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ABSTRACT 
 
Conceptually, modeling of flexible, multi-body systems involves 
a formulation as a set of time-dependent partial differential 
equations. However, for practical, engineering purposes, this 
modeling is usually done using the method of Finite Elements, 
which approximates the set of partial differential equations, 
thus generalizing the approach to all continuous media. This 
research investigates the links between the Bond Graph 
method and the classical methods used to develop system 
models and advocates the Bond Graph Methodology and cur-
rent bond graph tools as alternate approaches that will lead to 
a quick and precise understanding of a flexible multi-body sys-
tem under automatic control.  For long endurance, complex 
spacecraft, because of articulation and mission evolution the 
model of the physical system may change frequently. So a 
method of automatic generation and regeneration of system 
models that does not lead to implicit equations, as does the 
Lagrange equation approach, is desirable. The bond graph 
method has been shown to be amenable to automatic genera-
tion of equations with appropriate consideration of causality. 
Indeed human-interactive software now exists that automati-
cally generates both symbolic and numeric system models and 
evaluates causality as the user develops the model, e.g. the 
CAMP-G software package. In this paper the CAMP-G pack-
age is used to generate a bond graph model of the Interna-
tional Space Station (ISS) at an early stage in its assembly, 
Zvezda. The ISS is an ideal example because it is a collection 
of bodies that are articulated, many of which are highly flexible. 
Also many reaction jets are used to control translation and 
attitude, and many electric motors are used to articulate ap-
pendages, which consist of photovoltaic arrays and composite 
assemblies. The Zvezda bond graph model is compared to an 
existing model, which was generated by the NASA Johnson 
Space Center during the Verification and Analysis Cycle of 
Zvezda. 

 INTRODUCTION 

Many of the International Space Station components and sub-
assemblies have been modeled originally using the Finite Ele-
ment Method.  Software such as NASTRAN, SOMBAT for non-
linear finite element models, and DSAT for linear models and 
the control systems have been used to perform dynamic 
analysis and control simulations of ISS. In modeling, 
NASTRAN is used to create modal models of subassemblies 
wherein great detail is undertaken in the finite element analy-
sis.  SOMBAT is used to put the modal models together taking 
into account possible articulation of some of the subassem-
blies as needed. The theory underlying SOMBAT is Treetops, 
reference (1), which is based on Kane’s method, reference (2). 
These simulations tend to be computationally intensive de-
pending on the number of modes used in representing the 
assemblies. In order to study the influence of the controls on 
the structure in a less computationally intensive manner and 

still include a large number of modes, the non-linear finite ele-
ment models are linearized at operating points and frequency 
response analysis applied.  Such linearization about particular 
operating points produces a state space model, which is suit-
able for analysis with software tools such as MATLAB and 
SIMULINK, and which can be input directly in the a MATLAB-
based analysis tool developed by the Draper Laboratory, 
DSAT, Jang, Jiann-Woei, N. Bedrossian, and E. McCants  [3].  
Since the bond graph method generates state space represen-
tations also, a link can be established as a common ground for 
the representation of physical systems.  

The Treetops approach to the verification of control systems 
for articulated, flexible, multiple bodies is to generate, via finite 
element analysis, modal models that satisfy attachment 
boundary conditions for each articulated body. A composite 
model that includes all bodies is then constructed by connect-
ing the individual modal models via joints, which allow the de-
sired articulation but otherwise satisfy the motion constraints of 
the attachments. A parametric control system is then postu-
lated and closed-loop performance is analyzed either by simu-
lation, or by analysis, or both.   

