MODE JUMPING OF AN ISOGRID PANEL UNDER QUASI-STATIC COMPRESSION

DanniellaM. Muheim
Member AIAA
Aerospace Engineer, Analytical and Computational Mechanics Branch
NASA Langley Research Center, Hampton, VA, 23681

Eric R. Johnson
Member AIAA and ASME
Professor, Aerospace and Ocean Engineering
Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061-0203

Abstract

A wide column test of a composite isogrid panel
subjected to quasi-static, axial compression is modeled
with a hybrid-static dynamic computational method.
The data from the test panel exhibited discontinuous
responses in the compressive load for sowly increased
end-shortening. The computational model was
developed to corroborate these discontinuities with the
phenomenon of mode jumping. Mode jumping refersto
the transient response of the panel from an unstable
bifurcation point on a postbuckled equilibrium path to a
second stable equilibrium state on anew equilibrium
path. On the new equilibrium path, both the analysis and
test show that the panel can resist increased end-
shortening beyond that of the unstable critical point.
Fair agreement is achieved between the analysis and
test.

Introduction

The postbuckling response of geodetic and isogrid
stiffened structures under quasi-static compression
loading has received |ess attention than the buckling of
these structures. Thislack of attention may be dueto the
common approach to design so that a geodetic structure
failsin aglobal buckling mode rather thanin alocal
buckling mode. However, Refs. 1-3, indicated that when
local buckling occurred first it was not catastrophic, and
it was possible to increase the applied load until total

collapse occurred. Koury et al.1, noted that one of their
panels underwent three different buckle patterns under
increasing load prior to the catastrophic failure of a

single stiffener. Heard et al.2, noted that a materially
nonlinear analysis of the postbuckled response of an
aluminum isogrid cylinder exhibited repeated changes
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in buckle pattern during monotonic loading. The
cylinder buckle patterns were of progressively shorter
wavelength, and the changes in each pattern were

accompanied by brief dropsin strain. The test results?,
however, did not exhibit these transient changesin
buckle pattern.

Transient changesin the postbuckled deformation
states under monotonically increasing quasi-static, end-
shortening were first observed in a compression test of a
multi-bay, flat aluminium plate by Stei n*. This
phenomenon is now called mode jumping. Mode
jumping refersto the transient response of a structure
from an unstable bifurcation point on a postbuckled
equilibrium path to a second stable equilibrium state on a
new equilibrium path. The structure can carry increasing
static compressive loads beyond that of the unstable
critical point on the new equilibrium path. Thus, the
structure exhibits postbuckling strength along the new
stable equilibrium path. Since it is difficult to use static
path following methods to | ocate disconnected
equilibrium paths, combined static and dynamic analyses
can model best conditions observed in tests. A hybrid
static-dynamic computational approach was devel oped

and used by Riks, Rankin and Brogan5, and later used by

others®’ to model one bay of Stein’s aluminum plate.
Others have used a hybrid static-dynamic approach to

model the response of composite cylinders®?, composite
cylinders with cutouts'®, and cracked aluminum
cylinderst?.

To the authors' knowledge, there is no reported
work intheliterature on mode jumping of isogrid panels.
The objective of this paper isto use a hybrid static-
dynamic computational approach to corroborate that the
discontinuities observed in the load-shortening response
of an isogrid test pandl are associated with the mode
jumping phenomenon. The procedures to transition
between static and dynamic analyses and to select the
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damping coefficients differ somewhat with thosein
Refs. 5-11. The following sections are included in the
paper: wide column test of the composite isogrid panel,
hybrid static-dynamic method, finite element model,
results and discussion, and some concluding remarks.

