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Abstract: 
A local response surface construction method based on 
augmented and compactly supported Radial Basis 
Functions (RBF) was developed.  The developed method 
was tested in two numerical examples.  The response 
surface generated using polynomial augmented RBF 
predict the response of a system better than the one 
constructed using classical RBF.  The results obtained 
from the RBF based methods were also compared with 
the results obtained using local methods based on 
Moving Least Square (MLS) and kriging.  It was found 
that all the three local methods (RBF, MLS, and kriging) 
predict the response with almost the same accuracy.  

1 . Introduction: 
 
Structural reliability engineering analysis involves 
determination of probability of structural failure taking 
into account the uncertainty in the geometric parameters, 
material properties and loading conditions [1].  The 
uncertain quantities are treated as random variables and 
often a large number of simulations (structural analyses) 
with different sets of random variables are necessary to 
estimate the reliability of a structure.  Hence the 
computational effort required to perform a structural 
reliability analysis can be very high.  In order to 
minimize the computational time, response surface 
functions are often used as simple and inexpensive 
replacements for computationally expensive structural 
analyses in reliability methods.  Most of the response 
surface construction methods use a single  
 
 

 
 
quadratic or cubic polynomial to represent the entire 
parametric space of the random variables.   These 
methods can be classified as global methods.   Since the 
global methods use a single polynomial to represent the 
entire parametric space, they introduce large errors in the 
response estimation or limit the size of the parametric 
space. In order to overcome such difficulties, piecewise 
polynomial functions are often used.  For example, finite 
element methods use piecewise polynomials.  However, 
the piecewise polynomials for response surface 
construction are restricted to two- or three-dimensions.  
Hence, local methods were developed and presented as 
an alternate in response surface approximation [2], 
where it is possible to extend the method to arbitrary 
number of dimensions.  In arriving at an interpolated 
value at some point in the parametric space, the local 
methods more heavily weight data samples that are 
“nearby” rather than giving all data samples equal 
weight.   
 
A new local Moving Least Square (MLS) response 
surface construction method was developed in reference 
2.  The MLS method was compared with other local 
methods such as kriging [3] and found to be more 
accurate and computationally efficient.   Another class of 
local response surface construction using Radial Basis 
Functions (RBF) is also widely used [4-6].  The 
complete description of these classical radial basis 
functions is available in reference 7.  Recently, 
compactly supported radial functions were derived [8-
10].  These functions are derived using the condition that 
the interpolation matrix should be positive definite.  



    

These compactly supported radial basis functions 
produce interpolation matrices that are sparse and for 
interpolation use only a few terms.  Another advantage 
of compactly supported radial basis functions is that the 
data error in a single point or region does not affect the 
entire domain.  It is known that classical radial basis 
functions and compactly supported radial basis functions 
do not reproduce exact values of constant and higher 
order polynomial terms in the interpolation [7].  To 
reproduce polynomial terms exact, the classical radial 
basis functions are augmented with polynomial terms.  
The effect of augmented polynomial terms to the newly 
developed compactly support radial basis functions on 
response surface generation is not investigated in the 
literature.  
 
The objective of the present work is two fold: (a) to 
develop response surface approximation with augmented 
classical and compactly supported radial basis functions 
and (b) compare the radial based method with global, 
MLS and kriging based response construction methods.  
The effect of augmented polynomial terms on the 
accuracy of the response surface will be studied.  The 
sampling points for the response surface construction 
will be selected using Progressive Lattice Sampling 
(PLS) experimental design [2].   
 
First, the response surface construction method using 
radial basis functions is presented as part of the 
interpolation methods.  Then a brief introduction to 
global, MLS and kriging methods of response surface 
construction is presented.  Then the Progressive Lattice 
Sampling (PLS) method of selecting data points is 
provided.  Next, the selected response surface 
construction methods are tested in a two variable 
problem and results are compared.  Finally a four-
variable example from a reliability application is 
presented to demonstrate the effectiveness of the 
augmented classical and compactly supported radial 
basis functions for response surface construction.   

