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Abstract 
 
A robust optimization is demonstrated on a two-dimensional inviscid airfoil problem in subsonic flow.  
Given uncertainties in statistically independent, random, normally distributed flow parameters (input 
variables), an approximate first-order statistical moment method is employed to represent the 
Computational Fluid Dynamics (CFD) code outputs as expected values with variances.   These output 
quantities are used to form the objective function and constraints.  The constraints are cast in probabilistic 
terms; that is, the probability that a constraint is satisfied is greater than or equal to some desired target 
probability.   Gradient-based robust optimization of this stochastic problem is accomplished through use of 
both first and second-order sensitivity derivatives.  For each robust optimization, the effect of increasing 
both input standard deviations and target probability of constraint satisfaction are demonstrated.  This 
method provides a means for incorporating uncertainty when considering small deviations from input mean 
values. 
 
Introduction 
 
In gradient-based optimization, input data and parameters are often assumed precisely 
known leading to deterministic or conventional optimization.  When statistical 
uncertainties exist in the input data or parameters, however, these uncertainties affect the 
design and therefore should be accounted for in the optimization.  Such optimizations 
under uncertainty have been studied and used in structural design disciplines [1-5]; we 
refer to these as non-deterministic or robust design optimization procedures.  In the 
present work robust optimization procedures are applied to a two-dimensional inviscid 
CFD code. 
 
An integrated strategy for mitigating the effect of uncertainty in simulation-based design 
is presented in [6]; this strategy consists of uncertainty quantification, uncertainty 
propagation, and robust design tasks. This strategy is followed herein making use of 
second moment approximations and sensitivity derivatives (SD), that is, the derivatives 
of CFD code output with respect to code input parameters.  In [7] it is shown that a 
statistical First Order Second Moment (FOSM) method can be used to efficiently 
propagate input uncertainties through finite element analyses to approximate output 
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uncertainty.  This FOSM method is employed herein to model uncertainty propagation 
through the CFD code.  
 
The SD contain information which can be used to direct the optimization search; that is, 
the objective and constraint gradients are functions of the CFD SD.  The gradient-based 
robust optimization demonstrated herein for a two-dimensional airfoil problem requires 
both first and second-order SD from the CFD code.  Reference 8 presents, discusses, and 
demonstrates the efficient calculation of both first and second-order SD from CFD code.  
Our initial verification of this present process was obtained for quasi 1-D problems using 
an Euler code [9].  A 3-D application of this present procedure to a flexible wing [10] 
obtained the required second-order SD contributions by finite differencing terms 
containing first-order SD. 
 
Another earlier demonstration or application of gradient-based, robust optimization 
involving advanced or high-fidelity (nonlinear) CFD code was presented in [11] and        
[12].  Two aspects need to be pointed out in regard to the robust optimization 
demonstrations for CFD code modules presented herein and also in [8-12].  First, the 
sources of uncertainty considered were only those due to code input parameters; i.e., due 
to sources external to the CFD code simulation.  Other computational simulation 
uncertainties, such as those due to physical, mathematical and numerical modeling 
approximations (see [13] and [14]) - essentially internal model error and uncertainty 
sources, were not considered.  Second, the assessment of everyday operational 
fluctuations on performance loss, not catastrophe was addressed.  Consequently, we are 
most concerned with aero performance behavior due to probable fluctuations, i.e., near 
the mean of probability density functions (pdf).   
 
The Integrated Statistical Approach 
 
Uncertainty Quantification 
 
In this study, we consider the influence of uncertainty in CFD input parameterization 
variables.  We have assumed that these input variables are statistically independent, 
random, and normally distributed about a mean value.  This assumption not only 
simplifies the resulting algebra and equations, but also serves to quantify input 
uncertainties.  Furthermore, it is not an unreasonable assumption for input flow 
conditions subject to random fluctuations. 
 
Uncertainty Propagation 
 
Uncertainty propagation is accomplished by a FOSM method.  The CFD system output 
solution of interest is approximated in Taylor series form; the approximation is an 
estimate of the output value for small deviations of the input. Given input random 
variables b={b1,…,bn} with mean }b,...,b{ n1=b  and standard deviations, , 
the first order Taylor series approximation of CFD output function, F is given by: 

}σ,...,{σσ nbb1
=b
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where derivatives are evaluated at the mean values, b .  One then obtains expected values 
for the mean (first moment) and variance (second moment) of the output function, F, 
which depend on the SD and input variances, σb

2.  The mean of the output function, ,F  
and its variance 2
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where derivatives are evaluated at the mean values, b .   Equation (2) represents a FO 
method for representing input parameter uncertainty propagation.  The method is 
straightforward with the difficulty largely lying in computation of the SD.   
 