Wide column compression tests

A series of composite isogrid panels of rectangular
planform were tested under quasi-static, uniaxial
compression as wide columns. That is, the two opposite
lateral edges of the panels were free, and the loaded
edges were secured in an iron frame fixture. The panels
were laminated from IM7/977-2 graphite-epoxy with a
skin lay-up of [+60/05] s, and a stiffener lay-up of [0]g.
These isogrid panels were manufactured by the United
States Air Force Phillips Laboratory for composite

launch vehicle components!. One of the delivered
panels, labeled P23, was cut to form additional test
articles denoted P23RA, P23RB, P23LA, and P23LB as
shownin Fig. 1(a). Test articles LA and LB had three
axia stiffeners, and RB and RA had one axial stiffener.
Noticein Figs. 1(a)-(b) that distinct polygonal skin
regions defined by the stiffener pattern were not
symmetric about the axial stiffeners. This asymmetry
was due to the manufacturing technique used to avoid
stiffener material build-up by ‘off-setting’ the three
intersecting stiffeners.

The longitudinal ends of the test articles were
secured in iron fixtures filled with an aluminum epoxy
potting compound and were ground flat and parallel.
The instrumented specimens were placed between the
platens of a hydraulic testing machine with an axial load
capacity of 120 kips (533.8 kN). The testing machine
was operated in displacement control with the rate of
end-shortening specified as 0.02 in./min. (0.508 mm/
min.).

Each of the test panels exhibited discontinuities or
“jumps’ in the load versus end-shortening plots, and
other response plots. Only panel P23RA is selected for
the analyses presented here. This small panel had one
continuous axial stiffener in the center, four off-axis
stiffeners that terminated at the free edges of the panel,
and had its three-stiffener intersections contained in the
potting material of the end-fixtures. Panel P23RA had
planform dimensions of approximately 3.75in. by 6in.
(95.25 mm by 152.4 mm) The nominal cross-sectional
dimensions of the stiffeners are 0.64 in. (16.26 mm) in
height and 0.0455 in. (1.156 mm) in thickness. The
nominal skin thicknessis 0.0564 in. (1.433 mm).

2

Fourteen electrical resistance strain gages were
bonded to the skin and axia stiffener. These gages are
numbered one to fourteen as shown in Fig. 1(b), and are
identified as SG1 to SG14 in the text. Gages SG1 and
SG3 measured back-to-back axial strainsin the left skin
cell, and SG5 and SG7 measured back-to-back axia
strains in the right skin cell. In Fig. 1(b), back side gage
numbers are shown in parentheses. Gages SG13 and
SG14 measured back-to-back strains at the center of the
web of the axia stiffener in adirection normal to the
skin. Onedirect current differential transducer (DCDT)
was used to monitor the axial displacement of the panel
at the movable platen. The second and third DCDTs
monitored the out-of-plane displacements at the center
of the left skin cell and at the center of the right skin
cell, and these displacements are denoted by w;_and wg,

respectively. Measurement of w_iscoincident with gage
SG1, and measurement of wg is coincident with gage
SG5.

Hybrid static-dynamic method

The hybrid static-dynamic approach for the nonlinear
response of the panel consists of three steps. First, a
static analysisis performed to establish the equilibrium
path on the load end-shortening response plot that
emanates from the origin. Stability analyses of these
states on this equilibrium path are conducted to locate
the unstable critical point. Second, adynamic analysisis
initiated at this unstable critical point, which includes
dissipative forces, to represent the transient mode jump
of the panel to the vicinity of anew stable equilibrium
state, assuming the new asymptotically stable state
exists. Third, a second sequence of static analysesis
undertaken along this new stable equilibrium path.

To model the response of the panel, we assume the
material law islinear elastic, the strain-displacement
relations referred to the reference state are nonlinear, the
external dissipative forces are due to linear viscous
damping, and that any external loads are conservative
and independent of the displacements; i.e., deadweight
external loads. Using the finite element method, the
continuum representation of the panel isdiscretized. Let

U denote the generalized nodal displacement vector, U
the velocity vector, and let U denote the acceleration

vector. Thedot () denotes differentiation with respect

to time. The equations of motion are
MU + DU +finf(U) = Afext (2)

where M is the symmetric and positive definite mass
matrix, D is the symmetric and positive definite damp-
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ing matrix, finf(U) istheinternal force vector, A isthe

load factor, and f &t isthe external load vector. Con-
trolled, proportional external loading is assumed in Eq.
(2). Since the materia is elastic, the components of the
internal force vector are the partial derivatives of the
strain energy with respect to the corresponding nodal
displacement.

