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Summary

An approach for synthesizing buckling results and behavior for long, balanced and unbalanced sym-
metric laminates that are subjected to uniform heating or cooling and that are fully restrained against
thermal expansion or contraction is presented. This approach uses a nondimensional analysis for infi-
nitely long, flexurally anisotropic plates that are subjected to combined mechanical loads and is based
on useful nondimensional parameters. In addition, stiffness-weighted laminate thermal-expansion
parameters are derived that are used to determine critical temperature changes in terms of physically
intuitive mechanical buckling coefficients, and the effects of membrane orthotropy and membrane
anisotropy are included. Many results are presented for some common laminates that are intended to
facilitate a structural designer’s transition to the use of the generic buckling design curves that are pre-
sented in the paper. Several generic buckling design curves are presented that provide physical insight
into the buckling response in addition to providing useful design data. Examples are presented that
demonstrate the use of the generic design curves. The analysis approach and generic results indicate
the effects and characteristics of laminate thermal expansion, membrane orthotropy and anisotropy, and
flexural orthotropy and anisotropy in a very general and unifying manner.

Symbols

a plate length (see fig. 2), in.

Ay, A1z, Ao, Ags orthotropic-plate membrane stiffnesses, Ib/in.
A6, Arg anisotropic-plate membrane stiffnesses, lb/in.

ajy, Az, Ay, deg, A16, Ao Pplate membrane compliances (see eq. (25)), in/lb

A,,. B, displacement amplitudes (see eq. (22)), in.

b plate width (see fig. 1), in.

D isotropic-plate bending stiffness (see eq. (61)), in-1b

Dy, Dy, Dyy, Dgg orthotropic plate-bending stiffnesses, in-1b

D¢, Dyg anisotropic plate-bending stiffnesses, in-1b

E Young’s modulus (see table 1), psi

E,Er,Gir lamina moduli (see table 2), psi

K= (/1 5 ) or nondimensional buckling coefficient associated with the critical value of
an eccentric inplane bending load (see eq. (21) and fig. 1(a))

K = (17 ol )Cr nopdimensional buckling coefficient associated with the critical value of a
uniform shear load (see eq. (20) and fig. 1(a))

K, ‘ y=5-0 axial-compression buckling coefficient, defined by equation (18) in which

anisotropy is neglected in the analysis
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nondimensional buckling coefficient associated with the critical value of a
uniform axial compression load (see eq. (18) and fig. 1(a))

nondimensional buckling coefficient associated with the critical value of a
uniform transverse compression load (see eq. (19) and fig. 1(a))

nondimensional load factors defined by equations (14) through (17),
respectively

number of terms in the series representation of the out-of-plane displace-
ment field at buckling (see eq. (22))

intensity of the eccentric inplane bending load distribution defined by
equation (5), Ib/in.

intensity of the constant-valued tension or compression load distribution
defined by equation (5), 1b/in.

longitudinal, transverse, and shear membrane stress resultants, respectively
(see egs. (5), (7), and (8)), 1b/in.

membrane stress resultants of the system of destabilizing loads (see egs. (6)
through (9) and fig. 1(a)), Ib/in.

membrane stress resultants of the system of subcritical loads (see egs. (6)
through (9) and fig. 1(b)), Ib/in.

nondimensional membrane stress resultants of the system of destabilizing
loads defined by equations (10) through (13), respectively

nondimensional membrane stress resultants of the system of subcritical
loads defined by equations (10) through (13), respectively

nondimensional loading parameter (see eqs. (14) through (17)) and corre-
sponding value at buckling (see eqs. (18) through (21)), respectively

plate thickness, in.

plate inplane displacements (see fig. 2(a)), in.

out-of-plane displacement field at buckling defined by equation (22), in.
plate rectangular coordinate system (see fig. 1), in.

coefficient of thermal expansion for an isotropic material, 1/°F

overall laminate coefficients of thermal expansion (see eq. (25)), 1/°F

stiffness-weighted laminate coefficients of thermal expansion (see
eqs. (41) through (43), respectively), 1/°F
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O, B, ¥ O

nondimensional parameters defined by equations (1), (2), (3), and (4),
respectively

€0, €1 symbols that define the distribution of the inplane bending load (see fig. 1
and eq. (5))

n=y/b, &=x/A nondimensional plate coordinates

0 fiber angle (see fig. 9), deg

O} temperature change (see eq. (25)), °F

G)gr critical value of temperature change, °F

A half-wavelength of buckling mode (see fig. 1), in.

A/b buckle aspect ratio (see fig. 1)

Aor critical value of buckling mode half-wavelength, in.

