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Abstract 

The results of an analytical closure model that considers 
contributions and interactions between plasticity-, roughness-, and 
oxide-induced crack closure mechanisms are presented and compared 
with experimental data.  The analytical model is shown to provide a 
good description of the combined influences of crack roughness, oxide 
debris, and plasticity in the near-threshold regime.  Furthermore, 
analytical results indicate that closure mechanisms interact in a non-
linear manner such that the total amount of closure is not the sum of 
closure contributions for each mechanism. 

Introduction 

Fatigue crack closure occurs when crack faces contact during cyclic loading.  According to Elber’s 
model (ref. 1), fatigue damage only occurs during the portion of the load cycle where the crack faces are 
open.  Cracks are expected to be closed for greater portions of the load cycle at low load ratio (R = 
Kmin/Kmax, where Kmin and Kmax are the minimum and maximum values of the crack-tip stress intensity 
factor, respectively) so crack closure has been used to explain R-effects on fatigue crack growth (FCG) 
rates, i.e., increases in crack growth rate occur with increases in R.  A crack closure model was developed 
that considers plasticity-, roughness-, and oxide-induced crack closure mechanisms (PICC, RICC, and 
OICC, respectively); the closure mechanisms most likely to occur at FCG threshold (refs. 2 and 3).  This 
model, named the CROP model (for Closure, Roughness, Oxide, and Plasticity), is believed to be 
uniquely suited for threshold FCG scenarios because no existing closure models include contributions and 
interactions of all three of these closure mechanisms 

Objectives 

The objectives of this paper are to (1) validate the CROP model with experimental data, (2) discuss the 
implications of the CROP model results, and (3) examine interactions between PICC, RICC, and OICC.  
Once shown in good agreement with experimental data, the model will be used to examine interactions 
between closure mechanisms.  Several models exist that consider only a single closure mechanism (refs. 
4-7), but it is not clear how to determine the effects of multiple closure mechanisms from analytical 
results that consider individual mechanisms.  The simplest way to combine single-mechanism model 
results is a linear superposition, shown in Equation 1.  However, analytical and experimental results 
presented later in this paper show a simple linear superposition is not sufficient to predict closure 
behavior and interactions of multiple mechanisms.   

 OICCclRICCclPICCclcl RRRR ++=  (1) 

Model Description   

The CROP model idealizes rough cracks as two-dimensional sawtooths, shown schematically in 
Figure 1.  This crack configuration is described by two parameters: an asperity angle, α, and an asperity 
length, g.  Crack-tip displacements are calculated in terms of applied loads and crack geometry.  Due to 
the rough crack geometry, mixed-mode crack-face displacements occur, even when far-field loading 
conditions are strictly mode I (ref. 8).  Similar to other closure models (refs. 4, 5, and 8-13), crack-face 
displacements are used to compute crack closure loads.  However, the CROP model is unique because it 
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considers three closure mechanisms and distinguishes between crack-wake contact at two different 
locations due to roughness effects.  Single-mechanism models are limited because different closure 
mechanisms are likely to dominate in the Paris and threshold FCG regimes, possibly contacting at 
different crack-wake locations.  The CROP model should work well for both the Paris regime and near-
threshold FCG because PICC, RICC, and OICC (the closure mechanisms considered most important at 
the FCG threshold) are considered.   

 
Figure 1.  Schematic of the idealized rough crack geometry used by the CROP model.  This crack configuration is 

described by two parameters: asperity angle, α, and asperity length, g. 

