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ABSTRACT

Experiments on a scale model of an advanced unconventional subsonic transport concept,
the Blended Wing Body (BWB), have demonstrated significant shielding of inlet-radiated noise. A
computational model of the shielding mechanism has been developed using a combination of
boundary integral equation method (BIEM) and equivalent source method (ESM). The
computation models the incident sound from a point source in a nacelle and determines the
scattered sound field. In this way the sound fields with and without the airfoil can be estimated
for comparison to experiment. An experimental test bed using a simplified wedge-shape airfoil
and a broadband point noise source in a simulated nacelle has been developed for the purposes of
verifying the analytical model and also to study the effect of engine nacelle placement on
shielding. The experimental study is conducted in the Anechoic Noise Research Facility at NASA
Langley Research Center. The analytic and experimental results are compared at 6300 and 8000
Hz. These frequencies correspond to approximately 150 Hz on the full scale aircraft.
Comparison between the experimental and analytic results is quite good, not only for the noise
scattering by the airframe, but also for the total sound pressure in the far field. Many of the
details of the sound field that the analytic model predicts are seen or indicated in the experiment,
within the spatial resolution limitations of the experiment. Changing nacelle location produces
comparable changes in noise shielding contours evaluated analytically and experimentally. Future
work in the project will be enhancement of the analytic model to extend the analysis to higher
frequencies corresponding to the blade passage frequency of the high bypass ratio ducted fan
engines that are expected to power the BWB.
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Symbols

B Point set describing the scattering surface

† 

Be Point set describing the scattering body exterior

iB Point set describing the scattering body interior

c Ambient sound speed

† 

k Source excitation wavenumber

† 

P Acoustic pressure amplitude

† 

Pinc Incident acoustic pressure amplitude

† 

Ps Scattered acoustic pressure amplitude

sP Approximate scattered acoustic pressure amplitude

  

† 

r 
x j{ }

j =1

M
Source locations in scattering body interior

  

† 

r 
y j{ }

j =1

N
Collocation points on scattering surface

e Boundary error function
w Source excitation frequency

Introduction

Increasing awareness of aircraft noise in areas surrounding airports has led to renewed emphasis
on aircraft noise reduction at the source. In order to meet NASA’s aggressive noise impact
reduction goals of the next 20 years, noise reduction must be an integral part of the aircraft design
process. The Blended Wing Body is an unconventional transport concept that has the potential
to address long-term NASA goals for emissions, safety, capacity, cost of travel, and noise. The
Blended Wing Body combines a rigid, wide airfoil shape fuselage with high aspect ratio wings and
semi-buried engines. A typical installation calls for high bypass-ratio engines mounted on top of
the wing, aft of the passenger compartment. Inlet radiated noise is shielded in the area below the
aircraft by the wing upper surface.

A previous study by Clark and Gerhold (1999) on an early model of the Blended Wing Body
concept airframe verified significant shielding of the inlet-radiated noise by the fuselage. In
addition to verifying inlet noise shielding, the data were to be used to validate an analytical model
(Dunn, et. al., 1999). Initial comparison of measured to estimated noise shielding was
encouraging. However, some discrepancies were noted and it was not clear whether they arose
due to deficiencies in the analytic model or from the highly complex contour of the BWB model.
Thus a simplified model of the BWB was developed and tested. The model serves two purposes,
one of which is to provide sound scattering data to validate the analytic model. The other
purpose of the simplified physical model is to provide a database of the effect of installation on
engine noise radiated from aircraft during flyover. This paper discusses the analytical
development and comparison between the theoretical and experimental results for the wedge-
shaped airfoil noise shielding.
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Experimental Model

