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ABSTRACT

The purpose of this paper is to demonstrate the feasibility of computing the fan
inlet noise field around a real twin-engine aircraft, which includes the radiation of
the main spinning modes from the engine as well as the reflection and scattering by
the fuselage and the wing. This first-cut large-scale computation is based on time
domain and frequency domain approaches that employ spectral element methods
for spatial discretization. The numerical algorithms are designed to exploit high-
performance computers such as the IBM SP4. Although the simulations could not
match the exact conditions of the only available experimental data set, they are
able to predict the trends of the measured noise field fairly well.

1. INTRODUCTION

The fan inlet and exhaust noise are among the major components of the
noise signature of an aircraft at take-off and landing. The noise radiated to
the far field by the engine of an aircraft is largely influenced both by the
flow around the wing and fuselage and by the scattering from various other
aircraft surfaces. In principle, it is possible to reduce the aircraft noise foot-
print by taking advantage of engine and wing location and manipulating the
flow around the aircraft. Experimental investigations of these phenomena
are difficult to perform and extremely expensive. Numerical simulations of-
fer a relatively inexpensive alternative, and such simulations are becoming
increasingly attractive due to the recent advances in the performance of both
computers and computational methods. To date, most measurements and
modeling of engine noise are confined to isolated engines [8, 6, 7]. Recently,
Stanescu, Hussaini, and Farassat [19] have computed the engine noise prop-
agation and scattering for a generic aircraft configuration by numerically
solving the Euler equations with a discontinuous Galerkin spectral element
method. The recent popularity of such methods in aerodynamic applications
stems from the fact that they require relatively few points per wavelength,



they have low dispersion and dissipation errors [5, 18, 10], they have ge-
ometric flexibility [11, 13], and they are compact, robust and inherently
parallelizable [19, 12]. In a more recent work [20], the authors developed a
spectral element method for the solution of the acoustic potential equation,
in the frequency domain, in the presence of a non-uniform mean flow field.
The two approaches are complementary prediction tools that can be used
for computing tonal sound propagation and scattering in the near field of
the engine.

The aim of this paper is to show that large-scale modeling (in terms of
scale, frequency and spinning mode order) of tone noise propagation from
an actual nacelle and scattering by a realistic aircraft configuration is now
feasible at actual operating conditions. To this end, we consider the problem
of fan inlet noise of a two-engine business jet aircraft, and construct high-
performance algorithms based on the aforementioned numerical method-
ology. After a brief discussion of the time-domain and frequency-domain
spectral element approaches in the next section, we present the computed
results obtained for several flight regimes versus the available experimen-
tal data collected on the wing. To conduct the numerical experiments, the
modal composition of the acoustic signal inside the duct in terms of spin-
ning modes is used to specify the source. Rotating rake measurements of
these modes have been performed on an isolated engine by Sutliff, Konno
and Heidelberg [21]. However, for the maximum power condition at which
the experimental data were collected, modal data is not available. In lack of
an exact definition, the source is specified using modal data at a somewhat
lower power setting for which the rotor tip speed is also supersonic. Even
in this case, due to interference with the rake wake, the data for the rotor-
locked mode, expected to be the dominant mode at large power settings, is
contaminated in the measurements presented by Sutliff [21]. Under these
circumstances, in order to gain insight into the propagation characteristics
of the different spinning modes, several source definitions have been consid-
ered. These include individual spinning modes as well as a combination of
four spinning modes with amplitude levels in agreement with the data for
88 percent maximum speed. Although the flight conditions could not be
duplicated exactly in the present computations, results show that the noise
signatures computed in this way match well the trend of the experimental
data.