Robust Optimization 
 
Conventional optimization for an objective function, Obj, that is a function of the CFD 
output, F, state variables, Q, and input (design) variables, b, is routinely expressed as 
shown in Eq. (3).  System constraints, g, are represented as inequality constraints.  The 
input variables, b, are precisely known, and all functions of b are therefore deterministic.  
 
min Obj, where  Obj = Obj(F,Q,b)         subject to   R(Q,b) = 0      
                                        g(F,Q,b) ≤ 0      (3) 
 
For robust design, the conventional optimization, Eq. (3), must be treated in a 
probabilistic manner.  Given uncertainty in the input variables, b, all functions in Eq. (3) 
are no longer deterministic.  The design variables are now the mean values, },b,...,b{ n1=b  
where all elements of b  are assumed statistically independent and normally distributed 
with standard deviations σb. The state equation residual equality constraint, R, is deemed 
to be satisfied at the expected values of Q and b, that is the mean values Q  and b  for the 
FO approximation.  The objective function is cast in terms of expected values and 
becomes a function of F  and σF.  The other constraints are cast into a probabilistic 
statement: the probability that the constraints are satisfied is greater than or equal to a 
desired or specified probability, Pk.  This probability statement is transformed (see [6]) 
into a constraint involving mean values and standard deviations under the assumption that 
variables involved are normally distributed.  The robust optimization can be expressed as 
 
min Obj,    Obj = Obj( F ,σF, Q , b )       subject to R( Q , b ) = 0              (4) 
       g ),,( bQF + kσg ≤ 0, 
 
where k is the number of standard deviations, σg, that the constraint g must be displaced 
in order to achieve the desired or specified probability, Pk.  For the FOSM approximation, 
standard deviations σF and σg are of the form given in Eq. (2) involving first-order SD.  
Therefore, a gradient-based optimization will then require second-order SD to compute 
the objective and constraint gradients.  The efficient calculation of second-order SD 
necessary for robust optimization was demonstrated in [8].  Both conventional and robust 
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optimizations were performed using the Sequential Quadratic Programming (SQP) 
method option in the Design Optimization Tools, DOT [15]. 

Application to 2-D Euler CFD 
 
An initial verification of the present methodology was done for several quasi 1-D 
problems using Euler Code [9].  The methodology is demonstrated herein for a 2-D 
inviscid steady subsonic flow over a NACA 64A410 airfoil using an Euler code [8].  A 
129 x 33 C-mesh computational grid is used with the far-field boundary approximately 
five chord lengths from the surface of the airfoil.   
 
For the current study, the airfoil angle of attack, α and the free-stream Mach number, 
Minf, will be taken as statistically independent random variables.  The CFD output is 
both the lift coefficient, Cl and the pitching moment coefficient, Cm.  Applying the 
approach previously outlined yields 
 
Input random variables:  b={α, Minf,}     CFD output function:  F={Cl, Cm}. 
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To demonstrate the optimizations, a simple target-matching problem is selected; a unique 
answer is obtained when an equality constraint is enforced.  The CFD code is run for 
given α and Minf; the resulting Cl(α,Minf) and corresponding Cm(α,Minf) are taken as 
the target values Clt and Cmt, respectively.  For this conventional optimization, the 
objective function and constraint are cast as 
 
min Obj,     Obj = Obj(Cl,α,Minf ) = [Cl(α,Minf) - Clt] 2
 
subject to R(α,Minf ) = 0                    (6) 

Cm(α,Minf ) - Cmt = 0 
  
The robust optimization is expressed as 
 
min Obj,     Obj = Obj( lC ,σCl, infM,α )  = [ lC ( infM,α ) - Clt]2 + σCl

2

 
subject to R( infM,α ) = 0                      (7) 
  Cm( infM,α )-Cmt +kσCm =0      
  
Note that for σα = σMinf =0 in Eq. (7), the conventional optimization is obtained. 
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Sample Results & Discussion 
 
