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ABSTRACT

The problem of electromagnetic (EM) scattering from irregularly shaped, thin, metallic flat

plates in free space is solved using the electric field integral equation (EFIE) approach in

conjunction with the method of moments (MoM) with quadrilateral meshing. An irregularly

shaped thin plate is discretized into quadrilateral patches and the unknown electric surface

current over the plate is expressed in terms of proper basis functions over these patches. The

basis functions for the electric surface current density that satisfy the proper boundary conditions

on these quadrilateral patches are derived. The unknown surface current density on these

quadrilateral patches is determined by setting up and solving the electric field integral equation

by the application of the MoM. From the knowledge of the surface current density, the EM

scattering from various irregularly shaped plates is determined and compared with the earlier

published results. The novelty in the present approach is the use of quadrilateral patches instead

of well known and often used triangular patches. The numerical results obtained using the

quadrilateral patches compare favorably with measured results.

1. INTRODUCTION

The EM scattering from a complex-shaped metallic object is of practical interest to

electromagnetic analysts as well as to engineers. The EM scattering from polygonal shaped

plates is of special interest because a complex-shaped object can always be modeled as an

interconnection of these polygonal flat plates. An EM scattering analysis of polygonal shaped

metallic plates can be accomplished by using various numerical techniques [1-4]. One of the

widely used techniques is the MoM in which a polygonal plate is first discretized into number of

triangular patches called sub domains. The unknown surface current density on these sub
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domains is then expressed in terms of well known Rao-Wilton-Glisson (RWG) [3] basis

functions. The unknown surface current density on these sub domains is then determined using

the EFIE in conjunction with the MoM. Although the triangular meshing and use of RWG basis

functions is a very popular and mature concept, the non-vanishing normal component of surface

current on one of the inclined edges of sub-domain triangles attached to the open /boundary edge

of polygonal plate will give a non-zero normal component of the surface current. However, the

non-zero normal component of the surface current on the boundary edge will approach zero

when very fine discretization is used in the region close to the open/boundary edges. This

problem will not arise if one uses a sub domain element (near the boundary) whose edges will be

either along the boundary or normal to the boundary (such as quadrilateral element). Another

approach as implemented in [4] divides a polygonal plate into small rectangles. The surface

current density over each sub domain is expressed in terms of overlapping triangular functions

(roof-top functions) in the direction of current flow and a pulse function in the orthogonal

direction. The EFIE in conjunction with the MoM is then used to determine the surface current

density. An important advantage of this procedure is that the impedance matrix encountered in

this procedure has a block Toeplitz nature, a property that is useful in reducing the matrix filling

time. However, the major drawback of this scheme is that the curve boundaries are

approximated by stair cases and hence for accurate results requires very fine discretization.

In this report the problem of electromagnetic scattering of plane waves by an arbitrarily

shaped, thin metallic plate is studied using the EFIE method in conjunction with quadrilateral

meshing. Use of the equivalence principle and the free space Green’s function in deriving the

EFIE with the surface current density as an unknown is described in detail. With proper choice

of the expansion and testing functions over the quadrilateral mesh, the MoM is described to
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convert the EFIE into a matrix equation. The procedure to obtain the scattered far field by the

plate in terms of the electric surface current is also described.

The remainder of report is organized as follows. The formulation of the problem in

terms of the EFIE using the surface equivalence principle is developed in section 2. Numerical

results on the mono-static radar cross section of various polygonal shaped metallic plates are

presented in section 3 and compared with earlier published data. The advantages and limitations

of the present formulation are discussed in section 4.