Setting the time derivatives of U to zero in Eq. (1),
yields the governing nonlinear static equilibrium
equations. These equilibrium equations are solved
iteratively by Newton's method, which leads to the
following sequence of linear equations for the

incremental displacement vectors AUK , where kisthe
current iteration,and k = 1, 2, ...,

KanAU K = RK) = \fext—finy(y(k-1)) 2
UK = k-1 +AU® A3)

In Eq. (2) the tangent stiffness matrix is given by
Kran[UK=1;A] = afint/ou 4

u(k=-1)
and R® istheresidua force vector. Theinitial guess

U isthe equilibrium displacement vector from the
previous load state. If the iterations converge, then the
residual force vector isvery closeto the null vector with
respect to a specified error tolerance. When the

sequence { UM, U@, ...} converges, thelimit U*(A)
is the equilibrium displacement vector for the specified
load factor A.

Asthe system as represented by Eq. (1) is purely
and completely dissipative'?, the energy method can be
used to analyze the stability of an equilibrium state.
Thus, the stability of an equilibrium state is determined
by the nature of the quadratic form given by the second

variation of the total potential energy. Let 62l denote
the second variation of the total potential energy, which
isequal to the second variation of the strain energy for
deadweight loading. Sincethe first partial derivatives of
the strain energy with respect to the displacements gives
the components of the internal force vector, then the
tangent stiffness matrix in Eq. (4) is equivalent to
computing the second partial derivatives of the strain
energy with respect to the displacements. Consequently,
the second variation of the total potential energy can be
written as

2M = (BUTKpp8U)/2 (5)

where Ky = Kran(UTA), 8U isany kinematically

admissible variation of the displacement vector about
the equilibrium state, and the superscript T denotes

3

matrix transpose. Eigenvalues of the tangent stiffness
matrix at an equilibrium state determined its stability.
For the equilibrium path on the load versus end-
shortening response plot that emanates from the origin,
we seek the first unstable critical state encountered
when monotonically increasing the load factor, A, from
zero. For a perfect system, there may be stable critical
states corresponding to bifurcation pointsasA is
increased. In the numerical analysis, we determined the
first unstable critical point if no stable equilibrium state
were found in the vicinity of acritical point on the load-
shortening plot. Let S, denote this first unstable critical

state at the corresponding load factor A,.

A nonlinear dynamic analysisisinitiated from the
state S, with the load factor fixed at A, by specifying a
small initial velocity times the eigenvector associated
with the zero eigenvalue of the tangent stiffness matrix.
The time derivatives of the internal forces,
displacements, and vel ocities are approximated in the
time domain with an implicit time integration scheme.

Proportional dampi ng13 isassumed; i.e.,

D = aM + BKyan(UiN), (6)

where o and 3 are the mass and stiffness scalar coeffi-
cients of proportionality. Matrix D is updated for each
iteration at a particular time step of the dynamic analysis
with afull Newton-Raphson scheme. Coefficients a and
[ are selected by analogy to alinear, single degree-of-
freedom oscillator. For this linear oscillator, the scalar

product M—1D isequal to 2{w and the scalar product
M-1K equals w?, whereZ isthe dimensionless damping
factor and w is the undamped natural frequency in radi-
ans per second. Thus, for proportional damping of the
linear oscillator, Eq. (6) reducesto

2lw = cx+Boo2.

@)

We define mass and stiffness damping factors ¢, and
(k. respectively by a = {yyw and 3 = {k/w such that Eq.
(7) leadsto 2¢ = {y; + (k. The underdamped caseis used
to specify {yyand {x suchthat0<{ < 1. Letfbean

undamped natural frequency in Hertz, then the coeffi-
cientsa and [3 are given by

a =2 B = /(2m) ®)
The frequency used in the analysisisthe lowest nonzero
vibration frequency at the critical state S,. By defini-

