig. 6(a).   
During prior work,[10] similar overturning of the velocity 
contours and the resulting regions of high shear away 
from the wall have been correlated with the onset of 
high-frequency secondary instabilities.  Of course, 
additional parameter studies particularly for realistic 
initial amplitude spectra are necessary to establish the 
generality of the strongly non-equilibrium nature of 
disturbance evolution noted above.  
 
We also note that after the fundamental amplitude in the 
nonlinear PSE calculations became sufficiently large 
(nearly 15% in Fig. 6(a)), the shape functions for the 
associated pressure disturbance developed significant 
two-point oscillations that are characteristic of the odd-
even decoupling caused by the non-staggered 
discretization scheme employed in LASTRAC. The 
computations could certainly be continued well 
downstream of the onset of these spurious oscillations 
(through what appeared to be a post-saturation stage 
following the second peak in case of the higher initial 
amplitudes in Fig. (6a)); furthermore, the velocity and 
temperature disturbances remained smooth even after the 
oscillations in the pressure disturbance became 
significantly large.  Quite possibly, the spurious 
oscillations can be eliminated via judicious choice of 
grid clustering in the wall-normal direction and may not 
have a serious impact overall, especially if the 
disturbance amplitudes prior to their onset are already 
large enough to initiate the onset of transition. However, 
pending further investigation into the effect of these 
oscillations on the overall accuracy of the solution, we 
have typically omitted the questionable regions (always 
in the vicinity of the peak vortex amplitude) from our 
results.   
 
We now consider the (isolated) nonlinear development of 
shorter wavelength, subdominant stationary modes, 

which are suitable as the control input for roughness 
based LFC.  For this purpose, the ASU experiments[50] 
used a roughness spacing of z = 1.7 mm because the 
stationary mode at this wavelength (among others) 
satisfies the following criteria based on low-speed 
investigations.  Specifically, it has a somewhat earlier 
onset of linear instability compared with the most 
unstable mode(s) and a shorter region of linear 
amplification (which prevents this mode from achieving 
amplitudes large enough to cause transition on its own).  
$�W\SLFDO�QRQOLQHDU�HYROXWLRQ�IRU�D�VLQJOH�PRGH�ZLWK� z = 
1.71 mm is presented in Fig. 6(c).  Due to nonlinear 
effects, this mode begins to decay much earlier than its 
theoretical neutral location.  Similar behavior is indicated 
for the 1.5 mm mode (which also satisfies the 
abovementioQHG�FULWHULD��DQG�HYHQ�DW� z = 2 mm (which 
has a relatively large linear N-factor).  Because of the 
closer harmonic relationship of the 1.5 mm mode to the 
dominant 3mm mode, the 1.5 mm mode is used in the 
following subsection to illustrate its control action on the 
dominant mode.   
 
The effect of varying the initial amplitude of the 1.71 
mm mode on its subsequent development is shown in 
Fig. 6(d), which includes a few computations that were 
initiated just downstream of the attachment line.  The 
results indicate that the earlier, nonlinear decay of this 
mode persists through a wide range of initial amplitudes.  
The peak amplitude of this mode never exceeds 10%, but 
a double peak appears for sufficiently large initial 
amplitudes.   These characteristics confirm the suitability 
of this mode for roughness-based LFC within the 
upstream portions of the chord. Also observe that the 
location and streamwise extent of the peak amplitude 
region (responsible for maximum control action) is 
substantially influenced by the initial amplitude 
parameter.  Because of the relatively short region over 
which the subdominant mode appears to sustain its peak 
amplitudes, it is possible that a multi-stage control (based 
on additional control input via another mode that is 
active over the mid-chord region) might be useful for 
high-Re applications of roughness-based LFC.    
 
2.2.2 Two-mode interaction 
 
To simulate the effects of roughness based LFC in the 
simplest possible framework, we now consider the effect 
of nonlinear interaction between the subdominant 1.5 
mm mode and the most unstable 3 mm mode. Figure 7(a) 
displays the effect of the magnitude of control input (i.e., 
initial amplitude of the 1.5 mm mode) on the subsequent 
evROXWLRQ�RI�WKH�WDUJHW�PRGH�ZLWK� z = 3 mm. The initial 
amplitude of the naturally dominant target mode was 
held fixed at 10-5 in each of these cases.  Obviously, 
within the range of parameters considered in Fig. 7(a), 
successive increases in control input produce the 
beneficial effect of delayed growth of the target mode. 
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The suppression of the dominant mode appears to 
correlate qualitatively with the behavior of the mean 
flow correction associated with the control mode.  
Specifically, suppression of target mode growth rates 
begins only after the control mode has achieved 
significant amplitudes, but continues past the peak of the 
1.5 mm mode.  The evolution of the mean-flow 
correction (u00 mode in Fig. 6(c)) indicates a similar lag 
ZLWK�UHVSHFW�WR�WKH�PRGDO�DPSOLWXGHV�DW� z = 1.71 mm. 
 