2. THEORY

Consider a time harmonic electromagnetic plane wave incident on an irregularly shaped,

infinitesimally thin metallic plate as shown in Figure 1. The incident field with a time

dependence tje ω may be written as
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rkj
iin

i

ii
eEEE

r

r

r

•−+= )ˆˆ( φθ φθ (1)

where )]cos(ˆ)sin()sin(ˆ)sin()cos(ˆ[0 iiiiii zyxkk θθφθφ ++−=
r

, zzyyxxr ˆˆˆ ++=r

,

)cos( 0αθ iEE
i

r

= , and )sin( 0αφ iEE
i

r

= , 0k being the free- space wave number. With

reference to Figure 1, 00 =α corresponds to H-polarization and 0
0 90=α corresponds to E-

polarization. From equation (1), the x-, y-, and z-components of the incident field may be

written, respectively, as

)sin()cos()cos( iiixi ii
EEE φφθ φθ −= (2)

)cos()sin()cos( iiiyi ii
EEE φφθ φθ −= (3)

)sin( izi i
EE θθ−= (4)

The corresponding magnetic field components are obtained through

iniin Ek
k

H
rrr

×=
00

1

η
(5)

where 0η is the free-space impedance. The incident field with 0≠
i

Eθ and 0=
i

Eφ is called the

H-polarized wave and 0=
i

Eθ and 0≠
i

Eφ is called the E-polarized wave.

To facilitate the solution of the problem using the equivalence principle, the thin

metallic plate is replaced by the equivalent electric surface current density ),( yxJ
r

. The

scattered field due to J
r

may be obtained through the vector magnetic potentials as

φω ∇−−= AjJEs

rrr

)( (6)
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AJH s

rrr

×∇=
0

1
)(

µ
(7)

where the magnetic vector and scalar potentials are given by

ds
rr

e
JA

S

rrjk

∫ ∫ ′−
=

′−−

rr

rr

rr

0

4
0

π
µ

(8)

( ) ds
rr

e
J

j

S

rrjk

∫ ∫ ′−
•∇=

′−−

rr

r

rr

0

04πωε
φ (9)

where 0ε and 0µ are the permitivity and permeability, respectively, of free-space, r
r

and r
r′ are

respectively the coordinates of field and source points. From the knowledge of the scattered

field and incident field, the EFIE is set up by equating the total tangential electric field over the

surface of the polygonal plate to zero. Hence

[ ] [ ]tantan inEAj
rr

=∇+ φω (10)

To determine the approximate solution of the integral equation in (10) using the MoM,

the polygonal surface is approximated by a union of quadrilaterals as shown in Figure 2. On the

thn quadrilateral the electric surface current density can be represented by a superposition of

vector functions ),( yxBni

r

as

∑
=

=
4

1

),(),(
i

ninin yxBTyxJ
rr

(11)

where niT is the amplitude of electric current normal to the thi edge of the thn element
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(as shown in Figure 4). The vector basis function ),( yxBni

r

representing the surface current

density on the thn quadrilateral is required to satisfy the appropriate boundary conditions; such

as the normal component of ),( yxBni

r

to the thi edge must be unity, and must have a value of

zero on the other remaining edges. Construction of such a vector basis function with help of

Figure 3 is explained in detail in the Appendix A.
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Substitution of (11) in (10) yields
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and niφ are obtained from equations (8) and (9), respectively, by replacing J
r
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niB
r

. Selecting mjB
r

with 4,3,2,1=j and Nm ,...3,2,1= as a testing function and application of

the MoM to equation (12) yields

+
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The left side of equation (13) over the thn quadrilateral (Figure 4(a) ) can be written as
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Now consider union of two adjacent quadrilaterals with a common edge as shown in Figure

4(b). The left side of equation (13) for two adjacent quadrilaterals can be written as
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In the above expression, the first letter of superscript represents the test quadrilateral and the

second letter represents the source quadrilateral element. To ensure continuity of current at the

common edge it is assumed that 36,1 nn TT −=+ . With an assembled mesh of all quadrilaterals

over the surface of polygonal plate, the left side of equation (13) can be written as

[ ][ ]TZ (16)
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where the elements of the matrix are obtained from nm
ijA and the column matrix [ ]T represents

the unknown amplitude of current at the edges of quadrilateral elements. Using (16) the equation

(13) can be written in a matrix form

[ ][ ] [ ]VTZ = (17)

where the elements of column vector matrix are obtained from

[ ] m

m

inmjj dsEBV
tan

∫ ∫ •−=
rr

(18)

The edge currents obtained after solving the matrix equation (17) are then used to determine the

EM scattering from polygonal thin metallic plates. It is noted that the iT on the boundary edges

are forced to zero before solving the matrix equation (17).