A /b critical value of buckle aspect ratio

\Y Poisson’s ratio for an isotropic material (see table 1)

Vit lamina major Poisson’s ratio (see table 2)

®,.(N) basis functions (see egs. (22) through (24))

Introduction

Buckling behavior of laminated-composite plates that are subjected to combined mechanical
and thermal loads is an important consideration in the preliminary design of contemporary, high-
performance aerospace vehicles. The sizing of many structural subcomponents of these vehicles is
often determined by buckling constraints. One subcomponent that is of practical importance in struc-
tural design is the long rectangular plate. These plates commonly appear as elements of stiffened panels
that are used for wing structures and as semimonocoque shell segments that are used for fuselage struc-
tures. Buckling results for infinitely long plates are important because they often provide a practical
estimate of the behavior of finite-length rectangular plates, and they also provide information that is
useful in explaining the behavior of these finite-length plates. Moreover, knowledge of the behavior of
infinitely long plates can provide insight into the buckling behavior of more complex structures such as
stiffened panels.

An important type of long plate that appears as a component of contemporary composite structures
is the symmetrically laminated plate. In the present paper, the term “symmetrically laminated” refers to
composite plates in which every lamina above the plate midplane has a corresponding lamina located at
the same distance below the plate midplane, with the same thickness, material properties, and fiber ori-
entation. Symmetrically laminated plates are essentially flat after the manufacturing process
and exhibit flat prebuckling deformation states, which is desirable for many applications. More
importantly, the amenability of these plates to structural tailoring provides symmetrically laminated
plates with a significant potential for reducing the weight of aerospace vehicles or for meeting special



performance requirements. Thus, understanding the buckling behavior of symmetrically laminated
plates in a very broad manner is an important part of the search for ways to exploit plate orthotropy and
anisotropy to reduce structural weight or to fulfill a special design requirement.

For many practical cases, symmetrically laminated plates exhibit specially orthotropic behavior.
However, in some cases, such as thin-walled [+45]; laminates that are candidates for spacecraft appli-
cations, these plates exhibit anisotropy in the form of material-induced coupling between pure bending
and twisting deformations. This coupling is referred to herein as flexural anisotropy, and it generally
yields buckling modes that are skewed in appearance (see fig. 1), even when inplane shear loads are
absent. Symmetrically laminated plates that are unbalanced are also being investigated for special-
purpose uses in aerospace structures. These laminated plates exhibit anisotropy in the form of material-
induced coupling between pure inplane dilatation and inplane shear deformations, in addition to flexural
anisotropy. This coupling is referred to herein as membrane anisotropy, and it generally yields com-
bined inplane stress states for simple loadings like uniform edge compression when inplane displace-
ment constraints are imposed on one or more edges of a plate. For example, when the edges of an
unbalanced, symmetrically laminated plate, such as a [+45,/0/90]; laminate, are totally restrained
against thermal expansion and contraction that is caused by uniform heating or cooling, inplane shear
stresses are developed in addition to the usual tensile or compressive stresses that are often present in
balanced laminates. These kinematically induced shear stresses may be relatively large in magnitude,
compared to the direct compressive stresses, and as a result, may greatly affect the buckling behavior of
the plate and amplify the skewed appearance of the buckling modes that is caused by flexural
anisotropy.

The effects of flexural orthotropy and flexural anisotropy on the buckling behavior of long rectan-
gular plates that are subjected to single and combined mechanical loading conditions are becoming bet-
ter understood. For example, recent in-depth parametric studies that show the effects of flexural
orthotropy and flexural anisotropy on the buckling behavior of long plates that are subjected to
compression, shear, pure inplane bending, and various combinations of these loads have been presented
in references 1-3. The results presented in these references indicate that the importance of flexural
anisotropy on the buckling resistance of long plates varies with the magnitude and character of the com-
bined loading condition. Similar results for plates loaded by uniform shear and a general linear distribu-
tion of axial load across the plate width have also been presented in reference 4. In a similar manner,
the effects of membrane orthotropy and membrane anisotropy on the buckling behavior of long rectan-
gular plates that are restrained against axial thermal expansion and contraction and subjected to uniform
heating or cooling and mechanical loads have been presented in reference 5. This extensive work has
provided a better understanding of the load interaction effects of balanced and unbalanced, symmetri-
cally laminated plates that are subjected to mechanical loads and restrained against axial thermal expan-
sion and contraction.

Although an extensive body of work exists that addresses the thermal-buckling behavior of plates
(see ref. 5 for a literature review), a broad understanding of the effects of orthotropy and anisotropy on
their response has not yet been obtained. In particular, the effects of membrane orthotropy and mem-
brane anisotropy on the buckling behavior of long rectangular plates that are fully restrained against
thermal expansion and contraction and subjected to uniform heating or cooling are not well understood
for the large variety of laminated plates that exist and the variety of support conditions that are possible.
One objective of the present paper is to present a more intuitive buckling analysis for balanced and
unbalanced, symmetrically laminated plates that are fully restrained against thermal expansion and
contraction and subjected to uniform heating or cooling. To achieve this goal, the buckling analysis is
formulated in terms of buckling coefficients for the known, mechanically equivalent loads and stiffness-
weighted laminate thermal-expansion parameters instead of in terms of a less intuitive thermal buckling
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coefficient. Thus, the present study is a continuation or extension of the work that is presented in
reference 5. The analysis procedure is based on classical laminated-plate theory, which neglects
transverse-shear flexibility and is applied to long plates herein. However, the analysis procedure is
applicable to finite-length plates and to more sophisticated plate buckling theories that include effects
like transverse-shear flexibility.