a.  Description of the Model

Figure 1 shows a photograph of the model in the anechoic chamber of the Anechoic Noise
Research Facility (ANRF) at NASA Langley Research Center. The circular hoop in the
foreground is a microphone array that will be discussed in the next section. The wedge-shape
airfoil is a triangular planform of length 36 in. (914.4 mm) and 72 in. (1828.8 mm) wingspan. It is
8 in. (203.2 mm) high at the center of gravity and tapers to approximately 1 in. (25.4 mm)
thickness at the base. The model is made of pressed board for mass and is painted with acrylic
paint to make the surface highly reflective acoustically. The model is supported on a sting that
attaches to the base at the center of gravity. The sting is 48 in. (1219.2 mm) long and is wrapped
with acoustic foam to minimize sound reflection, as is the mast that supports the sting. While the
model is intended only to be a representation of the Blended Wing Body, its dimensions
correspond approximately to 2% of the full scale size. The engine nacelle is represented by a duct
made of PVC pipe of 3 in. (76.2 mm) inside diameter and 9.75 in. (247.7 mm) long. A point noise
source is centered in the nacelle. The nacelle is supported separate from the wedge, so that the
noise source and nacelle can be moved to different locations with respect to the fuselage.

No effort was made to simulate either the frequency spectrum or the directionality characteristics
of the high bypass ratio engines that are expected to be used in the Blended Wing Body aircraft.
Instead, the source used is omnidirectional and broadband in order to radiate acoustic energy over
the range of frequencies that the full scale engine is expected to produce. For the inlet, tones may
be expected to be generated at the blade passage frequency and its multiples. The blade passage
frequency typical of a high bypass ratio engine is expected to be approximately 400 Hz, which
corresponds to 20,000 Hz in a 2% model, and the first harmonic of the blade passage frequency
is then 40,000 Hz. The model noise source produces measurable acoustic energy at frequencies
up to 40,000 Hz.

b.  Facility and Experimental Set-up

The experiment was conducted in the Anechoic Noise Research Facility at NASA Langley
Research Center. The walls of the anechoic chamber are covered with fiberglass acoustic wedges
that are 3 ft. (0.915 m) deep and which are designed to provide 99% absorption of incident sound
above 100Hz. The internal dimensions of the chamber (inside the tips of the acoustic wedges) are
28 ft. (8.54 m) by 27 ft. (8.23 m) by 24 ft. (7.32 m). A more detailed description of the ANRF is
given in a NASA report by Hubbard and Manning (1983). The mounting of the model on a sting
allows for the microphone array to traverse around the model so that the sound field can be
measured in 3-dimensions.

A microphone traverse system is a key part of the facility, and it allows for axial and azimuthal
traverses. The circular hoop that is visible in Figure 1 is mounted on a sled that can move in the
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axial direction on a linear track. The hoop contains 18 instrument-quality microphones that are
equally spaced around the circumference. The microphones form a circle of 88 in (2235.2 mm)
diameter. The hoop is rotated on 4° increments so that a high resolution map of the sound field is
obtained in the azimuth. The entire hoop array is positioned at 15 axial locations, spanning from
12 in. (304.8 mm) upstream of the leading edge of the model to 7 in. (177.8 mm) downstream of
the trailing edge. The specific linear track locations are chosen such that the microphone directly
beneath the model moves in 4° increments with respect to the sound source in the base position.
Figure 2 shows the experiment layout including the model and the microphone array.

c.  Instrumentation and Data Analysis

The acoustic sensors mounted on the hoop array are Bruel & Kjaer 1/4 in. (6.4 mm) diameter
microphones. Noise measurements are acquired on a NEFF model 495 multi-channel data
acquisition system. The data acquisition system includes Precision filters set with passband of
1,000 to 50,000 Hz. Data are collected in blocks of 4 second duration at a rate of 100,000
samples per second. The data acquisition system is driven by a DEC Alpha computer, which is
also used to save the data and for post-processing. All time histories are archived on optical disk
and magnetic data tape.