2. PROBLEM FORMULATION AND SOLUTION TECHNIQUE
2.1. Computational model

We assume that the engine noise source is known and consider noise
propagation and scattering in the left half space implicitly assuming sym-
metry of the problem about the y = 0 plane which is chosen to bisect the
aircraft along the fuselage. For computational purpose the half space is trun-
cated into a bounded computational domain comprised of a physical domain
with a damping layer surrounding it. The latter is used to ensure that the
physical domain remains uncontaminated by reflections. The surface that
separates the computational domain from the surrounding medium is de-
noted by ', and the engine tone noise source is specified as a combination
of spinning modes on a circular disc surface I'; appropriately situated inside
the nacelle. The governing equations are solved in non-dimensional form.
The reference quantities for non-dimensionalization are: p,, for the density,
Coo for the velocity components, poc2, for the pressure, the radius R of the
noise-source disc for distance, and % for time.

The physical domain is defined in the non-dimensional Cartesian coor-
dinates as 25.0 < z < 36.5, —8.5 < y < 0.0 and 1.3 < z < 8.2, and the
full domain of computation (including the damping layers) is defined as
214 <z <40.0, —12.0 <y <0.0 and —1.8 < z < 11.2. The computational
domain with the embedded aircraft is depicted in Fig. 1. As the propagation
distance is relatively small, viscous effects are neglected, and the problem is
assumed to be governed by inviscid compressible flow equations.

The computational domain is covered by a grid of non-overlapping hex-
ahedral elements that can have curved boundaries. The ICEMCFD Hexa
commercial package is used to generate the unstructured hexahedral grid
around the aircraft configuration. Once an unstructured grid of hexahe-
dra is generated, an attractive new feature of this package allows for the
generation of points along each of the edges of the hexahedral mesh, which
can be either a Legendre-Lobatto or a Chebyshev-Lobatto distribution for
a specified polynomial of degree N. Fig. 2 shows the hexahedral representa-
tion of the underlying geometry with Gauss-Legendre point distribution, for
sixth order (N = 6) elements. All the necessary point coordinates can then
be computed by interpolation based on the spectral interpolants along the
edges (to obtain coordinates at the Gauss points from the Lobatto points
on the edges) followed by three-dimensional transfinite interpolation [3] on
the faces and inside the elements.



2.2. Time domain formulation
For the time domain formulation, the governing equations are the Euler
equations in Cartesian conservation form,

EJFE_;—:(). (1)

where the state vector Q and the flux vector Fy are given by
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with p the fluid density, £ the specific internal energy, p the pressure, and
vg (d =1,2,3) the velocity components.

Each element of the grid is mapped onto the master element Q3 =
[-1,1]® with an isoparametric transfinite interpolation transformation [3]
for the expediency of representing the solution in each element by spectral
basis functions defined on the interval [—1,1]. Under the mapping, Eq. (1)
becomes
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where @) and F' are the transformed components of the state and flux vectors

Q=1JQ, Fs= JZ % 1 (4)
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and J is the Jacobian of the transformation,
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The computational space coordinates are denoted by either (£1,&2,&3) or
(&, 1, ¢) hereafter for convenience.

Let the space of polynomials of degree N in & € [—1,1] be denoted
by Pn(€). A basis for this space can be constructed using the Lagrange
interpolating polynomials h;,j = 0,1,..., N, through the N + 1 Gauss-
Legendre [2] quadrature nodes &;, ¢ = 0,1,..., N. These polynomials are



given explicitly by
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The three-dimensional solution () is searched in the trial space obtained
as a tensor product of one-dimensional polynomials of degree N for each
coordinate direction, i.e. in Py = Pn(£) x Pn(n) x Py(¢). Hence the
solution takes the form
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where Q;;x(t) denote point-wise values of ) at time ¢. This form of the
solution allows for the efficient evaluation through Gauss quadrature of the
volume integrals inherent in the formulation. A discontinuous Galerkin ap-
proximation [19] is obtained by requiring

(Qt, ijk) + (Ve F,dijr) = 0 (8)

to be satisfied for all triplets (4, §, k) € {0,1,..., N}3. In the above equation,
(,-) represents the usual L? inner product, and ¢ = hi(€)h;(n)hi(¢) are
the basis functions of Pj.

