
The Use of a Microcomputer Based

Array Processor for Real Time

Laser Velocimeter Data Processing

James F. Meyers
NASA Langley Research Center
Hampton, VA

Fifth International Symposium on
Applications of Laser Techniques to Fluid

Mechanics
July 9-12, 1990

Lisbon, Portugal

The Use of a Microcomputer Based Array Processor
For Real Time Laser Velocimeter Data Processing

James F. Meyers

NASA - Langley Research Center

Hampton, Virginia 23665 USA

ABSTRACT

The appl i cat ion of an array processor to laser ve loc imeter data

processing is presented. The hardware is described along with the

method of parallel programming required by the array processor. A

portion of the data processing program is described in detail. The

increase in computational speed of a microcomputer equipped with an

a r r a y p r o c e s s o r i s i l l u s t r a t e d b y c ompa r a t i v e t e s t i n g w i t h a

minicomputer.

INTRODUCTION

In the beginning of laser velocimeter development, signal processing

consisted of viewing the Doppler signal on a spectrum analyzer and

writing down the measured frequency. In time more sophisticated

signal processors were developed such as frequency trackers, high-

speed burst counters and photon correlators which required computer

data acquisition. In those days data was acquired with minicomputers

then transferred to main frame computers for processing. By the mid

1970�s the minicomputers had sufficient computing power to perform

both the data acquisit ion and data processing tasks, i f real t ime

processing was not required. Unfortunately as computer capabilities

and speeds increased so did the demands for more sophisticated data

processing and real time presentation. These increased demands

continued to keep the computer requirements at the minicomputer

level. The development of personal computers in the mid eighties was an

interesting curiosity and researchers found them very useful�for

writing their research reports. By the end of the eighties, even though

these small microcomputers had the computational capabilities of small

minicomputers, they were only used by researchers restricted by small

budgets. The present 80386 and 80486 machines now operate at the

same speeds as minicomputers costing ten times as much. But, these toy
computers are only single tasking and do not have the sophisticated

operating system needed to acquire data and perform the statistical

analysis.

In an another arena, researchers were defining computational tasks

which taxed the limits of computer technology, even huge main frames.

Researchers were finding that converted IBM-type business computers

just were not fast enough for scientific calculations. This realization

began the scientific computer industry with machines from the huge

CDC cyber machines to the small minicomputers built by DEC, Hewlett-

Pa cka rd , Da t a Gene r a l , e t c . Un f o r t una t e l y r e s e a r ch e r s we r e

developing problems faster than the computer companies could develop

faster machines. At this point a few small companies, notably Floating

Po i n t S y s t em s a n d C SP I , n a r r ow e d t h e t a s k f u r t h e r : t h e s e

computationally intensive scientific problems were basically simple

floating point operations using standard mathematical computations.

What i f a spe c i a l i z ed mathemat i ca l eng ine us ing para l l e l t ype

programming were to be designed to run as an auxiliary unit on a main

frame computer to perform these simple floating point operations

quickly? By restricting the problem and using appropriate software

techniques, circuits could be adjusted for very high speed operation.

Soon these engines were migrating to smaller minicomputers and

providing them with the computational capabilities of large main frame

computers at a fraction of the price. The present paper will show that

one or more of these strange engines can be placed in a toy computer to

y ie ld an extremely powerfu l machine for laser ve loc imeter data

acquisition and real-time processing with statistical and graphical

d isp lays . The hardware components contained within the array

processor are described. Example program code is described and

compared with equivalent generic Fortran program steps.

What is an Array Processor?

The central processing unit (CPU), whether composed of discrete logic

or a microprocessor, is a device for doing control operations and

fundamental add, subtract, multiply and divide processes on integer

data. Advanced operations such as floating point arithmetic or even

advanced trigonometric operations rely on software to make the simple

CPU perform these tasks. These software approximations require large

amounts of code and thus long times to perform these fundamental

operations. This has long been recognized as a major drawback in

applying standard computer systems to scientific applications. Special

hardware systems have been developed to perform these fundamental

f loat ing po int operat ions in hardware . These systems are then

appended to the CPU as peripheral processing units. Compilers were

then written to take advantage of these units and transfer floating point

operat ions to them reduc ing the required code whi le increas ing

computational speed. In microcomputers this processing unit, like the

2

CPU, is a single large scale integrated circuit such as an 80387 math

coprocessor.

While math coprocessors such as the 80387 increase the computational

capabilities and speed of the computer system, they are still general

purpose units which can not be streamlined for maximum throughput.

They are restr icted to ser ia l operat ion since they must compute

t ransparen t l y w i th s tandard l anguage commands . Th i s s ing l e

operation mode is easily programmed, but extremely inefficient for the

repet i t i ve operat ions typ i ca l in sc i ent i f i c programming . Array

processors break with this method of operation by performing their

ta sks in para l l e l us ing p ipe l ine techn iques to fur ther increase

throughput. The AT&T DSP32-C is a large scale integrated circuit

specifically designed for digital signal processing applications. It

consists of a 32-bit floating point multiplier, cascaded into a 40-bit

arithmetic logic unit (ALU), cascaded into four 40-bit accumulators.

The multiplier and ALU are in a pipeline and operate in parallel. Thus a

multiply and an add or subtract can be performed simultaneously. This

architecture makes the chip ideal for array processing applications.

The AT&T chip can operate at speeds of up to 25 million floating point

instructions per second (MFLOPs) yielding main frame computational

speeds in a single chip.

Obviously an actual array processor consists of more than a single chip.

