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Abstract:

A local response surface construction method based on
augmented and compactly supported Radial Basis
Functions (RBF) was developed. The developed method
was tested in two numerical examples. The response
surface generated using polynomial augmented RBF
predict the response of a system better than the one
constructed using classical RBF. The results obtained
from the RBF based methods were also compared with
the results obtained using local methods based on
Moving Least Square (MLS) and kriging. It was found
that all the three local methods (RBF, MLS, and kriging)
predict the response with almost the same accuracy.

1. Introduction:

Structural  reliability engineering analysis involves
determination of probability of structural failure taking
into account the uncertainty in the geometric parameters,
material properties and loading conditions [1]. The
uncertain quantities are treated as random variables and
often a large number of simulations (structural analyses)
with different sets of random variables are necessary to
estimate the reliability of a structure. Hence the
computational effort required to perform a structural
reliability analysis can be very high. In order to
minimize the computational time, response surface
functions are often used as simple and inexpensive
replacements for computationally expensive structural
analyses in reliability methods. Most of the response
surface construction methods use asingle

quadratic or cubic polynomial to represent the entire
parametric space of the random variables. These
methods can be classified as global methods.  Since the
global methods use a single polynomial to represent the
entire parametric space, they introduce large errorsin the
response estimation or limit the size of the parametric
space. In order to overcome such difficulties, piecewise
polynomial functions are often used. For example, finite
element methods use piecewise polynomials. However,
the piecewise polynomials for response surface
construction are restricted to two- or three-dimensions.
Hence, local methods were developed and presented as
an dternate in response surface approximation [2],
where it is possible to extend the method to arbitrary
number of dimensions. In arriving at an interpolated
value at some point in the parametric space, the local
methods more heavily weight data samples that are
“nearby” rather than giving all data samples equa
weight.

A new local Moving Least Square (MLS) response
surface construction method was developed in reference
2. The MLS method was compared with other local
methods such as kriging [3] and found to be more
accurate and computationally efficient. Another class of
local response surface construction using Radial Basis
Functions (RBF) is also widely used [4-6]. The
complete description of these classical radial basis
functions is available in reference 7.  Recently,
compactly supported radial functions were derived [8-
10]. These functions are derived using the condition that
the interpolation matrix should be positive definite.
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These compactly supported radial basis functions
produce interpolation matrices that are sparse and for
interpolation use only a few terms. Another advantage
of compactly supported radial basis functions is that the
data error in a single point or region does not affect the
entire domain. It is known that classical radial basis
functions and compactly supported radial basis functions
do not reproduce exact values of constant and higher
order polynomia terms in the interpolation [7]. To
reproduce polynomial terms exact, the classical radial
basis functions are augmented with polynomial terms.
The effect of augmented polynomial terms to the newly
developed compactly support radial basis functions on
response surface generation is not investigated in the
literature.

The objective of the present work is two fold: (@) to
develop response surface approximation with augmented
classical and compactly supported radial basis functions
and (b) compare the radia based method with global,
MLS and kriging based response construction methods.
The effect of augmented polynomial terms on the
accuracy of the response surface will be studied. The
sampling points for the response surface construction
will be selected using Progressive Lattice Sampling
(PLS) experimental design [2].

First, the response surface construction method using
radial basis functions is presented as part of the
interpolation methods. Then a brief introduction to
global, MLS and kriging methods of response surface
construction is presented. Then the Progressive Lattice
Sampling (PLS) method of selecting data points is
provided. Next, the selected response surface
construction methods are tested in a two variable
problem and results are compared. Finaly a four-
variable example from a reliability application is

presented to demonstrate the effectiveness of the
augmented classical and compactly supported radial
basis functions for response surface construction.

2. Interpolation M ethods:

The accuracy of the response surface in representing the
behavior of the actua system largely depends upon the
interpolating method used for its generation. First,
response surface generation using Radial Based
Functions (RBF) is developed in this section. This is
followed by a brief introduction (adopted from reference
2) to the Global Least Square (GLS), kriging and MLS
interpolating methods.

2.1 Radial Basis

Construction

In this section, first the response surface construction
method using classical RBF is described. Next, response
surface construction using compactly supported RBF is
presented. Finally, response surface construction using
augmented RBF is described.