Using the divergence theorem, equation (8) is recast in the weak form

(Qt, ijk) + /an GijiF - ndS = (F,Vedijr)- 9)

The volume integrals are now evaluated through Gauss quadrature,

1 N
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wy, being the Gauss weights. This integration is exact for elements with
straight edges, in which case J is a polynomial of degree one, and the first
integrand in equation (9) is a polynomial of degree 2N + 1. In the case of
elements with curved boundaries, which in our discretization appear only
adjacent to the boundaries, a discretization error decreasing exponentially
with the order N appears due to the quadrature (10).

Expanding the boundary integral and performing some algebraic manip-
ulation, one finds the final discrete form of the equations governing each



variable at the Legendre-Gauss points,

dQijk _
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where the right-hand side is a sum of discrete differential operators acting
on the flux values of an element, which include values on the element faces.
Here, the differential operator D¢F, for example, is defined as

DEF = [y (L, D) = F (<L, Q-1 — &F] . (12)
where F™* denotes a common face flux, which can be computed directly from
the values of the state vector as explained below. D"F and DSF follow by
obvious permutations.

As the solution is approximated by a polynomial that passes through in-
terpolation nodes distributed within the elements, a mismatch ensues when
the interpolants are evaluated at element interfaces [16]. This mismatch in
the solution at element boundaries is resolved by solving a Riemann prob-
lem for the interface flux, similar to finite volume methods [14, 4]. This
leads to a semi-discrete form of Euler equations, which represents an or-
dinary differential equation (ODE) system. The resulting ODE system is
integrated in time using a low-storage Runge-Kutta scheme optimized for
wave propagation [15]. Acoustic perturbations are obtained at each time
step by subtracting the mean flow from the total flow variables, and the
RMS pressure is obtained by integrating in time the acoustic pressure. This
integration is only performed after sufficient time is allowed for the acoustic
signal from the source to propagate through the computational domain and
establish a periodic acoustic field.

2.3. Frequency domain formulation
The equation governing the acoustic field is in this case obtained by
considering the flow irrotational, so that the continuity equation becomes
0
9P LV (pVB) =0 (13)
ot
where p is the fluid density, and @ is the total velocity potential, V = V®.
Under the isentropic assumption, the momentum equation is reduced to an



algebraic relation relating the density to the velocity potential as

1
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where M, is the far field Mach number and vy the specific heats ratio.
Counsider the unsteady flow field resulting from the superposition of small
acoustic perturbations, denoted by a prime, on a steady, irrotational, mean
flow denoted by an overbar: p = p+ p' and ® = ® + ®'. The partial
differential equation governing the acoustic perturbations is
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with the following relation relating the acoustic density to the acoustic ve-
locity potential, obtained by linearization of equation (14):
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For a frequency domain approach, the acoustic potential is considered to be
of the form @' = ¢(z,y, z) exp(iwt). In view of a weak formulation, the gov-
erning equation (15) is multiplied by a test function ¥/ = 9 (z,y, 2) exp(—iwt)
and integrated using the divergence theorem to yield
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Account has been taken in equation (17) of the fact that the normal com-
ponents of the mean flow velocity and the acoustic perturbation velocity
are both zero on the aircraft surface, so that the surface integrand cancels
there. Furthermore, this integrand is set to zero artificially on the I's, sur-
face, which does not sensibly affect the computed solution since the acoustic
field is strongly damped in the absorbing layer.

Let Z denote the complex vector space of functions that are continuous
on (), whose restrictions to an element are polynomials of degree at most N in
each variable, where N is a specified integer. Furthermore, let Zp C Z be the
subset of functions that satisfy the specified Dirichlet boundary condition



on the source surface I'y, and Zr, C Z the subset of functions with zero
restriction on I'y. Substituting the expression for density from the linearized
momentum equation, the following variational problem is obtained: find
¢ € Zp such that

| 5 [2ov + iwn (9 —v) +
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(ﬂQ - 52) ¢w'¢z + (62 - 52) ¢y¢y+
(71—12 - 52) ¢, +uv (¢z¢y + ¢y¢m) +
uw ((f’wwz + ¢z¢w) + vw (¢y¢z + ¢z'¢y) -
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holds for any ¢ € Zr,.