2. Interpolation Methods: 
The accuracy of the response surface in representing the 
behavior of the actual system largely depends upon the 
interpolating method used for its generation.  First, 
response surface generation using Radial Based 
Functions (RBF) is developed in this section.  This is 
followed by a brief introduction (adopted from reference 
2) to the Global Least Square (GLS), kriging and MLS 
interpolating methods. 
 
 
 

2.1 Radial Basis Response Surface 
Construction 
In this section, first the response surface construction 
method using classical RBF is described.  Next, response 
surface construction using compactly supported RBF is 
presented.  Finally, response surface construction using 
augmented RBF is described.  
 
 2.11 Classical RBF Response Surface 
Construction: 
 
 
In classical RBF based methods, the interpolation of a 
surface )(xs  is performed as a linear combination of 
radial functions as 
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where the radial basis functions ϕ  are functions of the 

radial distance 
2jxx −  from node j , jλ  are 

interpolation constants to be determined, and N  is the 
number of sample or data points with known function 
values jF such that 
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The Euclidean norm 

2jxx −  represents the radial 

distance r  of the point x  from the center jx .  For two-

dimensional systems in Cartesian X-Y coordinates, the 
radial distance can be obtained as 
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The unknown interpolation coefficients jλ  in Equation 

(1) can be determined by minimizing the norm 
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The minimization equation in matrix form can be written 
as 
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and the coefficient ija ( thi  row and thj  column) of the 

matrix [ ]A  can be obtained from 

( )
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Since, there are N  equations with N  unknown 
constants Njj ,1, =λ ; the resulting surface is an 

interpolating surface.  
 
All the radial basis response surface construction 
methods use classical radial functions of the form of 
Equation (1).   The response surface construction 
methods developed using classical RBF have the 
following limitations: 
 

1. RBF does not posses compact support, i. e., 
change in any one of the center coordinates jx  

affects the entire interpolation, 
2. the system matrix [ ]A  in Equation (4) may not 

be positive definite [7], and 
3. almost all the RBF can reproduce a constant 

function only in the limit as →∝N , i. e. , 
number of sampling points is large.  

 
Most commonly used radial classical radial functions are 
given in Table 1:  
 
Table 1: Classical RBF Functions (from reference 4) 

 

Classical RBF 
Equation 

2jxxr −=  

Linear crr =)(φ  

Cubic 3)()( crr +=φ  

Thin plate spline )log()( 22 crrr =φ  

Gaussian 
2

)( crer −=φ  

Multiquadratic ( )2
1

22)( crr +=φ  

 

The constant c in the radial basis functions in Table 1 is 
adjusted to obtain the best fit.   However, there is no 
simple way to evaluate the constant c  [6].   In the 
present work the constant c  is set to unity except for the 
cubic function where it is set to zero.  
 

 
Compactly supported radial functional are generated [8-
10] recently.  For compactly supported radial functions, 
the interpolation matrix [ ]A  in Equation (4) is sparse and 
positive definite.  Also for interpolation only a few terms 
need to be considered.  This leads to efficient algorithms 
for the computation and evaluation of response surfaces.  
In this study, the following two compactly supported 
radial functions are adapted from reference 7 
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where 
0r
r

t = , and 0r is the radius of the domain of 

compact support.  The compact support radius 0r  is a 
free parameter in the interpolation, and is selected by the 
user.  Many other compact support functions are given in 
references 9 and 10.  
The compactly supported radial basis function in 
Equations (7) or (8) is used in Equation (1) for response 
surface generation.  
 

2.13 Augmented RBF Response Surface 
Construction 

 
The classical RBF in Table 1 and the two compact 
support radial functions in Equations (7) and (8) can 
reproduce simple polynomials (constant, linear and 
quadratic etc.) only in the limit (i. e., as the number of 
sampling points increased).  To illustrate this point, 
consider a one-dimensional problem with variable 

 2.12 Compactly Supported RBF Response 
Surface Construction: 



    

0.10.1 1 ≤≤− X  and five equally spaced sampling points 
as shown in Figure 1.  The function values at the five 
sampling points are set to a constant value of unity to 
verify the ability of various RBF to reproduce a constant 
function.  
 
