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A THEORY FOR INFLATED THIN-WALL CYLINDRICAL BEAMS

By W. B. Fichter
Langley Research Center

SUMMARY

Nonlinear equilibrium equations are derived for the twisting, bending, and
stretching of pressurized thin-wall cylindrical beams. Thin-wall beams, including those
which depend on internal pressure for their load-carrying ability, appear to have appli-
cation where lightweight structural members are required. Example problems involving
column buckling and the bending of a beam column are solved with a set of linearized
equations to illustrate the theory. The linearized equations reduce to the Timoshenko
beam equations when internal pressure and axial force are set equal to zero.

INTRODUCTION

Lightweight inflatable plates and cylinders which depend on internal pressure for
much of their load-carrying ability are receiving considerable attention in aerospace
research. Packageability and automatic erectability make inflatable construction espe-
cially attractive for satellites and space stations. Inflatable construction may also pro-
vide a suitable means of building reentry vehicles with wing loadings low enough to
alleviate significantly the problem of reentry heating. In addition, inflatable membrane
cylinders may be quite useful as booms in a paraglider or similar vehicle.

For all these applications, information is needed on the load-carrying capabilities
of inflatable structures. Simple methods of analysis have been used successfully to
determine collapse loads for certain types of inflated structures (refs. 1 and 2). In addi-
tion, a linear theory for the structural analysis of inflatable plates has been presented in
reference 3 and has been compared favorably with experiments in reference 4. Refer-
ence 5 contains a combined aerodynamic and structural analysis of a paraglider wing
consisting of a flexible triangular sail between three equally spaced booms which are
joined at the nose. In the analysis, stresses and deflections of the sail were calculated
under the assumption that the booms were rigid. The results of the present paper may
be of use in extending the analysis of the paraglider wing with rigid booms to the 'case of
a wing with flexible booms.

The purpose of the present investigation is to develop for the long, inflated,
circular-cylindrical beam a structural theory which allows for moderately large



displacements, and which can be reduced in a consistent manner to a simple system of
linear equations. The theory is applicable to pressurized membrane cylinders (that is,
cylinders having negligible wall bending stiffness) when the internal pressure and applied
forces are such that the cylinder wall remains in tension. The application, however, is
not limited to membrane cylinders; the theory can be applied to pressurized or unpres-
surized thin-wall cylindrical beams in which wall bending stiffness is sufficient to pre-
vent local buckling of the wall.

SYMBOLS

A cross-sectional area of cylindrical shell, 27rt
Bl,B2 arbitrary constants
C constant of integration
E Young's modulus
F compressive axial force
G shear modulus
1 area moment of inertia of cylindrical shell, mrdt
KB Euler buckling load, EIWZ

1,2
KS shear stiffness parameter, Grrt
L . length of cylindrical beam

M{,My,M5 moments about the X-, Y-, and Z-axes, respectively (see fig. 1)

N total axial force on a beam cross section (see fig. 1)
Ny,Nxg axial- and shear-stress resultants in shell
P axial force due to internal pressure, p1rr2



p internal pressure

Q payload

d1,49,93 applied distributed loads in the X-, Y-, and 7 -directions, respectively
r radius of circular cylindrical shell

Tl,Tz,T3 applied‘ distributed moments about X-, Y-, and Z-axes, respectively

t cylinder wall thickness

U1,U2,U3 translations of a beam cross section in X-, Y-, and Z-directions,

respectively
u,v,w axial, tangential, and radial displacements of a point in surface of shell
(see fig. 1)
V2,V3 shear forces in Y- and Z-directions, respectively (see fig. 1)
AV change in enclosed volume of cylindrical shell due to deformation
W work done by externally applied loads during deformation
X,Y,Z rectangular Cartesian coordinates (see fig. 1)
X,V,Z distances along X-, Y-, and Z-axes, respectively
B parameter defined in problem 1, 32 = F3 ( P + Grrt )
Eqr°t\P + Grrt - F
Yx6 local shear strain in membrane
71 angle of twist of beam cross section per unit length
Y9»73 shear strain of a beam cross section in the Y- and Z-directions, respectively
€ local extensional strain in shell in X-direction



extensional strain of cylindrical beam in X-direction

€1
£n,¢ coordinates of a point in deformed cylindrical shell, referred to the X-, Y-,
and Z-axes, respectively
) circumferential angular coordinate
Kg,Kg curvature of cross-section center line in XZ- and XY-planes, respectively
9 I_\?(P + KS)
by parameter defined in problem 2, \° = —
EI(P + Kg - N)
Hl strain energy of deformed cylindrical shell
II2 change in potential energy of pressurizing gas due to deformation
PPy, variables of integration (see eq. (7))

Wy, Wqy,Wg rotation of a beam cross section in the YZ-, XZ-, XY-planes, respectively

Subscripts:
cr critical
i index

Barred quantities represent the applied forces or moments at the ends of the beam.
ANALYSIS

A sketch of the inflatable circular-cylindrical beam under investigation, showing the
forces, moments, displacements, and coordinate systems, is presented in figure 1. The
ends of the beam are considered to serve no function other than to contain the internal
pressure.

