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Abstract 
 
A major step in a most probable point (MPP)-based method for reliability analysis is to determine the MPP. 
This is usually accomplished by using an optimization search algorithm. The optimal solutions associated 
with the MPP provide measurements related to safety probability. This study focuses on two commonly 
used approximate probability integration methods; i.e., the Reliability Index Approach (RIA) and the 
Performance Measurement Approach (PMA). Their reliability sensitivity equations are first derived in this 
paper, based on the derivatives of their respective optimal solutions. Examples are then provided to 
demonstrate the use of these derivatives for better reliability analysis and Reliability-Based Design 
Optimization (RBDO).  
 
Introduction 
 
The Most Probable Point (MPP)-based method plays a key role in the approximate 
integration approaches for reliability analysis. Many works in reliability engineering, 
particularly in Reliability-Based Design Optimization (RBDO), have given special 
attention to the reliability derivatives. Since the MPP can be obtained as a result of an 
optimization process, the probabilistic derivatives can be viewed as the derivatives of the 
optimal solution or optimum sensitivity derivatives. In other words, the computation of 
such derivatives should involve not only the function of the limit-state equation but also 
the Kuhn-Tucker Necessary Conditions at the MPP [1-6]. The main goal of this work is 
thus to present a procedure that computes the probabilistic derivatives as derivatives of an 
optimal solution. Examples are used to demonstrate the application of such optimum 
sensitivity derivatives to form better procedures for reliability analysis and RBDO. First, 
we derive the sensitivities for two approximate integration methods; i.e., RIA and PMA. 
Sensitivity analysis of the PMA leads to the development of a new RIA, called PMA-
based RIA (PRIA). Both convex and concave algebraic examples [7-9] and a 
multidisciplinary flexible wing example [10] are used to demonstrate the use of the newly 
devised method for reliability analysis. An initial attempt is also made in devising a 
RBDO procedure in which the derived reliability derivatives are used to approximate the 
constraints and to screen off non-active constraints. 
 
Reliability Analysis and Sensitivity Analysis 
 
Given a response condition, G(X), of random variables, X, reliability analysis is interested 
in finding the probability of failure, Pf = P(G(X)>0). The corresponding reliability is given 
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by R = 1 - Pf.  One approach to compute the probability of failure or the reliability of the 
limit-state equation, G(X)=0, is the approximate probability integration method. The goal 
of the method is to find a rotationally invariant reliability measurement of the given limit-
state equation. Many variations of this method exist; however, most of them may be 
classified into two groups; RIA and PMA.  
 
In RIA, the objective is to find the first-order safety reliability index, β, which is equal to 
the shortest distance between the origin of the U-space and the failure surface. The 
contact point on the failure surface is the MPP. The components of the reduced variable 
vector, u , are defined by where µiiii Xu σµ /)( −= i and σi are the mean and the standard 
deviation of the corresponding Xi. The limit-state equation is thus rewritten as G(u, σ, µ) = 
0. Mathematically, the reliability index can be viewed as the objective of an optimization 
problem with the limit-state equation as the equality constraint. At its optimal solution, 
u*, one finds the reliability index, *u=β , which yields the first-order probability of 
failure as Pf  = Φ(−β).  
 
In PMA, the objective is to compute the first-order probabilistic performance measure, 
G*p. It is defined as the offset of the performance, G(X), so that the shortest distance 
between the limit-state equation,  G(X) – G*p = 0 and the origin of the U-space is equal to a 
given target reliability service, ( )oβ−Φ .  G*p  can also be found as the smallest value of G 
that is tangent to the targeted reliability surface, represented by a sphere 
constraint, oβ=u . Mathematically, the first-order probabilistic performance measure is 
obtained as the objective of an optimization problem in which the solution is required to 
achieve the targeted reliability index.  
 
The optimization formulation of the RIA is very similar to that of the PMA. In fact, at 
their respective optimal solutions,  ||u*|| = β* in RIA and ||u*|| = βo in PMA, the Kuhn-
Tucker Necessary Conditions yield convenient means to compute the respective 
Lagrange multipliers as 
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It is noted that their Lagrange multipliers can be either positive or negative, since they 
correspond to equality constraints. Furthermore, their Lagrange multipliers exhibit a 
reciprocal relationship if u* is the same for both problems. However, their optimal 
solutions, u*, are usually different unless the targeted reliability index in PMA is exactly 
the same as the optimal reliability index obtained in RIA.  
 
Since RIA or PMA are formulated as constrained optimization problems, derivations 
given by [5-6] can be directly applied here to calculate their optimum sensitivity 
derivatives. Note that in RIA and PMA, the reduced variables, u, are treated as the design 
variables, whereas the standard deviations σ, the mean values µ of the random variables 
and the targeted β0 in PMA can be treated as the problem parameters. Furthermore, the 
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optimum sensitivity derivatives of RIA and PMA are readily available, as they are the by-
products of their respective reliability analysis.  
 