Analysis of straight cracks, where crack-wake roughness is not a factor, indicates that closure first 
occurs at the crack tip (i.e. called “tip contact”) (ref. 14).  However, analysis of rough cracks shows that 
closure might occur first at the asperity nearest the crack-tip (i.e. called “asperity contact”) (refs. 2 and 3).  
Depending on geometry and loading conditions, it is possible for closure to occur first at either location.  
Therefore, the CROP model considers both tip contact and asperity contact.  These locations are very 
close (within 100 µm for most alloys), and contact at either location can completely shield the crack-tip 
from further damage.*  For simplicity, only the first closure event (during unloading) is considered to be 
important, so the CROP model computes closure levels at both locations, but only uses the greater value.  
For example, if asperity contact is predicted at Rcl = 0.5 and tip contact at Rcl = 0.3, then asperity contact 
dominates, and tip contact results are neglected.†   

Test Procedures 

A series of experiments was performed using two aluminum alloys (2024 and 8009) to evaluate 
analytical model results.  The quality of the agreement between analytical results and experimental data 
will determine the validity of the CROP model, at least for aluminum alloys.  Analytical results are also 
compared with data found in the literature for aluminum (ref. 18), steel (refs. 19 and 20), and nickel-based 
alloys (ref. 21).   

FCG tests were performed by cyclically loading laboratory specimens in closed-loop servo-hydraulic 
testing machines.  An automated computer-controlled system continuously monitored crack length during 

                                                
* Closure may occur behind the crack-tip due to load-history effects that only partially shield the crack tip from 

damage after contact (refs. 15-17).  Partial crack closure is not considered here. 
† Results are presented in terms of the load ratio at closure, Rcl = Kcl/Kmax, called closure level, where Kcl is the value 

of the crack-tip stress intensity factor where crack closure occurs. 

α

g

crack-tip

asperity
 nearest
crack-tip
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tests from back-face strain data (ref. 22) and adjusted loads to achieve programmed stress-intensity 
factors.  This system allows FCG tests to be performed in K-control, i.e. controlling stress intensity 
factors while testing.  As summarized in Table 1, data from the literature was obtained with compact-
tension (CT) specimens (ref. 23), while the authors used eccentrically-loaded-single-edge-notch tension 
(ESET) specimens (ref. 24).‡ 

Table 1.  Details of FCG specimen configuration and geometry. 

 
Closure determination 

Changes in compliance that occur when fatigue cracks close are used to determine crack closure loads 
(ref. 25).  Closure determinations were made here with compliance data measured near the crack tip and 
at the specimen back face.  Typically, closure determinations are made with far-field (i.e. measured far 
from the crack-tip) compliance data at the crack mouth or specimen back-face.  Back-face strain closure 
determinations were used, and are attractive because they are easily obtained and require no additional 
equipment.  (Recall that back-face strain is already used to monitor crack length.)  However, this 
technique provides only a “global” closure value with no information about contact location, i.e. whether 
tip contact or asperity contact occurs.  Also, global closure determinations are thought to lack the 
sensitivity needed to resolve near-tip closure events at threshold (ref. 26).  Therefore, an alternative non-
contacting near-tip technique called DIDS (Digital Image Displacement System) was used.  Crack-tip 
deformations are obtained by analyzing a series of high magnification digital images of the crack-tip 
region during fatigue loading (refs. 27 and 28).  As with global determinations, DIDS uses compliance 
changes to measure closure loads.  DIDS provides “local” closure values more sensitive to near-tip 
closure events because near-crack-tip deformations are used.  Unlike global determinations, local closure 
determinations can be made at any location along the crack, providing closure data at specific points.  

                                                
‡ The ESET specimen was formerly called extended-compact-tension (ECT) specimen (ref. 24). 

specimen specimen width specimen thickness
Alloy configuration (mm) (mm)

2024 aluminum (L-T) ESET 38.1 2.28
8009 aluminum (L-T) ESET 38.1 2.28

Data from literature

8009 aluminum (T-L) 1 CT 57.2 6.35

AISI 1080 steel (CG) 2 CT 63.5 6.35

AISI 1080 steel (FG) 2 CT 63.5 6.35

Grade E drill pipe steel 3 CT 63.0 6.30

INCONEL 718 (CG) 4 CT 38.0 3.80

INCONEL 718 (FG) 4 CT 38.0 3.80

1 From McEvily (ref. 18)
2 From Gray, et al . (ref. 19)
3 From Ruppen, et al . (ref. 20)
4 From Drury, et al . (ref. 21)
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DIDS can even detect differences between tip contact and asperity contact at threshold (refs. 3 and 29).  
Herein, closure determinations using far-field and near-tip compliance data are called global and local, 
respectively.  

