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Abstract

A simple method is presented to estimate the complex dielectric constants of
individual layers of amultilayer composite material. The multilayer composite material
sample isloaded in an X-band rectangular waveguide and its two port S-parameters are
measured as a function of frequency using the Hewlett-Packard (HP) 8510 Network
Analyzer. Also, by applying the mode matching technique, expressions for the S-
parameters of the composite material as afunction of electric properties of individual
layers are developed. Using the MatLab Optimization Tools simple MatL ab scripts are
written to search for electric properties of individual layers so as to match the measured
and calculated S-parameters.

A single layer composite material formed by using materials such as Bakelite,
Nomex Felt, Fiber Glass, Woven Composite B and G, Nano Material #0, Cork, Garlock,
of different thicknesses are tested using the present approach. The dielectric constants of
these materials estimated using the present approach (assuming the thicknesses are
known) are in good agreement with their true values. Assuming the thicknesses of
samples unknown, the present approach is shown to work well in estimating the
dielectric constants and the thicknesses.

A number of two layer composite materials formed by various combinations of
above individual materials are tested using the present approach. The values of dielectric
constants of individual layers estimated (assuming the thickness of individual layers are
known) using the present approach are in good agreement with their true values.
However, the present approach could not provide estimate values close to their true
values when the thicknesses of individual layers were assumed to be unknown. Thisis
attributed to the difficulty in modelling the presence of airgaps between the layers while
doing the measurement of S-parameters. A few example of three layer composite are
also presented.

l. I ntroduction

Multilayer substrates are used for many practical applications such as
Microwave Integrated Circuits (MIC), Monolithic MIC ( MMIC) [1] , radomes for
protection of antennas from external environment, spatial filters for antenna beam
shaping [2], and Frequency Selective Surfaces (FSS) [3-4]. With proper choices of
individual layersin amultilayer composite substrates it is possible to achieve a
composite material with altogether new properties that were otherwise not found in the

individual layers. Exact knowledge of the material properties such as permittivity and



permeability of individual layersin amultilayer substrate is essential for designing spatial
filters, radomes and composite materials for FSS applications. However, the present
practice in the estimation of electric properties of composite materials with multi-layers
emphasizes only the determination of overall effective properties. In thisreport an
attempt is made to provide a procedure to estimate the electric properties of individual
layers of acomposite material.

Permittivity and permeability of these composite multi-layer substrates can be
estimated using one of the following methods:. 1) free-space techniques; 2) resonant
cavity perturbation techniques; and 3) transmission line methods. Each method hasiits
own advantages and limitations. For measurement of electric properties over awide
frequency range, transmission line or waveguide methods [5-8] are more popular even
though they are less accurate due to unavoidable measurement errors. In the waveguide
measurement method, a sample of composite multilayer substrate is placed in a
waveguide and two port S-parameters are measured using a hp-8510 Network Analyzer.
In the earlier work [7-8], assuming that an equivalent homogeneous material occupies
the sample space, S-parameters are estimated as afunction of effective electric properties
of the equivalent material. Using theinverse procedure, constituent parameters of the
equivalent material are determined by matching the estimated and measured S
parameters. In these methods el ectric properties of individual layers are not determined.
However, for some applications such as radomes and FSS, a knowledge of electric
properties of individual layersisrequired. In thisreport, a waveguide measurement
method is presented to estimate the el ectric properties of individual layers of acomposite

multilayer substrate.



The remainder of thisreport is organized as follows. The mode matching
formulation of awaveguide |loaded with multilayer composite material is developed in
section Il. Also in section Il, the expression are developed to estimate 2-port S-
parameters of composite material slab. Numerical and measured results on the S-
parameters of numerous composite material are presented in section Il for the direct
problem where electrical properties of individual layers are assumed to be known. Also
in section I, using the MatLab Codes given in Appendices, estimated values of
dielectric constants of one, two, and three layer composite materia are presented. The
report concludes in section 1V with remarks on the validity and usefulness of the present

method.
1. Theory

In this section, the method of momentsis used to determine the S-parameters of
arectangular waveguide loaded with a multilayer dielectric substrate as shown in figure

1.

Y Incident Wave Port #1

Reflected Wave

Layer #2

Transmitted
Wave

Layer #3
Layer #4

Layer #N

7 Rectangular
" Waveguide

Figure 1: Geometry of rectangular waveguide loaded with
multilayer composite material.



The multilayer substrate consists of N layers, wherethe n" layer has parameters
(&1, 1,,) andislocated between the transverse planesat z=z,, and z=1z,.
S, and S,, Parameters:
To estimatethe S; and S,; components of 2-port parameters, it assumed that the

TE,, mode of unit amplitude isincident on theinterfaceat z=0 fromtheregion z<0 .

If E,,E,..E, aethetransverse dectric filds on theinterfacesat z=0,2,,2,,...2,,

to?

respectively, then the transverse electric fields in the various regions of waveguide are

obtained as
E, =-2jg, sin(ﬁé’z)+i[ [[Eqee dSJéie,ﬁioz "
i=0 \ z=0
Ho = 2Yh, cos( 5 2) - i[ “. LY dSJYiOﬁi el )
i=0\ z=0
for z<0,
_ | sin(5(z, - 2) ”Et(n_l) e&ds+sin(3"(z-z,.,)) ”Em e&ds
E. - g = ¢ 3
Zo: sin(4z,)
_ | cos(B(z, - 2)) ”E(n_l) e&ds—cos(3"(z—-z,,)) ”Em e&ds
H, = — "h @
izzol jsn(5"A )
for z, ,<z<z  and
By = i[ [Ewe édS]ée"ﬂ'M““‘z) (5)
i=0 \ z=z,



N+1 z

i=0

( J‘J‘EtN ° é'deYiNﬂﬁi ejﬁiN*l(zN’z) (6)

7=2y

For uniqueness, the tangential magnetic fields at each interface must be continuous.

Hence

: i Cos(BIA,)
w5 ¥ g | sl [fearai 0

for theinterfacelocated at z=0,

JJEo°édS
o |:Y|1 cos( 3, 1A1) Yi2 COS(,B,ZZAZ) :| J‘J‘Etl.éds ﬁl
jsin(87A,) jsin(B7A,)

7=z

'['[Etl *€ds 3
P VT~ {le cos( "y) s COSUAS) } [[E, ~as]i
jsin(B?A,) ' jsin(BAs)

z=2,

0=

eds+iﬁ[ yn COS(BIAL) cos(ﬂ““AM)} [[E, +ads

= an(ﬂ A )Z_I JBos jsSn(ArA,) " jsn(BA,) |,

-1

o n+1p~
+Z -Y""h

i=0 J Sln(ﬂmlAm-l) =2,
for theinterface located at z= z,, and

II t(n+1) .edS (8)



0-> e gen SR [y OB i (e v
_le'”(ﬁ "A )z—z'['! ey GG Zo:h " jsin(BNAy) Y } [[Ewegds (9)

z=2y

for theinterface located at z= z,, .

The transverse electric fields over the interfaces can be expressed in terms of vector

modal expansion functions as:

Jo J; _ J, ~ _ In ~
0=3T8 B =>T8, B =3T,6 . By =D T,E (10)
i=0 j=0 i=0 j=0
where Ty, T,; ,...Ty; are the complex unknown coefficients. Substitution of (10) into (7)-
(9) yields
S . cos(BiA Lo Y!
2Y,hy =D Ty h [ Y2 +Y —— _S(ﬂ - ) Z | ——— (11)
j=0 an(ﬁjAl) j=0 ]Sln(ﬂ Al)
Jn_1 yn ﬁ Jn ~ "A -rHlA
0= Toni o vt 2Tl Yin-CO-S(ﬂ—Jnn)JFYJMM
j=0 JSIn(ﬂ A,) jsin(B}'A,) jsin(B"A,..)
Jni T Yn+lh
£yl (12
j=0 an(ﬂ' An+l)
Inoa Y.N ﬁ In — CO A
0= Ty o an oy T 2 Tl | Y Sy A) +Y (13)
i=0 jsn(BAy) jSIh(,B Ay)



Equations (11) —(13) are the required integral equations to be used to determine the
complex amplitudes Ty, Ty ,...T; . Selecting ﬁk as atesting function and using the

Galerkin’s procedure, the equations (11)-(13) are converted into a set of simultaneous

eguations:
1 1
2Yy =Ty |:YoO +Yy M} Ty {Y—01:| (14a)
J sn(ﬂOAl) J Sn(ﬁOAl)
1 1
0 =T01{Y1° +Y, M} —Tn{%} (14b)
cos(f1 A 1
0= TOJo YJ?) + YJlo "S(ﬁ—‘]il) - TlJo Y—ll (140)
jsin(4;,4,) jsin(4;,4,)

obtained from equation (11). From the continuity of magnetic field at z=z, we get

