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ABSTRACT

X-43C Project is a hypersonic flight demonstration being executed as a collaboration between the National Aeronautics
and Space Administration (NASA) and the United States Air Force (USAF). X-43C will expand the hypersonic flight
envelope for air breathing engines beyond the history making efforts of the Hyper-X Program (X-43A). X-43C will
demonstrate sustained accelerating flight during three flight tests of expendable X-43C Demonstrator Vehicles (DVs).
The approximately 16-foot long X-43C DV will be boosted to the starting test conditions, separate from the booster, and
accelerate from Mach 5 to Mach 7 under its own power and autonomous control. The DVs are to be powered by a liquid
hydrocarbon-fueled, fuel-cooled, dual-mode, airframe integrated scramjet engine system developed under the USAF
HyTech Program. The Project is managed by NASA Langley Research Center as part of NASA’s Next Generation
Launch Technology Program. Flight tests will be conducted by NASA Dryden Flight Research Center over water off
the coast of California in the Pacific Test Range.

The NASA/USAF/industry project is a natural extension of the Hyper-X Program (X-43A), which will demonstrate
short duration (~ 10 seconds) gaseous hydrogen-fueled scramjet powered flight at Mach 7 and Mach 10 using a heavy-
weight, largely heat sink construction, experimental engine. The X-43C Project will demonstrate sustained accelerating
flight from Mach 5 to Mach 7 (~ 4 minutes) using a flight-weight, fuel-cooled, scramjet engine powered by much denser
liquid hydrocarbon fuel. The X-43C DV design flows from integrating USAF HyTech developed engine technologies with
aNASA Air Breathing Launch Vehicle accelerator-class configuration and Hyper-X heritage vehicle systems designs. This
paper describes the X-43C Project and provides background for NASA’s current hypersonic flight demonstration efforts.

BACKGROUND Transportation Plan. Within NGLT, NASA is develop-
ing advanced air breathing propulsion systems and

NASA’s Next Generation Launch Technology (NGLT) demonstrating these systems in hypersonic flight vehi-

program is developing and maturing advanced propul-
sion technologies, vehicle systems technologies, and
flight vehicle concepts to enable development of safer
and more economic future launch systems. Figure 1
illustrates the NGLT role in NASA’s Integrated Space

cles. The flight demonstrations are necessary to vali-
date these technologies and advance the Technology
Readiness Levels (TRLs) to TRL=6, making them
ready for application to future space launch vehicles
and other hypersonic flight systems.
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NASA'’s Hyper-X Program (X-43A) began the
effort to flight demonstrate hypersonic air breathing
propulsion systems in an effort to provide technologies
that will enable development of safer and more eco-
nomic space access vehicles in the future. Following
X-43A,NASA, in collaboration with the Department
of Defense (DoD), is developing additional, progres-
sively more complex hypersonic X-vehicles that will
demonstrate new air breathing propulsion systems,
propulsion-airframe integration, and other vehicle sys-
tems technologies required for high speed flight up to
Mach 15. These technologies will contribute to safer,
more reliable and more economic future launch sys-
tems and hypersonic aircraft/missiles. The next logical
step beyond the fundamental demonstrations of X-43A
will be to demonstrate more robust, sustained flight
performance and ram-to-scram transition over an
expanded flight envelope.

INTRODUCTION

NASA’s NGLT program is investing in hypersonic
air breathing propulsion systems, along with advance-
ments in vehicle systems technologies that may
enable substantial improvements in safety and econo-
my of space launch systems. The performance advan-
tage of air breathing propulsion over rocket propul-
sion for space access is derived from the increase in
performance efficiency provided by the air breathing
vehicle. These vehicles provide an increase in propul-
sion efficiency (see Figure 2), described by specific
impulse (Isp). Isp indicates how many pounds of
thrust (1bf) are produced per pound mass of propel-
lants (fuel and oxidizer) injected into the engine per
second. The increased propulsive efficiency for air
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breathing vehicles significantly reduces the propellant
required and could enable horizontal takeoff for space
access. Horizontal takeoff will allow lower thrust
loading thereby reducing overall engine weight.'

Among the NGLT propulsion technologies are
dual-mode ramjets (ramjet/scramjet), Rocket Based
Combined Cycle (RBCC) engine system concepts,
and Turbine Based Combined Cycle (TBCC) engine
system concepts. As these technologies reach appro-
priate maturity, flight demonstration is required to
fully validate such technologies for application to
future space launch vehicles.