Two other objectives of the present paper are to present a wide range of buckling results in terms of
useful nondimensional design parameters and to provide a means for comparing the buckling-response
characteristics of seemingly dissimilar laminated plates. Other objectives are to identify the effects of
orthotropy and anisotropy on the buckling behavior of long symmetrically laminated plates that are sub-
jected to the same loading conditions, and to present some previously unknown results. In particular,
new results are presented for plates with the two long edges clamped or simply supported and with all
edges fully restrained against inplane movement. Several generic buckling-design curves that are appli-
cable to a wide range of laminate constructions are presented that use the nondimensional parameters
described in references 1-6, along with some other parameters that are derived subsequently. Finally,
examples are presented that demonstrate the use of the generic buckling-design curves and the analysis
procedure.

Analysis Description

In preparing generic design charts for buckling of a single flat, thin plate, a special-purpose analysis
is often preferred over a general-purpose analysis code, such as a finite-element code, because of the
cost and effort that is usually involved in generating a large number of results with a general-purpose
code. The results presented in the present paper were obtained by using such a special-purpose buckling
analysis that is based on classical laminated-plate theory. The analysis details are lengthy; hence, only a
brief description of the buckling analysis is presented herein. First, the buckling analysis for long plates
that are subjected to a general set of mechanical loads is described. Next, the mechanical loads that are
induced by fully restrained thermal expansion and contraction and that are used in the buckling analysis
are derived, and an expression for the critical temperature change is presented in terms of the corre-
sponding critical loading parameter and mechanical-buckling coefficients.

Buckling Analysis

Symmetrically laminated plates can have many different constructions because of the wide variety
of material systems, fiber orientations, and stacking sequences that can be selected to construct a lami-
nate. A convenient way of coping with the large number of choices for laminate constructions is to use
nondimensional parameters to understand overall behavioral trends and sensitivities of the structural
behavior to variations in laminate construction. The buckling analysis used in the present paper is based
on classical laminated-plate theory and the classical Rayleigh-Ritz method and is derived explicitly in
terms of the nondimensional parameters defined in references 1-6. This approach was motivated by the
need for generic (independent of a specific laminate construction) parametric results for composite-
plate buckling behavior that are expressed in terms of the minimum number of independent parameters
needed to fully define the behavior and that indicates the overall trends and sensitivity of the results to
changes in the parameters. The nondimensional parameters that were used to formulate the buckling
analysis are given by

1/4
_46(%u
B0 =)\ ( 022) (1



_ D1yt 2D

—=— ()
(D11 Do)
D
V= (3)
(D71 Dy)
D
5= 46 )

3 1/4
(D11 D3p)

where b is the plate width and A is the half-wavelength of the buckle pattern of an infinitely long plate
(see fig. 1). The subscripted D-terms are the bending stiffnesses of classical laminated-plate theory (see
ref. 7 or 8). The parameters 0, and B characterize the flexural orthotropy, and the parameters y and &
characterize the flexural anisotropy.

The mechanical loading conditions that are included in the buckling analysis are uniform transverse
tension or compression, uniform shear, and a general linear distribution of axial load across the plate
width, as depicted in figure 1. Typically, an axial stress resultant distribution is partitioned into a uni-
form part and a pure bending part; however, this representation is not unique. The longitudinal stress
resultant NV, is partitioned in the analysis into a uniform tension or compression part and a linearly vary-
ing part that corresponds to eccentric inplane bending loads. This partitioning is given by

Nx:/vxc_/vb[£0+(el_£0)n] (5)

where N, denotes the intensity of the constant-valued tension or compression part of the load, and the
term containing N, defines the intensity of the eccentric inplane bending load distribution. The symbols
€y and €, define the distribution of the inplane bending load, and the symbol n is the nondimensional
coordinate given by N = y/b. This particular way of partitioning the longitudinal stress resultant was
used for convenience by eliminating the need to calculate the uniform and pure bending parts of an axial
stress resultant distribution prior to performing a buckling analysis.