tion, the fundamental frequency at state S, vanishesand

its eigenmode coincides with the buckling mode, so that
the lowest nonzero frequency is the second frequency.
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After initiating the motion at state S, the trgjectory
of the motion in phase space approaches an
asymptotically stable equilibrium state denoted as S;,
assuming this state exists. Thetrajectory isconsidered to
have arrived in the vicinity of state S; once the kinetic
energy remains less than 1% of the peak kinetic energy
in the transient response. Let T, denote the time of
arrival of the trgjectory in the vicinity of state S;. The
displacement vector in the transient analysis at Ta is

used asthe initial guess U@ in the Newton'siteration
to determine the displacement vector for equilibrium
state S;. A geometrically nonlinear static analysis along
the secondary path is continued until additional
instabilities are encountered, or the analysisis otherwise
completed.

Finite element model
All finite element analyses were performed using the
Structural Analysis of General Shells (STAGS) finite
element software!®, and the 410 element'*. The 410
element isaflat, 4-node quadrilateral element with three
translations (u,v,w), and three rotations (B, B,, B,) a
each node. This element is formulated from the
Kirchhoff-Love hypotheses for small strains, and it is
implemented using a co-rotational procedure to account
for large rotations and displacements.

The finite element model of panel P23RA referred
to Cartesian coordinates x, y, and zis shown in Fig. 2.
The directions of positive displacements and rotations
are also indicated in this figure. Along the top edge of
the model, a uniform axial displacement in the negative
x-direction, denoted by U, was specified at al nodes by
aseries of multiple-point constraint equations. All other
degrees-of-freedom (DOF) along the top edge were
specified to vanish. The bottom edge of the model was
fixed. The panel within the end fixtures was modeled by
specifying all DOFs to vanish except for displacement
u. A buckling analysis from alinear prebuckling
equilibrium configuration of the perfect panel was used
to judge if the finite element mesh had sufficient
fidelity. Mesh refinement was terminated once an
additional refinement indicated no changein thefirst ten
buckling loads and modes. There were 2,676 nodes and
2,605 elements, and this mesh isdepicted in Fig. 2.

The material properties used in the analysis are
listed in Table 1. The nominal value of the longitudinal
modulus E; supplied by manufacturer was changed, by

less than 5%, such that the stiffness from alinear

4

analysis with the refined mesh matched the slope of the
test data on the load-shortening plot near the origin.

All geometrically nonlinear analyses, static or
dynamic, were performed under controlled shortening.

Park’s form of implicit, linear multi-step method™® was
used with a constant time step, denoted DT, for all
dynamic analyses. The default STAGS convergence
tolerance on the displacement norm and the residual

norm™3 was reduced to DELEX = 1x10°/, while the
eigenvalue tolerance® was reduced to DELEV= 1x10°°.

Results and Discussion

Buckling analysis of the linear equilibrium state

The critical value of the end-shortening for the linear
prebuckling equilibrium configuration of the perfect
model of panel P23RA was 0, = 0.005266in. (0.1338
mm) as predicted by analysis. The associated critical
load was 4,448 1bs. (19.78 kN). Let A denote the
normalized end-shortening defined by A = 0/, such
that A = 1 corresponds to the critical end-shortening
predicted for the perfect structure from alinear
prebuckling equilibrium configuration. Also, we
normalized the load factor by therelation A — A/A
such that A = 1 correspondsto the critical load. Test data
was similarly normalized.