The approach outlined above has been taken to verify the con-
trol/structure interactions during assembly of the International 
Space Station (ISS). The ISS assembly process is evolution-
ary, that is, several missions must be completed before the 
ISS reaches the Assembly Complete configuration as shown in 
Figure 1.  Jorgensen [4] describes the assembly sequence.  
The space station is a space laboratory, which circles the earth 
about every 90 minutes. Each assembly mission leaves the 
ISS as a more complex, and more flexible structure, and in 
many cases one having more articulated parts. It is our objec-
tive here to reduce the complexity of modeling the individual 
missions and illuminate the number of modes necessary to 
understand the dynamic behavior yet retain the necessary 
information to predict reliably the dynamic response of the 
system to the different inputs, which are forces and moments 
which reboost the ISS for orbit maintenance, perform maneu-
vers, and articulate appendages to track the sun with the 
photovoltaic arrays (PVA’s) and the shade with heat rejection 
assemblies.  Figure 2 illustrates the operation of the append-
age rotation assemblies for the ISS as it circles the earth and 
tracks the sun. 

Focusing on rigid body dynamics and the bond graph method, 
Karnopp, Margolis, Rosenberg [5] describe the representation 
of a bond graph of three dimensional rigid body motion in a 
three dimensional space. Principles underlying the bond graph 
representation of flexible bodies have been put forth by Kar-
nopp, Margolis [6] and the computer generation of differential 
equations using bond graphs was established as a viable way 
to simulate dynamic systems by Granda [7].  Further develop-
ments have led to the principles behind computer generation of 
models in the state space form in Granda, Reus [8] and fun-
damentals of computer generated transfer function for multi-
output, multi-input systems was established by Granda [9]. 



 

 
Fig 1.  ISS Assembly Complete Configuration                                                  Fig 2.   Space station around earth, sun tracking 

Using this background consider that the mathematical State 
Space representation has been used to write the equations of 
motion to represent a linearized version of the Space Station.   
Such state space models have been generated at several 
operating points of the configuration.  This means linearization 
about several attitudes and positions. This paper presents a 
bond graph modeling methodology for a set of flexible multi-
bodies with the objective of producing also the state space 
form.  CAMP-G is a tool to achieve this in symbolic form and 
in numeric form.  The control system used for this research is 
the Russian Segment Controller, developed to provide attitude 
control and reboost capability for the different configurations of 
the space station.  Such physical plant is subject to the feed-
back provided by sensors and the inputs provided by the ac-
tuators to control the station.  Such actuators physically are 
jets attached to the different modules of the station, which 
control the forces and torques in all six degrees of freedom, 
whether to position the station or to rotate it around the roll, 
pitch and yaw axes. 

MATHEMATICAL FOUNDATION 

The finite element method is used to model and analyze dis-
tributed systems in the context of continuous media.  The 
method is widely used in analysis of structures, frames, heat 
transfer and dynamic analysis.   The latter involves the solu-
tion of partial differential equations with time dependencies.  
The differential equations governing time-dependent field 
problems has the form: 

   
 
Here φ  is the field function (solution) and the parameters in 
the equation are Dx, Dy, Dz, the stiffness in the x, y, and z 
directions, and λ is the coefficient for the time dependant term. 
These parameters are generally constructed from material and 
geometric properties and the solution is sought over a domain in 
x, y, and z. Practical solutions of the above include the popular 
finite-element method, a detailed solution of which is presented 

by Segerlind [11].  Therefore, only a short summary is included 
here.  For the finite element method the region under considera-
tion is divided into sub domains appropriately called, finite ele-
ments.  The partial differential equation is solved for each class 
of element over its associated sub domain. There are several 
methods available to implement a practical solution. Two of the 
most popular are the Galerkin method and the Calculus of Varia-
tions. In any case, the objective is the same, to find an approxi-
mate solution for the partial differential equations and to do it in 
such a way as to reduce the finite element problem to a set of 
linear algebraic equations whose unknowns are called nodal 
values, in this case these nodal values are the positions and 
velocities of points of interest on the different bodies which make 
up the ISS. 

Galerkin methods, for example, fall under a general class of 
methods known as the weighted residuals [8].  In these meth-
ods, an approximate parametric solution to the partial differen-
tial equation is constructed from a linear combination of shape 
functions.  This parametric form is substituted into the govern-
ing differential equation, Equation (1), and a measure of the 
resulting error, or residual, which is integrated and required to 
vanish over the domain of the solution, produces the set of 
algebraic equations whose unknowns (nodal values) are posi-
tions and velocities at points of interest in the ISS structure. 