1 1 2 2
0=%+T1{Yol .Co.s(ﬂolAl) +Yy .CO.S('BOZAZ) :|_T20 Y—02 (159)
jsin(B,A,) jsin(B,A,) jsin(B;A,) jsin(B;A,)

1 1 2 2
A +T11{Y11 COSIA,) |, yz COSLIA,) }_ _ToY; (15b)
jsin(41A,) jsin(41A,) jsin(BA,) | jsin(BrA,)



T.Y: cos(fBt A cos(B% A T,.Y?
—_ .0J1 131 + . lel ' S’(ﬁJi 1) +YJ? . s(ﬂle 2) S 23, 231 (15C)
jsin(B; A,) jsin(B;.A,) jsin(B;A,) | jsSin(B;A,)

Likewise, using the continuity of magnetic fieldsat z=z,,z=z,,....z= z,_,, Similar sets

of simultaneous equations are obtained. From the continuity of magnetic fieldsat z =z,

we get

TennoYo' cos(BNA

=— -(N 1)0N0 n N0|: ON . -S(IBON N) +Y0N+1 (16a)
an(ﬁo AN) an(ﬁo AN)
LR A cos(BNA

=— -(N 1)1N1 Nl{ 1N . -S(ﬁlN N) +Y1N+1 (16b)
an(ﬁl AN) an(ﬂl AN)
Ty Yo cos() Ay)

= T | Y Ry (16c)
jsin(8;, Ay) jsin(s; Ay)

Dueto the orthogonal nature of vector modal functionsit can be shown that the complex

amplitudes T;;, j =123..3y, Ty;, ] =12,3..9,, ...... Ty, =123..J, areal zeros.

Hence equations (14)-(16) can be smplified as

cos(BEA A
ZYOO = Too {Yoo + Yo1 Lll)} - TlO {—01} (173)
jsin(B,A,) jsin(ByA,)
1 1 2 2
S I)CNE {Yg COPohs) | vz C0FoAy) } B N T (17h)
jsin(ByA,) jsin(ByA,) jsin(B5A,) jsin(BsA,)
2 2 3 3
__Tu¥s +T2{Y2 COS(f54,) s COS(f5As) }_Tso Y (170
jsin(f;4,) jsin(f54;)

P jsin(Ba,) 0 jsin(BiA,)



N
N COS(IBO AN) +YN+1 (17d)

_ T(N—l)OYON
"L jEn(BiAy)

jsin(By'Ay)
solution of above (N + 1) equations gives an estimate of complex amplitudes

Toos Tios Togseene Ty fromwhich S; and S,; are determined as
Sy =Typ-1 and S, = TNoejﬁgZN (18)

S,, and S, Parameters:
The port 2 parameters, S,, and S, can be determined by following the procedure used
for estimationof S; and S,;, and reversing the locations of the layers as shown in
figure 2. Notethat the S,, calculated using the reference planes shown in figure 2 and

22y

S,, measured using the hp-8510 network analyzer differ by phase e/

Y Incident Wave Port #1

Reflected Wave

Waveguide

Figure 2: Geometry of rectangular waveguide |oaded
with a composite material for estimationof S,, and S,



[11. Numerical Results

A: Estimation of S-Parameter s( Direct/Forward Problem)

A simple MatLab code (Appendix A) iswritten to solve the simultaneous equations

given in equations (17) and determine all four S-parameters of a composite material slab

placed in arectangular waveguide. In this section, assuming the properties of individual

layers of acomposite material known, the S-parametersfor various composite sabs are

computed (using the MatLab code) as a function of frequency and compared with the

measured S-parameters.

Single Layer Composite Material:

Figure3shows S, and S,, parameters of acomposite materia consisting of a

Garlock single layer as afunction of frequency. In thiscase asingle layer of Garlock

with thickness A, =0.17cm  and electric properties €, = 7.5— j0.001 isused to form a

composite material. Excellent agreement between measured and estimated

S-Pammeters

Sigk Garkocklawrotibichesso 17 em

— Aeaks11)

== = = IMagd.(511] cakuaton
_ - AEaE21)
- = Imag.(s21)
— = = AEAKS11]

Imag.(S11) Meamranem

* Aeaks21)
= " Imag.(s21)

Y . e e e e e e T

10 11
Frequency(GHz)

Figure 3: Measured and estimated S-parameters of single
Garlock slab. Thickness A; =0.17cm, &, =7.5—j0.001,

i, =1.0-j0.0
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valuesof the S-parameters validates the MatLab code. Figure4 shows the S, and S,,
parameters of a composite material formed by asingle layer of Teflon material

(¢, =2.03—-j0.001, £, =1.0—- j0.0 ) of thickness A, = 0.635cm. A good agreement
between the measured and estimated values of S -parameters confirms validity of the

present method. Note that the parameters S,, and S, are expected and found to be

identical to S, and S,,, respectively.

Singlke Telon yer o Thickress OLELS an
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Figure 4: Measured and estimated S -parameters of single teflon slab.
Thickness A, =0.635cm, ¢, =2.03-j0.001, 1, =1.0-j0.0

Two Layer Composite Material:
For further validation of the present method and MatLab code, the S-parameters of
composite material formed by various combination of two layers are fabricated and

tested. A first sample considered consists of Bakelite and Teflon layers.
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The composite slab is formed by placing the bakelite layer with A; = 0.33cm,
z, =0, z, =0.33cm and the Teflon layer with A, = 0.635cm, z, =0.33cm,
z, = 0.965cm. Measured and estimated S;; and S, parameters as afunction of

frequency are shown in figure 5. For the composite material described in figure 5, the

measured and estimated S,, and S, values are shown in figure 6.

Bakelite -Teflon layers
Bakelite d =0.3302 cm, er = 3.76 -j 0.001
Teflond = 0.635 ¢m, er = 2.03 -j0.001
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Figure 5: Measured and estimated S -parameters of two layers composite
material (Bakelite-Teflon). Bakelite: A, =0.33cm, z, =0, z =0.33cm,
g =3.76-j0.001, 1, =1.0, Teflon: A, =0.635cm, z, =0.33cm,

z, =0.965cm, £, =2.03—-j0.00L 1, =1
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Bakalia d < 0,333 cm, er = 3.76 j0.001
akelite d = 0. cm, er = 3.76 -j0. —
Teflon d = 0.635 cm er = 2.03-i0.od1 Real(S22)
= = = = |mag.(S22)
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[63] (=] [6)] (4]

S
n

0758 &

Figure 6: Measured and estimated values of S,,and S, for composite
slab (parameters as described in figure 5)

A second sample of composite material considered consists of Garlock and Nomex
materials. The composite slab isformed by placing first a Garlock slab of thickess

A, =0.17cm, ¢, =7.5-j0.00L ¢, =1.0 a z, =0 and z = 0.17cm and then a Nomex
dab of thicknessA, =0.33cm, ¢, =1.2—-j0.00L 1, =1.0 at z =0.17cm and

z, =0.5cm. Measured and estimated S;, S,,, S, , and S,, parameters for Garlock-
Nomex composite slab are shown in figures 7 and 8.

From figures 7-8, estimated values of S-parameters for the Garlock-Nomex composite
slab agrees well with measured values of the S-parameters. However, for the Bakelite-
Teflon combination thereis small disagreement between measured and estimated S,, and
S, parameters. This disagreement may be attributed to the presence of an air gap

between the slabs of Bakelite and Teflon.
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Figure 7: Measured and estimated S -parameters of two layers
composite material (Garlock-Nomex). Galock: A, =0.17cm, z, =0,
z, =0.17cm, ¢ =75-j0.00L ¢, =1.0, Nomex A, =0.33cm,

z, =0.17cm, z, =0.50cm, ¢, =1.2—-j0.00L &, =1
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Figure 8: Measured and estimated S-parameters of two layers composite
materia (Garlock-Nomex) with dimensions as shown in Figure 7
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ThreeLayer Composite Material:

A third sample of composite material considered consists of Nano Material # 0,
Garlock and Garlock slabs. The composite slab isformed by placing first aNano

Material #0 slab of thickess A, =0.31cm, &, =2.5- j0.00L ¢, =1.0 a z,=0 and
z, = 0.31cm and then a Garlock slab of thickness A, = 0.17cm,

g =75-]0.00Ly, =1, a z =-31cm, and z, = 0.48cm. Another Garlock slab of
thickness A, =0.17cm, ¢, =7.5-j0.001 £, =1.0 isplaced & z, = 0.48cm and

z, =0.65cm. Figures 9-10 show measured and estimated S-parameters of composite

dlab consisting of Nano_Mat #0-Garlock-Garlock combination.