The sensitivity of the result of RIA, the reliability index, β*, with respect to a problem 
parameter can be obtained from as 
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where ∂β*/∂p = 0 since β* is a function of u* only. On the other hand, the derivatives of 
the result of PMA, the probabilistic performance measure, G*p. with respect to the 
problem parameters are given as 
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In particular, if the standard deviations and the mean values of random variables are 
considered as the problem parameters, then Eq. (2) is simplified as  
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as the constraint, h, is a function of u and β0 only. On the other hand, if the target β0 is 
selected as the problem parameter, the first term, ∂ , becomes zero and the second 
term, ∂h/∂p, equals -1. Consequently, Eq. (3) is reduced to 
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Applications 
 
The optimum sensitivity derivatives derived above provide means to support the 
development of a better algorithm for reliability analysis as well as RBDO.  In this study, 
RIA employs the classical HL-RF method and PMA employs the hybrid method [8, 9]. 
 
Gradients for RBDO 
A RBDO problem usually involves random variables as design variables and reliability 
index or performance measure, depending upon its formulation, as its objective or 
constraints. The randomness of a design variable is usually represented by its mean and 
standard deviation. Therefore, the mean and the standard deviation of the random 
variables can be directly modeled as the design variables. In this case, Eqs. (1), and (3) 
provide necessary derivatives with respect to the mean or the standard deviation of a 
random variable to support any RBDO algorithm. 
  
PRIA –  PMA-Based Algorithm for RIA  
The key motivation of this new algorithm is the observation that the target β0 of PMA is 
identical to the reliability index, β*, of RIA, if the performance measure, G*p, in PMA 
reaches zero value. To achieve a zero G*p, the new algorithm repeats the PMA procedure 
with a newly updated β0 in each PMA run. The update in β0 is given by , 
where ∆G* has been replaced by -G*

ppG λβ /*=∆

p. The updated reliability index, β + ∆β, will yield a 
new G*p that is closer to zero, at least in the first order sense. Repeated use of  ∆β  update 
can lead the PMA search to G*p = 0. The detail of PRIA is discussed in [7]. 
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Numerical Examples 
 
Numerical studies are conducted in this section to verify the equations derived in this 
paper and to demonstrate their applications to reliability analysis, reliability sensitivity 
analysis and RBDO. 
 
PRIA 
The new RIA first uses the hybrid method [8] to find the performance measure, G*p, for 
the targeted β0. If the value of G*p does not converge to zero, the hybrid method is then 
restarted to find G*p at the newly updated β0. The process continues until G*p reaches zero 
within a tolerance. The example limit-state equations used in this study are the ones 
studied in [8, 9]. The first example is a convex function. The results show that the new 
PRIA took 7 iterations to find the performance measure, G*p = -0.357, for a β0 of 3.0 and it 
took additional 5 iterations to reach the converged reliability index, β*=2.878. The 
probability of failure was then calculated as 0.201%, which is in good agreement with the 
results of Monte Carlo simulation. Note that a single iteration involves a function and a 
gradient evaluation. The second example is a concave function. The targeted β0 was set to 
be 3.0. The new algorithm, PRIA, took 9 iterations to reach the converged G*p of 0.204. 
Additional 7 iterations were needed for the method to find the converged reliability 
index, β* = 3.803, which gives the probability of failure at .00716%.  

Reliability Sensitivity Analysis 
This section presents reliability sensitivity analysis results of a 3-D flexible wing at robust 
design points [10]. The four parameters chosen as uncertain design variables were the 
root airfoil section maximum thickness, tr, the root airfoil section maximum camber, zr, 
and the structural sizing factors for the two inboard regions, Γ1 and Γ2, as shown in Fig. 1. 
A coefficient of variation, 0.001, was chosen for all design variables. Two solution-
dependent constraints were selected here as limit-state equations, g(L-W) and g(Cm).  The 
former requires the total lift to be greater than the weight of the structure within a given 
limit. The later requires a lower limit on pitching moment, Cm. The lift and the pitching 
moment are the outcomes of a coupled fluid-structure solution based upon Euler CFD and 
FEM structural simulations. Note that at the wing surface where aerodynamic load and 
structural deflection information are interchanged, surface nodes of the FEM structural 
model were a subset of the CFD aerodynamic surface mesh points.  
 