FLIGHT DEMONSTRATIONS

NGLT is also developing hypersonic flight demonstra-
tion projects that are required to incrementally advance
selected key propulsion and vehicle system technolo-
gies to TRL of 6. These flight demonstrations are tai-
lored to validate propulsion system, selected vehicle
systems technologies, and vehicle flight characteristics,
not specific vehicle concepts or prototypes. Technology
to be validated also includes the design and compu-
tational tools and ground test methods required for
development of future operational hypersonic vehicles.
The flight demonstration vehicles are focused primarily
on propulsion systems, so they will be built with exist-
ing vehicle technology where possible, to provide the
most cost-effective designs. However, they may also
provide a limited flight test bed for other developing
vehicle system technologies as these reach appropriate
TRL. The overall plan provides an incremental building
block approach with structured decision points and off-
ramps to allow cost-effective technology development
and demonstration. These propulsion systems flight
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demonstration projects (X-series) are focused on
propulsion technologies and issues such as:
¢ Flight-weight, actively fuel-cooled structures
* Reusability and durability testing
* Scramjet operation over a larger Mach range,
including combustion mode transition
e Combined-cycle testing
* Powered operation over larger flight envelope
* Hypervelocity (Mach > 15)
e Integrated vehicle health monitoring (IVHM)
* Expansion of operational knowledge
 Validation of design and analytical tools
¢ Development of validated cost models

The building block approach for the ground and
flight demonstrators is illustrated in the roadmap of
Figure 3. The NGLT hypersonic flight demonstration
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projects build on the Hyper-X (X-43A) research
vehicle and the United States Air Force (USAF)
HyTech scramjet engine technology programs. They
will go beyond Hyper-X to expand the flight envelope
to both lower and higher Mach number regimes, to
demonstrate flight-weight, fuel-cooled engine systems
with increasingly complex propulsion technologies,
and to progress to fully reusable systems. These
demonstrators will seek to enhance operational
knowledge with longer duration missions and maneu-
vering flight, advancing research objectives toward
more realistic flight operations.

NASA’s Hyper-X Program (X-43A) is the first
in a series of vehicles that are envisioned to flight
validate air breathing propulsion systems that will
operate from the ground to Mach 15 and beyond, as
shown in Figure 4.
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Figure 3. Air breathing Hypersonics: Access to Space Roadmap Shows Building Block Approach
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X-43C PROJECT

The X-43C Project follows the X-43A as the next
flight demonstration project. The X-43C Project will
demonstrate Mach 5 to Mach 7 acceleration with a
vehicle powered by a flight-weight, fuel-cooled
scramjet engine using hydrocarbon fuel. The X-43C
Demonstration Vehicle (DV) is being developed by
NASA and the USAF in a joint project, managed by
NASA Langley Research Center. Development of
the X-43C DV, with its hydrocarbon fuel-cooled
scramjet propulsion system, uses technology from
the NASA Hyper-X Program (X-43A) and the USAF
HyTech Program.”

The X-43C Project is organized as depicted in
Figure 5. The project will utilize a Government-
Industry team to execute overall project objectives
under Government leadership. There are four main

sub-projects that will deliver the products, ground tests,
and flight tests of the overall project. Project manage-
ment is located at NASA Langley Research Center
(LaRC) along with two sub-projects for DV develop-
ment and propulsion/ aerodynamic testing. Booster and
launch services will be provided by a sub-project locat-
ed at Marshall Space Flight Center (MSFC). Flight test
and operations will be provided by a sub-project locat-
ed at Dryden Flight Research Center (DFRC). The pro-
ject’s structure enables full Government partnership
with the X-43C industry participants. The Government
Technical Teams (GTT) cut across the subprojects to
monitor technical progress with appropriate levels of
technical involvement at all locations. The GTT activi-
ty will provide necessary insight to assure the success-
ful fulfillment of the X-43C mission. An overall sched-
ule for the project is shown in Figure 6. First flight is
planned for 2007.
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Figure 8. X-43C Flight System Hardware
FLIGHT VEHICLE DESIGN

Building off X-43A and HyTech, the X-43C Project,
will utilize hydrocarbon fuel in a flight-weight, fuel-
cooled scramjet to power a 16' long DV shown in
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Figure 7 (X-43A is 12" in length). Use of hydrocarbon
fuel allows substantially longer powered operation
than possible using hydrogen in this small scale. The
X-43C Project will fly three expendable DVs, utiliz-
ing an engine with three flowpaths integrated into a
single propulsion system. It will be developed using
technology from the single-flowpath engine of the
HyTech Program.

Each DV will be boosted to starting conditions
using a similar approach and similar hardware to
X-43A, Figure 8. After rocket boost to Mach 5 start-
ing conditions and booster separation, the expendable
X-43C vehicles will accelerate from Mach 5 to Mach 7
and then descend un-powered to splash down into the
Pacific Ocean. The powered flight duration will be 3
to 5 minutes. Each flight will demonstrate propulsion
system performance, dual-mode scramjet operation,
and successively more demanding flight maneuvers
to expand the flight envelope. A typical mission pro-
file is shown in Figure 9.