Scattered Far Field:

The scattered far field due to the polygonal plate is estimated from

))cos()sin()cos()cos((00 θφθφηθ yx AAjkE +−= (19)

))cos()sin((00 φφηφ yx AAjkE +−−= (20)

where xA and yA are obtained from

∑∑ ∫∫
= =

′+′
−

⋅
=

N

n i S

n
yxjk

nini

rjk

dseBT
r

e
A

1

4

1

)sin()sin()sin()cos((0

0

4
θφθφ

π
rr

(21)

From the far fields, the radar cross sections, for co and cross polarizations are obtained as
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2

2

24lim
i

E

E
r s

r
HH

θ

θπσ ⋅=
∞→

(22)

2

2

24lim
i

E

E
r

s

r
HE

θ

φπσ ⋅=
∞→

(23)

2

2

24lim
i

E

E
r s

r
EH

φ

θπσ ⋅=
∞→

(24)

2

2

24lim
i

E

E
r

s

r
EE

φ

φπσ ⋅=
∞→

(25)

3. NUMERICAL RESULTS

In this section the Radar Cross Section (RCS) of polygonal, thin metallic plates of various

shapes is calculated using the quadrilateral meshing scheme. To validate the present analysis

and the computer code developed, the numerical results obtained by the present method are

compared with (1) the RCS computed using the ESP code [4], (2) the RCS computed using

triangular meshing1, and (3) the RCS measured in the Langley Experimental Test Range Facility

[4].

RCS of Hexagonal Plate:

As a first example, a hexagonal plate with a = 2.074 cm, as shown in Figure 5, is

considered. Using the hexa.SES file (listing given on the attached disk), the hexagonal plate is

modeled and meshed (also shown in Figure 5 using the Geostar/COSMOS commercial

software). The hexa.MOD file generated by Geostar is then is imported into PoMePl (Polygonal

Metallic Plate, listing given on the attached disk ) electromagnetic code written in FORTRAN to

estimate the RCS of polygonal, thin metallic plates. The mono-static RCS of the hexagonal plate

1 MoM code developed at the Electromagnetic Research Branch of NASA Langley Research Center by the author.
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is calculated for both E- and H-polarized incident waves for various discretization levels and is

shown in Figures 6-7. It is clear from the Figures 6-7 that the discretization level with the

number of edges more than 232 yields fairly consistent numerical results. Hence for the RCS

computation of hexagonal plate shown in Figures 8-11 the number of edges used was 232. The

Figures 8-11 also give a comparison of the results obtained using the quadrilateral meshing with

the results obtained using triangular meshing, the ESP code [4], and the measured data [4 ].

From Figures 8-11 it can be observed that the results obtained using the quadrilateral meshing

agrees well with the other numerical data as well as with the measured results. However, for E-

Figure 5: Thin, metallic flat plate of hexagonal shape with side a = 2.074
cm and descritized into quadrilateral sub-domains.

a
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Figure 6: Monostatic RCS of hexagonal plate shown in Figure 5 when
illuminated by E-polarized plane wave as a function of number of edges

iθ

2mdBEE −σ

o
i 90=φo

i 90−=φ

Figure 7: Monostatic RCS of hexagonal plate shown in Figure 5 when
illuminated by H-polarized plane wave as a function of number of edges

iθ

o
i 90−=φ 090=iφ

2mdBHH −σ
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Figure 8 Monostatic RCS of hexagonal plate (shown in Figure 5) when illuminated by E-polarized plane wave
o900 =α at o

i 90−=φ and 090=iφ , solid line- present method, dashed line RWG functions, solid square

symbol- measurement, frequency = 11.811GHz.