For all of the cases in Fig. 7(a), there is a relatively 
disturbance free zone following the decay of the control 
input and prior to the inevitable rise of the target 3 mm 
mode.  Except for an effectively reduced initial 
amplitude, this rise is analogous to the single mode 
development in Fig. 6(a).  Accordingly, the speculative 
comments pertaining to transition prediction in the single 
mode case are also relevant to the controlled case.  Thus, 
if the peak amplitudes of the 1.5 mm mode do not lead to 
premature transition (which is likely because of the 
narrow region of peak amplitudes for this mode), then a 
primary-amplitude criterion of the type discussed in 
section 2.2.1 may be relevant to the controlled case as 
well.  Specifically, the primary-amplitude criterion 
would enable a relatively straightforward assessment of 
each increase in the initial control input in terms of 
resulting shift in the transition onset location, via 
accompanying horizontal shifts in the primary amplitude 
curve. For example, increasing the control input from 
case (d) to case (a) in Fig. 7(a) might produce a transition 
delay of  approximately 20 percent of the  model chord.   
 
Analogous results in Fig. 7(b) indicate that the role of 
variations in the initial amplitude of the target 3 mm 
mode is analogous but opposite to that of variations in 
the control input.  This indicates the significance of the 
relative initial amplitudes of the two modes involved in 
the interaction.  Also observe that the streamwise extent 
of the low-disturbance region following the peak of the 
1.5 mm mode narrows progressively at larger initial 
amplitudes of the target mode.  
 
A preliminary calculation to assess the role of control 
input in the form of a slower growing, larger wavelength 
mode (6 mm in this case) was also carried out.  Within 
an intermediate range of locations, a phase locked 
interaction between the control input and its linearly 
unstable harmonic actually led to an increased growth 
rate of the target mode ( z =3 mm) above its linear value.  
However, after reaching sufficiently large amplitudes 
farther downstream, the subharmonic mode did contain 
the 3 mm mode to lower amplitudes than it might have 
achieved without any control input.  Of course, further 
analysis is necessary to ensure that the combined 
flowfield does not exhibit an earlier onset of secondary 
instabilities than might be expected on the basis of modal 
evolution alone. 

 
The possibility of subharmonic control has been noted in 
prior calculations of roughness-based LFC[27].  However, 
the combined effect of control input involving both 
shorter and longer wavelength subdominant modes needs 
to be investigated.  Because the two classes of modes 
may be active in different regions of the chord, a 
combined approach might conceivably be more effective 
than using either mode alone.  Any excess growth of the 
target mode in localized regions might potentially be 
avoided using a suitable larger wavelength mode (that 
does not bear a close harmonic relationship to the most 
unstable target modes) and/or through a suitable phase 
lag between the control and target modes as presented 
below.   
 
2.2.3 Two-mode interaction: effect of relative 

phase 
 
Sample calculations were also made to investigate the 
effects of the relative initial phase on the downstream 
evolution of the two-mode interaction.  Modal evolution 
for three selected values of the phase difference 
parameter (measured as the phase of the peak chordwise 
velocity perturbation for the target mode at the initial 
location, relative to that of the control input) is shown in 
Fig. 8.  These results suggest that intermodal phase 
differences can potentially influence the ensuing 
evolution of the modes participating in the nonlinear 
interaction. An examination of the corresponding growth 
rates (not shown here) indicates that the maximum 
suppression of the 3mm mode in the 90 degree case 
(relative to the other two cases) occurs near the 20 
percent chord location, i.e., close to the peak amplitude 
of the 1.5 mm mode.  Note that the value of 90 degrees 
has no particular significance, as the optimal phase 
difference is likely to vary with the initial location.  
 
Effects of relative phase between an energetic 
fundamental and its lower amplitude subharmonic are 
well documented for non-stationary instabilities in free-
shear flows[36] and boundary layers[49]. Whether a similar 
mechanism would explain the effects observed in Fig. 8  
is unknown.  Further calculations are also necessary to 
confirm this finding and to establish its generality.  
Indeed, one of our earlier calculations for the low-speed 
ASU configuration[47] did not reveal any phase 
dependency of this type.   
 
If the effects of the relative phase prove to be significant, 
it could open up an additional avenue (albeit perhaps not 
a practical one) to influence the nonlinear crossflow 
evolution.  Phase scrambling in a broadband 
environment also has the potential to render the 
nonlinear mean state less unstable to high-frequency 
secondary instabilities for a given level of disturbance 
energy. Finally, uncertainties associated with modal 
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phases would indicate the need for a stochastic 
prediction approach such as that investigated in ref. [46] 
for triadic and other interactions.      
 