In Segerlind [11], it is shown that applying the weighted resid-
ual methods, such as Galerkin's method, one can obtain the 
system of equations in terms of the time dependent nodal 
values. Denoting as f(t) the time dependent forcing function 
and       as the nodal values, one obtains equations of the 
form:  

)2(}0{}]{[}]{[ )()()()( =−Φ+Φ eeee fkc �  

Where  [c, k and f] are the individual finite element mass, 
stiffness and load vectors. By means of the direct stiffness 
method, as explained in Reference [11]  the element vectors 
and matrices can be summed over all the finite elements re-
sulting in global vectors and matrices.  Equation (3) represents 
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the Global Vectors and matrices, which define a set of first 
order differential equations as, follow:  

 

Where [C, K, f] are now the global mass, stiffness and input 
vectors.  Granda, Kong [12] demonstrated the relationships 
between the finite element matrices and those generated by 
first order differential equations from bond graph models.    
Finite Element Form: 

 

Bond Graph Form, reference [8]: 
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Here {φ} and {X}, the state variable vector, represent the posi-
tions and velocities at the nodes.  By comparing the above two 
equations, it is evident that the coefficient matrix, [A] in Equa-
tion (5), corresponds to the negative of the product of the 
global stiffness matrix, [K], and the inverse of the capacitance 
matrix, [C], in Equation (4) 

A=C-1K                (6) 
Likewise, the matrix [B] and input vector {u} in Equation (5), 
corresponds to the product of the inverse of the capacitance 
matrix, [C], and the force vector, {f}, in Equation 4: 

}.{][}{ 1 fCuB −=                  (7) 
Both Equations (4) and (5) are first order differential equations 
in the time domain and can be solved using the finite differ-
ence method or those offered in simulation programs or pro-
gramming languages such as MATLAB. Details on the appli-
cation of the finite difference method to these equations can 
be found in Siegerlind [11].  Starting with the initial positions 
and velocities, the new positions and velocities can be calcu-
lated after each time step. 

Karnopp, Margolis, Rosenberg [5] demonstrate that bond 
graphs can produce differential equations in first order form.  It 
follows then that if a suitable bond graph representation can 
be found, the generation of state space form suitable for com-
putation is possible.  Granda [7] has demonstrated that such 
form can be computer generated as a script source file. There-
fore these advances show that if bond graphs can represent 
the fundamental equations of rigid body motion, then, using 
the approach presented in Granda, Reus [8], a state space 
form can be computer generated. 
 
STATE SPACE MATRICES AND BLOCK DIAGRAMS FROM 
BOND GRAPHS 

Following the logic presented in Granda [10] it is clear that the 
differential equations of a dynamic system can be automated 
and produced in first order form.  This form, the Cauchy form, 
is intrinsic to the constitutive relations of physical elements of 
a bond graph.  Granda [10] represents that the state space 
form can be generated in symbolic form in such a way that the 
SIMULINK state space block can contain the dynamics of the 
model.  The ISS linearization approach provided by DSAT [13] 
also uses the SIMULINK State Space block to describe the 
linearized version of the dynamics of ISS.  There is clearly a 
link well established between bond graphs and the state space 
form in MATLAB and blocks in SIMULINK, Granda [9], [10].  

In order to initiate the analysis here, an early stage of the ISS 
assembly sequence was chosen.  Such early configuration is 
called Zvezda, a set of three bodies, one rigid and two flexible.  
It has a central body and two photovoltaic arrays, as illustrated 
in Figure 3  For the case in question regarding Zvezda, we 
must think whether the gyroscopic effects that are present in 
rigid body dynamics in three dimensions should be considered 
and to what extend considering the slow maneuvers of the 

space station.   Zvezda makes subtle maneuvers and gyro-
scopic coupling is not as a dominant effect as it would be on 
the dynamics of an F-15 fighter aircraft.  Here the physics of 
the problem suggests the presence of rigid body modes in all 
three translations and three rotations.  These six degrees of 
freedom for the core body heavily influence the boundary con-
ditions at the joint with the Photovoltaic arrays.  Therefore we 
could simplify the model by representing the core body with 
the six rigid body modes and model the interaction at the joint 
with the PVA’s, which in this case are the flexible bodies.  In 
order to illustrate this principle, let’s consider the following two-
dimensional cross sectional model first with a core body free 
to move in Z, and Y and free to rotate about the X-axis.  