Composite Slab: Nano Materil #0, Garlock, Garlock
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Figure 9: Measured and estimated S, and S,, parameters of composite slab
consisting of Nano-Materia#0, Garlock, and Garlock(Dimensions as
described in text)
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Composite Slab: Nano Materil #0, Garlock, Garlock
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Figure 10: Measured and estimated S,, and S, parameters of

composite slab consisting of Nano-Material#0, Garlock, and
Garlock(Dimensions as described in text)

From figures 9-10, the trend in the values of S-parameters predicted by the computation
issimilar to the trend observed in the measured values. However, significant differences
are observed between the measured and estimated values of S-parameters. This may be
attributed to the sample preparation where the presence of air gaps between the
individual slabsis unavoidable. Also even though these individual slabs may bein
physical contact with each other, electrical contact may still not beinsured. Itisalso
noticeable that the disagreement between the measured and estimated S -parameters gets

worse as more individual slabs are used to form a composite slab.
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B: Estimation of Dielectric Constants( | nver se Problem):
Single Layer Composite M aterial:

In this section a procedure is described for the computation of the complex
dielectric constant of a given composite sample from the two port measured data. For a
given composite material sample, let the two port S-parametersbe (S, S,

Siom Sy ), Measured using the hp-8510 Network Analyzer. With a prior knowledge of

the thickness of composite slabs, the two port S-parameters can be estimated using the

MatLab Code givenin Appendix A asafunction of &, . Let the estimated values of S-
parametersbe S, (€,), S, (&, ), S (€, ), Sy (€,) . Theerrorsin estimated and measured
S-parameters can then be written as ER, =real (S, - S;,,) . ER, =imag.(S,; — S,,) »
ER, =real (S, - S,,,,), ER, =imag.(S,,. - S,,) s ---. ER, =real(S,,. — S,,,)

ER; =imag.(S,,. — S,,,) - Thetotal mean squared error or the objective function to be

minimized as afunction of £, can be written as

ER, :\/(ERf+ER§+ER§+ER§+ER§+ER§+ER§+ER§) (19)
A simple MatLab Code given in Appendix B minimizes the objective function in (19) to
estimate the unknown value of dielectric constant ¢, .

Examples (When Thickness of Samplels Known):

Garlock Slab: A single layer of Garlock slab of size (2.29 x 1.02 x 0.17 )cm was placed
in an X-band rectangular waveguide. After proper calibration of the hp 8510 Network
Analyzer, two port S-parameters of the Garlock slab were measured as a function of

frequency. The measured datais stored in afile FT_GRLK.60. Using the MatLab Code
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given in the Appendix B, the dielectric constant of the Garlock slab is estimated and

shown in figure 11.

Real and Imaginary Parts of Relative Dielectric
Constant of Gatlock Matetial
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Figure 11: Relative dielectric constant (real and imaginary) of
Garlock material estimated using measured and ideal S-
parameters.

In figure 11 solid and dash-dot lines are the estimates of dielectric constant using the
ideal or noise free S-parameters calculated assuming the dielectric constant is known and
equal to £, =7.5—-j0.001. The estimates shown in figure 11 were obtained by
considering the thickness of the slab equal to 0.170cm. To check the level of confidence
in these estimates, from the estimated values of dielectric constant (estimated using the
measured data), the difference between measured and computed values of S-parameters

isplotted in Figure 12.
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Figure 12: Differences between computed and measured values of S-
parameters. Calculated S-parameters are determined using estimated
dielectric constant

The differences between the computed and measured S-parameters are within the limits
set in the optimizer. Idedlly, the difference between the computed and measured S-
parameters must be close to zero. However, to achieve ideal results, the optimizer would
take longer time.

Number of single layer composite materials of various material and thickness were
constructed and their S-parameters were measured over the X-band frequency range.
From these measured values of S-parameters and using the MatLab Code givenin
Appendix B, the dielectric constants of these single layer composite were estimated and

presented in figures 13-25.
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Real and Imaginary Parts of Relative Dielectric
Constant of Nano-Mat. 0 Material
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Figure 13: Relative dielectric constant (real and imaginary) of Nano
material #0 estimated using measured and ideal S-parameters
(thickness = 0.3099 cm)

Real and Imaginary Parts of Relative Dielectric
Constant of Teflon Material
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Figure 14: Relative dielectric constant (real and imaginary) of Teflon
material estimated using measured and ideal S-parameters (thickness =
0.9398)
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Real and Imaginhary Parts of Relative Dielecttic
Constant of Cork Material
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Figure 15: Relative dielectric constant (real and imaginary) of Cork
material estimated using measured and ideal S-parameters (thickness =
0.3048cm)

Real and Imaginary Parts of Relative Dielectric
Constant of Ceramic Matetial
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Figure 16: Relative dielectric constant (real and imaginary) of Ceramic
material estimated using measured and ideal S-parameters (thickness =
0.2845 cm)
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Real and Imaginary Parts of Relative Dielectric
Constant of Nomex Felt Material
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Figure 17: Relative dielectric constant (real and imaginary) of
Nomex Felt material estimated using measured and ideal S-
parameters (thickness = 0.33cm)

Real and Imaginary Parts of Relative Dielectric
Constant of Rubylith Material
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Figure 18: Relative dielectric constant (real and imaginary) of Rubylith
material estimated using measured and ideal S-parameters (thickness =
0.3683 cm)
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Real and Imaginary Parts of Relative Dielectric
Constant of Bakelite Material
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Figure 19: Relative dielectric constant (real and imaginary) of Bakelite
material estimated using measured and ideal S-parameters (thickness =

0.33cm

Real and Imagihaty Patts of Relative Dielecttic
Constant of Fiber Glass Material
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Figure 20: Relative dielectric constant (real and imaginary) of Fiber
Glass materia estimated using measured and ideal S-parameters
(thickness = 0.0533cm
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Real and Imaginary Parts of Relative Dielectric
Constant of Woveh Composite B Matetial
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Figure 21: Relative dielectric constant (real and imaginary) of Woven
Composite B material estimated using measured and ideal S-parameters
(thickness = 0.1625cm

Real and Imaginary Parts of Relative Dielectric
Constant of Low Dehsity Foam Matetrial
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Figure 22: Relative dielectric constant (real and imaginary) of low density Foam
material estimated using measured and ideal S-parameters (thickness =
0.2921cm)
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Real and Imaginary Parts of Relative Dielectric
Constant of Woven Composite G Material
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Figure 23: Relative dielectric constant (real and imaginary) of Woven

Composite G material estimated using measured and ideal S-parameters
(thickness = 0.2083 cm)

Examples (When Thickness of Sample s Unknown):

In the previous section it was assumed that the thickness of the sample is known
apriori. Thesethicknesses are measured in the laboratory using an electronic
micrometer. However, for compressible and thin samples the accuracy of these
measurements is questionable. In this section it is assumed that the thickness of the
sample is unknown and the optimizer is asked to estimate the thickness along with the
dielectric constant of asingle layer composite material slab. The MatLab Code used for
estimation of sample thickness as well as dielectric constant is given in Appendix B.
Garlock Slab: The measured data stored in afile FT_GRLK.60 is used to estimate the
thickness of Garlock slab and dielectric constants. Using the MatLab Code given in the
Appendix B, the dielectric constant of the Garlock slab and its thickness are estimated

and shown in figure 24.
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Real and Imaginary Parts of Relative Dielectric
Constant of Gatlock Matetial (Thickhess Unkhown)
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Figure 24: Relative dielectric constant (real and imaginary) of Garlock
material estimated assuming thickness unknown. Symbols indicate
estimated values of dielectric constant using thickness=0.17 cm. Thin
solid line indicate estimated value of sample thickness.

In figure 24, estimated values of the dielectric constant assuming sample thickness
unknown are in close agreement with the dielectric constant estimated assuming known
value of sample thickness. The average value of estimated sample thicknessis 0.1699 cm
which is very close to the actual measured thickness of 0.1702cm. This validates the idea
that apriori knowledge of sample thicknessis not necessary for the inverse problem. In
fact the thickness of the sample can be considered as one of the unknown variables along

with the diglectric constants to optimize the error function defined in (19). Using the
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Figure 25: Differences between computed and measured values of S-
parameters. Calculated S-parameters are determined using estimated
dielectric constant and thickness of the dlab

estimated values of dielectric constants and the sample thickness, the difference between
measured and computed values of S-parametersis plotted in Figure 25.

The differences between the computed and measured S-parameters are within the limits
set in the optimizer. Idedlly, the difference between the computed and measured S-
parameters must be close to zero. However, to achieve ideal results, the optimizer would
take alonger time.