2.2.4 Three mode interactions 
 
The primarily bimodal interactions (not including the 
universal mean-flow correction) examined in Sections 
2.2.2 and 2.2.3 were limited to a fundamental mode of 
selected wavelength and its first harmonic.  Similar 
interactions between other modes (3 mm and 1.71 mm; 3 
mm and 2 mm) have also been considered thus far. We 
now illustrate an additional facet of such interactions 
wherein neither mode is a first harmonic (or, conversely, 
a subharmonic) of the other.  To that end, we consider 
quadratic interactions between two initially energetic 
modes with z = 1.5 mm and z = 2.25 mm, respectively,  
and investigate their effect on the evolution of the 
“difference” mode with a wavelength of 4.5 mm.  
Figures 9(a) and 9(b) illustrate the variation in chordwise 
evolution of each of these modes as the initial amplitude 
of the control input (1.5 mm mode) is increased from a 
lower initial value (0.0001) to a higher value (0.002). In 
the course of this variation, only the shorter wavelength 
modes are seeded at the initial location; the longer 4.5 
mm mode is initialized with a relatively small amplitude 
of 10-7.  However, due to a sustained transfer of energy 
to the longer mode from the shorter wavelength modes, 
the amplitude of the longer wavelength mode increases 
with the magnitude of control input. Thus, in Fig. 9(b), 
the 4.5 mm mode actually becomes the dominant mode 
at the downstream locations. 
 
The strong intermodal energy transfer noted above is not 
so surprising, because the linear stationary modes at the 
respective wavelengths are nearly phase-locked over a 
significant portion of the chord (consistent with the 
relatively narrow range of vortex orientations for 
stationary crossflow modes).  For a representative triadic 
interaction involving stationary modes with wavelengths 
of 4.5 mm, 2.25 mm and 1.5 mm, respectively, the phase 
detuning factor (defined as the real part of the complex 
detuning factor df ≡�>� 1.5 –� 2.25) –� 4.5@� 4.5]) lies within 
±3 percent throughout x/c > 0.15 (Fig. 9(c)).  Thus, when 
two modes from a triad have sufficiently large initial 
amplitudes, nonlinear interactions between the two can 
easily lead to significant receptivity of the third, 
unseeded mode.  Results from Fig. 9(b) suggest that in 
some cases, such triadic interactions may favor the 
excitation of the largest wavelength mode. 
 
Total velocity contours at x/c ≈ 0.41 pertaining to the 
triadic interaction are indicated in Fig. 9(d).  While 
analogous to the earlier results for the single mode case 
in Fig. 6(b), the contours in Fig. 9(d) correspond to 
relatively smaller disturbance amplitudes. The presence 
of multiple modes clearly alters the spanwise variation of 

the basic state.  Depending on the nature of interference 
between the dominant modes, the multi-mode 
interactions could result in a smoothing of the spanwise 
gradients involved (and wall-normal gradients as well, 
depending on the peak locations for the various modes) 
for a fixed level of disturbance energy.  If this happens, 
the secondary instability process might be weakened, 
particularly for the class of modes associated with 
spanwise gradients of the modified basic state.  Observe 
that the relatively close alignment of vortex axes for 
various modes (which was responsible for the energy 
transfer observed in Figs. 9(a)-(b)) is also required to 
justify a local secondary instability analysis for multi-
modal primary disturbances.   
 
We note that, during a separate set of calculations for 
purely stationary-mode interactions on a low-speed NLF-
0415(b) configuration, we had also observed that the 
effect of interactions between multiple modes of 
instability are not always intuitive.  Specifically, it was 
found that suppression of the dominant mode may not 
always be monotonic with respect to the amplitude of the 
control input, especially when multiple modes and 
nonparallel mean flows are involved.   
 
2.3   Nonlinear interactions involving traveling 
mode(s) 
 
The extension of the unit interactions examined in 
Section 2.2 to more practical cases (including three-
mode interactions with dual mode control input and the 
evolution of a relatively broadband initial spectrum) is 
currently underway.  However, the nonlinear results 
presented thus far clearly suggest that, even in a higher-
Re environment, the growth of the (linearly) most 
unstable stationary mode can be delayed (even if not 
suppressed entirely) via nonlinear mode competition 
with a shorter wavelength mode.  However, the effect of 
non-stationary crossflow modes on this process also 
needs to be investigated, particularly because of the huge 
disparity between the linear N factors for the stationary 
and non-stationary modes. We also note that the ASU 
experiment was carried out in a conventional supersonic 
facility, which probably involves a significant level of 
free-stream unsteadiness due to acoustic radiation from 
turbulent tunnel-wall boundary layers.  However, prior 
experience with low-speed configurations suggests that 
the traveling modes are relatively insensitive to acoustic 
disturbances in the free stream[54] and their role during 
the transition process is primarily determined by the 
level of free-stream vortical fluctuations[37].  Further 
work is necessary to clarify the physical mechanisms 
underlying these observations as well as the relevance of 
these observations to the supersonic regime.  
 