Optimization results were generated using the 2-D CFD code and the procedure given by 
Eq. (3) and (4).   Two cases are presented.  For case 1, Pk is fixed at k=1, i.e., P1=84.13%, 
and the effect of increasing the input variable standard deviations is addressed.  For case 
2, the standard deviations of the input variables are fixed at 0.01 and Pk increases.   
In Table 1, results for case 1 of the robust optimization are displayed.  For σα =  σMinf =  σ 
ranging from 0 to 0.08, optimal values for the input variables inf)M,(α are listed.  As   σ 

increases, so does σCm.  Accordingly, the mean values, inf)M,(α which minimize the 
objective function and satisfy the probabilistic constraint, become increasingly displaced 
from the target moment coefficient, Cmt.  This is shown in Fig. 1.  The robust design 
points track the dashed curve for lC  = Clt with some displacement due to the σCl

2  term 
of the objective, Eq. (7).  Note that Cm inf)M,(α is displaced from the solid curve Cm = 
Cmt by kσCm, as required by the probabilistic constraint.  This displacement can be 
viewed as the probabilistic solution dependent or "effective" safety margin. 
 
The results for case 2 of the robust optimization, where σα =  σMinf  is fixed at 0.01, and Pk 
increases from 50 percent to 99.99 percent (k=0 to 4) are given in Table 2.   With an 
increase in Pk, Cm inf)M,(α is displaced from the solid curve Cm = Cmt by kσCm , as 
required by the probabilistic constraint.  Accordingly, the mean values, inf)M,(α , which 
minimize the objective function and satisfy the constraint, again become increasingly 
displaced from those at the target value, Cmt.  Note the significant displacement of the 
solution from the target when Pk is large, i.e., when one is attempting to incorporate the 
tails of the pdf.  In order to increase the probability of constraint satisfaction from 97.77 
percent to 99.99 percent, one sees a significant change in inf)M,(α  for a mere gain of 2 
percent in constraint satisfaction. 
 
Concluding Remarks and Challenges 
 
The present results represent an implementation of the approximate statistical moment 
method for robust optimization in a 2-D inviscid subsonic CFD code. Assuming 
statistically independent, random, normally distributed input variables, the uncertainties 
in the input variables were incorporated into a robust optimization procedure where 
statistical moments involving first-order sensitivity derivatives appeared in the objective 
function and system constraints.  Second-order sensitivity derivatives were used in a 
gradient-based robust optimization.  The approximate methods used throughout the 
analyses are valid when considering robustness about input parameter mean values. 
Collectively, these results demonstrate the possibility for an approach to treat input 
parameter uncertainty and its propagation in gradient-based design optimization that is 
governed by complex CFD analysis solutions.  It has been demonstrated on a relatively 
simple CFD code and problem; there are computational resource issues to be addressed in 
application to 3-D CFD codes and problems if analytical second-order SD are used.   
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Figure 1.  Optimization results in design                  Figure 2.  Optimization results in design  
space (α, Minf), Pk fixed at P1.                                    space (α, Minf), σ fixed  at 0.01.

 
σ α  infM  Obj σCl σCm 
0 4.00 0.4 0.0000 0.000 0.0000 

0.01 3.95 0.411 0.0000 0.006 0.0005 
0.02 3.86 0.428 0.0001 0.012 0.0010 
0.03 3.81 0.437 0.0004 0.019 0.0016 
0.04 3.79 0.443 0.0007 0.026 0.0022 
0.05 3.72 .455 0.0011 0.034 0.0029 
0.06 3.66 .465 0.0018 0.042 0.0037 
0.07 3.52 .484 0.0029 0.053 0.0047 
0.08 3.42 .498 0.0042 0.064 0.0058 

K Pk α infM  Obj σCl σCm 

0 0.500 4.00 0.400 0.000000 0.000 0.0000

1 0.841 3.95 0.411 0.000033 0.0057 0.00047

2 0.977 3.86 0.428 0.000037 0.0061 0.00051

3 0.998 3.85 0.433 0.000039 0.0063 0.00052

4 0.999 3.83 0.439 0.000043 0.0064 0.00054

 
 
 
 
 
 
  

Table 1.  Figure 1 data, σminf=σα = σ,  Pk = P1    Table 2.  Figure 2 data, σ  fixed at 0.01  
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