All instrumentation components are calibrated on a regular schedule in accordance with ISO
standards. In addition, an end-to-end calibration check of the data acquisition system is
performed at the beginning and end of the test series, using a calibrated electromagnetic sound
source. Samples of the time histories of each of the microphone responses are saved to files and
the calibrated signals are used to check the sensitivities of the measurement microphones.

d. Description of the Experiment

The point noise source is placed in the center of the nacelle and acoustic surveys are taken around
the model with the nacelle held at various locations above the model. A matrix of lateral and axial
locations was evaluated by Gerhold and Clark (2001) in order to quantify the effect of nacelle
location on shielding effectiveness. For the purposes of comparison to the analytic model, two
axial locations, fore and aft, are discussed. In the fore location, the leading edge of the nacelle is at
the axial location of the model center of gravity. In the aft location, the trailing edge of the nacelle
is as far downstream of the fuselage trailing edge as it was upstream of the trailing edge in the fore
position. The nacelle retains the same height when it is moved from fore to aft.

The model fuselage is then removed and acoustic surveys made with the nacelle in the same
locations. In this way, the noise scattering of the model wing can be calculated directly for each of
the nacelle locations.

Theoretical Development
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The scattering of incident sound by an acoustically impenetrable closed surface is considered. It
is assumed that linear conditions apply and all acoustic processes are time harmonic with
excitation frequency w  and time dependence 

† 

e+iwt . Incident sound is defined as the sound
produced by a known source process in the absence of scattering surfaces. Consequently, the
incident acoustic pressure field is governed by the inhomogeneous wave equation and is
independent of the scattered field.

Let 

† 

B Ã R3 denote the closed, bounded surface of the scattering object and designate the surface
interior and exterior regions by the symbols 

† 

Bi and Be , respectively. The time independent,
complex amplitude of the acoustic pressure, P , is split into known incident, incP , and unknown

scattered, sP , components.

  

† 

P r x ( ) = Pinc
r x ( ) + Ps

r x ( ) r x Œ Be . (1)

It is assumed that the incident acoustic pressure and its spatial derivatives are known throughout
the sound field.

In the absence of flow, application of the above conditions yields a 3-D Helmholtz equation,
Neumann boundary value problem for the unknown scattered pressure amplitude.
Governing PDE:   

† 

— 2Ps + k2Ps = 0 r x Œ Be (2a)

Radiation Condition:
  

† 

lim
rÆ•

∂Ps

∂r
+ ikPs

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ = 0 r =

r x (2b)

Boundary Condition:
  

† 

∂Ps

∂n
= -

∂Pinc

∂n
r x Œ B (2c)

where: 

† 

k =
w
c

 is the excitation wave number, 

† 

c the ambient sound speed, 

† 

∂
∂n

 denotes the exterior

normal derivative, and 

† 

∂Pinc

∂n
 is the normal derivative of the known incident pressure field.

The exterior boundary value problem is solved by employing the equivalent source method
(ESM), which in essence replaces the irradiated scattering body by a system of point sources
(acoustic monopoles, dipoles, etc.) strategically located in the body interior. The source strengths
are adjusted so that equations (2a-c) are satisfied according to some rule. The ESM was chosen
for its simplicity and ease of implementation, plus the fact that ESM calculations require
substantially less computational resources relative to conventional numerical PDE methods.
Theoretical discussion of the ESM and issues associated with its application to engineering
problems can be found in Ochmann (1995), and Koopman, et. al (1989). Details of ESM
implementation as they pertain to the wedge shielding experiment are given below.

a. The Incident Pressure Field

The main purpose of the shielding investigation is to determine the effect that the airframe has on
scattering noise that is radiated from the engine. Thus the noise source is the engine within the
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nacelle.  In the wedge scattering experiment, the engine in a nacelle is simulated by a broadband
random point noise source in a cylinder that is open at both ends.  To approximate the
experimental source apparatus mathematically, a point monopole is placed in the middle of an
infinitesimally thin, hardwall, open-ended cylinder.  The theoretical configuration produces zero
order circumferential duct modes that radiate from the cylinder openings at a fixed excitation
frequency. The ducted fan noise prediction code TBIEM3D (Dunn (1997), Dunn, et al (1999)) is
used to calculate the theoretical incident pressure field in equation (1) and the boundary condition
source term in equation (2c).