Saric and Reed[50] suggest that a byproduct of the 
artificial roughness would also be to promote a select 
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subset of the overall spectrum of non-stationary 
crossflow modes, which is determined by the spatial 
scales of the roughness.  This conjecture seems to be 
reasonable on physical grounds.  It also appears plausible 
that the physical mechanism underlying roughness-
induced excitation of traveling modes is related to the 
scattering of free-stream unsteadiness (i.e., similar to the 
roughness-induced excitation of Tollmien-Schlichting 
and first-mode instabilities studied previously[22, 45, 15]) 
rather than attached to any intrinsic unsteadines in the 
roughness wakes.  However, if the conjectured 
mechanism is true, then the spatial spectrum of the 
excited traveling modes may actually be somewhat 
different from (and perhaps broader than) the roughness 
spectrum itself, because of the finite spatial scales of 
free-stream disturbances (especially turbulence, and/or 
acoustic disturbances in high-speed flows).   
 
Further work is necessary to quantify the details of the 
abovementioned scattering and its effect on crossflow-
induced transition at higher Reynolds numbers.  
However, it is presently feasible to examine the effect of 
the stationary control input on the nonlinear evolution of 
the (linearly more unstable) traveling crossflow modes.  
This consideration adds to the complexity of the 
nonlinear interactions examined thus far.  This type of 
calculation  for the supersonic, higher-Re configuration 
considered in this paper has not yet been completed.  
However, analogous results were obtained earlier for a 
low-speed NLF-0415(b) configuration (Figs. 10(a)-(b)).  
That calculation seems to indicate that the same principle 
which underlies the suppression of the dominant 
stationary mode may also be applicable to traveling 
modes (at the same spatial scale as the control input in 
this particular case).  In other words, an additional 
(desirable) effect of the stationary control input may be 
reduced amplification of the traveling crossflow modes 
(relative to their isolated nonlinear development).   
 
The illustrative cases presented in Section 2 indicate 
potential intricacies of the nonlinear interactions between 
crossflow instabilities, especially in a high-Reynolds 
number environment.  All of these calculations were 
based on arbitrarily chosen initial amplitudes of the 
modes involved.  We attempted to vary the initial 
amplitudes over a logarithmic scale, in order to bracket 
the range of phenomena encountered in a realistic flow 
environment.  However, given the observed effect of the 
initial amplitude spectrum on the range of locations 
where disturbance amplitudes attain significantly large 
levels (potentially leading to the onset of secondary 
instabilities), we now investigate the receptivity 
mechanisms pertaining to the dominant modes involved 
in those interactions.    
 

 
 

3.  Receptivity due to small-amplitude surface 
roughness 

 
Following the theoretical work by Goldstein[22], 
Ruban[45], Fedorov and Khokhlov[20], Zhong[58], Wu[57] 
and others, plus complementary experiments by Saric et 
al.[48] and Maslov et al.,[34] a large class of important 
receptivity mechanisms pertaining to both streamwise 
and crossflow instability modes may be considered to be 
well-understood at this point.  As discussed in ref. [14], 
surface roughness provides a dominant and preferential 
source of receptivity for stationary crossflow modes.  
The receptivity theories of Goldstein and Ruban are 
easily extended to predict the roughness-induced 
excitation of stationary crossflow modes in an infinite-
span configuration. Specifically, the perturbation qins 
associated with an instability mode with a specifiied 
ZDYHQXPEHU� � � DORQJ� WKH� VSDQZLVH (z) direction can be 
expressed in the form: 

qins��[�\�]�� �� �$i� ��(�\�[�� ��H[S>Lθ�[����L ]�@�� 
where Ai denotes the effective initial amplitude at the 
location of the source (x=xi); E denotes the shape of this 
eigenmode along the wall-normal (y) direction at the 
chordwise location of interest (x); and the complex 
quantity θ(x) reflects variations in phase during the 
propagation of the generated mode from its source 
location (including any spatial amplification/decay).  
 
In principle, the initial amplitude Ai� �� RI� WKLV�PRGH� LV�
given by the convolution between an intrinsic efficiency 
IXQFWLRQ� IRU� UHFHSWLYLW\� �[�� �� � DQG� WKH� VSDWLDO�
distribution of the surface roughness, with appropriate 
weighting for the spatial growth or decay of the 
eigenmode (Eq. (6) from ref. [15]).  The efficiency 
IXQFWLRQ� � GHQRWHV� WKH� SDUW� RI� WKH�*UHHQ¶V� IXQFWLRQ� IRU�
the overall roughness-induced perturbation that 
corresponds to the stationary crossflow mode of interest.  
The convolution integral represents a lumped measure of  
interference between the instability wave components 
generated across the chordwise extent of the roughness 
distribution. For the special case of a localized (yet 
finite) non-uniformity, the convolution integral reduces 
to a product between the local value of the efficiency 
IXQFWLRQ� �L�H��� �[i�� ��� DQG� D� JHRPHWU\� IDFWRU� )� WKDW�
corresponds to the Fourier amplitude of the roughness 
distribution for a chordwise wavenumber that is resonant 
ZLWK� WKH� ORFDO� ZDYHQXPEHU� � ≡� � �� RI� WKH� LQVWDELOLW\�
mode.  (See ref. [15] for a detailed discussion.) 
 