Model verification strategy 

To understand the complex interactions between plasticity-, roughness-, and oxide-induced crack 
closure (PICC, RICC, and OICC, respectively), an experimental plan was developed to isolate and 
quantify the influence of each closure mechanism.  This was accomplished by performing a series of 
experiments with carefully selected combinations of alloy and environment that produce the required 
crack-tip closure attributes.  By selecting a specific alloy and environment, individual closure 
mechanisms can be enhanced (turned on) or eliminated (turned off), as shown in Table 2.   

RICC – Aluminum alloy 8009 was selected because the powder metallurgy (PM) alloy has an 
extremely fine-grain (FG) size that results in an extremely flat fatigue crack surface such that RICC 
effects are negligible (refs. 3 and 30).  The effects of plasticity and oxide can be studied in the absence of 
RICC by testing 8009 aluminum specimens.  Aluminum alloy 2024 has a course microstructure that 
results in rough fatigue crack surfaces (in comparison to alloy 8009) and will be used to study crack 
roughness effects.  RICC can be turned on or off by selecting aluminum alloy 2024 or 8009, respectively. 

OICC – FCG tests were performed in ultra-high vacuum (UHV) to eliminate crack mouth oxide and 
allow PICC and RICC to be studied without OICC .§  Crack mouth oxide layers produced in laboratory air 
environments are typically thin (about 10-100 Å thick for aluminum alloys, refs. 6 and 31) and will later 
be shown to have a negligible closure contribution.  Rather than perform FCG tests in corrosive 
environments and measure oxide thickness after testing, an artificial oxide layer was created with an 
alumina (Al2O3) powder solution injected into the crack mouth.  Alumina powder, normally used to polish 
metal surfaces, is available in large quantities of carefully measured and uniform particle sizes.  By using 
alumina powder, the effective oxide thickness is known during testing and can be changed by using 
different particle sizes. 

PICC – Crack-tip plastic deformations remain in the wake of propagating fatigue cracks, resulting in 
PICC.  Elimination of PICC requires the ability to recover (turn off) crack-wake plasticity on command.  
Although recovery of crack-wake plasticity has been accomplished with a nickel-titanium (Ni-Ti) shape 
memory alloy (refs. 3 and 29), these results are not discussed here.  Instead, the simplest case studied will 
have only PICC as a closure mechanism (without RICC and OICC). 

Table 2.  Conditions used to control individual closure mechanisms. 

                                                
§ In this paper, UHV indicates pressure less than 3 x 10-6 Pa. 

mechanism ON OFF

RICC CG alloy (e.g . alloy 2024) FG alloy (e.g . alloy 8009)

OICC inject particles into crack UHV

PICC normal FCG shape memory alloy *

* See ref. 3



 5 

Experimental Results 

Analytical results are compared with experimental data in this section.  In each case, the model 
parameters listed in Table 3 were used to tailor analytical results for specific materials and test conditions.  
Individual closure mechanisms are activated as needed (see Table 2), allowing consideration of 
increasingly complex closure scenarios, i.e. simple cases considered first. 

Table 3.  Model parameters used for different alloys.  

 
Closure due to plasticity (PICC) 

As a simple case, consider a straight crack without crack-mouth oxide (i.e. no RICC or OICC) where 
PICC is the only closure mechanism.  Model predictions are obtained for this case by setting α = 0 and t = 
0.  For comparison, experimental results for 8009 aluminum specimens (no RICC) tested in UHV (no 
OICC) are used.  Only tip contact occurs here in the absence of crack-wake roughness.   