The analysis is based on a general formulation that includes combined destabilizing loads that are
proportional to a positive-valued loading parameter 2 that is increased until buckling occurs and inde-
pendent subcritical combined loads that remain fixed at a specified load level for which buckling does
not occur. Herein, the term “subcritical load” is defined as any load that does not cause buckling to
occur. In practice, the subcritical loads are applied to a plate prior to and independent of the destabiliz-
ing loads, with an intensity below that which will cause the plate to buckle. Then, with the subcritical
loads fixed, the active, destabilizing loads are applied by increasing the magnitude of the loading
parameter until buckling occurs. This approach permits certain types of combined-load interaction to be
investigated in a direct and convenient manner. For example, in analyzing the stability of an aircraft
fuselage, the nondestabilizing transverse tension load in a fuselage panel that is caused by cabin
pressurization can be considered to remain constant and, as a result, can be represented as a passive,
subcritical load. The combined shear, compression, and inplane bending loads that are caused by flight
maneuvers can vary and cause buckling and, as a result, can be represented as active, destabilizing
loads.



The distinction between the active, destabilizing and passive, subcritical loading systems is imple-
mented in the buckling analysis by partitioning the prebuckling stress resultants as follows:

Npe= N+ N5 (6)
Ny=-Ny+ Ny (N
Noy=Nog1 + Vo (3)
Np=Np+ Ny ©)

where the stress resultants with the subscript 1 are the destabilizing loads and those with the subscript 2
are the subcritical loads. The sign convention used herein for positive values of these stress resultants is
shown in figure 1. In particular, positive values of the general linear edge stress distribution parameters
Np1, Npp, €, and €; correspond to compression loads. Negative values of Nj,; and Ny, or negative val-
ues of either €, or €; yield linearly varying stress distributions that include tension. Depictions of a vari-
ety of inplane bending load distributions are given in reference 4. The two normal stress resultants of
the system of destabilizing loads, /{ and &V 1, are defined to be positive-valued for compression
loads. This convention results in positive eigenvalues being used to indicate instability due to uniform
compression loads.

The buckling analysis includes several nondimensional stress resultants associated with equa-
tions (6) through (9). These dimensionless stress resultants are given by

NE. b2
”)C(/, = ﬁ (1())
(D) D)
2
7y = /\;f/b (11)
2
My :/V’W'i o (12)
(D Dsy)
2
| Ny b
7y (13)

(D), Dyy)

where the subscript j takes on the values of 1 and 2. In addition, the destabilizing loads are expressed in
terms of the loading parameter 2 in the analysis by

nG =Ly p (14)
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where L; through L, are load factors that determine the specific form (relative contributions of the load
components) of a given system of destabilizing loads. Typically, the dominant load factor is assigned a
value of 1 and all others are given as positive or negative fractions.

Nondimensional buckling coefficients that are used herein are given by the values of the dimension-
less stress resultants of the system of destabilizing loads at the onset of buckling; that is,

K,=(n5 )cr:w:[@cr (18)
K,=(7p )Cr:(/v,ﬁll;bz:lzﬁcr (19)
K= (0 )Cr:M=L3 Per (20)
Ky=(np ), = (Vi) = L4 7y @1)

(D), Dyy)

where quantities enclosed in the parentheses with the subscript “cr” are critical values that correspond to
buckling, and 2, is the magnitude of the loading parameter at buckling. Positive values of the coeffi-
cients £, and & ' correspond to uniform compression loads, and the coefficient £ corresponds to
uniform positive shear. The direction of a positive shear stress resultant that acts on a plate is shown in
figure 1. The coefficient K5 corresponds to the specific inplane bending load distribution defined by
the selected values of the parameters € and €; (see fig. 1).

The mathematical expression used in the variational analysis to represent the general off-center and
skewed buckle pattern is given by

N
wa(&,n) = mél (Am sin ¢ + 4, cos T[E)fbm(r]) (22)

where ¢ =/A and N = p/6 are nondimensional coordinates, Wy is the out-of-plane displacement
field, and 4,, and 5, are the unknown displacement amplitudes. In accordance with the Rayleigh-
Ritz method, the basis functions ®,,(1N) are required to satisfy the kinematic boundary conditions on
the plate edges at N =0 and n = 1. For the simply supported plates, the basis functions used in the anal-
ysis are given by

® ,(N) = sin 771N (23)
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for values of m =1, 2, 3, ..., N. Similarly, for the clamped plates, the basis functions are given by
®,,(n) = cos(#— 1)Ttn— cos(» + 1)TtN (24)
For both boundary conditions, the two long edges of a plate are free to move inplane.

Algebraic equations that govern the buckling behavior of infinitely long plates are obtained by sub-
stituting the series expansion for the buckling mode given by equation (22) into a nondimensionalized
form of the second variation of the total potential energy and then by computing the integrals appearing
in the nondimensional second variation in closed form. The resulting equations constitute a generalized
eigenvalue problem that depends on the aspect ratio of the buckle pattern A/b (see fig. 1) and the nondi-
mensional parameters and nondimensional stress resultants defined herein. The smallest eigenvalue of
the problem corresponds to buckling and is found by specifying a value of A/b and solving the corre-
sponding generalized eigenvalue problem for its smallest eigenvalue. This process is repeated for suc-
cessive values of A/b until the overall smallest eigenvalue is found. The value of A/b that corresponds to
the overall smallest eigenvalue is denoted herein by A_/b.