Two important simplifying assumptions are made in the analysis: first, any cross
section of the pressurized cylindrical beam remains undeformed under a system of loads,
so that deformations of the beam are restricted to translations and rotations of a beam
cross section; and second, the translations and rotations of a cross section are small
enough that the displacements of a point in the surface of the beam can be represented
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Figure 1.- Sketch of cylindrical beam,



with little error by the vector sums of the displacements due to translations and rota-
tions of a cross section. A further simplification attendant to these assumptions is that
the circumferential strain is negligible and may be disregarded in the analysis. Under
the present assumptions, the theory holds for long cylindrical beams having walls with
either significant or negligible bending stiffness, provided that local buckling or wrinkling
does not occur.

Derivation of Governing Nonlinear Equations

In order to derive a system of equations, use is made of the variational equation
6(H1+H2—W)=0 (1)
where I'[1 is the strain energy of the cylinder, 1'[2 is the change in the potential energy

of the pressurizing gas due to deformation, and W 1is the work done by externally
applied loads during deformation. If the circumferential strain is neglected, then

1 L 27
m -1 §0 So (Nyey + Nygrp) ¥ 40 A% 2)

Also,
I, = -pAV (3)

where p is the internal pressure (assumed constant during deformation) and AV is
the change in enclosed volume due to deformation.

From reference 6, the nonlinear strain-displacement relations which include all
second-degree terms are found, after some manipulation, to be

et 3| (5 ()]
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ox ox
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However, with the assumption that g% and l(g—‘é+ W) are small compared with 1, the
r 2

shear strain reduces to



_ov_ _10du l?ﬂ?)ﬁ_) 4b
Yx0 7 B3x r89+r8x(89 M (40)

In terms of the translations and small rotations of a cross section, the local displace-

ments are given by:
u=U1+rsinwzcos9 - r sin wq sin 6
. . r .
V= U2 cos § - U3 sin 6 - r sin wq + E(cos wg - COS wz)sm 260

w = U, sin 0 + Ug cos 6 - r[l - cos Wy + (1 - cos wz)cosze + (1 - cOS w3)sin 9:|

For small rotations
sin w; & w;
w, 2

~ 1
coswi~1— 2

and the local displacements reduce to

~
u=U1+rw2 cos 6 - rwg sin 8
v ="U, cos 6§ - Ug sin 6 - rwy + i(wzz - w32)sin 20 g (5)
w = U2 sin 0 + U3 cos 6 - g(wlz + w22c0s29 + w3zsin29> )

The change in enclosed volume due to these displacements may now be computed by
expressing the coordinates of a point in the deformed cylindrical beam in terms of the

local displacements and the coordinates of the undeformed beam. Let

)

n=(r +w)sin 6 + v cos 6 s

E=u+x

(6)

€= (r+w)cos 6 - vsin g
</

Then by the use of Gauss' theorem (ref. 7) the change in volume is

AV = ffs e(e,m AL gx g

9(x,0)



where the integration is over the total deformed surface S. By a transformation of

coordinates,
V= -mr L+f § c(g,n)_gzldxd9+5‘2ﬂ5 ¢(Epm (gL L) dp, do
3(x,0) L ( L L) L"L
2 EqoM
fﬂf So(8 o’”o)ﬁ‘o_)dpo 99 ()
*(Por%)

where the subscripts 0 and L refer tothe ends x=0 and x = L, respectively.

Inasmuch as the cross-section displacements and rotations are functions only
of x, integration with respect to 6 and substitution from equations (5) and (6) yield

AV = ﬂrZS {: 1+ U2 Wg = U3 wgy = %(wzz + w32>:|dx (8)

where primes denote total differentiation with respect to x, and where terms of the third
or higher degree in the displacements and rotations and their derivatives are neglected.