A sample TBIEM3D calculation for the above configuration with source excitation frequency of
6300 Hz is presented in figure 3.  Contours of instantaneous acoustic pressure and sound
pressure level are plotted in a plane containing the nacelle.  TBIEM3D accounts for the
propagation, reflection at the duct openings, and radiation to the farfield of the monopole-
generated sound.

b. The Scattered Pressure Field

Several variations of the ESM occur in practice and are surveyed by Ochmann (1995). In the
current application, a collection of point monopoles is used to simulate the scattered acoustic
pressure field. The sources are distributed on an auxiliary surface located inside the wedge and the
source strengths adjusted so as to minimize a certain boundary condition error function on the
actual wedge surface. The auxiliary source surface is an 85% scaled replica of the wedge that is
concentric with the wedge. The actual and source surfaces are discretized by triangulating the
wedge faces as illustrated in figure 4. Point monopoles are situated at the M vertices of the source
surface and the acoustic boundary condition is evaluated at the N actual wedge surface vertices
(M<N). This approach was chosen for simplicity and minimal computer usage. Adding higher
order terms (dipoles, quadrupoles, etc.) to the equivalent source collection improves ESM
accuracy, but increases the computational complexity and was not considered in this research.

The acoustic pressure field produced by a point monopole with unit strength at the location   

† 

r x j  is
given by the formula

  

† 

Pj
r x ( ) =

1
4p

e- ikR j

R j

, (3)

where

  

† 

Rj =
r x - r x j . (4)

Note that (3) is a solution of (2a-b). An approximation to the scattered pressure field is
constructed by forming a superposition of the fields produced by the monopole distribution. Let

the sequence 
  

† 

r x j{ } j=1

M
Œ Bi  denote the vertices of the triangulated source surface, then

  

† 

Ps
r x ( ) ª P s

r x ( ) = a jPj
r x ( )

j=1

M

Â . (5)
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The approximate solution, 

† 

P s , satisfies (2a-b), and the unknown source strengths, 

† 

aj , are

determined by applying the boundary condition (2c). A fundamental advantage of this
approximation is that once the coefficients are calculated, (5) is easily evaluated anywhere in the
sound field.

Define the boundary error function   

† 

e
r x ( )  by the formula

  

† 

e
r x ( ) =

∂P s
∂n

r x ( ) +
∂Pinc

∂n
r x ( ) r x Œ B. (6)

The error function is minimized by adjusting the monopole source strengths according to some
prescribed rule. Several methods for minimizing the boundary error appear in practice and have
been assessed by Ochmann (1995). These techniques vary in numerical complexity, accuracy,
and physical significance. In this research, the error function is set equal to zero at the N vertices
of the triangulated actual surface. This approach was adopted due to the need for computational
expediency.

Let   

† 

r y i{ }i=1
N

Œ B  represent the Cartesian coordinates of the discretized actual surface vertices, then

applying equation (5) to the error function at these points produces the overdetermined system
of linear equations

  

† 

aj

∂Pj

∂n
r y i( )

j=1

M

Â = -
∂Pinc

∂n
r y i( ) i =1,K, N (7)

for the unknown coefficients, which is solved using linear least squares techniques.

c. ESM Validation

The validity and noise prediction capabilities of the ESM+TBIEM3D noise prediction system
are demonstrated by evaluating the calculated acoustic pressure field on a cylindrical surface that
encloses the wedge. The dimensions and positioning of the cylindrical field surface simulates the
placement of the experimental microphone hoop and facilitates comparison with experimental
results.  All calculations were performed on a PC with a 350 MHz Pentium II processor and 256
MB RAM

A sample shielding calculation using the ESM is shown in figure 5. In this calculation, the nacelle
has been removed and a point monopole radiates incident sound at 3000 Hz. The point source is
located over the aft triangular surface aft of the peak of the wedge. Figure 5 shows the
instantaneous acoustic pressure field plotted on the cylindrical envelope and viewed from three
orientations. In the non-oblique views, the pressure contours are made transparent so that the
wedge outline is visible.  Reflection, diffraction, and shielding of the incident sound by the wedge
surfaces and edges are evident.  In particular, the upward reflection of sound by the aft triangular
surface and the appearance of a shadow region beneath the wedge are clearly depicted.