The relationship between closure levels (Rcl = Kcl/Kmax), load ratio (R = Kmin/Kmax), and Kmax are 
plotted in Figure 2.  Analytical results are shown as solid curves and experimental data are indicated by 
symbols.  Rcl is plotted against R in Figure 2a.  The diagonal dotted line corresponds to Rcl = R, i.e. 
closure occurring at minimum load.  No closure is predicted for R > 0.34 (where solid and dotted curves 
intersect) because the solid curve is below the dotted line.  Global closure determinations for 8009 
aluminum at ∆K = 6.6 MPa√m are shown as triangular symbols in Figure 2a; no closure was detected for 
R > 0.30.  As seen in the figure, the data are in good agreement with analytical results.  For this crack 
configuration, the analytical relation between Rcl and R is independent of Kmax, E, and σo.  Although 
analytical results in Figure 2a were calculated using parameters for 8009 aluminum (see Table 3), 
identical results are obtained with any parameters if α = 0 (smooth cracks) and t = 0 (no crack mouth 
oxide).  In other words, closure levels depend only on R where PICC is the only closure mechanism.** 

                                                
** Experimental evidence indicates Rcl increases during constant-R decreasing-∆K tests, especially near FCG 

threshold where RICC, OICC and load-history effects are most significant (refs. 4, 16, 17, and 19-21).   

Alloy E (GPa) σo (MPa) ν g  (µm) α (degrees)

2024 aluminum 72 350 0.3 10 30

8009 aluminum 1 88 420 0.3 0 0

AISI 1080 steel (CG) 2 210 410 0.3 74 45

AISI 1080 steel (FG) 2 210 410 0.3 40.5 45

Grade E Pipe Steel 3 210 700 0.3 0 0

INCONEL 718 (CG) 4 200 1410 0.3 9 30

INCONEL 718 (FG) 4 200 1240 0.3 4 30

1 Used for data from McEvily (T-L orientation) (ref. 18) and data by authors (L-T orientation).
2 Used for data from Gray, et al (ref.(19). 
3 Used for data from Ruppen, et al  (ref. 20).
4 Used for data from Drury, et al  (ref. 21).
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In Figure 2b, Rcl is plotted against Kmax for 8009 aluminum loaded at R = 0.05.  The model predicts 
constant closure levels of Rcl = 0.25 for all Kmax, shown as the horizontal solid line.  Data generated in 
UHV and laboratory air environments are shown as solid and open symbols, respectively.  Triangular and 
circular symbols indicate global and local closure determinations, respectively.  Little difference is 
observed between closure levels in air and UHV, suggesting that the naturally forming oxide layer in air 
has a negligible closure contribution, at least for alloy 8009.  Published results by McEvily on 8009 
aluminum specimens (also tested in air at R = 0.05, but for the T-L orientation) are shown as cross 
symbols (ref. 18).  All data in Figure 2b are in good agreement with analytical predictions.  Based on the 
data in Figure 2, the CROP model works well where PICC is the only closure mechanism.   

Figure 2.  Comparison of model results (solid curve) and experimental data (symbols) where PICC is the only 
closure mechanism; Here, aluminum alloy 8009 FCG data (R = 0.05) are used because the flat featureless crack 

surface produces little or no RICC.  Closure levels are plotted against R in part (a) and Kmax in part (b). 

Closure due to plasticity and oxide (PICC and OICC)  

Next, the combination of PICC and OICC is considered.  Analytical results for 8009 aluminum at R = 
0.05 are shown in Figure 3.  In Figure 3a, Rcl is plotted against Kmax for oxide layers of 0, 100 and 500 Å 
thick (solid, dotted, and dashed curves, respectively).  As shown in Figure 2b, closure levels are constant 
for no oxide layer (t = 0, solid curve).  For oxide layers of finite thickness, Rcl increases as Kmax decreases 
because the crack-tip opening displacement (CTOD) becomes smaller in comparison to t.  When Rcl 
increases to unity (Rcl = 1) the crack becomes fully closed (Kcl = Kmax); this is labeled Kmax fc for the t = 
100 Å curve.  As the oxide thickness increases both Rcl and Kmax fc increase.  The relation between Kmax fc 
and oxide thickness, t, is plotted in Figure 3b (solid curve); here, Kmax fc is proportional to √t.  Fully closed 
crack conditions exist in the shaded region below the curve (i.e. Kmax < Kmax fc).   