In order to develop an integrated model in three dimensions, it 
is important first to understand a simple two-dimensional 
model such as the one shown in Figure 5.  It is necessary to 
consider the location of the core center of mass and the 
photovoltaic arrays' center of mass.  These points are noted 
as cg for the core and cgp for the PVA in Fig 5.  The bond 
graph representation is developed starting with the velocities 
of the center of mass, those at the interface points A and B 
and that of the PVA center of mass. The bond graph starting 
with the one junction representing the velocities of each of 
these points and the kinematics transformations that occur.   

 

 

 

 

 

 

 
 
Figure 3.  ISS Zvezda  Configuration 
 
The velocity in the z direction at the point A is the result of the 
velocity of the cg plus the xrω  term determining the tangen-
tial velocity with respect to the axis of rotation. 

ycg rxwyy += DD1    at A  (8) 

ycg rxwyy += DD1    at B  (9) 

xcg rxwzz −= ��1    at A  (10) 

xcg rxwzz += ��1    at B  (11) 

Following these kinematic relationships one obtains the bond 
graph shown in Fig 4. 

 

 
 
 
 
 
 
Figure 4.  Bond graph based on kinematics transformations of 
cg core and PVA attachment points. 
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Fig 5.  Two dimensional Models 

Now it is necessary to consider the kinematics of the center of 
mass of the PVA'S and the flexible modes of this cantilever 
array.  Thus we obtain the bond graph shown in Fig 6 where 
the angular velocity and linear velocities of the center of mass 
of the PVA are represented by the 1 junction at the right. No-
tice that derivative causality is present on the inertia elements 
of the PVA center of mass.  This is due to the fact the transla-
tion mass in the Y and the Z directions should be combined 
instead of considering three independent I elements.    

 

 

 

 

 

 

Figure 6.  Kinematics of the core and PVA's bodies at their 
center of mass. 

Now what is left is to add the flexibility to the PVA. The Kar-
nopp, Margolis [6] approach was used to represent the flexibil-
ity starting with rigid body modes and adding the flexibility 
considering the modes as close to a beam model.  C elements 
have been added in order to avoid any derivative causality 
conflicts and produce a computational model according to the 
approach of Margolis, Karnopp  [ 5].  It is obvious that this 
model can still be further simplified and Inertia effects at the 
center of mass of the PVA's be combined with those of the 
core, again, to avoid derivative forms and to conform with the 
physics of the system more closely. 

If we consider motion on the Z and the Y direction, the rigid 
body effects are not independent this means physically that if 
the center of mass of the core is moved in Y an Z in transla-
tion, so are the PVA's in the same amount so the combination 
of the masses (I elements) is necessary.  Using this approach 
then we could produce a similar model for the other PVA. is 
produced using the CAMP-G bond graph editing capabilities.  
This results in the overall model shown in Fig 8 and used for 

computations here. Using this bond graph it is possible to 
generate the state space form of this system in symbolic form 
and once physical parameter values are entered, in numerical 
form.  The contribution to the engineer from this approach is 
that automatically the state space matrices will contain the 
rigid body and the flexible body dynamics. 

 

 

 

 

 

 

Fig 7.  Bond Graph model of Core plus one flexible PVA 

ANALYSIS TOOLS and SIMULATION PROCEDURE 

The systems researched were analyzed using tools currently 
in practice for analysis of a space vehicle such as the space 
station.  Full multibody simulation – SOMBAT, Station/Orbiter 
Multibody Berthing Analysis Tool from Johnson Space Center; 
for linear analysis – DSAT, Draper Station Analysis Tool from 
CSDL.  Now based on the approach above, using the software 
tool Computer Aided Modeling Program with Graphical Input 
(CAMP-G), the objective is to produce the A, B, C, D state 
matrices at any point of operation or perform the nonlinear 
simulation.   