Response  Surface

211 Classcal RBF Response Surface
Construction:

In classical RBF based methods, the interpolation of a
surface s(x) is performed as a linear combination of

radial functions as
S 1
09=4 1 x- x|, (1)

where the radial basis functions j are functions of the
radial distance ||x xj”2 from node |, | j ae

interpolation constants to be determined, and N isthe

number of sample or data points with known function
values F; such that

s(xj) = F; 2

The Euclidean norm ||x xj”2 represents the radial

distance r of the point X from the center X j- For two-

dimensiona systems in Cartesian X-Y coordinates, the
radial distance can be obtained as

[x- xj||2:\/(x- X)2+(Y - Y;)2

The unknown interpolation coefficients | ; in Equation
(2) can be determined by minimizing the norm

é N 2
s Bl nllf oreesann
(©)

The minimization equation in matrix form can be written
as



[Afa} ={R} (4)

where

" ={ll 205000}
(5)

{RI" ={F,Fy,Fs.....Fn}

(Ith

and the coefficient a; row and jth column) of the

matrix [A] can be obtained from
ajj =] wxi - Xj"z) (6)

Since, there are N eguations with N unknown
congtants! j, j =1L, N; the resulting surface is an

interpolating surface.

All the radial basis response surface construction
methods use classical radia functions of the form of
Equation (1). The response surface construction
methods developed using classicalk RBF have the
following limitations:

1. RBF does not posses compact support, i. e,
change in any one of the center coordinates X;

affects the entire interpolation,

2. the system matrix [A] in Equation (4) may not
be positive definite [ 7], and

3. amost al the RBF can reproduce a constant
function only in the limit asN®pu, i. e
number of sampling pointsislarge.

Most commonly used radial classical radial functions are
givenin Table 1:

Table 1: Classical RBF Functions (from reference 4)

Equation
Classical RBF -
=,
Linear f(r)y=cr
Cubic f(r)=(r+c)®
Thin plate spline f(r)= r? Iog(crz)
Gaussian f(ry=e®”
. . l
Multiquadratic f(r)= (rz +02)§

The constant cin the radial basis functionsin Table 1 is
adjusted to obtain the best fit. However, there is no
simple way to evaluate the constant ¢ [6]. In the
present work the constant C is set to unity except for the
cubic function where it is set to zero.

2.12 Compactly Supported RBF Response
Sur face Construction:

Compactly supported radia functional are generated [8-
10] recently. For compactly supported radial functions,
the interpolation matrix [A] in Equation (4) is sparse and
positive definite. Also for interpolation only afew terms
need to be considered. This leads to efficient algorithms
for the computation and evaluation of response surfaces.
In this study, the following two compactly supported
radial functions are adapted from reference 7

Compact-1:
i (1) =(1- )3(8+40t +48t% + 25t3 + 5t%),
Of£rfrn
=0 r>rg
(7)
Compact-I:
j (r)=(1- 1)%(6+36t+82t% + 72t3 + 30t* + 5t°),
Of£rEr
=0 r>r
(8
where t=L, and rpis the radius of the domain of

fo

compact support. The compact support radius rg is a
free parameter in the interpolation, and is selected by the
user. Many other compact support functions are given in
references 9 and 10.

The compactly supported radial basis function in
Equations (7) or (8) is used in Equation (1) for response
surface generation.

2.13 Augmented RBF Response Surface
Construction

The classicd RBF in Table 1 and the two compact
support radia functions in Equations (7) and (8) can
reproduce simple polynomials (constant, linear and
quadratic etc.) only in the limit (i. e., as the number of
sampling points increased). To illustrate this point,
consider a one-dimensional problem with variable



-1.0£ X4 £1.0 and five equally spaced sampling points

as shown in Figure 1. The function values at the five
sampling points are set to a constant value of unity to
verify the ability of various RBF to reproduce a constant
function.

0.5
- 10 \<—> +1.0

O O O

> X1

Figure 1. One-dimensional problem with five equally
spaced sampling points

The responses predicted by the classica RBF and
compactly supported RBF to the constant function are
shown in Figures 2 and 3, respectively.

o Sampling points

— Interpolated Values

10 Linear
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1.0
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Spline
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Figure 2. Response of classical Radial Basis Functions
to a constant value

Clearly from Figures 2 and 3, except for the linear radial
basis function, none of the other RBF, including the
compactly supported RBF, can exactly reproduce the
constant function. However, al the RBF can reproduce

the constant function for a sufficiently large number of
sampling points.