As shown in Figure 2b, the contribution of oxide layers produced in air (typically, on the order of 10-
100 Å, refs. 6 and 31) was not detected by local or global closure determinations.  Therefore, alumina 
(Al2O3) particles were injected into the crack mouth to simulate an artificially thick oxide layer, typical of 
either aggressive environments or crack surface fretting.  As before, tests were performed at R = 0.05, and 
8009 aluminum specimens were used to eliminate RICC.  Closure levels are plotted against Kmax in 
Figure 4 for Al2O3 particle diameters of (a) 0.05 µm (500 Å) and (b) 0.30 µm (3000 Å).  Analytical  

R
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Figure 3.  Model results for straight cracks with an oxide layer for aluminum alloy 8009 at R = 0.05.  Closure levels, 
Rcl, are plotted against Kmax for three different values of oxide layer thickness in part (a).  The fully closed Kmax 
value, Kmax fc, is plotted against oxide thickness, t, in part (b).  Fully closed crack conditions occur in the shaded 

region. 

Figure 4.  Comparison of model results (solid curve) and experimental data (symbols) where PICC and OICC are 
closure mechanisms.  Aluminum alloy 8009 specimens were used to eliminate roughness, and alumina particles (a) 

0.05 µm and (b) 0.30 µm in diameter were injected into the crack mouth to simulate a thick oxide layer.  Fully 
closed conditions are predicted in shaded regions on the left side of the plots. 

results are shown by solid curves, and global and local closure determinations are shown as open circular 
and solid triangular symbols, respectively.  The shaded regions on the left sides of the plots correspond to 
fully closed conditions (i.e. CTODmax < t).  Model results are in good agreement with both global and 
local data for both particle sizes.  Where fully closed crack conditions were predicted (shaded region), 
analytical results and data diverged because alumina particles were unable to reach the crack tip.  (See ref. 
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3 for details about particles reaching the crack tip.)  Therefore, the model predictions (made assuming a 
uniform oxide layer up to the crack-tip) did not match actual crack-tip conditions.  Based on the data in 
Figure 4, the CROP model accurately predicts the crack closure behavior of cracks subject to both PICC 
and OICC. 

Closure due to roughness (RICC)  

Analytical results for rough cracks are plotted in Figure 5 as Rcl against asperity angle, α, using 
parameters for 2024 aluminum (refer to Table 3), R = 0.05, and t = 100 Å.  Results for Kmax values of 2, 4, 
and 6 MPa√m are shown as solid, dotted, and dashed curves, respectively.  At low values of α, tip contact 
is predicted (near-horizontal region of left side of Figure 5).  As α increases, Rcl gradually increases until 
asperity contact occurs (near-vertical region on right side of Figure 5).  For the Kmax = 2 MPa√m curve, 
the transition between tip contact and asperity contact is labeled as αtrans.  Further increases in α produce 
rapid increases in Rcl until the crack becomes fully closed, indicated by αfc.  Similar behavior is seen for 
other Kmax levels, although specific values of αtrans and αfc vary with Kmax.   

Figure 5.  Model results for rough cracks with a 100 Å oxide layer.  Closure levels, Rcl, are plotted against α for 
three different values of Kmax.  At small values of α, tip contact occurs.  As α increases, closure levels gradually 

increase until a transition to asperity contact occurs at αtrans.  Closure levels increase rapidly with further increase in 
α until the crack becomes fully closed at αfc. 

The relationships between αtrans, αfc, and Kmax are shown in Figure 6 for a crack-tip oxide thickness of 
(a) t = 0 and (b) t = 250 Å (using parameters for 2024 aluminum and R = 0.05).  Two solid curves are 
shown on each plot of α against Kmax; the upper curve corresponds to αfc and the lower to αtrans.  In both 
plots, conditions above the upper curve correspond to fully closed cracks and tip contact occurs below the 
lower curve.  Between these curves asperity contact is predicted.  For no oxide layer (Figure 6a) these 
curves intersect at α = 60o and Kmax = 0.  This implies cracks will be completely closed if α > 60o, i.e. no 
FCG occurs.  For oxide layers with finite thickness, these curves intersect at positive values of Kmax, 
labeled by Kmax trans in Figure 6b.  Increases in t are accompanied by increases in Kmax trans.  Tip contact 
occurs first for any value of α if Kmax trans > Kmax.  This implies that crack roughness effects are reduced 
(because asperity contact becomes less likely) as crack mouth oxide increases.  The relationship between 
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Kmax trans and t, for R = 0.05, is plotted in Figure 7 as a solid curve.  Asperity contact (RICC) is not 
possible for conditions in the shaded region below the curve.  Outside the shaded region asperity contact 
is possible, depending on the asperity angle, α. 