CAMP-G produces MATLAB .m files.  One to initialize pa-
rameters (CAMPGMOD.M), one to define all differential equa-
tions, linear or nonlinear (CAMPGEQU.M) and one to produce 
the symbolic matrices for the state space form and the 
Cauchy form of the differential equations (CAMPGSYM.M).  
Using these M files, CAMP-G interfaces to MATLAB and 
SIMULINK.    

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 8   CAMP-G Bond Graph model of rigid core and two flexible PVA's

CAMP-G goes one step further.  Since SIMULINK is a graphic 
environment where transfer functions, State Space Blocks, S 
Functions are used to enter models, it generates these in the 
proper format for SIMULINK, the so called MDL files.  Fig 9 
shows CAMP-G’s different dynamic system representation.   
In this case, the state space form is of interest in light of the 
fact it is the common ground between existing tools such as 
DSAT and the bond graph modeling technique.  

 

 
 
 
 
 
 
 
 
 
 
Fig 9. Automated CAMP-G/SIMULINK models 

The possible representations are: System equations, State 
Space matrices in symbolic form, Transfer functions, S func-
tions and Block Diagrams. Following the fundamental princi-
ples stated in Granda, Reus [8], and the state space form was 
found.   The A, B, C, D matrices are computer generated in 
symbolic form. The states are the positions Q’s and the angu-
lar and linear momentums P’s.  For the Zvezda bond graph 
model shown in Fig 8, the computer generated state vectors 
are: 

Inputs vector,  
    u=[  SE53 SE55 SE56 ]  
State variables vector,  
p_q=[Q35;Q37;P21;Q79;Q81;P65;P31;P75;P12;P32;P36;Q40; 
          P76;P80;Q88;,Q84;P25;Q20;Q45;P69;Q64;P7;P1]; 
            (Arranged in logical order) 
 
STATE SPACE MATRICES   A, B, C, D  

The rows of the A, B, C, D matrices are generated following 
the MATLAB notation.  The computer-generated matrices are 
shown by rows below.  Each differential equation has matrix 
coefficients that multiply each state variable as factors com-
posed of physical parameters. The differential equations are 
computer generated in the Cauchy form.  Each line starting 
with a dp or dp is a differential equation.  The C and the D 
matrices are computer generated with the same procedure.  
The DSAT software uses a C matrix that indicates all state 
variables as outputs.  However any effort (e) and any flow (f) 
variable of the bond graph is explicitly calculated in symbolic 

form as an output so that for any selected (e) or (f), a transfer 
function can be generated.  This allows tracking the output of 
the sensors and their relationship to the inputs which come 
from actuators in the form of jets that perform roll, pitch, yaw 
and position operations for ISS.  These are used to find the 
frequencies of interest.  C and D are not shown due to space 
considerations. 

 

COMPUTER GENERATED SYSTEM A MATRIX 

[0,0,0,0,0,0,0,0,0,1/I32,0,0,0,0,0,0,0,0,0,0,0,0,0];
[0,0,0,0,0,0,0,0,0,0,1/I36,0,0,0,0,0,0,0,0,0,0,0,0];
[0,0,0,0,0,0,0,0,0,0,0,1/C40,0,0,0,0,0,0,0,0,0,0,0];
[0,0,0,0,0,0,0,0,0,0,0,0,1/I76,0,0,0,0,0,0,0,0,0,0];
[0,0,0,0,0,0,0,0,0,0,0,0,0,1/I80,0,0,0,0,0,0,0,0,0];
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/C84,0,0,0,0,0,0,0];
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1/C20*T22x23,

-1/C45*T29x30,0,0,0,0];
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1/C88*T73x74,0,0,0,0,