¢ Sampling points
— Interpolated Values

1.0 Compact-1

Jo.0

1.0 Compact-||

Figure 3. Response of compactly supported radial
basisfunctionsto a constant value

In order for the RBF to reproduce simple polynomials,
the functions can be augmented by polynomial terms as

N m
s(X)=4a 1 f(r)+ &R0 9)
j=1 i=1

where R (x) are the monomial terms in the polynomials

and Iy are the additional M constants introduced in the

interpolation due to the polynomia terms. For two-
dimensional problems, the monomia terms are

llx,y,xz,xy,yz,...l.

The additional munknown constants introduced in
Equation (9) depend on the order of the polynomial
selected and the order of the problem dimension d . The
number of munknown constants due to polynomial
terms can be determined from

m=1 for constant

m=d+1 for linear polynomial
m= (d+1)(d+2)

> for quadratic polynomial

m= (d+1)(d+2)(d+3)

5 for cubic polynomial

(10)



Equation (9) consists of N equations with N +m
unknowns. The additional m equations necessary to
solve the m additional unknowns can be obtained from
the following mconstraints[7]

Woz

R fori=123--,m (11
1

Hence, the polynomia augmented radial functions do
not require any additional sampling points. The
congtraints in Equation (11) are handled internally in the
interpolation. Equation (4) (to obtain the unknown
constants) can be modified (using Equations (9) and
(11)) for the augmented RBF as

dAln n [Bln mi i{abn 1t 1{Rhn 10

gB]L N [O]m' m H %{b}m’ 1 B % {O}m’ 1% 12
where

{b}" ={br.by. s, b} (13)

and the coefficient by (i™ row and j™ column) of the
matrix [B] can be obtained from

by = Pj (%)
j=12,--mandi =12 N

(14

Since, there are N + m equations with N + m unknown
constants, the resulting surface constructed using
augmented RBF is also an interpolating surface.

It is important to point out that, when augmented RBF is
used to represent simple polynomials, the constant | j in

Equation (9) will be identically zero. For non-
polynomial functions, the polynomial terms are expected
to augment the performance of the RBF.

2.2 Global Least Square Method (GLS)

The GLS methods are generally known as polynomial
regression methods and are widely used in the literature
(Refer 2 for additional references). The GLS methods
are used to create response surface functions from a set

of sampling points. For example, a quadratic polynomial
with d design variables has the form

d d
s(x)=a0+_aajxj+_ aQJX|XJ (15)
=1 J=Li=]

Where s(x) is the approximated value of the target

function at the point in the parameter space having
coordinates (%q,X,"-*,Xq), and ag,aj,andby; are the

unknown constant  coefficients. The unknown
coefficients are determined by a regression procedure.
Most commonly, the method of least squares is used to
determine the coefficients that minimize the error of the
approximation at the sampling points. Since a single
polynomial is used to represent the entire parametric
space, the method is termed here as the Global Least
Squares (GLS) method. In the present study, the GLS
method is limited to the quadratic polynomial given by
Equation (15).

2.3 Kriging

Kriging is an interpolation method that originated in the
geostatistics. Kriging uses the properties of the spatial
correlation among the data samples. In arriving at an
interpolated value at some point in the parameter space,
kriging more heavily weights data samples that are
“nearby” rather than giving all data samples equa
weight. This is achieved by setting the mean residual
error to zero and by minimizing the variance of the
errors. The final equations for kriging are given below
from reference 3 for N sampling points andd design
variables:

The estimated value of S inkriging is obtained from
s =b+rTR 2y - bt (16)

where Y is the column vector of known function values

at the N sampling points, b is a constant to be

determined, R is correlation matrix obtained for an jth

row and jth column from the correlation function as

o 6 d| . 20
R(X',x))=expa q & ‘xk' - xk“ v

& k=1 if (17)
r is the column vector of length N obtained

from



the spatial coordinates. For example, for two design
- .
T ={Rex ), ROGH)..... R(x, ) (18) variables,