From the measured values of the S-parametersfor avariety of singlelayer
composite materials (Nano Material #0, Cork, Ceramic, Nomex Felt, Rubylith, Bakelite,
Teflon, Fiber Glass, Woven Composite B and G, Nano Materia # 0) the dielectric
constants and thicknesses of the material are estimated using the MatLab Code givenin
Appendix B. These estimated values are shown in figures 26-36. For comparison, the
estimated values of dielectric constants using MatLab Code given in Appendix B are also
plotted in figures 26-36. The estimated values of dielectric constants assuming the

thickness unknown are in good agreement with the estimates obtained using known
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values of dielectric constants. From the figures 26-36 it may be concluded that the
thickness of asingle layer slab can be treated as one of the unknown variables along with

the dielectric constants.

Real and Imaginary Parts of Relative Dielectric
Constant of Nano Material #0 (Thickness Unknown)
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Figure 26: Relative dielectric constant (real and imaginary) of Nano
material #0 estimated assuming thickness unknown. Symbols indicate
estimated values of dielectric constant using thickness=0.301 cm. Thin
solid line indicate estimated value of sample thickness.
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Real and Imagihaty Parts of Relative Dielectric
Constant of Cork Material (Thickhess Unknown)
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Figure 27: Relative dielectric constant (real and imaginary) of Cork
material estimated assuming thickness unknown. Symbolsindicate
estimated values of dielectric constant using thickness = 0.3048 cm.
Thin solid line indicate estimated value of sample thickness.

Real and Imaginary Parts of Relative Dielectric
Constant of Ceramic Material (Thickhess Unhknhown)
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Figure 28: Relative dielectric constant (real and imaginary) of Ceramic
material estimated assuming thickness unknown. Symbolsindicate estimated
values of dielectric constant using thickness = 0.2845 cm. Thin solid line
indicate estimated value of sample thickness.
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Real and Imaginary Parts of Relative Dielectric
Constant of Nomex Felt Material (Thickhess Unknown)
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Figure 29: Relative dielectric constant (real and imaginary) of Nomex Felt
material estimated assuming thickness unknown. Symbols indicate
estimated values of dielectric constant using thickness = 0.3302 cm. Thin
solid line indicate estimated value of sample thickness.
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Figure 30: Relative dielectric constant (real and imaginary) of Rubylith
material estimated assuming thickness unknown. Symbolsindicate
estimated values of dielectric constant using thickness = 0.3683 cm.
Thin solid line indicate estimated value of sample thickness.
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Real and Imagihary Patts of Relative Dielecttic
Constant of Bakelite Matetial (Thickness Unknown)
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Figure 31: Relative dielectric constant (real and imaginary) of Bakelite
material estimated assuming thickness unknown. Symbolsindicate
estimated values of dielectric constant using thickness = 0.3302 cm. Thin
solid line indicate estimated value of sample thickness.

Real and Irn_algmary Parts of Relative Dielectric
Constant of Teflon Material (Thickhess Unknown)
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Figure 32: Relative dielectric constant (real and imaginary) of
Teflon material estimated assuming thickness unknown. Symbols
indicate estimated values of dielectric constant using thickness =
0.9398 cm. Thin solid line indicate estimated value of sample
thickness,
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Real and Imagihaty Parts of Relative Dielecttic
Constant of Fiber Glass Material (Thickhess Unknown)
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Figure 33: Relative dielectric constant (real and imaginary) of Fiber Glass
material estimated assuming thickness unknown. Symbolsindicate
estimated values of dielectric constant using thickness = 0.0533 cm. Thin
solid line indicate estimated value of sample thickness.
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Figure 34: Relative dielectric constant (real and imaginary) of Foam
material estimated assuming thickness unknown. Symbolsindicate
estimated values of dielectric constant using thickness = 0.2921 cm.
Thin solid line indicate estimated value of sample thickness.
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Real and Imscv;ihary Parts of Relative Dielectric
Constant of Woven Composite B Material (Thickhess Unknown)
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Figure 35: Relative dielectric constant (real and imaginary) of Woven Composite
B materia estimated assuming thickness unknown. Symbols indicate estimated
values of dielectric constant using thickness = 0.1626 cm. Thin solid line
indicate estimated value of sample thickness.
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Figure 36: Relative dielectric constant (real and imaginary) of Woven
Composite G material estimated assuming thickness unknown. Symbols
indicate estimated values of dielectric constant using thickness = 0.2083 cm.
Thin solid line indicate estimated value of sample thickness.
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Most of estimated dielectric constants determined assuming thickness unknown agree
well with the dielectric constants estimated using measured value of slab thickness.
However, in figure 33, the two results disagree significantly. Thisis because the
thickness of the dlab isvery small. In fact, the S-parameters calculated using estimated
thickness and the dielectric constants agree very well with the measurements as shown in

figure 37.
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Figure 37: Measured and computed S-parameters for Fiber Glass Material.
Computed S-parameters are determined using estimated values of dielectric
constant and thickness of Fiber Glass.

Two Layer Composite Material:
In this section measured S-parameters of composite material consisting of two material
layers are used to estimate the dielectric constants of individual layers. The error or

objective function used for this purposeisidentical to equation (19). The MatLab Code



givenin Appendix B, with proper input variablesis used to estimate the dielectric
constants of two layers.

Examples.(Thickness of Layers Known):

A two layer composite material consisting of Bakelite and Teflon was formed by placing

first the Bakelite layer of thickness A, = 0.33cm between the z, =0 and z =0.33cm
planes. A Teflon layer of thickness A, = 0.635cm was then placed between z, = 0.33cm

and z, = 0.965cm. The measured values of S-parameters of the Bakelite-Teflon as a

function of frequency was stored in afile FT_BKLTEF.60. Using the MatLab Code
givenin Appendix B, the dielectric constants of the two layers were estimated and

plotted in Figure 38.

Two Layers Composite Material : Bakelite-Teflon
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Figure 38: Relative dielectric constant (real and imaginary) of Bakelite-Teflon
Composite material estimated using measured S-parameters (assuming thickness

known)
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Figure 39 shows estimated values of dielectric constants of Bakelite-Teflon Composite
materia using theideal S-parameter values computed using the MatLab Code given in
Appendix A. Figure 40 shows the error involved in the estimations of dielectric
constants using measured and ideal values of S-parameters. From figure 40 it is clear that
the error in estimation using the measured S-parametersis higher than the error involved
in the estimation using ideal S-parameters. This may be attributed to the noise present in
the measured dataand inability of the analytical model to take into account potential air

gaps present between the two layers.

Two Layers Composite Material : Bakelite-Teflon
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Figure 39: Relative dielectric constant (real and imaginary) of Bakelite-Teflon
Composite material estimated using ideal S-parameters (assuming thickness known)
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Figure 40: Value of error function given in (19) in estimating the dielectic
constants of Bakelite-Teflon Composite using both measured and ideal S-
parameters

For further verifications of the present approach for atwo layer composite material the
following samples were considered:

1) Garlock-Nomex Felt: A, =0.17cm, A, =0.33cm, z, =0.0, z, =0.17cm,
z, =0.5cm

2) Garlock-Ceramic: A, =0.17cm, A, =0.2845cm, z, =0.0, z, =0.17cm,
z, = 0.4545cm

3) Garlock-Nano Material #0: A, =0.17cm, A, =0.3099cm, z, =0.0,

z, =0.17cm, z, =0.4799cm
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4) Garlock-Woven Composite G: A, =0.17cm, A, =0.2083cm, z, = 0.0,
z, =0.17cm, z, =0.3783cm

5) Garlock-Bakelite A, =0.17cm, A, =0.33cm, z, =0.0, z, =0.17cm,
z, =0.50cm.