0,-1/C64*T66x67,0,0];
[0,0,0,0,0,0,0,0,0,0,0,-1/C40,0,0,0,-1/C84,0,0,0,0,

0,0,0];
[-1/C35,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

-1/C20*T19x41,-1/C45*T33x34,0,0,0,0];
[0,-1/C37,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1/C20*T42

x43,-1/C45*T38x39,0,0,0,0];
[0,0,-1/I21,0,0,0,0,0,+1/I12,0,0,0,0,0,0,0,0,0,0,0

,0,0,1/I1*T8x9];
[0,0,0,-1/C79,0,0,0,0,0,0,0,0,0,0,-1/C88*T77x78,0,

0,0,0,0,-1/C64*T63x85,0,0];
[0,0,0,0,-1/C81,0,0,0,0,0,0,0,0,0,-1/C88*T82x83,0,

0,0,0,0,-1/C64*T86x87,0,0]
[0,0,0,0,0,0,0,+1/I75*T73x74,0,0,0,0,+1/I76*T77x78,
+1/I80*T82x83,0,0,0,0,0,1/I69*T70x71,0,-1/I7,

-1/I1*T58x59-1/I1*T46x47];
…………………………………………………………………………………..
[0,0,0,0,0,0,0,0,0,0,0,-1/C40*T8x9,0,0,

+1/C88*T58x59+1/C88*T46x47,-1/C84*T48x52,0,
+1/C20,-1/C45/T14x15-1/C45/T3x4,0,+1/C64,0,0];

 

 

 

 

 

 

 

 

 

 

 

 

 
 

COMPUTER GENERATED DIFFERENTIAL EQUTIONS  

dQ35=P32/I32  
dQ37=P36/I36 
dP21=Q40/C40  
dQ79=P76/I76 
dQ81=P80/I80 
dP65=Q84/C84 
dP31=-Q20/C20*T22x23-Q45/C45*T29x30 
dP75=-Q64/C64*T66x67-Q88/C88*T73x74 
dP12=-Q40/C40-Q84/C84+SE53 
dP32=-Q20/C20*T19x41-Q45/C45*T33x34-Q35/C35 



                 … 
 
dP1=+Q20/C20-Q45/C45/T14x15-Q45/C45/T3x4 
         -Q40/C40*T8x9+Q64/C64+Q88/C88*T58x59 
         +Q88/C88*T46x47-Q84/C84*T48x52+SE56 
                ... 

SYSTEM B MATRIX 
B(1,:) = [0,0,0];                  B(12,:) = [0,0,0]; 
B(2,:) = [0,0,0];                  B(13,:) = [0,0,0]; 
B(3,:) = [0,0,0];                  B(14,:) = [0,0,0]; 
B(4,:) = [0,0,0];                  B(15,:) = [0,0,0]; 
B(5,:) = [0,0,0];                  B(16,:) = [0,0,0]; 
B(6,:) = [0,0,0];                  B(17,:) = [0,0,0]; 
B(7,:) = [0,0,0];                  B(18,:) = [0,0,0]; 
B(8,:) = [0,0,0];                  B(19,:) = [0,0,0]; 
B(9,:) = [+1,0,0];                B(20,:) = [0,0,0]; 
B(10,:) = [0,0,0];                B(21,:) = [0,0,0]; 
B(11,:) = [0,0,0];                B(22,:) = [0,+1,0]; 

The output variables are velocities and positions or rates (an-
gular velocities and positions) the computer generated state 
space matrices are transferred to the state space block in 
SIMULINK. This now contains a state variable equivalent of 
the Bond Graph model of the set of flexible bodies as the 
“PLANT”.  Once the concept of transformation from a bond 
graph into state space matrices in MATLAB and SIMULINK 
then a bridge has been established between bond graph mod-
eling and the rest of the world who understand perfectly well 
MATLAB/SIMULINK and the state space form.  It is this form 
that DSAT uses.  DSAT has been used to test several mis-
sions of the space station in linearized points of operation. In 
the present research the state space representation was gen-
erated with the objective of linking it with DSAT and thus it is a 
way to validate the model since such simulations have pro-
duced reliable models for past missions. 