Results
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Sound level surveys were taken with the nacelle alone and with the nacelle in the presence of the
wedge. The shielding effect of the wedge shape is defined as the difference between measured
sound pressure level (SPL) with the nacelle alone and with the wedge in place. The shielding is
calculated analytically in a similar manner. The incident SPL map is calculated using TBIEM3D
and the scattered SPL map is calculated with the wedge present using the ESM. Then noise
shielding is evaluated from the difference of these two contour maps. Narrow-band FFTs (Df =
6.1 Hz) are performed on the measured acoustic data and are presented in this paper at 6300 Hz
and 8000 Hz for comparison with the analytical results. The upper frequency limitation is
imposed by the capacity of the computer on which the analysis was run. These frequencies
correspond to 126 Hz and 160 Hz, respectively in the full scale. Although this is a relatively low
frequency band, it is felt that the results are sufficient to compare the theory and experiment. The
broadband (1kHz to 25 kHz in the model scale) overall sound pressure level (OASPL) is also
evaluated from the experimental data. The OASPL corresponds to the broadband noise of the
spectrum without the influence of tones and generally accentuates the influence of low frequency
noise sources. An additional experimental sound survey is performed with the point noise source
alone in the center of the hoop array. This survey is intended to measure the directivity of the
source alone. Gerhold and Clark (2001) present experimental results from the full matrix of engine
nacelle locations and at a higher frequency, which corresponds to the blade passage frequency of
the ducted fan that would be expected to power the Blended Wing Body.

a.  Point Noise Source

The noise source is comprised of four impinging air jets, shown in Figure 6 without the nacelle.
The impinging jet arrangement is designed to provide a broadband high frequency, high intensity,
omnidirectional noise source that is well suited to scale model work. A representative spectrum
of the noise emitted by the impinging jet source is shown in the upper curve in Figure 7. The
source is relatively broadband from frequencies below 6000 Hz to 40,000 Hz. The lower curve in
Figure 7 is the background ambient sound level in the anechoic chamber. It is seen that, at
frequencies from 10 kHz on out, the impinging jet source produces noise that is at least 10 dB
above the background ambient. Figure 8 shows a map of the directivity of the OASPL of the
point source measured in the anechoic chamber. The directivity plot shows a four lobe pattern
which comes from the four jets. The scale has been exaggerated to show the details of this lobe
pattern, and the figure shows that the variation in sound level at any azimuth is no more than 2.0
dB.

b. Comparison of Experimental and Analytical Results

Figure 9 shows the noise radiation from the point source in the nacelle, without the wedge in
place, at 6300 Hz. The map on the left is measured and the map on the right is calculated. The
outline of the nacelle is shown in the figure. The patterns of radiation are similar between
experiment and analysis, in particular compare the lobed patterns of the sound radiation for the
inlet and exhaust ends of the nacelle. The axial separation of the sound lobes is not as clear in the
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experiment as it is in the analytic results. This is due to the limited axial resolution that arises
from the number of axial stations at which data were taken.

Figure 10 is the estimated sound pressure level map with the wedge in place. The outline of the
wedge and nacelle are shown in the figure in order to show the orientation of the nacelle with
respect to the wedge. The orientation in this instance is designated as nacelle in the center
location laterally and forward location axially.  The similarity between footprint of noise
reduction beneath the model for the experiment and analysis is evident. The increased noise
radiation behind and below the model is also similar.

Figure 11 is the comparison of noise scattering by the wedge airframe at 6300 Hz. The noise is
reduced by approximately 10 dB in the shadow zone directly below and upstream of the wedge
shape. The outline of this shadow zone is shown more clearly from the analytic results, but is
evident in the experimental results as well. The noise is reduced in the area directly downstream
of the trailing edge, although it is less than the noise reduction upstream. Further downstream and
directly behind the engine, the ability of the airfoil to shield noise radiation is negligible. However,
off the sides, around 90° azimuth, the noise is actually increased. This arises from the reflection
of  aft-radiated sound by the sloping rear surface of the airframe. It is indicated in both the
experimental and analytic contours. A lobe of sound radiation is seen below the model and
upstream from the trailing edge. This lobe is seen in the experimental and the analytic results.