3.1 Efficiency function for stationary crossflow modes 
(i.e., influence of roughness location) 
 
Figure 11 indicates the chordwise variation in the 
PDJQLWXGH�RI� WKH� HIILFLHQF\� IXQFWLRQ� u�[�� �� �EDVHG�RQ�
chordwise mean and perturbation velocities and a 
reference scale given by the similarity scale for 
boundary-layer flows) for stationary crossflow modes at 
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selected spanwise wavelengths. An inhomogeneous form 
of quasi-parallel stability equations (as outlined in Ref. 
[15]) was used to obtain these predictions.  Receptivity is 
most efficient for roughness array locations close to the 
attachment line (which is the same as the leading edge 
because of the symmetric cross section and zero angle of 
attack); it becomes considerably less effective for 
roughness locations farther downstream.  This trend is 
generic to stationary crossflow excitation on a variety of 
swept-wing configurations that have been examined 
before, both at low speeds[13, 38, 51] and high speeds[51].  
 
Coupled with the early onset of linear instability for a 
broad range of wavelengths over the present 
configuration, the receptivity predictions in Fig. 11 
indicate that the roughness array used as control input 
towards LFC application would be most effective when 
placed within first 2-3 percent region of the chord.  A 
second implication is that any natural seeding of other 
stationary modes via uncontrolled surface roughness also 
occurs within the leading-edge region.  Therefore, it is 
probably adequate to maintain the surface finish  
qualities required for LFC applications within a narrow 
region close to the leading edge; i.e., tolerance levels 
farther downstream can be allowed to be significantly 
less restrictive.    
 
3.2 Influence of roughness geometry 
 
As described in ref. [12], the geometry factor for an array 
of roughness elements with a circular planform is given 
by 

)� ��� �−1/2  β/k2  Φ    (Φ ≡ kR J1(kR)).  
+HUH�� N�  � � 2� 2)1/2�  � � � ins denotes the effective 
wavenumber of the instability mode, �≡� � ��EHLQJ� WKH�
chordwise wavenumber for a vortex mode of spanwise 
wavenumber β; ins is the modal wavelength in the 
direction orthogonal to the vortex axis; R represents the 
radius of each roughness element; and J1 indicates the 
Bessel function of the first kind and order 1.  The factor 
Φ  determines the influence of the roughness size; it is 
primarily determined by the size of its planform radius 
FRPSDUHG� ZLWK� WKH� HIIHFWLYH� LQVWDELOLW\� ZDYHOHQJWK� ins.  
Fig. 12, reproduced from Ref. [12], indicates the 
variation in | Φ | as a function of the non-dimensional 
HOHPHQW� UDGLXV� 5� ins, with the scaled growth rate 
Im(k)/Re(k) of the instability mode as a parameter.  
 
For the Reynolds number of interest (16.3 million), the  
ASU experiments[50] used an array of roughness dots 
with a spanwise spacing of 1.7 mm and a nominal 
diameter of 400 microns.  The actual diameter of the dots 
was, however, estimated to be closer to 500 microns.   
According to linear stability predictions, ins ≈ 0.488 mm 
IRU� D� VWDWLRQDU\� FURVVIORZ� PRGH� ZLWK� z = 1.71 mm. 
Therefore, as indicated by the first peak in Fig. 12, the 
design diameter of 400 microns is fairly close to the 

RSWLPDO� VL]H� RI� 5� ins ≈ 0.383; however, the actual 
roughness size of 500 micron diameter may have been 
only marginally less efficient.  In a subsequent set of 
experiments at a lower Reynolds number, Saric and 
Reed[50] report using a roughness strip in the form of 
indentations with a diameter of 200 microns.  The 
smaller roughness elements would have been less 
effective at Rec = 16.3 million.  However, the magnitude 
of the geometry factor at the smaller radius also appears 
to be less sensitive (compared with the 500 micron 
diameter array) to uncertainties in the roughness size and 
the predicted instability wavelength.  In the present 
analysis, for example, such uncertainties could result 
from errors in modeling the geometry and surface 
pressure distributions from Ref. [50] using a digitizing 
process.      
 