Results that were obtained from the analysis described herein for uniform compression, uniform
shear, pure inplane bending (given by €, =-1and €; = 1), and various combinations of these mechan-
ical loads have been compared with other results for isotropic, orthotropic, and anisotropic plates that
were obtained by using other analysis methods. These comparisons are discussed in references 1-3, and
in every case the results described herein were found to be in good agreement with those obtained from
other analyses. Likewise, results were obtained for isotropic and specially orthotropic plates that are
subjected to a general linear distribution of axial load across the plate width and compared with results
that were obtained by seven different authors (see ref. 4). In every case, the agreement was good; that
is, all had less than a 5 percent difference and most less than a 2 percent difference. More recently,
results obtained for symmetrically laminated, balanced anisotropic angle-ply plates with the buckling
analysis described herein (given in ref. 4) were compared to experiments in reference 9. The analytical
results in reference 4 show a set of complex, nonintuitive buckling interaction curves, for plates loaded
by inplane bending and shear, that are skewed substantially because of the presence of flexural
anisotropy. The experimental results verify the unusual trends of the highly skewed buckling interac-
tion curves, and the agreement between analysis and test appears to be very good.

Prebuckling Stresses and Critical Temperature Change

Uniformly heated or cooled plates that are symmetrically laminated and restrained against thermal
expansion and contraction may develop internal mechanical loads that can cause buckling. These
induced mechanical loads enter the analysis through the membrane constitutive equations. The standard
form of these membrane constitutive equations for thin plates, which is based on classical laminated-
plate theory, is found in references 7 and 8 and is expressed in terms of membrane stiffness coefficients
and fictitious thermal stress resultants. In the present study, the membrane constitutive equations are
used in an inverted form that uses the overall laminate coefficients of thermal expansion and the
membrane compliance coefficients (see ref. 8). This form of the membrane constitutive equations for
symmetrically laminated plates is given by

e \ a11 412 16 f/vf\ fax\
Vi T l@nan el NV, )t 0,10, (25)
\u,y-ir V’Xf 216 926 966 \/ny/ \axy/



where u(x,y) and v(x,y) are the prebuckling, inplane displacements in the x- and y-coordinate directions,
respectively (see fig. 2); 0, O, and O 4, are the overall laminate coefficients of thermal expansion;
the subscripted a-terms are the plate membrane compliance coefficients; ©( is the magnitude of the
uniform temperature change from a predetermined stress- and strain-free reference state; and commas
followed by a subscript denote partial differentiation with respect to the coordinate associated with the
subscript. For restrained thermal expansion and contraction problems, the plates are assumed to be sup-
ported and loaded such that the prebuckling stress field is uniform. With this assumption, a compatible
displacement field is obtained directly by integrating equations (25). This integration yields

”(I:J/):(allNx+412/vy+al6/v,ry+ax®0 rtgrt g (26)

V(}QJ/):(‘ZIZNX+”22Ny+a26/v,ry+ay®0 Lt g3t gy (27)

and

sty =ae Nt ay Nyt age NV, + 0,0, (28)

where g through g, are constants that are determined from the boundary conditions.

Equations (26)—(28) can be used to determine the thermally induced mechanical loadings for sev-
eral problems of practical interest. The problems consist of plates restrained against axial thermal
expansion or contraction (see ref. 5), plates restrained against transverse thermal expansion or contrac-
tion (y-coordinate direction), and plates restrained against axial and transverse thermal expansion and
contraction. In the present paper, however, only plates that are fully restrained against axial and trans-
verse thermal expansion and contraction are considered. For this case, all the subcritical loads are zero-
valued and N (x,y) = xl’ N,(x,y) = =Ny, and Ny(x,y) = Ny, (see fig. 2). All the stress resultants are
induced by the fully restralned thermal expansion and, when considered together, are destabilizing.
Upon substitution of these relationships, the displacements given by equations (26) and (27) become

u(x,p) = ( ap Nia—ap Ny taeVy +a, @o)ff+g1y+gz (29)

v, ) = ( ap Vi —apn Ny tay Vg +0,00|y+g30+gy (30)

and equation (28) becomes
Qi te3=—a e Ny —ax Ny +age Vg +0,,0, (31

Enforcing the restraint condition (displacement boundary condition) #(0,») =0 gives g, =g, =0.
Similarly, enforcing the restraint condition »(x;0) =0 gives g3 = g4 = 0. Enforcing #(a,») =0 gives

—6]11/\/ 6]12/\/ +6Z16N 1+G @O 0 (32)
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which yields u(x,y) = 0. Similarly, enforcing v(x,0) =0 gives