Test results

The load-shortening response of the panel P23RA from
thetest is shown on the plot of load factor versus the
normalized end-shortening in Fig. 3(a). Asshownin
Fig. 3(a), one discontinuity in the response occurs at (A,
A) = (1.530, 1.400), and asecond one occurs at (A, A) =
(2.612, 1.983). A magnification of the plot in Fig. 3(a)
near (A, A) = (1.530, 1.400) isshown in Fig. 3(b). At the
initiation of thefirst jump, theload is 6,227 Ibs. (27.7
kN), and at the end of the jump, the load factor reduces
to A = 1.393, which corresponds to a decrease in load of
28 Ibs. (125 N). At theinitiation of the second jump, the
load is 8,818, Ibs. (39.2 kN), and at the end of the jump,
the load factor reducesto A = 1.910, which corresponds
to adecreaseinload of 323 Ibs. (1.44 kN). The load
factor versus out-of-plane displacement at the centers of
left skin cell and the right skin cell are shown in Fig.
4(a). A magnification of the plot in Fig. 4(a) near A =
1.400 is shown in Fig. 4(b). Note that the discontinuity
in the deflection response at A = 1.400 only occursin the
left skin cell of the panel and not on the right skin cell.
The back-to-back axial strain gage data for the left skin
cell in Fig. 5(a) and the right skin cell in Fig. 5(b), also
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corroborates that the deflection discontinuity in the
response occurs only in the left skin cell. Back-to-back
gages SG13 and SG14 on the web of the axial stiffener
indicate a jump and change of sign of the strainat A =
1.400 as shown in Fig. 6. Hence, at A = 1.530 both the
skin on the left side of the axial stiffener and the
stiffener itself exhibit jumpsin their displacement
response. However, the skin on the right side of the
stiffener does not change its deformation pattern.

Analysisfor the initial unstable critical state

To model theloss of stability near A = 1.530 observed in
the test, we had to include a geometric imperfectionin
the finite element analyses. A geometrically nonlinear
analysis of the perfect panel indicated an unstable
critical point near A =1 and not at A = 1.530. The
eigenvectors from the linear prebuckling equilibrium
configuration at A = 1 were used to form the initial
imperfection as no measured surface imperfection data

was available from the test. An initial geometric
imperfection®316 is represented by a stress-free

displacement state U, , specified by

Uy = a,U; +a,U,+a3U;+a,U,

©)

whereU;, i = 1,2, 3,4, arethefirst four buckling
modes. Each modeisnormalized in STAGS such that its
maximum displacement component is unity. The partici-
pation factors a; were determined by trial, with the
objective of finding an unstable state on the equilibrium
path of the imperfect model near A = 1.530. Employing
ageometrically nonlinear static analysis, we found that
when

a, = a,=ag= -3, |aj) = 0.1h (10)

where h is the skin thickness, that one negative eigen-
value in K1y Occurred above avalue of A = 1.762,
which correspondsto A = 1.576. At the next shortening
increment, a negative root was found, therefore the criti-
cal state was bounded, and (A, A) = (1.762, 1.576) isa
stable equilibrium state S near the critical state S,
Theinitia geometry of the imperfect panel correspond-
ing to Egs. (9) and (10) isshown in Fig. 7. The
deformed panel at equilibrium state Sis shown in Fig.
8. An eigenvaue analysis of the tangent stiffness matrix
Kran @ Stable state Sgis performed to estimate the
shortening, and corresponding load factor at the unsta-
ble critical state S, The first two eigenvalues of A at
state S, and the projected values of A to estimate subse-
quent critical states are listed in Table 2. Thus, from the
lowest projection in Table 2 we estimate that the critical
normalized shortening at state S, isA = 1.762(1 + &)

5

= 1.764,where e; isthe lowest eigenvalue of Kyap a
state S, and the corresponding load factor isAg, =

1.578.The equilibrium state corresponding to (A, A) =
(1.762, 1.576) on the equilibrium path, which is denoted
S, isstable, but it is near the initial unstable state S, at

(Do Agy) = (1.764, 1.578).

Transient response initiated at the unstable critical state

A mode jump isinitiated for the imperfect panel model
under controlled shortening. The equilibrium
displacements are those from state S, but the

normalized end-shortening was specified as A = 1.770,
which is 0.4% greater than the estimated critical
shortening value. The distribution of theinitial velocity
is specified as the eigenmode predicted for equilibrium
state S, which was scaled so that the component with
the largest magnitude was 0.01 in./s (0.254 mm/s). This
eigenmode is the same shape as the first vibration mode,
whichis shown in Fig. 9(a). Theresultant initial
velocity magnitude was 0.035 in./s (0.89 mm/s).