For these samples the relative dielectric constants of individual layer were estimated
from the measured and ideal S-parameters. Estimated values of relative dielectric

constants are shown in figures 41-56.
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Figure 41: Relative dielectric constant (real and imaginary) of Garlock-Nomex
Felt Composite materia estimated using measured S-parameters (assuming
thickness known)
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Two Layers Composite Material : Garlock-Nomex Felt
(Thicknesses of layers assumed known)
Estimates are determined using ideal S-parameters
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Figure 42: Relative dielectric constant (real and imaginary) of Garlock — Nomex Felt
Composite material estimated using ideal S-parameters (assuming thickness known)
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Figure 43: Value of error function given in (19) in estimating the dielectic constants of
Garlock -Nomex Felt Composite using both measured and ideal S-parameters.
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Two Layers Composite Material : Garock-Ceramic
(Thicknesses of layers assumed known)
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Figure 44: Relative dielectric constant (real and imaginary) of Garlock-Ceramic
Composite material estimated using measured S-parameters (assuming thickness
known)

Two Layers Composite Material : Gaock-Ceramic
(Thicknesses of layers assumed known)
Esfimates are determined using ideal S-parameters
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Figure 45: Relative dielectric constant (real and imaginary) of Garlock — Ceramic
Composite material estimated using ideal S-parameters (assuming thickness known)
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Figure 46: Vaue of error function given in (19) in estimating the dielectic constants of
Garlock —Ceramic Composite using both measured and ideal S-parameters.
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Two Layers Composite Material : Garock-Nano Material #0
(Thicknesses of layers assumed known)
Estimates are determined using ideal S-parameters
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Figure 48: Relative dielectric constant (real and imaginary) of Garlock — Nano
Material #0 Composite material estimated using ideal S-parameters (assuming
thickness known)
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Figure 49: Vaue of error function given in (19) in estimating the dielectic constants
of Garlock —Nano Material #0 Composite using both measured and ideal S-parameters.
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Two Layers Composite Material : Garlock-Woven Composite G
(Thicknesses of layers assumed known)
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Figure 50: Relative dielectric constant (real and imaginary) of Garlock-Woven
Composite G materia estimated using measured S-parameters (assuming thickness
known)
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Estimates are determined using ideal S-parameters
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Figure 51: Relative dielectric constant (real and imaginary) of Garlock — Woven
Composite G material estimated using ideal S-parameters (assuming thickness known)

43



Optimum Value of Error Function

0.1

0.09

== == == = Error Function For Using Ideal S-Parameters

0.08 Error Function For Using Measured S-Parameters

0.07

0.06

0.05

0.04

0.03

0.02

Objective/Error Function

0.01

L I L Il L l | L L | | L L l |
0.01 10 11
Frequency (GHz)

Figure 52: Vaue of error function given in (19) in estimating the dielectic constants of
Garlock ~-Woven Composite G material using both measured and ideal S-parameters.
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Figure 53: Relative dielectric constant (real and imaginary) of Garlock-Bakelite
Composite material estimated using measured S-parameters (assuming thickness
known)
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Two Layers Composite Material : Garlock-Bakelite
(Thicknesses of layers assumed known)
Estimates are determined using ideal S-parameters
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Figure 54: Relative dielectric constant (real and imaginary) of Garlock — Bakelite
Composite material estimated using ideal S-parameters (assuming thickness
known)
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Figure 55: Vaue of error function given in (19) in estimating the dielectic
constants of Garlock —Bakelite Composite material using both measured and
ideal S-parameters.
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From the results shown in figures 41-55, it may be concluded that the method presented
in this report can successfully estimate dielectric constants of two layer composite
material with apriori knowledge of the thickness of individual layers. An attempt was
made to estimate thicknesses of individual |ayers along with their dielectric constants
using the MatLab Code given in Appendix B. However, the optimizer did not estimate
these values correctly and hence the results for such cases are not presented.

Three Layer Composite Material:

In this section measured S-parameters of composite material consisting of three material
layers are used to estimate dielectric constants of individual layers. The error or
objective function used for this purpose isidentical to equation (19). The MatLab Code
given in Appendix B, with proper input variablesis used to estimate the dielectric
constants of two layers.

Examples.(Thickness of Layers Known):

A three layer composite materia consisting of layers of Nano Material #0, Garlock, and
Garlock was formed by placing the Nano Material #0 layer of thickness

A, =0.3099cm between z, =0 and z, = 0.3099cm planes, the Garlock layer of
thickness A, = 0.17cm between z =0.3099cm and z, = 0.4799cm planes, and
Garlock layer of thickness A, = 0.17cm between z, =0.4799cm and z, = 0.6499cm

planes. The measured values of S-parameters stored in FT_NANGRKGRK .60 were used
to estimate dielectric constants of each individual layers using the MatLab code given in
the Appendix B. The estimated values of dielectric constants are shown in Figure 56.
The values of dielectric constants of each these material when estimated using single

layer measured data were found to be ¢, =2.5—- j0.00for the Nano Material #0,
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g, =7.5-]0.00 for the Garlock material. However, when the individual dielectric
constants are estimated using the measured data for the three layer composite material,
these estimates come out to be little different for the earlier estimates. This may be

attributed to the presence of airgaps between the layers.
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Figure 56: Estimated values of dielectric constants of individual layers from
measured values of S-parameters of three layer composite slab (Nano Material
#0-Garlock-Garlock)
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Figure 57: Final values of error function in estimation of dielectric constants of
individual layers shown in Figure 56
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The final value of error function or objective function for the estimation shown in Figure
56 isshown in Figure 57.

A second example of three layer composite material considered was formed by three
layers of the same Garlock slabs. Thefirst Garlock slab of thickness A; = 0.17cmwas
placed between the z, =0 and z =0.17cm planes, second Garlock layer of thickness
A, =0.17cm was placed between z, =0.17cm and z, = 0.34cm planes, and the third
Garlock layer of thickness A, = 0.17cm between z, =0.34cm and z, = 0.51cm planes.
The measured values of S-parameters stored in FT_GRKGRKGRK.60 were used to
estimate diel ectric constants of each individual layers using the MatLab code givenin
Appendix B. The estimated values of dielectric constants are shown in Figure 58. The
values of estimated dielectric constants of each individual layers must be closeto

g, =7.5-j0.00. However, the results shown in the Figure 58 are widely spread around
the correct value of the dielectric constant. This discrepancy in the estimated values
derived using the measured S-parameters of multilayer composite materia is attributed to

the measurement errors caused by the airgaps between the layers. The error function or

objective function at the final values of dielectric estimatesis shown in Figure 59.
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IV Conclusion
A simple waveguide mode matching method in conjunction with the fminsearch

MatL ab optimization search function has been presented to estimate the complex
permitivity of multi-layer composite material. A multi-layer composite material is placed
in an X-band rectangular waveguide and its two-port S-parameters are measured over the
X-band using hp-8510 Network Analyzer. For the same composite material using the
simple mode matching technique the two port S-parameters are calculated as a function
of complex dielectric constants and thicknesses of each layer. The fminsearch function
available in the MatLab Optimization Toolsis then used to determine complex dielectric
constants of each layers assuming the thicknesses of each layer are unknown.

The present approach has been validated using number of composite material
configurations. The composite material formed by single layers of Garlock, Cork,
Ceramic, Nomex Felt, Woven Composite B and G, Rubylith, Bakelite, Teflon, Fiber
Glass, Foam, Nano Material have been tested using the present method. The estimated
values of dielectric constants and their thicknesses have been found to agree well with the
true values supplied by the manufacturers. The composite materials formed by placing
two layers of the above basic materials have been tested using the present method. The
dielectric constants of individual layers estimated have been found to be in good
agreement with their values specified by manufacturers. However, for the composite
materia consisting of more than one layer it was assumed that the thicknesses of
individual layers were known. It has been observed that the present method could not
estimate the dielectric constants of individual layers correctly when three of more layers

were used to form acomposite material. Thisis attributed to the fact that the airgap
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present in the measurement samples could not be accurately modelled in the estimation

model leading to an incorrect estimation of dielectric constants
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Appendix A: MatLab codefor estimation of S-parametersof multilayer substrate
placed in arectangular waveguide.

% This program calculates S-parameter s of

% N-layer composite material placed in an

% X-band rectangular waveguide as a function

% of frequency. Waveguide dimensions (2.29 cm x 1.02 cm)

% Select 201 frequency pointsover 8.2-12.4 GHz

% Fregquency band.

delf = (12.4-8.2)/201;

for j =1:201
fr() = 8.2 +(j-D*ddf;

end

% Input number of layers

nl=input('nl=");

% I nput dielectric constants

for k =1:2*nl
% First valueisreal part of dielectric constant
% second valueisimaginary part of dielectri constant
X0(k) = input('x0(k) =');

end

% I nput location of interfaces

for k =1:n1+1
zn(k) = input(‘zn(k) =');

end

% Set dielectric constants depending upon
% number of layers. Only 4 layersare

% included. If n1> 4 then add condition
% for given nl

if n1==
er (1) = x0(1) -i*x0(2);

end
if nl==
er (1) = x0(1) -i*x0(2);
er(2) = x0(3) -i*x0(4);
end

if nl==
er (1) =x0(1) -i*x0(2);
er(2) = x0(3) -i*x0(4);
er (3) = x0(5)-i*x0(6);
end
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if nl==
er (1) =x0(1) -i*x0(2);
er(2) = x0(3) -i*x0(4);
er (3) = x0(5)-i*x0(6);
er (4) = x0(7)-1*x0(8);
end

nlayer =nl; %number of layersredifined

n=nlayer+1; % Matrix order

t =zeros(n,1); % Right handside column matrix initilized
s=zeros(n); % Admittance matrix initilized

ak =zeros(n,1); % propagation column matrix

% Set didlectric constantsredifined

% const is set to zeros (3 by 3)

const = zeros(n);