—ap Ny —ayn Ny +ay Ny +0,00=0 (33)
which yields v(x,y) = 0. Substituting g, = gz = 0 into equation (31) gives

—a16 Vi —axe Ny + age Vg +0,,00=0 (34)

The thermally induced stress resultants for this problem are obtained by solving equations (32)—(34) for

Vi, V 1> and N1 The solution is given by

N;l:(Allax+/412ay+‘416axy)60 (335)
Ny = (/4120‘x+ Ay, + ‘426(])()/)@0 (36)
N = - (‘4160(x+ Al + 14660‘xy)@0 (37)

where the subscripted A-terms are the membrane stiffnesses of classical laminated-plate theory. Equa-
tions (35)—(37) define a combined loading state that is induced by restrained thermal expansion and
contraction. These equations show that each of the thermally induced mechanical loads depends on all
three laminate coefficients of thermal expansion and that positive values for the compressive stress
resultants are possible even for negative values of O, (uniform cooling) and vice versa. For example, a
laminate could have a negative value of o, and still have a positive value of /3 (axial compression).
Thus, the signs of © and the parenthetical quantities in equations (35)—(37) must be considered in for-
mulating the buckling problem.

The buckling problem is posed by first substituting equations (35)—(37) into equations (10)—(12),
respectively, to obtain expressions for the nondimensional stress resultants that can be used to character-
ize the thermally induced mechanical loads. In particular, the nondimensional stress resultants are
expressed in terms of stiffness-weighted laminate thermal-expansion parameters denoted by O 1, 05,
and O 3. These expressions, with the use of equations (14)—(16), are given by

1282 A, -
751 = Tz[zﬂl@o =L P (38)

_128%5 o _/ 5
T 290 L2 (39)

_ 1285 o /5
”xyl_n2[2a3 0= 4372 (40)



where

2
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where ¢ is the plate thickness. Note that the stiffness-weighted coefficients of thermal expansion have
the same units as the laminate and lamina coefficients of thermal expansion.

Equations (10)—(12) and (38)—(40) indicate that /'¢;, /1, and Ny, are positive-valued when a y,
a,, and G5 are positive-valued, respectively, and when O is positive-valued. Similarly, /¢, AV s
and N, are negative-valued when O, O,, and O3 are positive-valued, respectively, and © is
negative-valued, or when &, &,, and O3 are negative-valued, respectively, and O is positive-
valued. Next, equations (38)—(40) are substituted into equations (18)—(20) to obtain the relationships
between the mechanical-buckling coefficients, the load factors, and the critical temperature ©@f'; that
is,

_ _ 1242, L
K= (61 )= 5 20108 = L1 2o (44)
K= () _1202%6 oy 5 45
y=\7”n o T2A2 2~0 2 Per (45)

X = _12 2 o= /. %
s_(”xyl )Cr 222390 T 43 Zar (46)

where the critical eigenvalue 2. = ﬁcr(ﬁ, Y,0, Ly, Ly, L3| for a given set of flexural boundary
conditions.

The next step in posing the buckling problem is to define the load factors L;, L, and L5 that appear
in equations (38)—(40) and (44)—(46). These load factors define the relative proportions of the thermally
induced mechanical loads. It is important to reiterate that positive, negative, and zero values for 0,0,
correspond to positive, negative, and zero values for /¢, respectively (see fig. 2(b)). Similarly, posi-
tive, negative, and zero values for 6,0 correspond to positive, negative, and zero values for V' L
respectively; and positive, negative, and zero values for 00 correspond to positive, negative, and
zero values for Ny, respectively. To define the load factors properly, the signs of NG, NV 1> and Ny
must be considered. Specifically, the load factors must be defined such that positive values of Ly, L,
and L5 correspond to positive values of /¢, A 1> and Ny, respectively (see fig. 1(a)). Moreover,
both positive and negative values of ©( must be considered. These requirements lead to six cases that
must be considered in formulating the buckling analysis; that is, the cases for which ;0> 0,
d160<0, Gl=0 with d260>0, (31:0 with d290<0, ﬁ1=d2=0 with d360>0, and
0;=0,=0 with 630, <0. The buckling analysis for each of these cases is presented subsequently.
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Case 1. For the case in which @0, >0, the stress resultant /¢, >0 and L; =1 is appropriate
(induced axial compression). The values for the other two load factors that are needed to completely
define the prebuckling stress state are obtained by dividing equations (19) and (20) by equation (18),
with L; = 1, or by dividing equations (39) and (40) by equation (38). This step yields

_ N [ Dy l/zzgz A0+ Ay + A0l Dy 12 o
2 NG\ Dy G A0, T A0+ 14160(”\022
= N Dy 1/4: a3 _ A160 + Ayt ), + /466ny{011 1/4 )
N\ Dy a A0+ Alzo‘ﬁ 14160(}”\022