T{ - - PN
and f is vector of length N, with al elements in the p'{x = [, %], Linear basisfunction; m=3

vector set to unity as
p {x} = [Lxl, Xo, xlz, X1 X2, x%] Quadratic basisfunction; m=6

The unknown b in Equation (16) can be obtained from The unknown coefficients a,,can be determined using

b=(fTR ) TR Y (19) the weighted least squares error norm J(X) at thd3N

The Maximum Likelihood Estimate (MLE) for the sampling points
unknown quantity g in Equations (16) is obtained from
a one-dimensiona maximization problem defined by N 2
369 = A w 0P ()am()- Y]
i=1 (23

ML E= max (;‘%19[N IS ?) +1n|R =[Pan(x)- YI" WP ay(x)- Y]
es g

OE£qE£¥ (20)
where w; (X) isweight function associated with node i ,
Where whose value is nonzero only in the support or influence
Ao (Y - bf )T R 1(Y - bf ) domain of the node X; (usually a sphere of radius R, ).
= N (21) Thematrices P and W are defined as
Estimation of q in the one dimensional optimization : p' (%) U
problem is the critical step in the kriging method. The p 1 pT(Xz)'I', (24)
kriging method used in this study produces a c? : Y
continuous interpolating function over the entire { pT(XN)I)
parameter space. More details can be obtained from N'm
reference 3.
. AW (X 0 u
2.4. Moving Least Square (ML S) method W= gwl( ) a
=z 0
The Moving Least Squares (MLS) method iswidely used e o0 WN (X)HN' N diagonal matrix

in meshless methods [11,12]. Recently the ML S method

has been successfully applied for response surface

generation in the context of optimization in reference 13. (25)
A MLS method is briefly discussed here:

and
The MLS approximation for the estimated value s(x)

can be written as Y ={y1, Yo - YN (26)

s} = p" {xfam(x) (22)
Minimizing the norm J(x) in Equation (10) with

respect to a,(x) leads to the following linear relation
where pT{x}:[pl{x}, pz{x},...pm{x}] is apolynomial between a,,(x) and y
basis function of order m used in the ML S interpolation.

The coefficients a;(x), j =12,...,m, are functions of
A(X) am(x) =B(x) Y (27)



where the matrices A(x) and B(x) are defined by

A(X) = PTWP = & wi (%) p(x) pT (%) (28)
i=1
B(x)=P'W
=W () p(x) Wo(X)p(X2) -+ Wiy (X)p(xn)]
(29)

The unknown coefficients a,,(x) can be obtained by
solving Equation (27), which resultsin

an(¥) = A 1(x) B(X) Y (30)

Substituting the unknown coefficient from Equation (30)
into the Equation (21) leads the MLS interpolation of the

S(x) as
s(x)=p" (x) A (%) B(X) Y (31)

The MLS approximation given in Equation (31) is well
defined only when the matrix A isnon-singular. Thisis
true only if there are at least N sampling points in the
influence domain of a node X; such that n® m. For

example, for a one-dimensional case with a linear basis
function (m=2), the value of nshould be 3 2. For a

quadratic basis function in a two-dimensional case, the
valueof N should be 3 6.

Except for the weight function w;(x), al other

quantities in the MLS approximation are well defined.
As aready mentioned, the weight function is non-zero
only in the influence domain of a node i, and equal to
zero outside the influence domain. In the present study,
the influence domain is assumed to be a sphere with

radius I; . Theradius Ii must be large enough to contain

at least Mnodes in each direction of the parametric
space. The weight function is selected such that its value
goes from unity at the center of the influence domain to
zero at the boundary and outside the influence domain.
This property of the weight function makes MLS alocal
approximation compared to the GLS approximation
traditionally used to represent the entire domain by a
single function. It may be noted that in the MLS method
for every new interpolation point ('s(x) Equation (31) is
formed and solved.

In this paper, three spline functions with ct.c?, and

c conti nuity are used as weight functions

For C1:
¥1. 2 2 3 .
V\4(X)=}1 I{+2r Ofr; £1 32)
1 0 ri>1 29)
For C?
¥1- 3 4_ o5 .
vw(x):}%l 10r; +éErI 6r 0£rrI £>11 (33)
i
For C3

1 1-35r+84r2- 70r 8 +20r

|
w; (X) = { Ofr; £1 (34)
{o r,>1
i - X . _
where r; =—— isthe normalized distance, from the

I
center of the influence domain ( x;) and a genera point
X.