% Dimensions of x-band waveguidein cm
aa=2.29;

bb = 1.02; % guide dimensions

% Free space dielectric constant

€0 = 1.e-9/(36*pi);

%f = 8.2e9 % frequency of microwave signal
c=3.e10; % velocity of light in meter s/second

u0 =4*pi*1l.e-7; % Magnetic per meability of free space
n0 = (u0/e0)™.5; % Free spaceimpedance

for ifr =1:201

freq =fr(ifr); % Frequency in GHz

ak0 =2*pi*freg/30; % wave number in free space
% Thisloop calculates propagation

% constantsin layers

for k1=1:n1

const(k1l) = ak0*ak0* (er (k1))-(pi/aa)™ 2;

if (real(const(k1)) < 0.0) ak(k1) = -i*(-const(k1))".5;
ese ak(kl) = (const(kD)™.5;

end

end

% ak00 and ak11 are propagation constants
% for the free spaceregions of waveguide
constO = ak0™ 2-(pi/aa)™ 2;
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if (real(const0) < 0.0) ak00 = -i*(-constO)™.5;
else ak00 = (constO)*.5;

end
ak11 = ak0o0;

for k1=1:n1
addm(k1) =ak(k1)./(ak0*n0);
end

addmO00 = ak00/(ak0* n0);
addm11 = addmOo0;

% Initilize smatrix
for k1= 1:n1+1
for k2=1:n1+1
s(k1,k2) =0.0;
end
end

% LOOPTO CALCULATE IMPEDANCE MATRIX
% EXCLUDING FIRST ROW AND LAST ROW
for k1=2:n1

k2 =k1-1,

argl = ak(k2)*(zn(k1)-zn(k1-1));
s(k1,k2) = -addm(k2)/(i*sin(argl));
k2 =k1;
argl = ak(k2-1)*(zn(k1)-zn(k 1-1));
arg2 = ak(k1)* (zn(k1+1)-zn(k1));
s(k1,k2) = addm(k2-1)*cos(argl)/(i*sin(argl)) + addm(k1)* cos(ar g2)/(i* sin(ar g2));
k2 = k1+1;
arg2 = ak(k1)*(zn(k1+1)-zn(k1));
s(k1,k2)=-addm(k1)/(i*sin(arg2));

end

% FIRST ROW OF IMPEDANCE MATRIX

s(1,1) = addmO00 + cos(ak(1)*zn(2))/(i* sin(ak (1)*zn(2)))* addm(1);
S(1,2) = -addm(2)/(i*sin(ak (1)* zn(2)));

% LAST ROW OF IMPEDANCE MATRIX
s(nlayer +1,nlayer) = -addm(nlayer)/(i*sin(ak (nlayer) ...

*(zn(nlayer +1)-zn(nlayer))));
s(nlayer +1,nlayer +1) = addm(nlayer)* cos(ak (nlayer)* ...



(zn(nlayer +1)-zn(nlayer)))/(i*sin(ak (nlayer)* ...
(zn(nlayer +1)-zn(nlayer)))) + addm11;

% ONLY FIRST ELEMENT OF RIGHT HAND SIDE
% ISNON ZERO
for j = Linlayer+1
t(j) = 0.0 +i*0.0;
end

t(1) =2*addmO0;
% INVERT SAND MULTIPLY BY t
T =inv(9)*t;

% FIRST ELEMENT OF T -1ISREFLECTION

% COEFFICIENT AND LAST VALUE OF T isTRANSMISSION
% COEFFICIENT

% SINCE MEASURED TRANSIMMSION ISREFERENCED TO
% INPUT PLANE IT ISMULTIPLIED BY PHASE CORRECTION

slic(ifr) =T(1,1)-1;
s21c(ifr) =T(n1+1,1)*exp(i*ak00* zn(n1+1));

end

% CALCULATING S22 AND S12

% I nver se the position of interfaces

if n1==
zn(1) = zn(2);
zn(2) = zn(2);
er (1) =x0(1) -i*x0(2);

end

if nl==
zn(1) = -zn(3) + zn(3);
zn(2) = -zn(2) + zn(3);
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zn(3) = -zn(1) + zn(3);

er (1) = x0(3) -i*x0(4);

er(2) = x0(2) - i*x0(2);
end

if n1==
zn(1) =-zn(4) + zn(4);
zn(2) = -zn(3) + zn(4);
zn(3) =-zn(2) + zn(4);
zn(4) = -zn(1) + zn(4);

er (1) = x0(5) -i*x0(6);

er (2) = x0(4) -i*x0(3);

er (3) =x0(1) -i*x0(2);
end

if n==
zn(1) = -zn(5) + zn(5);
zn(2) =-zn(4) + zn(5);
zn(3) = -zn(3) + zn(5);
zn(2) =-zn(2) + zn(5);
zn(1) = -zn(1) + zn(5);
er (1) = x0(7) -i*x0(8);
er (2) = x0(5) -i*x0(6);
er (3) = x0(3) -i*xo(4);
er(4) = x0(1) - i*x0(2);
end
nlayer =nl; %number of layersredifined
n = nlayer+1; % Matrix order
t =zeros(n,1); % Right handside column matrix initilized
s=zeros(n); % Admittance matrix initilized
ak =zeros(n,1); % propagation column matrix
% Set dielectric constants redifined

% const isset to zeros (3 by 3)

const = zeros(n);

aa=2.29;

bb = 1.02; % guide dimensions

% Free space dielectric constant

e0 = 1.e-9/(36*pi);

%f = 8.2e9 % frequency of microwave signal

c = 3.e10; % velocity of light in meter s/second

u0 =4*pi*1l.e-7; % Magnetic permeability of free space

n0 = (u0/ed)*.5; % Free spaceimpedance
for ifr =1:201
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freq =fr(ifr); % Frequency in GHz

ak0 =2*pi*freq/30; % wave number in free space
% Thisloop calculates propagation

% constantsin layers

for k1=1:n1

const(kl1) = ak0*ak0* (er (k1))-(pi/aa)" 2;

if (real(const(kl)) < 0.0) ak(kl) = -i*(-const(k1)".5;
else ak(kl) = (const(k1))".5;

end

end

% ak00 and ak11 are propagation constants
% for the free spaceregions of waveguide
constO = ak0™2-(pi/aa)” 2;

if (real(constO) < 0.0) ak00 = -i*(-constO)".5;
else ak00 = (constO)*.5;

end
ak11 = ak0o0;

% calculate addmitincefor layers:
for k1=1:n1

addm(k1) =ak(k1)./(ak0*n0);
end

addmO0 = ak00/(ak0* n0);
addm11 = addmOO;

% Initilize smatrix
for k1= 1:n1+1
for k2=1:n1+1
s(k1,k2) =0.0;
end
end

% LOOPTO CALCULATE IMPEDANCE MATRIX
% EXCLUDING FIRST ROW AND LAST ROW
for k1=2:n1

k2 =k1-1;
argl = ak(k2)*(zn(k1)-zn(k1-1));
s(k1,k2) = -addm(k2)/(i*sin(ar gl));
k2=Kk1,
argl = ak(k2-1)*(zn(k1)-zn(k1-1));
arg2 = ak(k1)*(zn(k1+1)-zn(k1));
s(k1,k2) = addm(k2-1)*cos(argl)/(i*sin(argl)) + addm(k1)* cos(ar g2)/(i* sin(ar g2));
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k2 =k1+1,;

arg2 = ak(k1)*(zn(k1+1)-zn(k1));

s(k1,k2)=-addm(k1)/(i*sin(arg2));
end

% FIRST ROW OF IMPEDANCE MATRIX

(1,1) = addm0o0 + cos(ak (1)*zn(2))/(i* sin(ak (1)* zn(2)))* addm(1);
(1,2) = -addm(1)/(i* sin(ak (1)* zn(2)));

% LAST ROW OF IMPEDANCE MATRIX

s(nlayer +1,nlayer) = -addm(nlayer)/(i* sin(ak (nlayer) ...
*(zn(nlayer +1)-zn(nlayer))));

s(nlayer+1,nlayer+1) = addm(nlayer)* cos(ak (nlayer)* ...
(zn(nlayer +1)-zn(nlayer)))/(i*sin(ak (nlayer)* ...
(zn(nlayer+1)-zn(nlayer)))) + addm11;

% ONLY FIRST ELEMENT OF RIGHT HAND SIDE
% ISNON ZERO

for j = Linlayer+1

t(j) =0.0-i*0.0;

end

t(1) =2*addmOo0;