We find that the initial amplitudes of the 1.5 mm mode 
based on the receptivity analysis presented above are 
within the range of control inputs required to produce 
delayed growth of the dominant mode (as considered 
during the nonlinear PSE calculations in Section 2).  Yet, 
we caution that the analytical simplification associated 
with receptivity predictions for a localized array of 
roughness elements requires the mean-flow variation in x 
to be sufficiently slow, that both the stability and 
receptivity characteristics of the boundary-layer flow 
(contained within the convolution integral mentioned 
previously) may be adequately approximated by their 
local behavior. BHFDXVH�RI�WKH�UDSLG�YDULDWLRQ�LQ� �[�� ��
near the leading-edge region, this approximation may 
have a marginal validity in the present case.  Previous 
experience indicates that curvature effects may amplify 
VXFK� YDULDWLRQV� LQ� _ _�� IXUWKHU� LQFUHDVLQJ� WKH� RYHrall 
efficiency of roughness-induced receptivity.[13, 16, 26]  
Accordingly, following a validation of the receptivity 
prediction capability built into the LASTRAC code 
(based on compressible extension to the adjoint PSE 
approach in Ref. [19]) via higher fidelity approximations 
based on the harmonic form of linearized Navier-Stokes 
equations[52] and/or full DNS[28] (as illustrated in the 
context of Fig. 4 in Section 2.1), we plan to extend the 
zero-order receptivity predictions presented in this 
section to include the effects of both mean-flow 
nonparallelism and surface curvature on the roughness-
induced receptivity. 
 
 

4. Measurement of roughness on an LFC surface 
 

Receptivity models such as those presented in Section 3 
cannot be used to quantify the natural excitation of 
instabilities on a realistic LFC configuration until 
sufficiently detailed characterization of the natural, 
broadband disturbance environment is made available.  
The lack of adequate information concerning both free-
stream unsteadiness and surface disturbances (e.g., 
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surface roughness and/or waviness) represents a major 
obstacle in physics based predictions of laminar-
turbulent transition.  As an initial step in developing the 
necessary characterization for surface roughness over a 
range of aerodynamic surfaces, detailed surface profile 
measurements were made on the baseline (i.e., zero-
suction) model used during the NASA-Boeing HLFC 
experiment.[13, 31, 53]  This experiment was carried out 
during 1995 in the 8ft Transonic Pressure Tunnel at 
NASA Langley Research Center. 
 
The measurements were made by the Quality Assurance 
and Inspection Branch at NASA Langley using a Browne 
and Sharpe Validator Coordinate Measurement Machine.  
The data were acquired over ten disjoint stripes on the 
upper surface of the FLOW-9 airfoil model used during 
the HLFC experiment (Fig. 13(a)).  Measurements over 
each stripe yielded ten spanwise scans of the airfoil 
surface at a chordwise spacing of 0.02”. The spanwise 
spacing during each scan was 0.01”, providing a total of 
8001 points over each stripe.   
 
Figure 13(b) displays selected spanwise wavenumber 
spectra of the roughness distribution as determined from 
the above measurements.  The possibility of spectral 
contamination due to the limited precision of the 
measurement process was minimized via sensitivity 
analysis.  The roughness spectrum is  relatively flat 
across the range of stationary crossflow wavelengths 
relevant to the conditions of the NASA-Boeing 
experiment. The root mean square height perturbation 
across this band of wavelengths is of the order of one 
micron.  For reference, crossflow amplitudes based on 
deterministic receptivity computations for periodic 
roughness arrays with an effective cross-sectional area of 
500 square microns (in the x-y plane) are consistent with 
the range of amplitudes measured for the dominant 
crossflow mode (z = 6 mm) in the zero-suction case[13].  
Figure 14 illustrates one such measurement from the 
NASA/Boeing experiment, which was acquired at the 
19% chord location.  The normalized velocity contours 
indicated in the figure are analogous to those obtained in 
the low-speed ASU experiments.[42]   
 
It is possible to extend deterministic receptivity models 
to stochastic roughness distributions, so as to 
characterize the receptivity in a statistical sense (see, 
e.g., ref. [11]).  There are obvious deficiencies with using 
ensemble averaging over a sample space of aerodynamic 
surfaces.  However, in the present application, the 
ensemble averaging could be replaced by spanwise 
averaging if (local) homogeneity in that direction can be 
established, preferably via measurements over an 
extended spanwise region.   The 8” length of each scan 
during the FLOW-9 measurements is perhaps too small 
to establish the homogeneity of roughness distribution 
over the scale of the model.  However, if isotropy holds, 

then it might be possible to verify the homogeneity 
properties along the chordwise direction and, by 
inference, in z as well.  Of course, given the wide range 
of roughness distributions that may be encountered in 
practice, further work is necessary both to quantify the 
uncertainty in the specification of the roughness and to 
propagate that uncertainty to establish the variability in 
naturally occurring instability wave amplitudes at a 
suitable initial location. Also desirable are two-
dimensional maps of the roughness distribution (rather 
than a series of independent spanwise scans as in the 
FLOW-9 measurements) to allow direct estimates of 
both chordwise and spanwise spectra.   
 
We also note that any significant outliers were removed 
(as measurement noise) from the data prior to spectral 
estimation.  However, it is conceivable that the dominant 
source of receptivity corresponds to actual peaks of this 
type, in which case the spectral analysis may become 
less relevant.  Wavelet techniques might also be worth 
exploring in this context.   
 