For an isotropic material, 411 = A, A1 = A26 =0, D1 =Dy, O, =0,, a,, =0, and these expressions
reduceto L, =1 and L;=0. With L; =1and L, and L; defined by equations (47) and (48), the rela-
tionship between the critical value of the mechanical loading parameter Z,; and the critical temperature
O©fF is determined by equation (44); that s,

1262 . ~er -

K = 7]_[2;2 A 1@0 = Ler (49)

X

where Z., = ?Cr(B, Y, 0, 2y, Ly, 13) for a given set of flexural boundary conditions. It is important to
point out that equation (49) yields positive and negative values for @' for positive and negative values
of &, respectively. Moreover, it is important to reiterate that the relationship between 2, and the
corresponding mechanical buckling coefficients K, K, and K is given by equations (49), (45), and
(46), respectively.

Case 2. For the case when 00 <0, the stress resultant /<, <0 and L; = —1 is appropriate
(induced axial tension). As for the previous case, the values for the other two load factors that are
needed to completely define the prebuckling stress state are obtained by dividing equations (19) and
(20) by equation (18), but with L; = -1, or by dividing equations (39) and (40) by equations (38). This
step yields

12 A 12
LZZ_N}/I DOy Gy ApO T Ayl T Ayl Dy 50
A\ Dy a; Allax+f412°‘y+f416axy\022
z _ Vo [ Dy 1/4: G5 g8t g8t Aeed Dy v (51)
3 Ny |\ Dy G A+ Apd,+ A48 | Dsy

With L;=-1and L, and L; defined by equations (50) and (51), the relationship between the critical
value of the mechanical loading parameter 7, and the critical temperature ©f is again determined
by equation (44); that is,

_ 124?

22 0107 == Zer (52a)

x
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In contrast to the previous case, equation (52a) yields positive values for Of for negative values of
0, and vice versa. For laminates with L3 = 0 (balanced laminates) and L, < 0 (no induced transverse
load or transverse tension), no destabilizing compression or shear loads are present, and buckling cannot
occur because the plate is in a state of uniaxial or biaxial tension. In contrast, when L3 =0and L, >0, a
plate is subjected to axial tension and transverse compression. Figures 29-31 of reference 1 indicate
that an infinitely long plate buckles as a wide column for this type of loading and that the buckling
coefficients K, = 1 and K|, = 4 for simply supported and clamped plates, respectively. With K, known,
equations (45) and (52a) give

K,=22a,08=-"7 (52b)

Case 3. For a general symmetric laminate, the possibility exists that 01 =0, which implies that
the stress resultant //¢; = 0; that is, there is no axial expansion or contraction. For this case, L; =0 is
appropriate and the sign of G,0, must be considered in defining the nonzero load factors. In particu-
lar, for 0,0,>0, V > 0 and L;=0 and L, =1 are appropriate (induced transverse compression).
The value for the load factor L5 that is needed to completely define the prebuckling stress state is
obtained by dividing equation (20) by equation (19), with L, = 1, or by dividing equation (40) by equa-
tion (39). This step yields

_ /416(]X+ A26a}/+ A66C(Xy{ 022 1/4 (53)

a, A0+ A0+ ‘426°‘xy\011

Z _ V1 (022)1/4_@‘
i= Dl _Y3
N\ Dy

The relationship between L3 and the mechanical-buckling coefficients K, and K is shown in fig-
ures 24-27 of reference 1. With L; =0, L, =1, and L5 defined by equation (53), the relationship
between the critical value of the mechanical loading parameter 7, and the critical temperature OfF is
determined by equation (45); that is,

_ 1262 s
](y - 22 GZO((:)r = Por (54a)

It is important to point out that equation (54a) yields positive and negative values for ©f for positive
and negative values of @ ,, respectively. For laminates with L3 = 0 (balanced laminates) a plate is sub-
jected to only transverse compression. Thus, an infinitely long plate buckles as a wide column for this
type of loading, and the buckling coefficients K, = 1 and K|, = 4 for simply supported and clamped
plates, respectively. With K, known, equation (45) gives

2
550,05 =&, (54b)

Case 4. For the case when G| =0 and G,0,<0, the stress resultant /,; <0, L; =0, and
L, = -1 are appropriate (transverse tension). As for the previous case, the value for the load factor L5
that is needed to completely define the prebuckling stress state is obtained by dividing equation (20) by
equation (19), with L, = —1, or by dividing equation (40) by equation (39). This step yields

1/4 ) 1/4
[3 _ nyl @ __ Y3 _ Al6ax+ A26G}/+ A66axy{ 022 (55)
N\ Dy Gy A0+ Apd ,+ 4yt | Dy

14



Like the previous case, the relationship between L3 and the mechanical-buckling coefficients K, and K|
is shown in figures 24-27 of reference 1. With L; =0, L, =—1, and L3 defined by equation (55), the
relationship between the critical value of the mechanical loading parameter Z;; and the critical temper-
ature ©f' is determined by equation (45); that is,

_ 1262 o
Ky_ WG 2@8r == Fer (56)

For this case, equation (56) yields positive values for ©f for negative values of G, and vice versa.
For laminates with L5 = 0 (balanced laminates), no destabilizing compression or shear loads are present,
and buckling cannot occur because the plate is loaded by transverse tension only.