% INVERT SAND MULTIPLY BY t

T =inv(9)*t;

% FIRST ELEMENT OF T - 1ISREFLECTION

% COEFFICIENT AND LAST VALUE OF T isTRANSMISSION
% COEFFICIENT

% SINCE MEASURED TRANSIMMSION ISREFERENCED TO
% INPUT PLANEIT ISMULTIPLIED BY PHASE CORRECTION
ref =T(1,1)-1;

s22c(ifr) = ref*exp(i* ak00* 2* zn(n1+1));
sl2c(ifr) =T(n1+1,1)*exp(i*ak00* zn(n1+1));

end

ss=load('FT_GRLK.60');
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delf = (12.4-8.2)/201;
for j =1:201

fr(j) = 8.2 +(j-1)*ddf;
end

for j =1:201

s11r(j) = ss(j,1);
s11i(j) = ss(j,2);
s21r(j) = ss(j+201,1);
s21i(j) = ss(j+201,2);
s12r(j) = ss(j+402,1);
s12i(j) = ss(j+402,2);
s22r (j) = ss(j+603,1);
s22i(j) = ss(j+603,2);
end

plot(fr,slir fr,s11i,fr real(sllc),fr,imag(sllc))
ok =input('lsplot ok =');
plot(fr,s21r fr,s21i,fr real(s21c),fr,imag(s21c))
ok =input('lsplot ok =');
plot(fr,sl2r fr,s12i,fr real(sl2c),fr,imag(sl2c))
ok =input('lsplot ok =');
plot(fr,s22r fr,s22i,fr real(s22c),fr ,imag(s22c))
ok =input('lsplot ok =');

%
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Appendix B: MatLab codefor estimation of dielectric parameters of multilayer
substrate placed in arectangular waveguide.

% Thisprogram estimates dielectric parameters of

% multi-layer substrate. Measured data hasto beloaded in
% meas.dat file

% X-band rectangular waveguide as a function

% of frequency.

% L oad measured datafile

ss = load(‘meas.dat’);

delf = (12.4-8.2)/201;

for j =1:201
fr() = 8.2 +(j-D*ddf;
end

% Input number of layers
nl=input('nl=");

% I nput dielectric constants

for k =1:2*nl
% First valueisreal part of dielectric constant
% second valueisimaginary part of dielectri constant
X0(k) = input('x0(k) =');

end

% Input location of interfaces

for k =1:n1+1
zn(k) = input(‘zn(k) =');
end

for j =1:201

slir(j) = ss(j,1);

s11i(j) = ss(j,2);

s21r(j) = ss(j+201,1);
s21i(j) = ss(j+201,2);
s12r(j) = ss(j+402,1);
s12i(j) = ss(j +402,2);
s22r(j) = ss(j+603,1);

60



s22i(j) = ss(j+603,2);
end
% CHECK WHETHER SYSTEM ISLOSSLESSOR LOSSY

for j =1:201

s11 =s11r(j)+i*s1li(j);
s21 = S21r (j)+i*s21i());
s12 = s12r (j)+i*s12i(j);
S22 = S22r (j)+i*s22i(j);
freq =1r(j);

x0=1[1.0;0.0;1.0;0.0;1.0;0.0];

options = optimset('Display’, 'iter', "MaxFunEvals , 1000, 'TolFun', 1.e-08)

options = optimset('Tol X', 1e-08)

[x,fval,flag] = fminsear ch(@obj _ref,x0,0ptions,s11,s21,s12,s22 freq,nl ...
ZN);

er11(j) = x(1);

er12(j) = x(2);

er21(j) = x(3);

er22(j) = x(4);

er31(j) = x(5);

er32(j) = x(6);

fgl(j) =fval,
flag

end

outmat = [fr.',er1l." er12.'];
save('templ','outmat’,'-ascii')

outmat = [fr.'.er21.',er22.'];
save('temp?2','outmat’,'-ascii')
outmat = [fr.',er31.',er32.'];
save('temp3','outmat’,'-ascii')
outmat =[fr.",fgl.'];
save('temp4’,'outmat’,'-ascii')

%
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% Thisisobject function
function f = obj_ref(x0,s11,s21,s12,s22,freq,n1,zn)

if nl==
er (1) =x0(2) - i*x0(2);

end

if n1==
er (1) = x0(2) -i*x0(2);
er(2) = x0(3) -i*x0(4);
end
if nl==
er (1) = x0(2) -i*x0(2);
er(2) = x0(3) -i*x0(4);
er (3) = x0(5) -i*x0(6);
end

if nl==
er (1) = x0(2) -i*x0(2);
er(2) = x0(3) -i*x0(4);
er (3) = x0(5) -i*x0(6);
er(4) =x0(7) -i*x0(8);
end

nlayer =nl; %number of layersredifined

n =nlayer+1; % Matrix order

t =zeros(n,1); % Right handside column matrix initilized
s=zeros(n); % Admittance matrix initilized

ak =zeros(n,1); % propagation column matrix

% Set dielectric constantsredifined

% const is set to zeros (3 by 3)

const = zeros(n);

aa = 2.29;

bb = 1.02; % guide dimensions

% Free space dielectric constant

€0 = 1.e-9/(36*pi);

%f = 8.2e9 % frequency of microwave signal
c=3.e10; % velocity of light in meter s/second

u0 =4*pi*1l.e-7; % Magnetic permeability of free space
n0 = (u0/e0)™.5; % Free spaceimpedance
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%for ifr =1:201

%freq =fr(ifr); % Frequencyin GHz

ak0 =2*pi*freq/30; % wave number in free space
% Thisloop calculates propagation

% constantsin threelayers

for k1=1:n1

const(k1l) = ak0*ak0* (er (k1))-(pi/aa)* 2;

if (real(const(k1)) < 0.0) ak(k1) = -i*(-const(k1))".5;
ese ak(kl) = (const(k))™.5;

end

end

const0 = ak0" 2-(pi/aa)”* 2;
if (real(const0) < 0.0) ak00 = -i*(-constO)".5;
else ak00 = (constO)™.5;

end
ak11 = ak0o;

% calculate addmitincefor layers:
for k1=1:n1

addm(k1) =ak(k1)./(ak0*n0);
end

addmO00 = ak00/(ak0* n0);
addm11 = addmOo0;

% Initilize smatrix
for k1= 1:n1+1
for k2=1:n1+1
s(k1,k2) =0.0;
end
end

% LOOPTO CALCULATE IMPEDANCE MATRIX
% EXCLUDING FIRST ROW AND LAST ROW
for k1=2:n1

k2 =k1-1,
argl = ak(k2)*(zn(k1)-zn(k1-1));
s(k1,k2) = -addm(k2)/(i*sin(argl));
k2 =k1;
argl = ak(k2-1)*(zn(k1)-zn(k1-1));
arg2 = ak(k1)* (zn(k1+1)-zn(k1));
s(k1,k2) = addm(k2-1)*cos(argl)/(i*sin(argl)) + addm(k1)* cos(ar g2)/(i* sin(ar g2));
k2 = k1+1;
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arg2 = ak(k1)*(zn(k1+1)-zn(k1));
s(k1,k2)=-addm(k1)/(i*sin(arg2));
end

% FIRST ROW OF IMPEDANCE MATRIX

5(1,1) = addmO0O0 + cos(ak(1)*zn(2))/(i*sin(ak(1)*zn(2)))*addm(1);
S(1,2) = -addm(1)/(i*sin(ak(1)* zn(2)));

% LAST ROW OF IMPEDANCE MATRIX

s(nlayer +1,nlayer) = -addm(nlayer)/(i*sin(ak (nlayer) ...
*(zn(nlayer +1)-zn(nlayer))));

s(nlayer +1,nlayer +1) = addm(nlayer)* cos(ak (nlayer )* ...
(zn(nlayer +1)-zn(nlayer)))/(i*sin(ak (nlayer)* ...
(zn(nlayer +1)-zn(nlayer)))) + addm11,

% ONLY FIRST ELEMENT OF RIGHT HAND SIDE
% ISNON ZERO
for j = Linlayer+1
t(j) = 0.0+i*0.0;
end
t(1) =2*addmOo0;

% INVERT SAND MULTIPLY BY t

T =inv(9)*t;

% FIRST ELEMENT OF T - 1ISREFLECTION

% COEFFICIENT AND LAST VALUE OF T isTRANSMISSION
% COEFFICIENT

% SINCE MEASURED TRANSIMMSION ISREFERENCED TO
% INPUT PLANEIT ISMULTIPLIED BY PHASE CORRECTION

sl1c=T(1,1)-1;
s21¢ =T(n1+1,1)* exp(i* ak00* zn(n1+1));

f = real(sllc-sll)*real(sllc-s11) + imag(sllc-sll)*imag(sllc-sll) ...
+real(s21c-s21)*real (S21c-s21) + imag(s21c-s21)*imag(s21c-s21);