 
 
 
 
 
 
 
 
Figure 1. One-dimensional problem with five equally 

spaced sampling points 
 
 
The responses predicted by the classical RBF and 
compactly supported RBF to the constant function are 
shown in Figures 2 and 3, respectively.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Figure 2. Response of classical Radial Basis Functions 

to a constant value 
 
 
Clearly from Figures 2 and 3, except for the linear radial 
basis function, none of the other RBF, including the 
compactly supported RBF, can exactly reproduce the 
constant function.  However, all the RBF can reproduce 

the constant function for a sufficiently large number of 
sampling points. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 3.  Response of compactly supported  radial 

basis functions to a constant value 
 
In order for the RBF to reproduce simple polynomials, 
the functions can be augmented by polynomial terms as 
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where )(xPi are the monomial terms in the polynomials 

and ib  are the additional m constants introduced in the 

interpolation due to the polynomial terms.  For two-
dimensional problems, the monomial terms are 
[ ]K,,,,,,1 22 yxyxyx .  
 
The additional m unknown constants introduced in 
Equation (9) depend on the order of the polynomial 
selected and the order of the problem dimension d .  The 
number of m unknown constants due to polynomial 
terms can be determined from 
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Equation (9) consists of N  equations with mN +  
unknowns.  The additional m  equations necessary to 
solve the m  additional unknowns can be obtained from 
the following m constraints [7]  
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Hence, the polynomial augmented radial functions do 
not require any additional sampling points.  The 
constraints in Equation (11) are handled internally in the 
interpolation.  Equation (4) (to obtain the unknown 
constants) can be modified (using Equations (9) and 
(11)) for the augmented RBF as  
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where  
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and the coefficient ijb ( thi  row and thj  column) of the 

matrix [ ]B  can be obtained from 
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Since, there are mN +  equations with mN +  unknown 
constants, the resulting surface constructed using 
augmented RBF is also an interpolating surface.  
 
It is important to point out that, when augmented RBF is 
used to represent simple polynomials, the constant jλ  in 

Equation (9) will be identically zero.  For non-
polynomial functions, the polynomial terms are expected 
to augment the performance of the RBF.  
 
 
 

2.2 Global Least Square Method (GLS) 
 
The GLS methods are generally known as polynomial 
regression methods and are widely used in the literature 
(Refer 2 for additional references).  The GLS methods 
are used to create response surface functions from a set 

of sampling points.  For example, a quadratic polynomial 
with d  design variables has the form 
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Where )(xs  is the approximated value of the target 
function at the point in the parameter space having 
coordinates ),,,( 21 dxxx L , and ijj baa  and ,,0  are the 

unknown constant coefficients.  The unknown 
coefficients are determined by a regression procedure.  
Most commonly, the method of least squares is used to 
determine the coefficients that minimize the error of the 
approximation at the sampling points.  Since a single 
polynomial is used to represent the entire parametric 
space, the method is termed here as the Global Least 
Squares (GLS) method.  In the present study, the GLS 
method is limited to the quadratic polynomial given by 
Equation (15).   
 
 
2.3 Kriging 
 
Kriging is an interpolation method that originated in the 
geostatistics.  Kriging uses the properties of the spatial 
correlation among the data samples.  In arriving at an 
interpolated value at some point in the parameter space, 
kriging more heavily weights data samples that are 
“nearby” rather than giving all data samples equal 
weight.  This is achieved by setting the mean residual 
error to zero and by minimizing the variance of the 
errors.  The final equations for kriging are given below 
from reference 3 for N  sampling points and d  design 
variables:  
 
The estimated value of s  in kriging is obtained from 
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where Y is the column vector of known function values 
at the N sampling points, β̂  is a constant to be 

determined, R  is correlation matrix obtained for an thi  

row and thj column from the correlation function as 
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r  is the column vector of length N  obtained 
from  



    

 