The smoothness of MLS approximation is controlled by
both the weight and basis functions. The precision
(continuity) of MLS interpolation will be equal to the
minimum precision of the weight and basis function.

3. Progressive L attice Sampling (PL S)
Experimental Design:

The selection of sampling points plays a major role in
the accuracy of a response surface. There are many
schemes available in the literature. In this study the
Progressive Lattice Sampling (PLS) incremental
experimental design sequence from reference 2 will be
used. The PLS scheme is shown in Figure 4 for two
varigbles X; and X,. In this example, the square

represents the parameter space of X; and X,. Level 1

of the design consists of three samples, with one sample
in the center of the parameter space and two other
samples along the boundary. For d parameters, Level 1



requires d +1 samples. Level 2 adds d samples to
complete a 2d +1 “simple-quadratic” layout. Level 3
addsa 29 factorial design. Level 4 adds a Box-Behnken
design to complete an over al 39 full factorial design.
(In 2-D, Levels 3 and 4 have the same layout) Level 5
adds a sub-scaled 2¢ factorial design as shown

in the figure. Level 6 adds the appropriate samples to
complete a 59 full factorial design. Level 7 adds a sub-
scaled 49 full-factorial design in the interior of the
parameter space as shown. The strength of PLS isthat it
provides an efficient way to add sample sites that

leverage previous samples so that uniform distribution of
the samples over the parameter space is maintained.

sz

Level-2 (+2;5 samples)

Level-1 (3 samples)

(+4=13)

Level-6 (+12=25)

Figure 4. Progressive Lattice Sampling Points

4. Application Problems:

Two numerical examples, one with two design variables
and another with four design variables are considered.
Response surfaces are constructed and compared using
RBF with or without augmented polynomial terms. For
each problem, the response obtained using RBF is
compared with response obtained using GLS, kriging
and MLS methods. Interpolating at an arbitrary number
of points and comparing them with reference solutions
measure the accuracy of each response surface.

4.1 Two-Variable Problem:

First the described interpolation methods are applied to a
two-design variables problem selected from reference 2.

The target response function for the two-variables is
shown in Figure 5

Response Value

0.0

1.0 X1

Figure5. Target Response Function for Two-
Variables Problem

This response function is defined as:
response( X4, X,)

é a2 4pr QU
= &.8r +0.355n 1(1.59n(L.
g e 5 %’[ ()

onthedomain O£ X; £1, 0£ X, £1

. X, 0
with r =/ X2 + X2 q =arctan X—zi

19
(35)

Exact data values of this function are obtained at the PLS
sampling points shown in Figure 4. The response
surface is generated for each of the various PLS levelsin
Figure 4. The response surface is then used to
interpolate the value at any other point.



Table2: Average Percent Error for Radial Basis Functions Without Polynomial Terms

Radial Basis Function Type
Number Of Thin Plate
Sampling Points| Linear Cubic Spline Gaussian Multiquadratic Compact-1 Compact-11
9 27.91 21.12 19. 44 28. 38 30. 68 33.00 33.57
13 13. 06 7.52 8. 64 6. 22 10. 68 6. 27 5. 05
25 6. 02 1.75 2.29 1.01 4.31 2.49 2.80
41 2.56 0.56 0.80 0.24 3.65 0.48 1.17
Table 3: Average Percent Error for Radial Basis Functions With Polynomial Terms
Number Of Polynomial Augmented Radial Basis Function Type
Sampling Points| Linear | Cubic | Thin Plate Spline | Gaussian Multiquadratic Compact-I Compact-11
9 27.01 | 23.22 23. 86 22. 54 21.94 25.23 29.00
13 11. 02 9.20 9.71 8.48 10. 17 9.12 8. 57
25 4.82 2.26 2. 734 1.25 4.92 2.16 2.26
41 2.15 0. 63 0. 87 0.24 1.81 0.59 0.78

To examine the fitting performance (within the PLS
framework) of the various response surface construction
methods, a global measure of average error is defined as
follows:

o

& |(exact); - (predicted);|
i=1
Average percent Error = N N ~ 1000
& |(exact);|
i=1
N
(36)

Where “exact” in the summation comes from the
evaluation of the exact function. The predicted valuesin
the summation come from the response surface
approximation at N interpolated points For this example
N is set to equal to 441 and selected from equally
spaced points on a 21x21 sguare grid overlaid on the
domain. Earlier experience in reference 2 indicates the
21x21 grid appears to be sufficiently dense to achieve
adequate representation of the target and approximate
functions.