Case 5. For the case with @; =@,=0 and 030> 0, the stress resultants /¢ = Nyl =0 and
N> 0, which implies that L; = L, =0, and that L3 =1 is appropriate (positive shear loading as in
fig. 1(a)). With L, =0,L,=0,and Lz = 1, the relationship between the critical value of the mechanical

loading parameter 7, and the critical temperature ©f is determined by equation (46); that is,

Ks: —5 50 3®8r :pcr (57)

Again, it is important to point out that equation (57) yields positive and negative values for ©f for
positive and negative values of @3, respectively. In addition, values of the mechanical-buckling coef-
ficient K| for several laminates are given in reference 1.

Case 6. The final case to consider is when 6| =0, =0 and 030 <0. For this case, the stress
resultants /¢, =/ ;=0 and V. w1 <0, which implies that L; = L, =0, and that L3 =-1 is appropri-
ate (negative shear loading). With L; =0, L, =0, and L3 = —1, the relationship between the critical
value of the mechanical loading parameter 2., and the critical temperature ©f is again determined
by equation (46); that is,

1242 . _
K= ia3®8r = For (58)

In contrast to the previous case, equation (58) yields positive values for ©f for negative values of Q4
and vice versa.

It is important to mention that the approach used herein to define the prebuckling stress state and the
critical temperature ©F also applies for a more sophisticated plate theory, such as a first-order
transverse-shear deformation theory. For this theory, Z,; would depend also upon additional nondi-
mensional parameters that characterize the transverse-shear flexibility. Thus, the only difference in the
results for the two plate bending theories is the actual value of 2. that is used in equations (44)—(46),
for a given problem. It is also important to point out that 7, for a long plate does not depend on the
parameter O . This fact has been shown in references 1—4.

Results for Isotropic Plates and Common Laminates

Results are presented in this section and in figures 3—16 that illustrate behavioral trends for isotropic
plates and for several common symmetrically laminated plates that are fully restrained against thermal
expansion and contraction and subjected to uniform heating or cooling. In particular, results are
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presented first for plates made of typical aluminum, steel, titanium, brass, and copper (see table 1 for
properties). Then, results are presented for several common balanced, symmetric laminates that are
made of IM7/5260 graphite-bismaleimide material (see table 2 for properties); that is, [(£45/0/90) ]
quasi-isotropic laminates, [(¥45/0,) 1, and [(45/90,),,]. quasiorthotropic laminates, and [(£6) ]
angle-ply laminates, where a positive value of the lamina fiber angle 0 is shown in figure 9. The
[(x45/05) ], and [(¥45/90,),], laminates are described as quasiorthotropic because of the presence
of a relatively small amount of flexural anisotropy. Results are also presented for [+6/0/90] laminates
with angle plies and for a quasi-isotropic laminate whose principal material coordinate frame is rotated
by an angle 6; that is, [(¥45/0/90) + O];. In addition, results are presented for similar unbalanced,
symmetric laminates; primarily, [(+45,/0/90) 1., [(+45,/05) ], [(+45,/90,) 1. [(+0),,], and
[+8,/0/90], laminates that exhibit a significant degree of membrane anisotropy in addition to flexural
anisotropy. All of the results are based on classical laminated-plate theory, and the nominal ply thick-
ness used in the calculations was 0.005 in.

Results for Isotropic Plates

Results for homogeneous, isotropic plates are obtained from the analysis presented herein by first
noting that for an isotropic material, the stiffness-weighted laminate thermal expansion parameters
reduce to G3=0 and G =0, = 0((1 + V), where a is the coefficient of thermal expansion and V is
Poisson’s ratio. Because 0 and G, are positive valued for isotropic materials, it follows that the iso-
tropic plates that are subjected to fully restrained thermal expansion or contraction can buckle only
when subjected to uniform heating; that is, ©§ > 0. The buckling equations for this case are obtained
by noting that 0 ,0,>0 and by using equations (47)—-(49). These equations and considerations give
Ll = 1,L2: 1,L3:O, and

1127
ocr = cr
O 2 (a1 + ) &

The condition L; =L, =1 means that V¢ = M. Moreover, the corresponding mechanical buckling
coefficients are given by

( Jc’l )crb2:/( :(Nyl )crb2:~

Kx: 20 B4 w20 Per (60)
where D denotes the bending stiffness for isotropic plates given by
3
p=—1tr _ (61)
12(1-v2)

Equations (59)—(61) are combined to give the relationshi