{ }TNT xxRxxRxxRr ),(,),,(),,( 21 K=   (18) 
  
and f  is vector of length N , with all elements in the 
vector set to unity as 
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The unknown β̂  in Equation (16) can be obtained from 

YRffRf TT 111 )(ˆ −−−=β   (19) (18) 
The Maximum Likelihood Estimate (MLE) for the 
unknown quantity θ  in Equations (16) is obtained from 
a one-dimensional maximization problem defined by  
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Estimation of θ  in the one dimensional optimization 
problem is the critical step in the kriging method.  The 
kriging method used in this study produces a 2C  
continuous interpolating function over the entire 
parameter space.  More details can be obtained from 
reference 3.  

 
The Moving Least Squares (MLS) method is widely used 
in meshless methods [11,12].  Recently the MLS method 
has been successfully applied for response surface 
generation in the context of optimization in reference 13.  
A MLS method is briefly discussed here: 
 
The MLS approximation for the estimated value )(xs  
can be written as 
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T K=  is a polynomial 
basis function of order m  used in the MLS interpolation. 
The coefficients mjxa j ,,2,1),( K= , are functions of 

the spatial coordinates.  For example, for two design 
variables, 
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The unknown coefficients ma can be determined using 
the weighted least squares error norm )( XJ  at the N  
sampling points  
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where )(Xwi  is weight function associated with node i , 
whose value is nonzero only in the support or influence 
domain of the node ix  ( usually a sphere of radius iR ).  
The matrices P  and W  are defined as 
 

mNN
T

T

T

xp

xp
xp

P

×






















=

)(

)(
)(

2

1

L
  (24) 

 
 

matrix diagonal 

1

)(0

0)(

NNN xw

xw
W

×















=

L
LLL

L
  

 
 
 (25) 
 
and 
 

{ }NyyyY ,, ,21 K=    (26) 

 
 
Minimizing the norm )(xJ  in Equation (10) with 
respect to )(xam  leads to the following linear relation 
between )(xam  and y  
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2.4.  Moving Least Square (MLS) method 



    

 
 
where the matrices )(xA and )(xB  are defined by 
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The unknown coefficients )(xam  can be obtained by 
solving Equation (27), which results in 
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Substituting the unknown coefficient from Equation (30) 
into the Equation (21) leads the MLS interpolation of the 

)(xs  as 
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The MLS approximation given in Equation (31) is well 
defined only when the matrix A  is non-singular.  This is 
true only if there are at least n  sampling points in the 
influence domain of a node iX  such that mn ≥ .  For 
example, for a one-dimensional case with a linear basis 
function )2( =m , the value of n should be 2≥ .  For a 
quadratic basis function in a two-dimensional case, the 
value of n  should be .6≥  
 
Except for the weight function )(xwi , all other 
quantities in the MLS approximation are well defined.  
As already mentioned, the weight function is non-zero 
only in the influence domain of a node i , and equal to 
zero outside the influence domain.  In the present study, 
the influence domain is assumed to be a sphere with 
radius il .  The radius il  must be large enough to contain 

at least m nodes in each direction of the parametric 
space.  The weight function is selected such that its value 
goes from unity at the center of the influence domain to 
zero at the boundary and outside the influence domain.  
This property of the weight function makes MLS a local 
approximation compared to the GLS approximation 
traditionally used to represent the entire domain by a 
single function.  It may be noted that in the MLS method 
for every new interpolation point ( )(xs Equation (31) is 
formed and solved.  

In this paper, three spline functions with ,, 21 CC  and 
3C  continuity are used as weight functions 
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where 
i

i
i l

xx −
=ρ  is the normalized distance, from the 

center of the influence domain ( )ix  and a general point 
x .  
 
 
The smoothness of MLS approximation is controlled by 
both the weight and basis functions.  The precision 
(continuity) of MLS interpolation will be equal to the 
minimum precision of the weight and basis function.   