DSAT tool is a software package developed for NASA by the 
Draper Laboratory.  The interface is quite practical and 
graphic, tailored specifically to the space station models.  The 
input in DSAT in the state space form looks like the display 
shown in Fig 10.  It uses the  Jang, Jiann-Woei,  N. Bedros-
sian, and E. McCants [3] format.   Here the state space block 
contains the A,B,C,D matrices entered into  DSAT with data 
from SOMBAT or CAMP-G.  The system in DSAT has an 
additional purpose.  It implements the control system that 
controls the space station maneuvers and simulates it to-
gether as a close loop system.  The control of ISS is accom-
plished by sensors at specific locations and actuators in the 
form of jets at fixed locations on the body of the spacecraft, 
which produce forces and moments along all six degrees of 
freedom.  The contribution of this approach to ISS is that as 
the plant changes with different configurations, so a new bond 
graph built upon the previous configuration is possible.  Since 
CAMP-G has a graphics editor to produce new models based 
on the previous one, then a new plant in the form of a new 
state space model can be automatically and quickly generated 
and transferred to DSAT.  Since CAMP-G and DSAT both use 
the MATLAB workspace then a common ground exists to 
perform the calculations using the state space model.  The 
modeling technique presented here becomes a modeling pre-
processor so that the new plants can be transferred to DSAT, 
indeed to MATLAB and SIMULINK. 
 

. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 10. DSAT Space Station State Space model with control 

COMPUTER GENERATED TRANSFER FUNCTIONS FROM 
CAMP-G 

DSAT has as its analysis engine behind the MATLAB work-
space and uses the SIMULINK graphics display.  The com-
puter generated CAMP-G bond graph models direct MATLAB 
to do the same.  Once DSAT has the matrices, whether they 
came from SOMBAT or CAMP-G the transfer function of the 
open or close loop systems can be obtained to   generate the 
necessary Bode Plots.  Using CAMP-G, it is possible to gen-
erate any transfer function for the state variables vector {X} 
and the output variables (vector {y}), as function of the inputs.  
In this case this means the displacement or velocity at a par-
ticular location where the sensors are located.  Since CAMP-G 
generates the  {y} vector of the state space form for all efforts 
and flows for the entire bond graph model, any desired trans-
fer function relating the outputs to each input can be gener-
ated in symbolic form or numeric form.  Using the matrices, a 
vector of transfer functions can be generated for as many 
transfer functions as desired Granda [9].  Such approach is 
implemented by CAMP-G and thus produces the desired 
transfer functions. In this case a transfer function relating the 
roll jet input and one of the roll gyro output was used to illus-
trate the method. 
 
Once a SIMULINK block has been established coming from 
the generation of source .m files and .mdl files in CAMP-G, the 
whole control systems toolbox from MATLAB is available to 
conduct simulations in MATLAB or SIMULINK.  For this rea-
son using the computer generated state space matrices from 
the Bond Graph in the DSAT state space model, was consid-
ered.  The closed loop system including the Russian controller 
can then be simulated.  Using this procedure one can auto-
matically obtain models from a bond graph using CAMP-G and 
export the models to DSAT or directly in MATLAB or SIMU-
LINK.  Therefore, this process can be applied to any bond 
graph model that represents the International Space Station in 
its several configurations.   
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Fig 11. Frequency Response Analysis Bond Graph model (left), Linearized Finite Element model (right) 
 
This kind of analysis was performed on models originally con-
ceived as finite element models and then linearized in state 
space form. Fig. 11 illustrates the frequency response plots 
obtained using the bond graph model and that used in SOMBAT   
The magnitude and phase corresponds to the rate of the roll 
gyro.  The objective here was to determine the range of impor-
tant frequencies, which indicate safe ranges of operation. These 
were used to validate me model and the methodology proposed 
here.  The Bode plots shown in Fig 11 reveal a correlation of 
frequencies predicted with verified models used in the early 
stages of ISS. The range of important frequencies is compatible 
in both models.  The CAMP-G computer generated model also 
allows for the simulation in the time domain with actual non-
linearities. 
 