Figure 6.  Plots of αtrans and αfc as functions of Kmax for (a) no oxide and (b) a 250 Å oxide layer.  These curves 
partition the plots into three regions of crack closure behavior: tip contact, asperity contact, and fully closed crack 

conditions.  These curves intersect at Kmax trans, as shown in part (b).  No asperity contact occurs for Kmax < Kmax trans, 
and Kmax trans increases with increasing oxide thickness. 

Figure 7.  Plot of Kmax trans against oxide thickness, t, for R = 0.05.  Model results indicate asperity contact (i.e. 
RICC) is not possible for conditions below this curve. 

Closure data for 2024 aluminum tested at R = 0.1 is compared with analytical results in Figure 8 to 
examine the validity of the CROP model results.  Global and local data, plotted as Rcl against Kmax, are 
shown as closed circular and open triangular symbols, respectively.  Analytical results are shown as the 
solid curve.  FCG tests were conducted in laboratory air, so a 10 Å thick oxide layer was assumed to exist 
on the crack surfaces (refs. 6 and 31).  Analytical results indicate a transition from tip contact to asperity 
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contact occurs as Kmax decreases to 3.5 MPa√m; that is, tip contact occurs for Kmax > 3.5 MPa√m and 
asperity contact for Kmax < 3.5 MPa√m.  Closure levels were nearly constant before the transition (Rcl ≈ 
0.25), but Rcl rapidly increases as Kmax decreases below 3.5 MPa√m, until fully closed conditions occur at 
Kmax = 2.9 MPa√m.  As seen in Figure 8, analytical results are in good agreement with data over the entire 
range of Kmax presented, including the transition from tip contact to asperity contact .†† 

Figure 8.  Comparison of model results (solid line) and experimental data (symbols) for 2024 aluminum tested at R 
= 0.1 in air. 

Comparison with data from literature 

Closure measurements on Grade E pipe steel tested in a H2S brine solution were published by Ruppen, 
et al. (ref. 20).  FCG tests were performed at R = 0.1 and 4 Hz for both increasing and decreasing Kmax.  
The brine solution is corrosive and expected to produce thick crack mouth oxide layers; thicker oxide 
layers were reported for increasing Kmax conditions (compared with decreasing Kmax conditions), as thick 
as 1000 Å.  The oxide layer thickness in the crack mouth is likely less than surface measurements, but no 
specific value was reported.  (It was shown in Figure 6 that asperity contact is less likely in the presence 
of thick crack-tip oxide layers, so RICC effects are neglected here, and analytical results were obtained 
for α = 0 and g = 0).  Experimentally measured closure levels, plotted against Kmax in Figure 9, for 
increasing and decreasing Kmax are shown as open circular and closed triangular symbols, respectively.  
Analytical results for this steel are plotted in the figure for t = 0, 250, 500, and 1000 Å (dotted, dashed, 
solid, and dashed-doted lines, respectively).  Data is bounded by analytical results for t = 250 Å and t = 
1000 Å.  Fully closed values for decreasing and increasing Kmax occur at Kmax = 7.7 and 10.9 MPa√m, and 
are labeled A and B in Figure 9, respectively.  These fully closed conditions coincide with analytical 
results for t = 360 Å and 700 Å, respectively, which are in the expected thickness range, i.e. on the order 
of, but less than, 1000 Å. 

                                                
†† Global closure determinations are believed to be especially sensitive to crack closure away from the crack tip.  To 

overcome this potential problem, excess crack wake was removed with a saw blade.  Although global and local 
measurements are in good agreement here, this may not occur if load history effects are important.  
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Figure 9.  Comparison of model results (solid curve) and experimental data (symbols) published by Ruppen, et al.  
Here only PICC and OICC are considered.  Model results are shown for four values of oxide thickness.  Model 

results were found to be in good agreement with experimental data although a specific value of oxide thickness is 
difficult to determine. 