 

3. Progressive Lattice Sampling (PLS) 
Experimental Design: 

 
The selection of sampling points plays a major role in 
the accuracy of a response surface.  There are many 
schemes available in the literature.  In this study the 
Progressive Lattice Sampling (PLS) incremental 
experimental design sequence from reference 2 will be 
used.  The PLS scheme is shown in Figure 4 for two 
variables 1X  and 2X .  In this example, the square 
represents the parameter space of 1X  and 2X .  Level 1 
of the design consists of three samples, with one sample 
in the center of the parameter space and two other 
samples along the boundary.  For d  parameters, Level 1 



    

requires 1+d  samples.  Level 2 adds d  samples to 
complete a 12 +d  “simple-quadratic” layout.  Level 3 

adds a d2  factorial design.  Level 4 adds a Box-Behnken 
design to complete an over all d3  full factorial design.  
(In 2-D, Levels 3 and 4 have the same layout) Level 5 
adds a sub-scaled d2  factorial design as shown  
in the figure.  Level 6 adds the appropriate samples to 
complete a d5  full factorial design.  Level 7 adds a sub-

scaled d4 full–factorial design in the interior of the 
parameter space as shown.  The strength of PLS is that it 
provides an efficient way to add sample sites that 
leverage previous samples so that uniform distribution of 
the samples over the parameter space is maintained. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Progressive Lattice Sampling Points 

 

4. Application Problems: 

Two numerical examples, one with two design variables 
and another with four design variables are considered.  
Response surfaces are constructed and compared using 
RBF with or without augmented polynomial terms.  For 
each problem, the response obtained using RBF is 
compared with response obtained using GLS, kriging 
and MLS methods.  Interpolating at an arbitrary number 
of points and comparing them with reference solutions 
measure the accuracy of each response surface.  

4.1 Two-Variable Problem: 

First the described interpolation methods are applied to a 
two-design variables problem selected from reference 2.  

The target response function for the two-variables is 
shown in Figure 5  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.   Target Response Function for Two-
Variables Problem 

 

This response function is defined as: 
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Exact data values of this function are obtained at the PLS 
sampling points shown in Figure 4.  The response 
surface is generated for each of the various PLS levels in 
Figure 4.  The response surface is then used to 
interpolate the value at any other point.  
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Table 2:  Average Percent Error for Radial Basis Functions Without Polynomial Terms 
Radial Basis Function Type 

Number Of 
Sampling Points Linear Cubic 

Thin Plate 
Spline 

Gaussian Multiquadratic Compact-I Compact-II 

9 27. 91 21. 12 19. 44 28. 38 30. 68 33.00 33. 57 
13 13. 06 7. 52 8. 64 6. 22 10. 68 6. 27 5. 05 
25 6. 02 1. 75 2. 29 1. 01 4. 31 2. 49 2. 80 
41 2. 56 0. 56 0. 80 0. 24 3. 65 0. 48 1. 17 

 

Table 3: Average Percent Error for Radial Basis Functions With Polynomial Terms 
Polynomial Augmented Radial Basis Function Type Number Of 

Sampling Points Linear Cubic Thin Plate Spline Gaussian Multiquadratic Compact-I Compact-II 
9 27. 01 23. 22 23. 86 22. 54 21. 94 25. 23 29.00 

13 11. 02 9. 20 9. 71 8. 48 10. 17 9. 12 8. 57 
25 4. 82 2. 26 2. 734 1. 25 4. 92 2. 16 2. 26 
41 2. 15 0. 63 0. 87 0. 24 1. 81 0. 59 0. 78 

 

 

To examine the fitting performance (within the PLS 
framework) of the various response surface construction 
methods, a global measure of average error is defined as 
follows: 
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Where “exact” in the summation comes from the 
evaluation of the exact function.  The predicted values in 
the summation come from the response surface 
approximation at N  interpolated points For this example 
N  is set to equal to 441 and selected from equally 
spaced points on a 21x21 square grid overlaid on the 
domain.  Earlier experience in reference 2 indicates the 
21x21 grid appears to be sufficiently dense to achieve 
adequate representation of the target and approximate 
functions.   