Figure 12 shows the noise radiation from the point source in the nacelle, without the wedge airfoil
in place, at 8000 Hz. The analytic radiation pattern shows a clear pattern of lobes. The axial
distance separating the maxima on the nacelle centerline is approximately 5.5 wavelengths (at
8000 Hz). This compares to a 5.9 wavelength (at 6300 Hz) separation of the maxima at the 6300
Hz radiation case (figure 9). The experimental results lack the axial resolution to distinguish the
lobed pattern.

Figure 13 is the comparison of noise scattering by the wedge airframe at 8000 Hz. The noise is
reduced by approximately 10 dB in the shadow zone directly below and upstream of the wedge
shape. The outline of this shadow zone is comparable between the analytic and experimental
results. The gradual reduction of shielding downstream of the trailing edge of the airfoil is seen in
both contours. The scattering of sound into the area further behind the airfoil that is clearly
shown in the analytic results is not seen in the experimental results. The scattering of sound into
the region above the model and upstream of the nacelle is clearly seen in both contours.

One of the purposes of this experiment is to investigate the effect of nacelle location on the
shielding efficiency of the BWB airfoil. Figure 14 shows the noise scattering at 6300 Hz by the
wedge-shaped airfoil for the engine nacelle in the center-aft location. When the nacelle is in the aft
location, the discharge end extends beyond the trailing edge of the wing. The azimuthal extent
over which noise is reduced in the forward quadrant below the wedge is wider than it was with
the nacelle in the forward position, but the noise reduction directly below the trailing edge is less.
There is an area slightly downstream of the trailing edge, beneath as well as above the model, in
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which the noise is amplified. The experimental and analytic results are comparable and exhibit
similar sensitivity to the effects of source location.

Conclusions

The main purpose for this research effort is to develop the noise scattering analytical model and
to validate it experimentally. The model combines the three-dimensional Boundary Integral
Equation Method (TBIEM3D), which estimates the incident sound from the engine noise source,
with the Equivalent Source Method (ESM), which determines the scattering by the reflecting
body to synthesize the sound field in the vicinity of the airfoil. An experiment is developed in
parallel with the analytic program, the purpose of which is to provide measured noise scattering
data with which to validate the analytic model. The airframe is a wedge-shape comprised of
planar surfaces. The purpose is to provide the major features of the Blended Wing Body concept
with the simplest design, for implementation into the analysis.  The engine is represented by a
broadband, high frequency point source in a nacelle. The nacelle is mounted independent of the
airframe so that the effect of engine location can be investigated.

The results of both the experiment and the computation show that scattering and diffraction of
sound are found to be sensitive to location of the source and to the shape of the airframe.
Maximum noise reduction is found to occur in the forward sector beneath the airfoil. The tapered
sides of the upper surface of the airfoil scatter incident sound forward and above the model when
the source is located in the forward position, and toward the rear when the source is in the aft
position. The experiment and computation agree, not only in the overall shielding characteristics
but also in some finer structural details of noise scattering. Spatial resolution in the analytical
model is finer than it is in the experiment. In addition, the computations are at a discrete
frequency whereas the experimental results cover a narrow but finite frequency band. Because of
these resolution differences, the estimated noise radiation shows the presence of sound wave
patterns more clearly than does the measurement. If the assessment of impact of more subtle
configuration changes than those considered here becomes an issue, it will be necessary to
increase the resolution of the measurements. The computational results were limited to relatively
low frequencies because of constraints imposed by the computer on which the analysis was
performed. It will be necessary to improve the computing capability in any future analyses in
order that the computational results can be more useful in terms of assessing the impact on
ground-based observers of noise shielding by the Blended Wing Body.
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