To the same degree of approximation, the local strains expressed in terms of
cross-section rotations and translations are obtained by substituting equations (5) into
equations (4):

\
' 2 2 ' 2

€y = Ul' + rwy'cos 0 - rw3'sin 9 + %IEJZ' + U3' + r2w1

- 2r (cul'U2 "cos 6 - wl'Us' sin 0)]

> )
Yxg = -rwl' + (Uz' - Wg + wlUs')cos g - (U3' + Wy - wle')sin 0
Tr 1 1 .
+ E(wz wg - Wg w3)sm 20 )

Substitution of equations (9) into equation (2) gives

r 27 \ ,
=§S S{ [ +r —wle)cose—r(3-w U3)sm9
1/.2 2 ' '
+ E(r wy " U2 2 + U3 2)] + Nxe [—rwl' + (Uz' - Wg + w1U3')cos 6

[ (AN r ' t .
- (U3 + Wy - w U, )sm 9+ §(w2 Wy - Wg w3)sm 2({] dx do (10)



In terms of the forces and moments on a beam cross section (see fig. 1), the local
stress resultants are defined by

M M
N =——N—+—2—cose——3sin9 w
2nr 7l 7rr2
B (11)
M v v
NX9=— 1+—2—cose——§sin9
27r mr i

~/

Substitution of equations (11) into equation (10) and integration over 6 yield

H_IS-LNUV 1 2 |2 Uvz U|2 M 1 lUv M (] 'U'
172 J 1 Ya\n @ YV U 1T 2(“’2 -1 2)* 3(“’3‘“’1 3)

1 | 1 1 1
+ Myw; + Vg (Uz - wa + wUq ) + V3(U3 + Wy - wle) dx (12)

If now direct, bending, and shearing strains for the beam are defined by

: v 1/ 9 12 2 2
e;=Up + E(r wy +Uy +Ug ) (13a)
t t
ky=wg - @y Uy (13¢)
vy = @ (13d)
Vg = UZ' - wg + w1U3' (13e)
vy =Ug + wy - w Uy’ (13f)
then
1 L
m =1 yo (Nel + Moy + Mgkg + Myyy + Vovy + V3'y3)dx (14)

In terms of the beam strains, the forces and moments may be defined by



N = 2E7rte; (15a)

V, = Grrty, ' (15b)

V3 = Gm‘ty3 (15¢)

M, = 2Gmrity, (154)

M. = Errotk (15e)
2 2

M, = Enrotk (15¢)
3 3

Because of the assumption that the circumferential strain is zero, the material constants
E and G may be defined independently and, hence, the definitions of these constants
hold for orthotropic materials. Therefore, the variation of the strain energy may be
written as

L
oIl = XO (Nsel + MgOky + Mgl + M0y + Vobyy + V3673) dx (16)

The variation of work due to externally applied loads may be defined by

L
5W = 5 (qlaul + 050Uy + qg0Ug + T 06wy + Tydwy + T36w3)dx
0

_ _ _ _ _ _ L
+ (NGU1 + Vy0Ug + V36U3 + M, 0wy + Mydw, + M36w3) n
0

Substitution of equations (3), (8), (16), and (17) into equation (1) yields the variational
equation

L
5(H1 + Iy - W) = S\O {(Néel + V26'y2 + V36y3 + Mléyl + Mg Ok

2 ' ' i 1 2 2
+M36K3) - prr G[Ul +U2 wg —U3 Wy —§(w2 + wg ):l

- (q16U1 + 00U, + qg0U5 + T 0w, + Todwy + T36w3)}dx
_ _ _ _ _ _ L
O (19
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Use of the fundamental lemma of the calculus of variations, and integration by parts

where necessary, yield the equilibrium equations and boundary conditions:
N' + q;=0
(NUZ' )' - (Mzwl')' + Vz' - (V3w1'>' - Pwg' +qy=0
(NU3')' - (M3w1')' + V3' + (Vzwl')' + sz' +qg=0
rz(Nwl')' + M, - (MZUZ' ¥ M3U3')' + VaUy' - VoUg' + Ty = 0
M, - Vg - P(w2+U3') +Ty=0
M3' + Vg + P(UZ' - w3> + T3= 0

where P =prr2. The boundary conditions at the ends of the beam are either

U;=0 or N-P-N=0 )
Uy=0 or NUy - Myw,"+V, - Vaw; - Pwg - Vg =0
U3=0 or NU3'-M3w1'+V3+V2w1+Pw2—’\73=0
w1=0 or r2Nw1'+M1—M2U2'—M3U3'-1\711=0 >
w2=0 or M2-1\712=0

w3=0 or M3—1\7I3=0 )

$ (19)

(20)

Equations (19), along with equations (13) substituted into equations (15), constitute a
system of 12 equations in the 12 unknown displacements, rotations, forces, and moments.
As long as the nonlinear terms are retained, solutions usually will be obtained only by

numerical integration or by one of several approximate-solution methods.