Four levels with 9, 13, 25 and 41 sampling points were 
selected for comparison.  Response surfaces were 
constructed using augmented RBF, classical RBF, GLS, 
kriging and MLS methods for all the four levels 
sampling points selected.  The average errors were 
calculated by interpolating the response surfaces at 441 
points using Equation (24).  

First response surface were generated for RBF without 
polynomial terms.  The average errors obtained for the 
classical and compactly supported RBF are shown in 
Table 2. All the RBF methods that did not include 
polynomial terms produced almost the same percentage 
of error for a given number of sampling points.  Hence, a 
mean curve passing through the average errors is plotted 
in Figure 6. 

From Figure 6, the mean curve represents the best fit for 
all the RBF types except for sampling points less than 
15.  This implies virtually all the RBF without 
polynomial terms produce identical response prediction.  
Both the classical and compactly supported RBF 
functions produced almost identical responses.  

 

 

 

 

 

 

 

 
Figure 6. Average curve representing the mean values 

of the errors 
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Next, response surfaces were constructed using 
polynomial augmented RBF.  The radial basis functions 
are augmented with cubic polynomial for the 13, 25 and 
41 sampling points and quadratic polynomial for 9 
sampling points.  The average errors obtained for the 
various RBF for the selected sampling points are given  
in Table 3.  Here also, all the augmented RBF types 
produced almost the same percentage of error for a given 
number of sampling points 

 

The response produced by augmented RBF and RBF 
without polynomial terms are compared in Figure 7, 
using the mean curves passing through the errors.   

 

 

 

 

 

 

 

 

Figure 7. Variation of average mean error for 
augmented RBF and classical RBF  

 

From Figure 7, the augmented RBF and RBF without 
polynomial terms produce nearly same error for a given 
number of sampling points.  For both the cases, the 
average error decreases as the number of sampling points 
increased.  Even though, there is no clear advantage in 
using augmented RBF for this problem, introduction of 
polynomial terms may help to reproduce the polynomial 
functions accurately.  Note that, the augmented 
polynomials do not require additional sampling points 
for the surface construction.  

 

Next the average errors from the augmented RBF are 
compared with the other response surface methods 
(GLS, kriging, and MLS) in Figure 8.  The global GLS 
method consistently performs very poorly for all the 
sampling.  The local RBF, kriging and MLS methods 
produced almost identical errors for a given number 
sampling point.   

 
 
 

 
 
 
 
 

 
 

 
 
 

 
 

 
 
 
 
Figure 8. Comparison of RBF methods with 

GLS,Kriging and MLS methods for two 
variable problems 

 

 

4.2 Four-Variables Problem: 

The next example considered is a four-variable problem 
that is taken from the reliability-based design of a 
metallic, plate-like wing to meet strength and flutter 
requirements [14].  In this paper, only strength 
requirement will be considered.  The selected plate-like 
wing configuration is shown in Figure 9.   

The dimensions used for wingspan )(L , wing root 
chord )( RC , tip chord )( tC , and sweep of the leading 
edge )(Φ  are also show in Figure 9.  The modulus of 

elasticity is psi61010 ×  and Poisson’s ratio is 30.0 .  
The wing is clamped at the root and subjected to a 
uniform pressure of psi1 .  
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Figure 9.  Dimension of Metal Plate-Like Wing 
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The thickness distribution along the span of the wing is 
assumed as bi-linear and can be defined in terms of the 
thicknesses of the corner nodes 1 to 4 (see Figure 9) as  
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The equation relating the ),( yx  and ),( ηξ  wing 
coordinates (see Figure 9) can be written as 
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where  11 ≤≤− ξ , and 11 ≤≤− η  
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Figure 10. Finite Element Model for Stress Prediction 
 
 
The four corner node thicknesses 1(t to 4t ) are the design 
variables.  Each thickness is allowed to vary between 

in15.0 and in4.0 .  The sampling points are generated 
using the PLS scheme for level-5 with 97 sampling 
points and level-7 with 881 sampling points.  In order to 
predict the stress distribution as function of four design 
variables 1(t to 4t ), the plate is divided into 162 
quadrilateral finite elements as shown in Figure 10.  
Finite element analyses with 162 quadrilateral elements 
are used to obtain the stresses at the centroids of each 
element.  For example, for the 881 sampling points in 
level-7, 881 finite element analyses are performed.  
These 881 centroidal stresses for an element are used to 
construct the responses for that element.  Hence, a total 
of 162 response surfaces are constructed, one for each 
element.  The MSC/NASTRAN structural analysis code 
with 8-node quadrilateral elements is used for the finite 
element analyses.  
 