The reliability sensitivity analysis was conducted by using RIA, PMA and PRIA. Sample 
reliability sensitivity derivative comparisons are shown in Table 1. The first column, 
labeled “DV”, indicates the variable with respect to which the function is differentiated. 
The second and third columns identify the reliability sensitivity case by the constraint and 
desired reliability. The sensitivity results for three reliability analysis methods are in the 
subsequent columns. The tables show the analytic sensitivity derivative of β*, in the case 
of RIA and PRIA methods, and G*p in the case of PMA. The table also shows the ratio of 
the analytic result to the derivative obtained by finite differencing.  Derivative results 
obtained by using the three methods are found to agree very well, i.e., the ratio is close to 
1.0. The dagger symbols in the table indicate that a few of the finite difference values 
could not be obtained for comparison for RIA because at the perturbed point it failed to 
converge for at least one side of the central difference. As for the computational 
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efficiency, RIA and PMA are equally efficient, compared to PRIA This is expected, as 
PRIA is essentially a sequence of PMA analyses. 
 

                
 

Fig. 1  Wing geometry and sizing Fig. 2  CFD and FEM computational meshes. 
            parameterization 
 

Table 1  4DV Reliability Assessment Sensitivity Derivative Comparisons 
 

   

DV∂
∂β

, RIA 
DV∂
∂β

, PRIA 
DV
G

∂
∂

, PMA 

DV Constraint k Analytic Ratio analytic ratio Analytic ratio 
Γ1 g(L − W) 1 -6.530 1.042 -6.530 1.004 .06952 0.992 
Γ1 g(L − W) 2 -6.528 0.940 -6.527 1.008 .06917 0.998 
Γ1 g(L − W) 3 06.512 1.072 -6.511 1.011 .06881 0.998 
Γ1 g(Cm) 1 09.457 0.942   .05650 1.026 
Γ1 g(Cm) 2 -9.778 † -9.779 1.000 .05799 0.941 
Γ1 g(Cm) 3 -9.984 † -9.984  .05949 1.036 
tr g(Cm) 3 -471.5  -471.5  2.802 1.008 
zr g(Cm) 2 -818.4 † -818.5 0.962 4.835 0.998 
zr g(Cm) 3 -816.3  -816.3 0.990 4.846 1.000 
Γ2 g(Cm) 2 -22.47 1.099 -22.47 0.958 .1332 0.999 
Γ2 g(Cm) 3 -23.02 1.018 -23.02 1.003 .1372 0.991 

†nonconvergent RIA for at least one side of  finite differencing 
 
Reliability-Based Design Optimization 
Three approaches are considered here for RBDO; i.e., the PRIA-based, the PMA-based and 
the PMA/RIA-mixed RBDO. A Sequential Quadratic Programming Technique, called 
Linearization Method [11] is employed here to support all RBDO procedures. The method 
uses a linearized subproblem and a line search algorithm to determine the search 
direction and the step size, respectively. The method also uses the active constraint 
strategy. The specific test problem studied here is also taken from [8, 9]. The design 
variables are the means of two statistically independent and normally distributed 
variables. The objective and the constraints of the problem are respectively given as f(µ) 
=3 µ1

2 - 2 µ1 µ2 + 3 µ2
2 , subject to the constraints, Pf ( Gi( X ) < 0 ) ≤  Pi0 ;   i = 1, 2. 

Both the PMA-based and the PRIA-based RBDO methods drove the L2-norm of the search 
direction to an acceptable level and arrived at similar local minima. As expected, the 
PMA was more efficient than the PRIA for reliability analysis. The PMA-based method 
took 131 and 39 function and gradient evaluations and the PRIA-based method, 155 and 
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111, respectively, for reliability analysis of limit-state equations, G1 and G2. However, the 
PMA-based method took a lot more function and gradient evaluations for line search than 
the PRIA-based method did. Therefore, the line search factor makes the PRIA-based 
method a better method for this particular RBDO example. Note that in the current study, 
the converged random variables, u*, of the current line search step are kept as the initial 
values to start the next line search step; and the final β* and u* at the end of the current 
optimization iteration are also kept as the initial values to start the next optimization 
iteration. Furthermore, the concept of active-in-reliability is implemented here to reduce 
the unnecessary reliability analysis required by line search. If the performance 
measurement of a constraint is less than a small number, the constraint is called active-in-
reliability. An active-in-reliability constraint must be included in the design search 
algorithm. The strategy can be monitored efficiently with PRIA. With this new 
implementation, the improvement of the PMA/RIA-based RBDO is quite evident [7].  
 
 
Conclusions 
 
The reliability sensitivity analysis equations for the popular RIA and PMA methods are 
derived in this paper. These equations lead to the development of a new RIA method, 
called PRIA. The numerical experience shows that the method is robust and accurate. The 
PRIA method is later used for RBDO.  The application of this RBDO procedure to a 
simple example is very encouraging. However, further investigation is needed to validate 
the procedure on more practical examples. 
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