5. Summary and Concluding Remarks 
 
In this paper, we have examined various aspects of 
crossflow mode evolution in a supersonic, swept-wing 
configuration that was recently used to demonstrate the 
feasibility of roughness based, passive LFC in a Mach 
2.4 wind-tunnel experiment at Arizona State University.  
Although this study is not yet complete, we believe that 
the preliminary investigation reported herein has 
provided useful insights into the dynamics of crossflow 
instabilities in the highly unstable boundary-layer flows 
characteristic of full-scale application on a supersonic 
aircraft.  Continuation of this effort will focus on the 
effects of broadband disturbance input,  including the 
role of the more unstable non-stationary modes (whether 
traveling crossflow or secondary instabilities).  At that 
stage, we will aim to match the experimental conditions 
as closely as possible, in an attempt to simulate the 
observed delay in transition.  Effects of flight-scale 
Reynolds number will be investigated in the context of 
another configuration designed for a separate wind 
tunnel test of roughness based LFC under the joint 
auspices of DARPA’s QSP and NASA’s SVT programs.  
 
Noteworthy findings from the present work include: a 
seemingly rapid rise of stationary crossflow amplitudes 
(compared with lower-Re configurations) to levels that 
may well harbinger the onset of secondary instabilities; 
potential significance of the relative phase between 
disturbance modes; and quadratic interactions leading to 
nonlinear receptivity of larger wavelength modes.  These 
findings, albeit interesting, require further scrutiny to 
establish their validity (using higher fidelity simulations 
and/or experiments) as well as their generality (via the 
follow-on parametric study).  The present study also 
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provides partial justification for the lower fidelity design 
practices used during the successful demonstration of 
passive SLFC in the ASU wind-tunnel experiment[50], 
including the choice of roughness size and location.  
However, the findings herein also emphasize a strong 
need to account for the nonlinear crossflow interactions, 
partly to minimize the risks involved and to optimize the 
overall performance.  Fortunately, the same findings also 
hint at the possibility of accomplishing this ambitious 
goal via a simpler, nonlinear amplitude criterion. The 
parametric study (together with additional experiments) 
will help establish the validity of this criterion in the 
applications of interest. 
 
Equally importantly, we have attempted to make the case 
for a holistic approach to transition prediction, 
particularly in the context of advanced LFC concepts 
such as roughness based control.  Additional work is 
currently underway, both in terms of more refined 
physical modeling for the individual stages in transition 
and a tighter integration between the respective 
prediction modules.   Some of the intrinsic challenges in 
the practical implementation of the holistic approach 
were also discussed, plus potential ways to overcome 
those challenges (including a hierarchical approach that 
may be customized for each class of applications). 
 
A high fidelity approach for transition prediction is 
particularly difficult to incorporate into design oriented 
CFD, especially in the context of multi-disciplinary 
optimization.  However, recent work[30] has shown that 
individual ingredients of such physics based prediction 
capability may well provide the foundation for a more 
efficient approach that is more amenable to inclusion 
into the MDO process.  This will allow a designer to 
account for the O(1) influence of transition on the 
performance of an efficient and quiet supersonic aircraft 
at an earlier stage of the vehicle design process. 
 
Before closing, we emphasize the further need for 
accurate transition prediction for fully three-dimensional 
mean flows.  Spanwise variations in mean flow add an 
extra dimension to the complexity of transition 
prediction, also increasing the uncertainties in the 
predictions made.  Our future work will focus on 
extending the holistic/hierarchical prediction 
methodology to flows of this type.   
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Figure 1. Schematic of hierarchical levels of transition prediction from a systems viewpoint.  The holistic 
prediction approach, based on transition as a forced response of a nonlinear system to stochastic forcing,[43] 
appears near the top of this hierarchy.  The parenthesized question mark denotes the state of affairs in regard to 
bridging the gap between physics based modeling preceding the laminar breakdown phase and some form of 
statistical turbulence modeling farther downstream.[46] 
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2(a) N-factor variation along the chord  for selected  
        disturbance wavelengths  

2(b) N-factor variation at select chordwise locations as  
        function of disturbance wavelength 

 
Figure 2.  N-factor predictions for stationary crossflow modes in an infinite-span swept-wing boundary layer modeling 
                 the Mach 2.4 ASU wind tunnel configuration at  Rec = 16.3 million  (linear PSE results including the effects  
                 of surface curvature) 
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Figure 3.  Effects of nonparallelism and surface curvature  
                 on growth rates of  stationary crossflow vortices  
                 (solid lines: linear PSE with curvature (NPWC);  
                 dashed lines: linear PSE, no curvature (NPNC);  
                 dash dot: quasi-parallel with curvature (QPWC);  
                 dash-dot-dot: quasi-parallel, no curvature (QPNC)) 