Four levels with 9, 13, 25 and 41 sampling points were
selected for comparison. Response surfaces were
constructed using augmented RBF, classical RBF, GLS,
kriging and MLS methods for all the four levels
sampling points selected. The average errors were
calculated by interpolating the response surfaces at 441
points using Equation (24).

First response surface were generated for RBF without
polynomia terms. The average errors obtained for the
classical and compactly supported RBF are shown in
Table 2. All the RBF methods that did not include
polynomial terms produced almost the same percentage
of error for a given number of sampling points. Hence, a
mean curve passing through the average errors is plotted
in Figure 6.

From Figure 6, the mean curve represents the best fit for
all the RBF types except for sampling points less than
15. This implies virtually al the RBF without
polynomial terms produce identical response prediction.
Both the classical and compactly supported RBF
functions produced almost identical responses.

Mean curve
40 -

Compact-|

| | Linear
X A Cubic
30 a o Thin Plate Spline
] Gaussian
20 - e A Multiquadratic
o
X

Compact-Il

n
VAN

10

Average Percent Error

0 10 20 30 40 50

Number of Sampling Points

Figure 6. Average curve representing the mean values
of theerrors



Next, response surfaces were constructed using
polynomia augmented RBF. The radial basis functions
are augmented with cubic polynomial for the 13, 25 and
41 sampling points and quadratic polynomia for 9
sampling points. The average errors obtained for the
various RBF for the selected sampling points are given
in Table 3. Here also, al the augmented RBF types
produced almost the same percentage of error for a given
number of sampling points

The response produced by augmented RBF and RBF
without polynomial terms are compared in Figure 7,
using the mean curves passing through the errors.

30 1

—o—  Without Polynomial Terms
20

- == With Polynomia Terms
10 -
0

0 10 20 30 40 50

Figure 7. Variation of average mean error for
augmented RBF and classical RBF

From Figure 7, the augmented RBF and RBF without
polynomial terms produce nearly same error for a given
number of sampling points. For both the cases, the
average error decreases as the number of sampling points
increased. Even though, there is no clear advantage in
using augmented RBF for this problem, introduction of
polynomia terms may help to reproduce the polynomial
functions accurately. Note that, the augmented
polynomias do not require additional sampling points
for the surface construction.

Next the average errors from the augmented RBF are
compared with the other response surface methods
(GLS, kriging, and MLS) in Figure 8. The global GLS
method consistently performs very poorly for al the
sampling. The local RBF, kriging and MLS methods
produced almost identical errors for a given number
sampling point.

——  Augmented RBF Method

.o-- GLSMethod
= 407 m Kriging
uct: o, A MLS Methpd
4§l 307 )
E 207
[0
e
% 10-
<
0 T

0 10 20 30 40 50
Number of Sampling Points

Figure 8. Comparison of RBF methods with
GLSKriging and ML S methods for two
variable problems

4.2 Four-Variables Problem:

The next example considered is a four-variable problem
that is taken from the reliability-based design of a
metalic, plate-like wing to meet strength and flutter
requirements [14]. In this paper, only strength
requirement will be considered. The selected plate-like
wing configuration is shown in Figure 9.

The dimensions used for wingspan(L), wing root
chord (Cr), tip chord(C;), and sweep of the leading
edge (F) are also show in Figure 9. The modulus of
elaticity is 10° 10° psi and Poisson's ratio is0.30.
The wing is clamped at the root and subjected to a
uniform pressure of 1 psi .