This equation is discretized by a Chebyshev spectral element method |9,
17] using a basis consisting of tensor products of the Lagrange interpolants
through the Chebyshev-Gauss-Lobatto points in the element. Upon evaluat-
ing the integrals, a complex linear algebra problem of the form A {¢} = {b}
results, where {¢} represents the vector of point values of the acoustic po-
tential ¢.

2.3.1. High-performance Implementation

The solution of this system is obtained by a Schur complement domain-
decomposition method. It is implemented using the Message Passing Inter-
face (MPI) standard. The matrix is stored in sparse mode (i.e. only the
non-zeroes are stored), with each processor only storing a number of lines
in the matrix. Let P denote the total number of processors. The compu-
tational domain 2 is subdivided in as many partitions, and the unknowns
situated on the surface B which separates the partitions are numbered last
in the system and denoted by ¢p. For every processor p, there will be
a number of unknown ¢ values located on B. The vector of unknowns is
partitioned as

{9} = {o}...oF 65} (19)

where ¢} denotes all the unknowns in sub-partition p not located on B. The
right-hand side vector {b} is partitioned accordingly. The matrix A can then



be written in the form

Ao | 0 AL A (20)
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and straightforward elimination of the terms below the main diagonal leads
to
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where bg = bp — ZA% 7(A7,) 7189, The problem has thus been reduced to
P

solving a reduced system with matrix S = App — Y A%, (A},)7"AY, for

the points on B only, followed by a solution on each gomain of the interior
problem. The matrix S is much denser than the original matrix A, and its
direct computation and storage is not efficient or even possible in most cases.
However, for an iterative method, only the action of S on a vector is needed,
and once the sparse, distributed, matrix Agp is formed, this action can be
computed by matrix-vector multiplications and solutions with A%, which
are local operations on processor p and do not require communications,
followed by accumulation in the global vector ¢p. All computations can be
conveniently implemented by use of the high level primitives in the PETSc [1]
software. A preconditioner based on the readily available diagonal part of
App is used for the iterative solution of S.

2.4. Boundary conditions

A zero normal velocity boundary condition is imposed on the symmetry
surface y = 0 (this supposes that the engines are symmetrically placed
on either side of the fuselage and rotate in opposite sense) as well as on
the fuselage, nacelle and wing surfaces. The boundary conditions on the
other sides of the computational domain that make up Iy, are treated by
a damping layer method [16]. The physical domain is surrounded by an
absorbing layer wherein the equations are modified to include a damping
term which insures an exponential decay of the perturbation as it travels
through the layer. The modified equations can be written in the generic
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form: 5

o . .

9 | V.= o0 (22)
ot
where for the frequency-domain formulation Q= p' together with the cor-
responding definition of F. The damping parameter o is allowed to vary
from 0 at the interior limit of the damping layer to a maximum value on I',

according to a power law,

T; — wé”t P
O'(X) = UMZ W (23)
i i i

where 7/ and 1% the coordinates of the interior and exterior limits of
the absorbing layer, limits that lie along planes on which one coordinate is
constant.

On the source surface I'y, a linear combination of incoming spinning
modes can be specified. For a single spinning mode with azimuthal order
s and radial order d, usually denoted as (s,d), the perturbation of the flow

variables from the mean flow quantities (denoted by bars) is given by [22, 16]:

Ep, (kpgr) cos ©

por LB,k e
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where © = kyz+mb —wyt, kg = 1/ (wr/c)? — k2, and w, = %. The func-
tion Ep, (kmar) = Jm(kmar) + ¢Ym (kmqr) is the duct eigenfunction with J,,
and Y,, denoting the Bessel functions of the first and second kind, respec-

tively. For this configuration, the source surface is the unit radius circular
disc centered at (34.7,4.6,5.3).