% CALCULATING S22 AND S12



ifnl==1

zn1(1) = zn(2) - zn(2);
zn1(2) = zn(2) - zn(1);

end

ifnl==2
zn1(1) = zn(3) - zn(3);
zn1(2) = zn(3) - zn(2);
zn1(3) = zn(3) - zn(1);

end

ifnl==3
zn1(1) = zn(4) - zn(4);
zn1(2) = zn(4) - zn(3);
zn1(3) = zn(4) - zn(2);
zn1(4) = zn(4) - zn(1);
end

ifnl==4
zn1(1) = zn(5) - zn(5);
zn1(2) = zn(5) - zn(4);
zn1(3) = zn(5) - zn(3);
zn1(4) = zn(5) - zn(2);
zn1(5) = zn(5) - zn(2);
end

if n1==1

er(1) =x0(1) - i*x0(2);

end
ifnl==2

er(2) = x0(2) - i*x0(2);
er (1) =x0(3) - i*x0(4);

end

if n1==3
er (1) = x0(5) -i*x0(6);
er(2) = x0(3) -i*x0(4);

er(3) =x0(2) - i*x0(2);

end

if nl1==4
er (1) = x0(7) -i*x0(8);
er(2) = x0(5) -i*x0(6);
er (3) = x0(3) -i*x0(4);

er(4) =x0(2) - i*x0(2);

end
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nlayer = nl; %number of layersredifined

n =nlayer+1; % Matrix order

t =zeros(n,1); % Right handside column matrix initilized
s=zeros(n); % Admittance matrix initilized

ak =zeros(n,1); % propagation column matrix

% Set dielectric constants redifined

% const is set to zeros (3 by 3)

const = zeros(n);

aa=2.29;

bb =1.02; % guide dimensions

% Free space dielectric constant

€0 = 1.e-9/(36*pi);

%f = 8.2e9 % frequency of microwave signal
c=3.e10; % velocity of light in meter s/second

u0 =4*pi*1l.e-7; % Magnetic per meability of free space
n0 = (u0/e0)™.5; % Free spaceimpedance

%for ifr =1:201

%freq =fr(ifr); % Frequency in GHz

ak0 =2*pi*freg/30; % wave number in free space
% Thisloop calculates propagation

% constantsin threelayers

for k1=1:n1

const(k1l) = ak0*ak0* (er (k1))-(pi/aa)* 2,

if (real(const(k1)) < 0.0) ak(k1) = -i*(-const(k1))".5;
ese ak(kl) = (const(kD))™.5;

%ok =input(‘ok =")

% ak00 and ak11 are propagation constants
% for the free spaceregions of waveguide
constO = akO™2-(pi/aa)” 2;

if (real(constO) < 0.0) ak00 = -i*(-constO)".5;
else ak00 = (constO)*.5;

end
ak11 = ak0o;
% ak0
% calculate addmitincefor layers:
for k1=1:n1

addm(k1) =ak(k1)./(ak0*n0);
end
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% addm
%ok =input(‘ok =)
addmO0 = ak00/(ak0* n0);
addm11 = addmOo;
% addmO0
% addmil
%ok =input('ok =')
% Initilize smatrix
for k1= 1:n1+1
for k2=1:n1+1
s(k1,k2) =0.0;
end
end

% LOOPTO CALCULATE IMPEDANCE MATRIX
% EXCLUDING FIRST ROW AND LAST ROW
for k1=2:n1

k2 =k1-1,

argl = ak(k2)*(zn1(k1)-zn1(k1-1));
s(k1,k2) = -addm(k2)/(i*sin(argl));
k2 =k1;
argl = ak(k2-1)*(zn1(k1)-zn1(k1-1));
arg2 = ak(k1)*(zn1(k1+1)-zn1(k1));
s(k1,k2) = addm(k2-1)*cos(argl)/(i*sin(argl)) + addm(k1)* cos(ar g2)/(i* sin(ar g2));
k2 = k1+1;
arg2 = ak(k1)*(zn1(k1+1)-zn1(k1));
s(k1,k2)=-addm(k1)/(i*sin(arg2));

end

% FIRST ROW OF IMPEDANCE MATRIX

5(1,1) = addmOO0 + cos(ak(1)*zn1(2))/(i*sin(ak(1)*zn1(2)))*addm(1);
S(1,2) = -addm(2)/(i* sin(ak(1)* zn1(2)));

% LAST ROW OF IMPEDANCE MATRIX

s(nlayer +1,nlayer) = -addm(nlayer)/(i*sin(ak (nlayer) ...
*(zn1(nlayer+1)-znl(nlayer))));

s(nlayer +1,nlayer +1) = addm(nlayer)* cos(ak (nlayer)* ...
(zn1(nlayer+1)-znl(nlayer)))/(i*sin(ak (nlayer)* ...
(zn1(nlayer+1)-zni(nlayer)))) + addm11;

%s

%ok =input(‘ok =)
% form cpmplex matrix
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% ONLY FIRST ELEMENT OF RIGHT HAND SIDE
% ISNON ZERO
for j = L:nlayer+1
t(j) = 0.0 +i*0.0;
end
t(1) =2*addmO0;

% INVERT SAND MULTIPLY BY t
T =inv(9)*t;

% FIRST ELEMENT OF T -1ISREFLECTION

% COEFFICIENT AND LAST VALUE OF T isTRANSMISSION
% COEFFICIENT

% SINCE MEASURED TRANSIMMSION ISREFERENCED TO
% INPUT PLANE IT ISMULTIPLIED BY PHASE CORRECTION

ref =T(1,1)-1;
s22c = ref*exp(i*ak00* 2* zn1(n1+1));
s12¢ =T(n1+1,1)*exp(i*ak00* zn1(n1+1));

f = f+ real(s22c-s22)* r eal (S22¢-s22) +imag(s22c-s22)* imag(s22¢-s22) ...
+ real(sl2c-s12)*real(sl2c-s12) + imag(sl2c-s12)*imag(sl2c-s12);

68



Form Approved

REPORT DOCUMENTATION PAGE oo Approved

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188),
Washington, DC 20503.

3. REPORT TYPE AND DATES COVERED
Technical Memorandum

2. REPORT DATE
May 2003

1. AGENCY USE ONLY (Leave blank)

4.TITLE AND SUBTITLE 5. FUNDING NUMBERS
Estimation of Complex Permittivity of Composite Multilayer Material at

Microwave Frequency Using Waveguide Measurements 706-31-41-01-00

6. AUTHOR(S)
Manohar D. Deshpande and Kenneth Dudley

7. PERFORMING ORGANIZATION NAMFS) AND ADDRESS(ES) 8. I;‘EEF::FORMING ORGANIZATION

ORT NUMBER
NASA Langley Research Center

Hampton, VA 23681-2199 L-18285

9. SPONSORING/MONITORING AGENCY NAMFS) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER
National Aeronautics and Space Administration

Washington, DC 20546-0001 NASA/TM-2003-212398

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Unclassified-Unlimited
Subject Category 34 Distribution: Nonstandard

Availability: NASA CASI (301) 621-0390

13. ABSTRACT (Maximum 200 words)

A simple method is presented to estimate the complex dielectric constants of individual layers of a multilayer
composite material. Using the MatLab Optimization Tools simple MatLab scripts are written to search for
electric properties of individual layers so as to match the measured and calculated S-parameters.

A single layer composite material formed by using materials such as Bakelite, Nomex Felt, Fiber Glass,
Woven Composite B and G, Nano Material #0, Cork, Garlock, of different thicknesses are tested using the
present approach. Assuming the thicknesses of samples unknown, the present approach is shown to work well
in estimating the dielectric constants and the thicknesses. A number of two layer composite materials formed by
various combinations of above individual materials are tested using the present approach. However, the present
approach could not provide estimate values close to their true values when the thicknesses of individual layers
were assumed to be unknown. This is attributed to the difficulty in modelling the presence of airgaps between
the layers while doing the measurement of S-parameters. A few examples of three layer composites are also
presented.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Composite Material Characterization, Permittivity and Permeability Measurement 80

16. PRICE CODE

17. SECURITY CLASSIFICATION : :
SOF gEPORT SS ° OF THIS PAGE OF ABSTRACT OF ABSTRACT
Unclassified Unclassified Unclassified UL
~ NSN 7540-01-280-5500

Standard Form 208 !Rev. 2-89)
E’rescgged by ANSI Std. Z-39-18