The 162 response surfaces are generated using the five 
classical radial functions given in Table 1 and two 
Compact-I (Equation (7)) and Compact-II (Equation (8)) 
radial functions.  In order to determine the error in the 
response surface estimation, 2500 random points are 
selected.  Exact stresses are calculated using 
MSC/NASTRAN and predicted stress are calculated by 
interpolating the response surfaces.  The average and 
%error for each element are calculated by using the 
following equations.  
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The percent error is calculated as 
 
 

100% ×=
StressMean

ErrorAverage
elementanforErrorAverage

  (45) 
 
The average error for element 1 (see Figure 10) is 
compared in Figure 11 for 97 sampling points for RBF 
with and without augmented polynomial terms.  Using 
Figure 11, the polynomial augmented RBF produced less 
error in the response prediction than the RBF without 



   

polynomial terms.  The variation between different types 
is smaller for the augmented RBF than the RBF without 
polynomial terms.  
 
A similar trend is noticed in Figure 12 for the 881 
sampling points.  It can be seen from Figure 12 that all 
the RBF estimated the response within two percent. The 
effect of polynomial terms is more pronounced in the 
compact support RBF, where the error is reduced more 
than four times from RBF without polynomial terms.  
 
Finally the average errors from the augmented RBF are 
compared with kriging and MLS methods in Figure 13.  
The augmented RBF functions out perform the kriging 
method and almost produce the same response as that of 
MLS method.  
 

5. Discussion 
 

 The first example studied here not clearly established 
the need for augmented polynomial terms in the RBF. 
However, the second example clearly demonstrated that 
the polynomial augmented RBF function performs better 
than the RBF without polynomial terms.  All the RBF 
function types produced identical performance.  
However, careful examination of results suggests the 
cubic classical function is computationally efficient and 
is very accurate.  The importance of the positive definite 
property of the compact support RBF is not studied using 
the two examples in this paper.  Further study is 
warranted on the importance of the positive definiteness 
of the RBF.  In order to assess the effectiveness among 
RBF, MLS and kriging methods, more study should be 
conducted to measure the derivative generation 
capability of these methods to estimate sensitivity in 
reliability and optimization problems 

 

6. Conclusion: 
 
A radial basis response surface construction method 
using augmented and compact support Radial Basis 
Functions (RBF) was developed.  The RBF based 
response surface construction was tested in two 
numerical examples and found to produce accurate 
response estimation.  The polynomial augmented radial 
functions generally produce less error in response 
prediction than the classical radial and compact radial 
functions.  The RBF response surface method was 
compared to local Moving Least Square (MLS) , kriging, 
and Global Least Square (GLS) methods.  The GLS 
method performed poorly.  The local RBF, kriging and 
MLS methods predicted the response very accurately.  
All  three local methods produced nearly the same error.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   

0
1
2
3
4
5
6
7
8

Lin
ea

r
Cub

ic

Th
in 

Plat
e S

plin
e

Gau
ssi

an

Mult
iqu

ad
rat

ic

Com
pa

ct 
Su

pp
ort

-1

Com
pa

ct 
Su

pp
ort

-2

A
ve

ra
g

e 
%

 E
rr

o
r

Without Polynomial
Terms
With Cubic
Polynomial Terms 

97 Sampling Points

 
 
Figure 11.  Average error comparison for RBF with and without augmented polynomial terms: 

97 sampling points 
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Figure 12.  Average error comparison for RBF with and without augmented polynomial terms: 
881 sampling points 

 
 
 
 



   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: Average error comparison for classical and polynomial augmented radial functions 
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