Figure 4. Comparison between stationary N factors based  
               on LASTRAC predictions (dashed line) and a  
               DNS computation (solid line) based on the  
               DNSUTA code by Jiang, Shan and Liu from the  
               University of Texas at Arlington.[29]  The vertical  
               axis denotes nonparallel N-factor based on peak  
               temperature perturbation. 
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Figure 5.  N-factors for traveling crossflow modes 
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6(a)  Nonlinear evolution of most unstable stationary  
���������FURVVIORZ�PRGH�� z = 3 mm) for varying initial  
         amplitudes A(xi).  Chordwise variation of modal  
         amplitudes is indicated for the fundamental mode      
���������DQG�LWV�ILUVW�KDUPRQLF�� z = 1.5 mm) 

Figure 6(b) Contours of normalized total velocity  
                    component along the local inviscid  
                    streamline in a plane transverse to the  
                    vortex axis.  Disturbance parameters  
                    correspond to the case A(xi) = 10-7 in  
                    Fig 6(a); the chordwise location for  
                    the contours corresponds to x/c ≈ 0.62. 
 

Figure 6(a)-(b).  Nonlinear evolution of most unstable stationary crossflow mode 
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6(c):  Evolution of various harmonics for a fixed initial  
          amplitude of the z = 1.71 mm mode (A(xi) = 0.002) 

6(d):  Fundamental evolution as function of the initial 
          amplitude of z = 1.71 mm mode. 

 
Figure 6(c)-(d)  Nonlinear evolution of a subdominant stationary mode suitable for control input 

                                                towards roughness based LFC 
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��D���1RQOLQHDU�FRQWURO�RI��PRVW�XQVWDEOH�PRGH�� z = 3 mm)  
        via control input with  different initial amplitudes of  
        z = 1.5 mm mode.   

7(b).  Effect of initial amplitude of the target mode  
����������� z = 3 mm) for a fixed amplitude of control  
          input (A1.5 mm(xi) = 0.005).  Cases (a), (b),  
          and (c) correspond to A3  mm(xi) = 1e-7, 1e-6  
          and 1e-5, respectively. 

 
Figure 7.  Assessment of roughness based LFC on the Mach 2.4 ASU configuration in an elementary context 
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Figure 8.  Nonlinear control of  most unstable mode  
����������������� z� ���PP��YLD�FRQWURO�LQSXW�DW� z = 1.5 mm:  
                effect of relative initial phase between control  
                input and target mode.  Thicker portions of the  
                curves at 00 and 900 denote results obtained with  
                a higher convergence tolerance during nonlinear  
                iterations. 

Figure 9(a) Smaller control input (A1.5 mm (xi) = 0.0001) 
                   The baseline case corresponds to zero control 
                   input; arrows indicate shifts in modal evolution 
                   relative to baseline case. 
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9(b)  Larger control input (A1.5 mm (xi) = 0.002 ) 9(c)  Detuning factor for triadic interactions between  

        stationary crossflow modes  
 

)LJXUH����1RQOLQHDU�5HFHSWLYLW\�RI�ORQJHU�ZDYHOHQJWK�PRGH�� z = 4.5mm) via difference interaction between a pair of 
                     shorter wavelenJWK�PRGHV�� z� �����PP��DQG� z = 2.25 mm). 
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Figure 9(d): Contours of total velocity component along the  
                    local direction of the inviscid streamline in a  
                    plane transverse to the vortex axis.  Flow  
                    conditions correspond to those in Fig. 9(b),  
                    where the 4.5 mm mode becomes dominant  
                    (x/c ≈ 0.41) 

10(a) Traveling mode only 
Figure 10.  Suppression of traveling crossflow mode via  
                  stationary control input. 
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Figure 10(b) Traveling mode with the same initial  
                     amplitude, plus two stationary modes 
                     involved in roughness-based LFC.   
                     (solid line: target stationary mode 
                     dashes: stationary control input 
                     dash-dot: traveling mode) 

 
Figure 11: Efficiency function magnitude for roughness-   
                  induced excitation of stationary crossflow modes   
                  on Mach 2.4 ASU configuration 
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Figure 12: Effect of planform radius of cylindrical roughness  
                  elements on receptivity (based on Fig. 6 in ref. [12]).   
                  The bottom curve corresponds to locally neutral  
                  vortex (Im(k)=0); the other two curves correspond 
                  to Im(k)/Re(k) = 0.05 and 0.1, respectively. 

 

 
 
 

 
13(a)  Schematic of roughness measurement region 
           (indicated via gray stripes). 

  13(b)  Roughness spectrum inferred from profilometer 
             measurements 

 
Figure 13: Roughness measurements on zero-suction panel of FLOW-9 wing used in NASA/Boeing HLFC experiment 

���� �GLD��
indentations

400-����  
diameter dots 

R/λins 



 

 21

 
 
 
 
 

 

 

 
Figure 14:  Normalized mean velocity (U/Ue) contours based on hot-wire measurements during NASA/Boeing  
                   HLFC experiment (chordwise location: x/c= 0.19)[13]  

 

 
 
 
 