To estimate the proportional damping factors a and
BinEq. (8), alinear vibration analysis was performed at
the equilibrium state S; to determine the natural
frequencies. The first two natural frequencies are listed
in Table 2, and the corresponding vibration modes are
shown in Figs. 9(a) and 9(b), respectively. The
frequency f, isrepresentative of the first non-zero
frequency of the theoretically unstable critical state and
was used in Eqg. (8). We specified the mass and stiffness
damping factorsin Eqg. (8) as {,, = 0.06 and {k = 0.171,

and calculated o = 493 /sand B = 21x10° s. The
effective level of damping was{ = 0.116 whichis
within the recommended range of 0.05 < < 0.20 from

Ref. 5. We note that researchers® ! have used the
frequencies of either the loaded or unloaded
configuration to specify a and 3.

A constant time step of DT = 20x10° s, was used in
the Park’s numerical integration method. A maximum
value of kinetic energy of 2.45x103in.-Ib. (277.x10° )
occurred at time T = 2.04 x10°3s. Using the 1% criterion
mentioned earlier, the time of arrival in the vicinity of
state S; was Tp = 8.08 X103 s. The strain energy
decreased from an initial value of 35.126 in.-Ib. (3.969
J) to avalue of 35.116 in.-b. (3.967 J) at Th.

The change in load factor to A = 1.734 shown in
Fig. 3(b) occurred during the transient analysis because
the end-shortening wasfixed in value. The load factor of
1.578 at theinitial unstable critical state S, decreased to
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1.570 at state S;, whichisa 35 Ib. (155 N) decreasein
load. As shown in Fig. 4(b), the skin cell deflectionsw;
and wg, both increase in value through the mode jump.
Compare the deformed shape of the axial stiffener
before the mode jump in Fig. 8 to its shape after the
mode jump in Fig. 10. This comparison reveals that
thereisareversal inthe curvature of the web through its
height at the center of the stiffener, as aresult of a shift
in the deformation pattern along the length of the
stiffener.

Static analysis on the new equilibrium path

A geometrically nonlinear static analysis of the
imperfect isogrid panel was re-initiated at a normalized
end-shortening of A = 1.7702 using the displacement
vector from the transient state at T = T, astheinitial

guess for anew equilibrium state along the secondary
postbuckling path. Thisisan increasein A of only
0.01%with respect to the value of 1.7700 specified
during the transient analysis. A total of four iterations
were required to converge at A = 1.7702 at thisfirst step
of the nonlinear static analysis. The load was
incremented until the onset of a new instability was
detected at (A, A) = (6.971, 3.355) along this new
postbuckling path.

Comparison of test and analysis

The wide column test of the composite isogrid panel
under slowly increased end-shortening, and the hybrid
static-dynamic analysis of this panel, both exhibit an
abrupt change in shape of the panel where the load jump
occurs, followed by continued loading after the load
jump. The analysis predicted the critical state S, at (A,
A) = (1.762, 1.578), while the corresponding values
from the test are (1.530, 1.40). That is, the predicted
normalized shortening is 15% greater, and the load
factor is 13% greater, than the corresponding values
from the test. The decrease in load through the mode
jump predicted by the analysiswas 35 Ib. (156 N), or
25% more than the drop recorded in the test of 28 Ibs.
(125 N). The slope of the load-shortening response
following the mode jump predicted by the analysisis
less than that from the test as shown in Fig. 3(b). An
unstable state was predicted on the new equilibrium
path from the analysis at (A, A) = (6.971, 3.355), but the
second mode jump in the test occurred at (A, A) =
(2.612, 1.983).

The out-of-plane displacements of the left (w; ) and
right (wg) skin cells predicted from the analysis and

those measured in the test are in reasonable agreement
asisshowninFigs. 4(a) and 4(b). However, thetest data

indicated that the displacement w_ decreased slightly
through the mode jump and displacement wi, did not
change, while the analysis predicted both the
displacements w_ and wg increased through the mode
jump as shown in Fig. 4b. At the load jump, the abrupt
changein the strains from gages SG13 and SG14 shown
in Fig. 6 meansthere is change in curvature of the
stiffener through its height at mid-span, which is also
demonstrated by the deformation change predicted from
the analysis as shown in Fig. 8 and Fig. 10.