Figure 9 Monostatic RCS of hexagonal plate (shown in Figure 5) when illuminated by H-polarized plane

wave o00 =α at o
i 90−=φ and 090=iφ , solid line- present method, dashed dot line ESP-code, solid

square symbol- measurement, and dashed line RWG function, frequency = 11.811GHz.
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Figure 10 Monostatic RCS of hexagonal plate (shown in Figure 5) when illuminated by H-polarized

plane wave o00 =α at o
i 0=φ and 0180=iφ , solid line- present method, dashed dot line ESP-

code, solid square symbol- measurement, and dashed line RWG function, frequency = 11.811GHz.

Figure 11 Monostatic RCS of hexagonal plate (shown in Figure 5) when illuminated by E-polarized

plane wave o900 =α at o
i 0=φ and 0180=iφ , solid line- present method, dashed line RWG

functions, solid square symbol- measurement, frequency = 11.811GHz
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polarized incidence close to grazing angles, the computed results do not agree well with the

measured data. This is due to the fact that in the computation the finite thickness of the plate is

assumed to be zero.

RCS of Equilateral Triangular Plate:

A equilateral triangular plate as shown in Figure 12 is considered as a second example

for the validation of the present code based on the quadrilateral meshing. Using the

COSMOS/GEOSTAR the equilateral triangle is discretized into quadrilateral patches as shown

in Figure 12. The *.MOD file, in conjunction with PoMePl code is used to estimate the

monostatic RCS of the equilateral triangular plate. The results of the computations are shown in

Figures 13-18 along with the experimental and other numerical data. The monostatic RCS

calculated using the quadrilateral meshing compares well with the results obtained using the

triangular meshing and the ESP – code. The experimental data also compares well with the

numerical data as long as the angle of incidence is not close to grazing. The discrepancy

Figure 12 Equilateral triangular, thin, metallic flat plate with a = 5.08 cm

a
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between the measured and numerical data at angles close to grazing is because of the

assumption of zero thickness in the numerical simulation. The discrepancy between measured

and numerical data as a function of frequency for the grazing incident angles, as shown in Figure

17, illustrate the necessity of taking into account the thickness of the plate in the numerical

simulation techniques for more accurate results.

Figure 13 Monostatic RCS of equilateral triangular plate (shown in Figure 12) when
illuminated by E-polarized plane wave o900 =α at o

i 0=φ and 0180=iφ , solid line- present

method, short dashed line- RWG functions, long dashed line ESP-code, solid square symbol-
measurement, frequency = 11.811GHz.
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Figure 14 Monostatic RCS of equilateral triangular plate (shown in Figure 12) when
illuminated by H-polarized plane wave o00 =α at o

i 0=φ and 0180=iφ , solid line- present

method, short dashed line- RWG functions, dashed dot line ESP-code, solid square symbol-
measurement, frequency = 11.811GHz

Figure 15 Monostatic RCS of equilateral triangular plate (shown in Figure 12) when
illuminated by E-polarized plane wave o900 =α at o

i 90−=φ and 090=iφ , solid line-

present method, short dashed line- RWG functions, dashed dot line ESP-code, frequency =
11.811GHz
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Figure 16 Monostatic RCS of equilateral triangular plate (shown in Figure 12) when
illuminated by H-polarized plane wave o00 =α at o

i 90−=φ and 090=iφ , solid line-

present method, short dashed line- RWG functions, dashed dot line ESP-code, solid square
symbol- measurement , frequency = 11.811GHz.

Figure 17 Monostatic RCS of equilateral triangular plate (shown in Figure 12) when
illuminated by E-polarized plane wave o900 =α as a function of iφ for frequency =

11.811 GHz, o
i 90=θ . solid line- present method, short dashed line- RWG functions,

dashed dot line ESP-code, frequency = 11.811GHz.
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RCS of Equilateral Triangular Plate With Concentric, Equilateral Triangular Hole.