Figure9. Dimension of Metal Plate-Like Wing



The thickness distribution along the span of the wing is
assumed as bi-linear and can be defined in terms of the
thicknesses of the corner nodes 1 to 4 (see Figure 9) as

t(x,h) =c; +Cox + ch +cyxh (37)
where
_(+ty +i3+1y) (38)
4
_(htty+ig-ty)
4
6= (- tp+tg+1y) (39)
4
cy = (ta- tp :ts - 1) (40)

The equation relating the (x,y) and (x,h) wing
coordinates (see Figure 9) can be written as

_ 2L(x- ytanf) (41)
CL-(C-Cy

_2y.
h="5-1 (42)
where -1£x £1,and -1£h £1
// Element 1
frar
Al 19/
O i o e
?91‘51_ _—‘ S S
/ Element 162

Figure 10. Finite Element M odel for Stress Prediction

The four corner node thicknesses (t; tot, ) are the design
variables. Each thickness is alowed to vary between

0.15in and0.4in. The sampling points are generated

using the PLS scheme for level-5 with 97 sampling
points and level-7 with 881 sampling points. In order to
predict the stress distribution as function of four design
varisbles (t;tot,), the plate is divided into 162

quadrilateral finite elements as shown in Figure 10.
Finite element analyses with 162 quadrilateral elements
are used to obtain the stresses at the centroids of each
element. For example, for the 881 sampling points in
level-7, 881 finite element analyses are performed.
These 881 centroidal stresses for an element are used to
construct the responses for that element. Hence, a total
of 162 response surfaces are constructed, one for @1
element. The MSC/NASTRAN structural analysis code
with 8-node quadrilateral elements is used for the finite
element analyses.

The 162 response surfaces are generated using the five
classical radial functions given in Table 1 and two
Compact-1 (Equation (7)) and Compact-11 (Equation (8))
radial functions. In order to determine the error in the
response surface estimation, 2500 random points are
selected. Exact stresses are calculated using
MSC/NASTRAN and predicted stress are calculated by
interpolating the response surfaces. The average and
%error for each element are calculated by using the
following equations.

N
4 |(exact), - (predicted);|
Average Error = 1=1

N
(43)

2500
& |exact stress
1

2500

Mean Stress for an element = (44)

The percent error is calculated as

Average Error ,
Mean Sress

(45)

Average %Error for an element = 100

The average error for element 1 (see Figure 10) is
compared in Figure 11 for 97 sampling points for RBF
with and without augmented polynomia terms. Using
Figure 11, the polynomial augmented RBF produced less
error in the response prediction than the RBF without



polynomial terms. The variation between different types
is smaller for the augmented RBF than the RBF without
polynomial terms.

A similar trend is noticed in Figure 12 for the 881
sampling points. It can be seen from Figure 12 that all
the RBF estimated the response within two percent. The
effect of polynomial terms is more pronounced in the
compact support RBF, where the error is reduced more
than four times from RBF without polynomial terms.

Finally the average errors from the augmented RBF are
compared with kriging and MLS methods in Figure 13.
The augmented RBF functions out perform the kriging
method and almost produce the same response as that of
MLS method.

5. Discussion

The first example studied here not clearly established
the need for augmented polynomia terms in the RBF.
However, the second example clearly demonstrated that
the polynomial augmented RBF function performs better
than the RBF without polynomial terms. All the RBF
function types produced identical performance.
However, careful examination of results suggests the
cubic classical function is computationally efficient and
isvery accurate. The importance of the positive definite
property of the compact support RBF is not studied using
the two examples in this paper. Further study is
warranted on the importance of the positive definiteness
of the RBF. In order to assess the effectiveness among
RBF, MLS and kriging methods, more study should be
conducted to measure the derivative generation
capability of these methods to estimate sensitivity in
reliability and optimization problems

6. Conclusion:

A radia basis response surface construction method
using augmented and compact support Radial Basis
Functions (RBF) was developed. The RBF based
response surface construction was tested in two
numerical examples and found to produce accurate
response estimation. The polynomial augmented radial
functions generally produce less error in response
prediction than the classical radial and compact radial
functions. The RBF response surface method was
compared to local Moving Least Square (MLS) , kriging,
and Global Least Square (GLS) methods. The GLS
method performed poorly. The local RBF, kriging and
MLS methods predicted the response very accurately.
All threelocal methods produced nearly the same error.
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Figure11l. Averageerror comparison for RBF with and without augmented polynomial terms:
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Figure 12. Averageerror comparison for RBF with and without augmented polynomial terms:
881 sampling points
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Figure 13: Averageerror comparison for classical and polynomial augmented radial functions
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