3. RESULTS AND DISCUSSION
3.1. Flight data

The flight data on the twin-engine business jet was acquired at flight
Mach number My, = 0.3 at an altitude of 500 feet. The average Mach
number at the source disc based on the mass flux through the engine was
approximately M; = 0.53. The blade passing frequency (BPF) was mea-
sured using several Kulite microphones located on the suction side of the
wing at different angles from the nacelle axis as shown in Fig. 3. Only one
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experimental data set, collected at the maximum power setting of the en-
gine, was made available. This data consisted in the sound pressure level
(SPL) at different points on the wing, normalized such that the SPL value
at 20 degrees was equal to zero.

3.2. Time domain results

In order to determine the effect of the mode order on the inlet tone
noise, propagation and radiation of azimuthal spinning modes (18,0) and
(22,0) was simulated individually in the time domain in an otherwise qui-
escent medium around the aircraft. The measured BPF tone corresponded
to a reduced frequency w, = 26.3. The Euler equations were solved by the
discontinuous Galerkin spectral element method on an unstructured grid
with 103,105 elements. The solution was approximated by a sixth-order
Legendre polynomial in each element, so that the total number of Gauss-
Legendre discretization points was 22, 270,680 in the computational domain
that included the damping layers. The grid was constructed such that in
the coarse part of the domain (in the vicinity of the inner boundary of the
damping layer) the resolution averaged more than 5 points per wavelength.
The resolution varied smoothly to reach more than twice this value inside
the nacelle, where the elements are smaller in size but the order of the ap-
proximating polynomial is the same. The computations occupied one node
(32 processors running at 1.1GHz clock speed) of an IBM Regatta-type SP4
machine. Each run lasted about 10 days. An arbitrary value of 10~ times
the ambient pressure was used for the amplitude of the dominant incoming
mode, since the actual flight value was not known from the experiments.
Therefore, for the purpose of comparison, computational data was matched
with the flight data at the 60 degrees microphone location, where the peak
SPL was observed.

Fig. 4 shows a snapshot of the acoustic pressure contours for spinning
mode (18,0) on the surface of the aircraft at non-dimensional time ¢ = 44,
immediately before starting integration for the RMS pressure computation,
and Fig. 5 the corresponding SPL contours. The SPL results from the runs
with the spinning modes (22,0) and (18, 0) radiated at the reduced frequency
26.3 for a stationary aircraft are plotted for the various angular locations on
the wing in Fig. 6 and Fig. 7, respectively. Next, a combination of modes
as shown in Tab. 1 was considered as a source. The modal amplitudes
are in agreement with the duct measurements on the isolated engine for
88 percent speed [21], with the assumption that most energy is in the first
radial mode. The phase has been chosen arbitrarily. Computed SPL values
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in this case are shown in Fig. 8. The presence of lower-order modes together
with the dominant mode (22,0) seems to bring the computation closer to
the experiment, while a large SPL value is still obtained for the position at
70 degrees.

Mode | Ampl. | Phase (deg.)
(22,0) | 0.81 30
(21,0) | 1.0 0
(20,0) | 0.48 45
(19,0) | 0.15 45

Table 1: Relative modal amplitude and phase for the four modes used to
specify the source.

The above results seem to indicate that the SPL distribution associated
with the radiation of lower-order circumferential modes, i.e. (18,0), is closer
to the experimental data than that of mode (22,0). However, this result
may be due to the mean flow effects. Indeed, increasing the mean flow
Mach number in the duct from its zero value assumed for these preliminary
results would determine the modes to be more cut-on. An immediate effect
would be that the main radiation lobe of all modes will hit the wing at a
lower angle location. Thus, SPL levels at angles lower than 60 degrees are
expected to increase, while decreasing at 70 degrees. The mean-flow effect,
on the other hand, is expected to be in the opposite sense, but not as strong.
It must also be considered that other sources of noise, not modeled in this
computation (e.g., airframe noise) are responsible for higher SPL values at
larger distances from the engine (i.e., at lower angles in the figures).