The X-43C Project completed a successful
Project Requirements Review in 2001 and a System
Requirements Review in 2002 prior to beginning
selection of Industry partners in 2003. Allied Aero-
space of Tullahoma TN was competitively selected
to develop the X-43C Demonstrator Vehicles and
vehicle-to-booster Adapters. Allied Aerospace is
teamed with major subcontractors Pratt & Whitney
and Boeing.
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Figure 9. X-43C Mission Profile



X-43C DV Inboard Profile
X-43C DV maximizes use of
existing technology in SRR
status conceptual design

Fuel Pump & Motor |,

Ag-Zn Batteries

Control Surface
Actuators (4)

Actuator Controller

FTS Components |
[FMU |

R\ | Ignition Exciter
Instrumentation

Engine Control
FADEC (2)
(Modified existing

design)

N2 System

Fuel Tank-JP7

New |’

Existing materials, structures technology, and systems hardware H | Equipment

Figure 10. DV Inboard Profile and Systems Packaging

During FY02, a Government-led design team
matured the vehicle conceptual design and performed
system trade studies to reduce risk and develop appro-
priate system requirements. In addition, launch vehi-
cle design and trajectory development were conduct-
ed to aid in requirements development.

The X-43C DV configuration was matured into a
functional design with substantial margin in mission
performance, which is appropriate at this stage of
vehicle development. In part, the added length, rela-
tive to X-43A, is due to the longer engine required
for hydrocarbon fuel combustion. The vehicle is also
deeper and more volumetrically efficient to carry
required fuel. In comparison to X-43A, the X-43C
engine is wider to provide the greater air capture and
higher thrust for robust acceleration. Air vehicle sub-
systems are similar to the X-43A vehicle, except for
fuel delivery. The DV inboard profile and systems
packaging are illustrated in Figure 10.

RISK

Flight testing in the Mach 5 to Mach 7 speed
range is an inherently risky effort. There are gaps
between what can be effectively tested in relevant
environments on the ground and the actual flight con-
ditions that will preclude development of a fully test-
ed flight system before flight. Thus, a risk reduction
plan will be established to minimize the risks consis-
tent with prudent engineering judgment, available
budget, and reasonable schedule.

The X-43C Project will undertake a substantial
risk reduction effort to develop and validate the
propulsion and vehicle systems of the DV, as well as

the booster and stage separation systems that will
deliver the DV to its test conditions. Elements of the
risk reduction effort will include propulsion and aero-
dynamic wind tunnel testing, ground tests of specific
hardware designs, and an extensive computational/
analytical program.

FLIGHT SYSTEM DEVELOPMENT AND
TESTING

The flight engine design for X-43C, shown in
Figure 11, is based on Air Force HyTech Program
technology. The X-43C flight engine utilizes three of
the HyTech derived modules placed side-by-side to
provide a full-width engine. The design incorporates a
variable geometry inlet to facilitate improved perfor-
mance across the speed range and HyTech combustor.

A carefully structured test program is planned to
validate the engine design as it is developed. The test
efforts will combine USAF and NASA efforts to pro-
vide efficient utilization of Government resources. The
initial schedule for the overall test plan is shown in

Figure 11. X-43C’s Engine



Integrated Approach — Reduced Risk Entry Into X-43C First Flight
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Figure 12. The USAF HyTech Program’s first flight-
weight, fuel-cooled Ground Demonstrator Engine
(GDE 1) successfully completed ground testing in July
2003, Figure 13. This engine is a single module (one
flowpath), fixed-geometry design that provided struc-
tural validation, performance measurements, and over-
all risk reduction for X-43C engine development.
GDE 1 is followed by another single-module, test
engine, GDE 2 Figure 14, that will be developed for
the specific X-43C flight vehicle geometry, with the
goal of proving closed loop control of the propulsion
system, thermal management characteristics, and vari-
able geometry performance. Test results from GDE 2
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Figure 13. GDE 1 Installed in GASL Leg 6
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will validate the final flight engine flowpath design.
Following GDE 2, a Multi-module Flowpath
Propulsion Demonstrator (MFPD) model will be
designed and tested to determine module-to-module
interoperability characteristics and integrated propul-
sion-airframe performance increments, Figure 15.

s

Figure 14. GDE-2 Engine Design

»

Figure 15. X-43C’s Multi-Module Flowpath Propulsion
Demonstrator
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The MFPD will be about 2/3 of full-scale size and
will incorporate the complete lower surface geometry
of the DV. This will enable testing of many propul-
sion-airframe integration (PAI) concerns, including
module-to-module interactions and force/moment
increments for inlet opening/starting, engine flame-
out, and unstart.

A companion aerodynamic testing plan is also
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Figure 16. X-43C Aerodynamic Test Roadmap

applications. The technology investments in X-43C
leverage other technology and advanced develop-
ment programs. The activity is product oriented, e.g.,
both ground and flight demonstrations, and decisions
will be driven by sound analysis and systems testing.
Flight system development will be driven by risk

reduction activities that have the goal of delivering

proceeding to provide the data for DV flight, booster,
and stage separation. Figure 16 shows the aerody-
namic test plan and schedule.

Finally, a Flight Clearance Engine (FCE) will be 1. Hueter,
produced and tested in the actual flight engine con-
figuration and size. This test will be the final engine
validation prior to the flight test.

The X-43C hypersonic flight demonstrator will
address development and demonstration of key dual-
mode scramjet technologies that are associated with
air breathing, hypersonic vehicles for access to space

functional flight hardware in a cost-effective manner.
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