Linearized Equations

For many practical applications involving pressurized cylindrical beams, twist
about the longitudinal axis is negligibly small. With the assumption of zero twist about

11



the X-axis, equations (19) and (20) simplify to

N'+q;=0 (21a)
(NUz')' + VZ' - Pw3' + Q= 0 (21b)
(NU3'>' + V3' + sz' +q3=0 (21c)
M, -V, - P(Us' + wz) +Ty=0 (21d)
My + Vg + P(Uz' - ws) +Tg=0 (21e)

with boundary conditions at the ends of the beam being
U;=0 or N-P-N=0 T
U, =Ab or NUZI"+ Vy - Pwg - V5 =0
Ug=0 or NU3'+V3+Pw2—V3=0 g (22)

w2=0 or M2—M

w3=0 or M3-1\7I—0 )
The assumption of zero twist allows the underscored terms in equations (13) to be
dropped. Since the first of equations (13) is still nonlinear, equations (21) remain, in one
sense, nonlinear, because they retain their ability to handle problems involving large
lateral displacements. However, whether or not the first of equations (13) is linearized,
equations (21) are "formally" linear because equation (21a) may be solved without regard
for the lateral loads and deformations. Equations (21), which will be referred to as
linear, are equivalent to the well-known Timoshenko beam equations (see ref. 8), with the

additional effects of axial force, internal pressure, and large lateral displacements
accounted for.

ILLUSTRATIVE EXAMPLES

Two sample problems have been solved to illustrate the usefulness of the simplified
system of equations. The first problem is that of the buckling of a pin-end column under

12



a compressive axial force. The second problem is concerned with finding the displace-
ments and rotations of a pin-end beam column under a compressive axial force and a
linearly varying transverse load. For simplicity, displacement and rotation only in the
XY-plane are considered.

Problem 1.- The configuration to be analyzed is shown in figure 2.

Y

\ \\\\\\\\\x
I

Figure 2.- Pin-end column under compressive axial load.

If, in equations (21),

q1=q2=q3=T2=T3=M2=M3=a)2=U3=0

and
N=-F
then, from equation (21a),
N=P-F
and equations (21b) and (21e) become
(P + Grrt - F)Uy," - (P + Grrt)wg' = 0 (23a)
E 3t " P 1
Tritwg - (P + Grrt) (U2 - w3) =0 (23b)
The boundary conditions are
Uy(0) = Uy(L) = w3'(0) = wg'(L) = 0 (24)

Integration of equation (23a) and substitution into equation (23b) give
2
'

w3+ By = % (25)
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where

32 __F P + Grrt
Enr3t\P + Grrt - F
and C is a constant of integration. Then

. C
wg = By sin Bx + B, cos Bx + T (26)
Use of the boundary condition w3'(0) = w3'(L) =0 (eq. (24)) yields

B1=0

and, for a nontrivial solution
BL=m (27)

from which equation the lowest critical value of F is found. Substitution for g into
equation (27) and substitution of I for mrt gives

E1”2(13+G t
—§ ’ITI‘)

_ L
Fop= — (28)

EI%+P+G1rrt
L

This result is in agreement with the results presented in reference 9.

In equation (28) may be seen the relationship which obtains between the bending
stiffness and the shear stiffness (including shear stiffness provided by internal pressure)
in the expression for the critical axial compressive force. Denoting the Euler buckling
2

load EI 1-5 by Kg and the shear stiffness P + Gart by P+ KS transforms equa-
L
tion (28) to

P =KB(P+KS) _ KB _ P+KS (29)
Ccr
K, + P+ K K P+K
B S 14 B 1.8
P+KS KB
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K
For a beam very stiff in shear —B o , there results

P+ KS
For ~Kp
P+ KS
the Euler buckling load. Similarly, for a beam very weak in shear [ ———— —~ 0},
Kp
Fcr - P+ KS

the shear buckling load. Equation (29) shows that internal pressure increases the
resistance to transverse shear deformation. In fact, for inflated bodies made of single-
layer fabrics for which a low effective shear modulus may be expected, the pressure con-
tribution may well predominate. (See ref. 10.)