MODEL CHANGES NEW MISSIONS 
One of the challenging research issues is the docking of the 
Space Shuttle.  Considering that the Space Shuttle is a large 
mass, it is a considerable mass to ignore, the dynamics of the 
whole system changes.  The principles outlined here allow the 
modeling of a new plant, a set of flexible bodies.  Here it is 
shown how with the addition of inertia elements and junction 
connections how a new model can be obtained quickly.   The 
base model for the Zvezda configuration can be used to expand 
to the other set of bodies such as that shown in Fig 12 for Mis-
sion 3a.    Once a new bond graph is generated following the 
procedure outlined here, a new model is generated and the 
system matrices produced in a mater of minutes.  Such new 
configuration has three rigid bodies, 1, 2, 3 (space shuttle) and 
four PVA arrays A, B, C, and D.  This is a subsequent mission 
for Zvezda for which a new bond graph model was generated in 
CAMP-G.  It is shown in Figure 13.  A new bond graph based on 
the procedure outlined here generates a new "plant" model 
whose   state space model can be delivered to DSAT for a close 
loop analysis with its controller or analyzed in MATLAB as an 
open loop system using either the computer generated state 
space matrices or transfer functions. 

 
The process applied to there dimensional models differs only on 
the complexity of the Bond Graph but the computer-generated 
approach is the same.  The addition of new bodies or of elec-
tromechanical elements such as motors or other kind of actua-
tors can be included in an integrated model.  Thus in modeling 
systems that involve several different forms of energy, consider-
ing even the dynamics of sensors and actuators are possible.  
Granda [15] has demonstrated how such implementation is 
generalized to Mechatronics systems, which not only are com-
posed of sensors, actuators but of control systems.  What one 
may add to that with this paper is the ability to model and simu-
late multi energy system with rigid and flexible multi bodies.The 
ability to model and simulate multi-energy systems using bond 

graphs has been demonstrated to be one of the most valuable 
contributions in the field of modeling and simulation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     
 

 

CONCLUSIONS  

This paper has demonstrated the mathematical relationships 
and the methods for modeling flexible multi-body systems as 
they relate to the bond graph methodology and to the state 
space methods.  Computer automation of the process has been 
studied and compared to traditional methods of modeling and 
computation. Since CAMP-G produces a state space represen-
tation of systems modeled in bond graphs, this research has 
demonstrated the relation to mathematical foundations of clas-
sical methods commonly used and establishes the links to the 
Bond Graph method.   
 
The research presented here bridges two technologies: classical 
block diagram methods and bond graphs. Modeling motion of 
rigid bodies in three dimensions involves a mathematical repre-
sentation of Euler’s equations.  Modeling dynamics of flexible 
bodies involves solution of time dependent partial differential 
equations. This paper shows that both are possible using the 
bond graph technology.  In this case the original models start in 
the finite element method and the intermediate step is to lin-
earize them at an operating point.  In so doing, the state space 
form becomes the representation of a particular configuration 
and operating point so that the model is analyzed using fre-
quency response techniques.  
 
 

Fig. 12 New Plant Considering 
Shuttle, Mission 3a.



B

C D 2 

1

3

A

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 13  Zvezda, Service Module and Space Shuttle CAMP-G Bond Graph Model Mission 3a 
 
The paper demonstrates a common ground for combining current 
research tools of analysis such as DSAT, SOMBAT with MAT-
LAB and SIMULINK toolboxes with the emerging bond graph 
technology.  

A goal of this approach is to simplify the modeling of rigid and 
flexible multi-bodies by introducing bond graphs, which retain the 
significant dynamic information of the rigid and flexible body 
modes. The technique demonstrated here is a process to auto-
mate the modeling and simulation by using software to generate 
the differential equations, the state space form and the transfer 
functions.  Automated modeling presented here allows the gen-
eration of the nonlinear model since all is generated in symbolic 
form. 

This research demonstrates how these models can evolve into 
more complex "plants”; an approach particularly suited for chang-
ing configurations such is the case with ISS.  For example, the 
addition of a new section or the docking of the Space Shuttle 
induces a dynamic change that produces a new model.  Using 
the bond graph technique allows for modification of the model 
quickly and efficiently yet using the existing one as basis and 
adding new elements to it just as it is in reality built in space.  
Once that happens the generation of the new model is achieved 
following the automated procedure presented here. 
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