An equilateral triangular plate with a concentric equilateral triangular hole as shown in

Figure 18 is considered as an another example for the validation of the present code based on the

quadrilateral meshing. Using the COSMOS/GEOSTAR the equilateral triangle is discretized

into quadrilateral patches as shown in Figure 18. The *.MOD file, in conjunction with PoMePl

code is used to estimate the mono-static RCS of the equilateral triangular plate with an

equilateral triangular hole. The results of the computations are shown in Figures 19-24 along

with the experimental and other numerical data. The mono-static RCS calculated using the

Figure 18 Monostatic RCS of equilateral triangular plate (shown in Figure 12) when
illuminated by E-polarized plane wave o900 =α as a function of frequency for

90=iφ and o
i 90=θ . solid line- present method, short dashed line- RWG functions,

dashed dot line ESP-code, solid square symbols- measurement.

Frequency, GHz

2, mdBEE −σ
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quadrilateral meshing compares well with the other numerical data as well as with the

experimental results.

For this example, it is also observed that the numerical simulation data do not match well

with the experimental results for grazing incidence.

Figure 19 Equilateral triangular thin metallic flat plate with a concentric equilateral
triangular hole, a = 5.08 cm, b = 2.54 cm and descritized into quadrilateral patches.

a

b
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Figure 20 Monostatic RCS of equilateral triangular plate with equilateral triangular hole (shown in

Figure 19) when illuminated by E-polarized plane wave o900 =α at o
i 90−=φ and 090=iφ , solid

line- present method, short dashed line- RWG functions, dashed dot line ESP-code, solid square
symbols- measurement, frequency = 11.811GHz.

Figure 21 Monostatic RCS of equilateral triangular plate with equilateral triangular hole (shown in

Figure 19) when illuminated by H-polarized plane wave o00 =α at o
i 90−=φ and 090=iφ , solid

line- present method, short dashed line- RWG functions, dashed dot line ESP-code, solid square
symbols- measurement, frequency = 11.811GHz.
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Figure 22 Monostatic RCS of equilateral triangular plate with equilateral triangular hole

(shown in Figure 19) when illuminated by E-polarized plane wave o900 =α at o
i 0=φ and

0180=iφ , solid line- present method, short dashed line- RWG functions, dashed dot line ESP-

code, solid square symbols- measurement, frequency = 11.811GHz.

Figure 23 Monostatic RCS of equilateral triangular plate with equilateral triangular hole (shown

in Figure 19) when illuminated by H-polarized plane wave o00 =α at o
i 0=φ and 0180=iφ ,

solid line- present method, short dashed line- RWG functions, dashed dot line ESP-code, solid
square symbols- measurement, frequency = 11.811GHz.
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Figure 24 Monostatic RCS of equilateral triangular plate with equilateral triangular hole (shown in Figure 19)

when illuminated by E-polarized plane wave o900 =α as a function of iφ for frequency = 11.811 GHz,
o

i 90=θ . solid line- present method, short dashed line- RWG functions, dashed dot line ESP-code, solid

square symbols- measurement, frequency = 11.811GHz.

Figure 25 Monostatic RCS of equilateral triangular plate with equilateral triangular hole (shown in Figure 19)

when illuminated by E-polarized plane wave o900 =α as a function of frequency for 90−=iφ and
o

i 90=θ (grazing incidence at edge). solid line- present method, short dashed line- RWG functions, dashed

dot line ESP-code, solid square symbols- measurement
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RCS of Diamond Shaped Plate

A diamond shaped polygonal plate as shown in Figure 25 is considered as a last example

for validation of the present code. Using the COSMOS/GEOSTAR the diamond shaped plate is

discretized into quadrilateral patches as shown in Figure 25. The *.MOD file, in conjunction

with PoMePl code is used to estimate the mono-static RCS of the diamond shaped plate. The

results of the computations are shown in Figures 26-30 along with the experimental and other

numerical data. The mono-static RCS calculated using the quadrilateral meshing compares well

with the other numerical data as well as with the experimental results. For this example, it is

also observed that the numerical simulation data do not match well with the experimental results

for grazing incidence.