3.3. Frequency domain results

The current frequency domain formulation accommodates an inviscid,
incompressible, irrotational, steady mean flow. We employed this formula-
tion to study the noise field of the twin-jet business aircraft in flight. Our
computing resources were limited to 192 processors of the same IBM SP4 ma-
chine. Since sparse direct solvers were used for the interior problem matrices
AP, this limitation confined our largest computation to a mesh of 103,105
quartic elements leading to a total of 6,746,736 discretization points. This
resulted in a complex matrix with a total of 1.4 billion non-zero elements,
whose storage even in sparse mode necessitated approximately 20GB mem-
ory. This resolution did not allow us to handle the exact flight conditions
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of flight Mach number My, = 0.3 and fan face Mach number M; = 0.53.
Therefore, we considered a test case with the flight Mach number M, = 0.1
and the fan face Mach number M; = 0.2. For these conditions, the grid
resolution varied between 6 points per wavelength near the nacelle (where a
finer grid compensates for the smaller wavelength due to the mean flow) to
slightly above 3 points per wavelength towards the outer boundary of the
domain. Each run on 192 processors required 2.5 days to obtain more than
three orders of magnitude convergence. This clearly demonstrates the need
for a better multi-level preconditioner for the reduced matrix S. However,
we note that, to our knowledge, this is the largest complex linear algebra
problem of this type reported in the literature.

Results from this simulation for mode (18,0) are presented in Fig. 9,
which shows that the presence of the mean flow has the anticipated effects
as discussed above. Indeed, the M = 0.2 flow in the duct causes the (18,0)
mode to become more ”cut-on”, thus increasing the SPL immediately in
front of the nacelle. Due however to the My, = 0.1 mean flow around the
aircraft, the drop in SPL towards the leading edge of the wing is steeper.

4. CONCLUSIONS

Recent progress in computational methods and computer architecture
make direct computation of sound propagation in the near field of an air-
craft engine inlet feasible. Two computer models designed for this purpose
have been presented in this paper. Both methods are implemented using
message passing to allow the use of modern, distributed memory machines.
The time domain model uses the full nonlinear inviscid equations and can
thus account for possibly high levels of sound amplitude at the source. It
also solves for the full range of frequencies up to the limit of resolution.
It requires relatively low computer memory resources, but the simulations
may last a longer time before the acoustic field is established. The comple-
mentary frequency domain linear method is able to produce the solution for
one driving frequency faster if enough memory is available. While a better
preconditioner is still needed for this method, we must point out that the so-
lution of complex linear algebra problems associated with the discretization
of Helmholtz-type equations is a well-known issue in the numerical analysis
and parallel computing community, and no satisfactory solution has been
found yet.

The two methods have been used to compute sound propagation out of
a two-engine business jet fan inlet. Results compared with available near-
field experimental data show that the correct variation on the wing can be
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reproduced in the computations. Effort is currently underway to incorporate
various types of mean flow (possibly provided by experiment or independent
computations) and do a systematic study of the effects of mean flow and
modal composition of the source on the established sound field.
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Figure 1: Computational domain.
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Figure 2: Mesh on the aircraft surface for N = 6 (sixth order elements).
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Figure 3: Location of microphones on the wing and corresponding experi-
mental data.
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Figure 4: Acoustic pressure contours on the aircraft surface. Mode (18,0)
radiated at w, = 26.3.
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Figure 5: SPL contours on the aircraft surface. Mode (18,0) radiated at
wyr = 26.3.
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SPL variation on the wing suction side
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Figure 6: SPL levels on the wing surface for mode (22,0) radiated at w, =
26.3 in a quiescent medium.
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SPL variation on the wing suction side
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Figure 7: SPL levels on the wing surface for mode (18,0) radiated at w, =
26.3 in a quiescent medium.

24



SPL variation on the wing suction side
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Figure 8: SPL levels on the wing surface for the four modes source at w, =
26.3 in a quiescent medium.
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SPL variation on the wing suction side
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Figure 9: SPL levels on the wing surface for mode (18,0) radiated at w, =
26.3 in the presence of mean flow.
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