Problem 2.- The second example is an application of the present results to a
simplified paraglider problem. It was shown in reference 5 that the stresses normal to
the leading edges of the paraglider sail vary linearly along the edges. Then if the
leading-edge boom is considered to be a long inflatable cylindrical beam, and the pay-
load Q is positioned directly under the centroid of the linearly varying load on the
boom by two shroud lines of lengths 1; and I, (see fig. 3), the problem may be

defined in the following manner: The condi-
tions of problem 1 still hold, except that

2 2Qx
ay= "% A
L L
y
and
— X
N=P-N
where, from considerations of equilibrium 7 l
and the geometry of the boom-shroud- | 2
payload configuration,
f\]-' = Q gl__ a _I'l_.
3 } 3
51.\2 1/2 Q
sf{=1) -1
2L Figure 3.- Pin-end beam column under compressive axial force
and transverse load.

15




and
1/2
ith iven {1, > 2 L
Equations (21b) and (21e) become
= 1" L ZQX

(P+KS -N)U2 - (P+Kg)wg' = -5

and
Elwg" + (P + Kg) (U2 . w3> =0
with the boundary conditions
UZ(O) = U2(L) = w3'(0) = w3'(L) =0

Solution of equations (30) and (31) subject to the boundary conditions yields
U, = Z_EIQ sinAx X +9§<§2§-— )
N2L\sinaL L/ 3N\L

and
2
w3=2__Q;__0%Ax_+l>_<7__2_2_2_l
N AL sin AL 2\LZ 2p2 3

2 N(P+KS)
—EI(P+KS -ﬁ)

where

A

(30)

(31)

(32)

(33)

(34)

Expressions for the shear V2 and the moment M3 may be obtained by use of equa-

tions (33) and (34) along with equations (13) and (15):

v, - 2QEI (AL COS AX _ 1)
)

J1.2 (1 L P\ sinaL
K
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M3 = 29EI|/§_ _ sin Ax (36)
NL \L sin AL

Another quantity of interest is the relative axial displacement of the ends of the

cylindrical beam. From equations (13a) and (15;1), if N=P-N,

¢t P-N 1. 12
-P-N lyg
U1 TTEA 22

where A = 27rt. With the condition that U1(0) = 0, the axial displacement is

_ x 9
U1=P'Nx—l§ U, “dx (37)
EA 2Jg

Substitution for U2'(x) and integration yield for the relative axial displacement of the
ends

= 2 2 2.2
v =2-Np 1 2‘22+2_E21"32 ALY AL oL - 1
EA 45N NeL 2 sinZ\L

- 2.2
+2[1- N G\LcotALML -> (38)
P + Kg 3

If the transverse shear stiffness is taken to be infinite, these results can be shown to be
in agreement with the results for the classical beam column.

CONCLUDING REMARKS

Under the assumption that the deformations of long pressurized cylindrical mem-
brane beams can be accurately expressed in terms of translations and rotations of a
cross section, nonlinear equilibrium equations have been derived for the bending, twisting,
and stretching of such beams. It is found that for problems in which twist about the lon-
gitudinal axis can be neglected the equilibrium equations are linear. (Twisting will not
occur in beams of circular cross section when they are loaded as a beam and/or column.)
These linear equations are seen to be equivalent to the Timoshenko beam equations with

the transverse shear stiffness augmented by the appropriate internal pressure contribu-
tion and with axial force accounted for.

Two illustrative problems are analyzed by using the linear equations. The first
problem is that of the buckling of a simply supported pressurized column under axial
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compression. The results are seen to be in agreement with results obtained by another
method.

The second problem, typical of those which could arise in the use of pressurized
membrane beams as booms for a paraglider or similar vehicle, is concerned with the
combined bending and axial compression of a simply supported inflated membrane
column. Expressions are obtained for lateral deflection, cross-section rotation, shear
force, bending moment, and column shortening. If the transverse shear stiffness of the
inflated beam column is assumed to be infinite, the results can be shown to agree with
the results for the classical beam column.

The analysis presented herein is valid for slender beams having significant wall
bending stiffness, with or without internal pressure, provided local buckling of the wall
does not occur. Since the theory contains no provision for the effects of local buckling,
it is applicable to membrane cylinders only when the internal pressure and applied
forces are such that the cylinder wall is in tension.

Langley Research Center,

National Aeronautics and Space Administration,
Langley Station, Hampton, Va., February 14, 1966.
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