Figure 26 Monostatic RCS of equilateral triangular plate with equilateral triangular hole (shown
in Figure 19) when illuminated by E-polarized plane wave o900 =α as a function of frequency

for 90=iφ and o
i 90=θ (grazing incidence at tip). solid line- present method, short dashed line-

RWG functions, dashed dot line ESP-code, solid square symbols- measurement

Frequency, GHz

2, mdBEE −σ
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Figure 29

Figure 28 Monostatic RCS of diamond-shaped plate (shown in Figure 27) when
illuminated by H-polarized plane wave o00 =α at o

i 90=φ and 090−=iφ ,

solid line- present method, short dashed line- RWG functions, dashed dot line
ESP-code, solid square symbols- measurement, frequency = 11.811GHz.

Figure 27 Thin, metallic diamond-shaped flat plate with a = 3.592 cm
and descritized into quadrilateral patches
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aa

90−=iφ 90=iφ

.deg,iθ
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Figure 29 Monostatic RCS of diamond-shaped plate (shown in Figure 27) when illuminated
by E-polarized plane wave o900 =α at o

i 90=φ and 090−=iφ , solid line-

present method, short dashed line- RWG functions, dashed dot line ESP-code,
solid square symbols- measurement, frequency = 11.811GHz.

Figure 30 Monostatic RCS of diamond-shaped plate (shown in Figure 27) when
illuminated by H-polarized plane wave o00 =α at o

i 0=φ and 0180=iφ , solid line-

present method, short dashed line- RWG functions, dashed dot line ESP-code,
frequency = 11.811GHz.
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Figure 31 Monostatic RCS of diamond-shaped plate (shown in Figure 27) when
illuminated by E-polarized plane wave o900 =α at o

i 0=φ and 0180=iφ , solid

line- present method, short dashed line- RWG functions, dashed dot line ESP-
code, solid square symbols- measurement, frequency = 11.811GHz.

Figure 32 Monostatic RCS of diamond-shaped plate (shown in Figure 27) when illuminated
by E-polarized plane wave o900 =α as a function of iφ for frequency = 11.811

GHz, o
i 90=θ . solid line- present method, short dashed line- RWG functions,

dashed dot line ESP-code, solid square symbols- measurement, frequency =
11.811GHz.
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4 CONCLUSION

The electric field integral equation approach in conjunction with the method of moments

with quadrilateral meshing has been described to estimate the electromagnetic scattering from

irregularly shaped thin metallic plates. Discretizing an irregularly shaped thin plate into

quadrilateral patches and using proper expansion and testing functions over the quadrilateral sub-

domains, the integral equation has been reduced to a matrix equation. From the knowledge of

the surface currents density, obtained after solving the matrix equation, the EM scattering from

various irregularly shaped plates has been determined and compared with earlier published

results. The novelty in the present approach is the use of quadrilateral patches instead of well

known and often used triangular patches. It has been observed that the use of quadrilateral

patches instead of triangular patches reduces the number of unknowns and hence it requires

handling of reduced size matrices. Also, the quadrilateral patches are more natural to satisfy the

boundary edge currents condition, i.e., zero normal component compared to the triangular

patches. This property makes it possible to achieve convergent results fewer quadrilateral

patches.

The numerical results obtained using quadrilateral patches have been compared with the

numerical results obtained using the triangular patches and ESP-code. The numerical results

obtained by the present code have also been compared with the measured data obtained in the

NASA Langley Experimental Test Range Facility.

APPENDIX A

Construction of the vector basis function ),( yxBni

r

for an arbitrarily shaped quadrilateral

in the x-y coordinate system is a complex problem. However, a coordinate transformation that
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transforms a quadrilateral in the x-y plane into a square element in a new ),( ηξ coordinates

plane simplifies the derivation as shown below. Using the following transformation

∑
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With the coordinate transformation given in (A1 ), the thn quadrilateral is transformed into a

square with sides equal to 2, as shown in Figure 3. The vector basis function iN
r

along the edges

of the quadrilateral can be shown to be [ 6]
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If n̂ is the unit normal vector to the thn quadrilateral, then the basis function representing the
surface current can be written as
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where the various quantities appearing in the above expressions can be expressed as [6 ]
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With simple mathematical manipulation it can be shown that
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