Concluding remarks

The correlation of the hybrid static-dynamic nonlinear
finite element analyses to the wide column, composite
isogrid test article measurements indicates and
corroborates that the discontinuities observed in the
response under monotonically increasing quasi-static
shortening are associ ated with the phenomenon of mode
jumping. To achieve the correlation with the test, the
mode jumping analysis required: (1) locating the
unstable bifurcation point on the equilibrium path
emanating from the origin on the load end-shortening
response plot of the imperfect panel; (2) atransient
dynamic analysis initiated at the unstable bifurcation
point which included viscous proportional damping and
aninitial velocity in the shape of the buckling mode;
and (3) re-establishment of equilibrium on the new
equilibrium path using as an initial estimate of the
displacement the displacement obtained from the
transient analysis when the kinetic energy remained less
than 1% of its peak value.

The test results showed that the discontinuity in the
response was manifested by ajump in the lateral
deflection of the left side skin cell and ajump in the
bending response of the central axial stiffener. Theright
skin cell did not exhibit ajump in response. However,
the analysis predicted that both the left and right side
skin cell deflections increased through the mode jump.
The drop in the compressive force at a fixed end-
shortening in the mode jump predicted from the analysis
was 25% more than the recorded experimental results,
whichisagood correlation. However, the analysis over
predicted the force and end-shortening at the critical
equilibrium state, from which the mode jump was
initiated, by approximately 15%.

Subsequent loading along the new static
equilibrium path in the analysis indicated an instability
at anormalized shortening of 6.971, which exceedsthe
normalized shortening of 3.355 for the secondary
instability recorded in the test. The discrepancy between
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the analysis and test for the second mode jump islikely
due to material damage that may have occurred in the
test panel that is not modeled in the analysis.
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Table 1: IM7/977-2 mechanical properties

Elastic Properties Density
E1 Ep G2 V1o p
23.85 Msi 1.10 Msi 0.8 Msi 0.25 0.0582 Ib./in.3
164.44 GPa 7.58 GPa 5.516 GPa 0.25 1613.8 kg/m3

Table 2: Eigenvaluesand vibration frequencies at equilibrium state Sat A = 1.762

Mode Eigenvalue of Ktap Projected critical shortening Vibration frequency

e A f
1 0.0010 1.764 76.6 Hz
2 0.4946 2.633 1307 Hz

<« panel P23 T X
Y

P23LB—r
-P23RB
l!
Stiffener Offset—=* 13 (14) — 11 (12)
9-14
0 S )
> o P 16) 5(7)

P23LA T _P23RA
Fixture — ™ View AA N A

(a) Schematic of specimens cut from panel P23 (b) Srain gage pattern P23RA & P23RB

Fig. 1 I1sogrid specimens and strain gage pattern for single axial stiffener panels
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Fig. 3 Plots of the load factor versus normalized end shortening from test and analysis
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Fig. 5 Axial strainsfrom back-to-back gagesbonded to the skin

10
American Institute of Aeronautics and Astronautics



X,u

1.0E+00

AN
A
Z\!

ARG
A\

R

We!
NS et
R

TR
R

N Y
LI LR \
TN

Scaled by 0.

=77Hz

(a) Vibration mode 1 where f

0.01

0 0.005

Strain (in./in.)

-0.005

1019€4 peoT

-0.01

u
X,u

1.0E+00

Fig. 6 Transverse strains from back-to-back strain

gages SG13 and SG14

w

-1.0E+00

y.v

4.4E-03
0.0
Scaled by 0.3

z,W

1307 Hz

(b) Vibration mode 2 where f

X,u

-3.4E-03

Fig. 9 Shape of vibration modes at equilibrium state

Sqat A=1.762

Scaled by 39

3.6E-02
0.0

o
<
Ll
Q
@

Scaled by 3

W
3.4E-02
0.0

o
Q@
L
@
o

Fig. 7 Initial geometric imperfection configuration

X,u

1.7702 following

Fig. 10 Equilibrium state S; at A

the mode jump

1.762

Fig. 8 Equilibrium configuration Sgat A

11

American Institute of Aeronautics and Astronautics