Gray, et al. (ref. 19) and Drury, et al. (ref. 21) studied RICC effects using fine-grain (FG) and course-
grain (CG) heat treatments AISI 1080 steel and Inconel 718 (a nickel-based alloy), respectively.  Changes 
in grain size greatly affects crack roughness, while only slightly changing the yield stress.  Therefore, 
differences in closure behavior between FG and CG versions of these alloys were attributed to RICC.  
The data of Gray (AISI 1080 steel) and Drury (Inconel 718) are plotted as Rcl against Kmax in Figures 10a 
and 10b, respectively.  

Figure 10.  Two plots are shown comparing model results (curve) and experimental data (symbols) for course- and 
fine-grained alloys.  These data were published by (a) Gray, et al. and (b) Drury, et al. 
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FG and CG data are shown as open circular and closed triangular symbols, and analytical results for 
FG and CG configurations are shown as solid and dashed curves, respectively.  In Figure 10a, analytical 
results are in good agreement with the AISI 1080 data.  The Inconel 718 data in Figure 10b are also in 
good agreement with analytical results, with one exception; the CG data point about Kmax = 12 MPa√m.  
Analytical results indicate the crack-tip is fully closed for this data point, so this closure measurement is 
likely based on closure events away from the crack-tip instead of crack-tip events.  However, changes in 
model parameters (e.g. α, t, g, etc.) could be made to better fit the experimental results.  Selecting model 
parameters based on experimental data was avoided because empirical relations are likely application 
specific and not likely to produce any new understanding of closure behavior.  The ability to predict 
general trends in data was considered more important than refining model predictions for specific cases.   

Closure Mechanism Interactions 

Analytical results indicate the linear superposition of Equation 1 is not valid and interactions between 
PICC, RICC, and OICC are non-linear.  As an example, consider 2024 aluminum loaded at Kmax = 3.5 
MPa√m and R = 0.05 with an oxide layer 500 Å thick.  Here PICC, RICC, and OICC are all contributing 
closure mechanisms and analytical results indicate asperity contact occurs at Rcl = 0.713.  Assuming for 
now that superposition is valid, this result is expressed symbolically as Equation 2.   

 0.713=++= OICCclRICCclPICCclcl RRRR  (2) 

Contributions from individual closure mechanisms are determined by altering model parameters.  The 
OICC and RICC contributions can be eliminated by setting t = 0 and α = 0, respectively, to isolate the 
PICC contribution.  Although tip contact would occur for this crack configuration, closure will only be 
considered 10 µm behind the crack tip for consistency (where asperity contact occurred for the result of 
Equation 2).  Analytical results indicate closure occurs at Rcl = 0.066 for this case.  PICC is the only 
closure mechanism, so Equation 1 reduces to Equation 3. 

 0.066=PICCclR  (3) 

To consider PICC and OICC, but eliminate RICC, only α was set to zero.  As before, closure is 
considered 10 µm behind the crack tip for consistency.  Analytical results predict Rcl = 0.363 for this case, 
and using superposition, the OICC closure contribution is determined in Equation 4 by substituting 
Equation 3 into Equation 1. 

 0.297=−=−= 0.0660.363RRR PICCclclOICCcl  (4) 

PICC and RICC are considered in the absence of OICC by setting t = 0.  Analytical results indicate 
closure (asperity contact) occurs at Rcl = 0.303 for this case, and the RICC contribution is determined in 
Equation 5 using the PICC contribution of Equation 3. 

 0.237=−=−= 0.0660.303RRR PICCclclRICCcl  (5) 

If superposition is valid, the sum of bold terms in Equations 3-5 (0.066, 0.297, and 0.237) will equal 
the bold term of Equation 2 (0.713).  However, the sum of individual contributions is less than the total 
amount of closure, as shown in Equation 6.  Therefore, the linear superposition of Equation 1 is not valid 
because of non-linear interactions between closure mechanisms.  
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 0.7130.600 <=++= 0.2370.2970.066R cl  (6) 

Discussion of Results 

Analytical results were compared with experimental data in the previous section to validate the CROP 
closure model.  Experiments were conducted to study the influence of each closure mechanism (PICC, 
RICC, and OICC).  Simple crack configurations were considered and satisfied before increasingly 
complex cases, to allow portions of the model to be validated individually.  Additionally, analytical 
results were compared with data presented in the literature for aluminum, steel, and nickel-based alloys.  
For all cases considered, analytical results were found in good agreement with experimental data.   

For rough cracks, closure is most likely to first occur at the crack-tip or the asperity nearest the crack 
tip (called tip contact and asperity contact, respectively) depending on loading conditions and geometry.  
Where PICC is the only closure mechanism (straight crack with no oxide layer), tip contact occurs and 
closure levels only depend on R (see Figure 2).  Changes in Rcl during constant-R threshold testing are 
attributed to other closure mechanisms; likely RICC and/or OICC; or load history effects.  Closure 
contributions of RICC and OICC tend to increase as Kmax decreases, i.e. near threshold, so increased 
roughness and oxide contributions are expected at threshold (see Figures 3, 4, and 8-10).  Where crack 
roughness is a factor, asperity contact is possible, most likely occurring at lower Kmax, lower yield stress 
(σo), and higher asperity angles (α).  Analytical results indicate a transition from tip contact to asperity 
contact occurs during constant-R threshold testing.  Further reduction in Kmax results in a rapid increase in 
Rcl, and eventually the crack becomes completely closed (see Figures 8 and 10).  However, results shown 
in Figure 6 indicate thick oxide layers increase the closure levels at the crack tip, reducing the effects of 
crack roughness. 

Both analytical and experimental results indicate crack closure may occur at either the crack tip or its 
nearest asperity.  Local closure determinations were used to show that higher closure levels occurred at 
the crack tip or its nearest asperity where tip contact or asperity contact was predicted, respectively (refs. 
3 and 29).  However, the corresponding global data were unable to detect either tip contact or asperity 
contact.  Global closure determinations appear more sensitive to closure events away from the crack tip 
because the agreement between local and global data improved with increasing distance behind the crack 
tip.  If near-tip closure events are difficult to detect, it might not be possible to determine the actual value 
of ∆Keff with remote compliance data in all cases.  Such difficulties in measuring near-tip closure loads 
may be the reason crack closure does not explain all FCG load ratio effects at threshold.  Asperity contact 
is likely limited to long cracks with a significant rough wake, so accelerated growth of short cracks may 
be due to the absence of asperity contact (typical of long cracks) and the inability to detect the difference.  
Further research is needed to determine if threshold load ratio effects and short-crack behavior can be 
explained in terms of near-tip closure events. 

Summary 

In part I of this paper, the CROP closure model was developed that included contributions from, and 
interactions between, plasticity-, roughness, and oxide-induced crack closure mechanisms (PICC, RICC, 
and OICC, respectively).  This model is uniquely suited to threshold applications because PICC, RICC, 
and OICC are the closure mechanisms most likely at FCG threshold, but no other model includes all three 
mechanisms simultaneously.  In this paper, the CROP model was shown to be in good agreement with 
experimental data over a wide range of crack-tip loading (i.e. both at threshold and in the Paris regime) 
and for several different types of alloys (i.e. aluminum, steel, nickel-based alloys).  From this study a 
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better understanding of near-threshold crack closure has been achieved, including the following key 
findings: 

• Crack closure is most likely at the crack tip or the asperity nearest the crack tip (called tip contact 
and asperity contact, respectively). 

• Where PICC is the only closure mechanism, closure levels only depend on R. 

• A transition to asperity contact occurs as Kmax decreases (for constant-R testing).  Further reduction 
in Kmax results in a rapid increase in closure.   

• Crack closure mechanisms interact in a non-linear manner and can only be predicted with a multiple-
mechanism model (such as the CROP model).   
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