The p r o c e s s o r shou l d a l s o c on t a i n a h i gh - s p e ed i n t e g e r ma th

coprocessor to handle data transfer between the computer memory, the

array processor memory, and the floating point unit. The integer

coproce s so r shou ld a l so prov ide l og i ca l and in teger ar i thmet i c

operations in support of the floating point processor and to complete the

mathematical engine. The array processor also needs a bank of very

high-speed static memory, DMA interface with controls to transfer data

to/from the host computer, and the instruction decode and control

hardware to make the unit operate efficiently. A block diagram of such

an array processor is shown in Figure 1.

Parallel Programming

Parallel programming is not a new type of programming but a different

way to solve a problem. One typically solves a problem by performing

one operation after another until the answer is obtained, then moves on

to the next set of data and repeats the operation. Parallel programming

likewise performs one operation at a time, however it performs this

operation on the entire set of data at once instead of one point at a time.

It can also be thought of as vector or matrix arithmetic. Consider the

following example: Develop the time history of an object′s position as it

3

is dropped from a height of 100 meters with an initial downward velocity

of 2 m/sec every 10 milliseconds for the first 4.0 seconds. The basic

equation is thus:

s = 0.5at2 + vt + s o

where s is the present position, a is the acceleration of gravity

(�9.8 m/s
2

), t is time, v is the initial velocity (-2.0 m/s) and s
o
is the

initial height (100 m). Programming this function would require two

arrays of 4/0.01+1 or 401 elements for the position (s) and time (t) data.
A Fortran version of the program would be:

1 s0 = 100.0

2 v = -2.0

3 a = -9.8

4 t(1) = 0.0

5 s(1) = 100.0

6 do i=2,401

7 t(i) = t(i-1) + 0.01

8 s(i) = 0.5*a*t(i)**2 + v*t(i) + s0

9 end do

The time consuming portion of this code segment lies in the loop, lines 6

through 9. Specifically line 8 requires 1 exponential, 3 multiplies, and 2

adds. Line 7 requires 1 add and 1 integer subtract. The time for memory

fetches and puts, and the comparisons within the controlling do loop are

neglected since their time is short compared to the mathematical

operations. It should be noted however, memory operations to the

computer′s dynamic memory are much slower than operations to the

array processor′s static memory.

While the code, as written, is descriptively clear it is not very efficient,

even for Fortran. The code should be rewritten as follows:

1 s0 = 100.0

2 v = -2.0

3 a = -9.8

4 t(1) = 0.0

5 s(1) = 100.0

5a acc = 0.5*a

4

6 do i=2,401

7 t(i) = t(i-1) + 0.01

8 s(i) = (acc*t(i) + v)*t(i) + s0

9 end do

By using an additional variable (acc), 400 multiplies have been reduced

to 1. Other operations are now missing or reduced: no exponentials,

2 multiplies instead of 3, and 2 adds. Thus readability in the code has

been replaced by efficiency�but that is what comment lines are for.

Th i s e f f i c i en t c ode can be fu r the r enhanced by us ing para l l e l

programming with an array processor. After defining the original

constants, the first task is to generate the time array using the ramp

function to construct an array containing time in 10 mil l isecond

increments f rom 0 seconds to 4 .0 seconds (NOTE: The Fortran

emulation is presented as commented code above the subroutine call):

1 s0 = 100.0

2 v = -2.0

3 a = -9.8

4 acc = 0.5*a

C t(1)=0.0

C do i=2,401

C t(i) = t(i-1)+0.01

C end do

5 cal l vframp(0.0,0.01,t,401)

Now that the time array is completed, the array processor�s capability of

performing an addition and a multiplication simultaneously can be used

to perform the operation contained within the parentheses in line 8

above:

C do i=1,401

C s(i) = acc*t(i) + v

C end do

6 cal l vsmsad(acc,t ,v,s,401)

5

Again using the abi l i ty to s imultaneously mult ip ly and add, the

resulting array (s) can be multiplied by the time array (t) and the offset

(s0) added to complete the operation:

C do i=1,401

C s(i) = s(i)*t(i) + s0

C end do

7 cal l vmsadd(s,t ,s0,s,401)

Notice, as in Fortran, the results of an array processor operation can

overwrite one of the input arrays, in this case the s array.

Obviously from the above example, emulation of the parallel processing

code would actually be slower than the efficient Fortran code. However,

the hardware looping and data management within the array processor

along with the pipeline and optimized hardware multipliers and adders

result in speed increases of several orders of magnitude. This example

illustrates the difference between serial and parallel programming. Not

all processes can be converted to parallel operation, but modern array

processors are controlled by common, transparent subroutine calls

allowing intermixing with standard serial Fortran operations.

Laser Velocimeter Data Processing Code

Once the array processor is initialized, memory allocated for arrays,

and basic constants loaded, the processor is available for use within the

data processing program. The beginning portion of the code will be

shown to illustrate the type of operations that can be performed with the

array processor and the ease of programming once the technique of

parallel programming has been mastered.

The data acquired from the laser velocimeter signal processor usually

consists of a packed integer word specifying the value of time for x cycles

within the signal burst. For example, a high-speed burst counter output

data word is made up of a 10- or 12-bit mantissa and a 4-bit exponent

(power of 2) representing the number of master clock pulses occurring

during the measurement period. The software must decouple these two

segments of information from each measurement and convert them to a

floating point number representing the measurement velocity. If the

times between measurements are recorded by the data acquisition

subsystem, they must also be converted to floating point numbers

representing the length of these times. Assume that these two packed

numbers have the following format:

6

measurement period - xxaaaaaaaaaabbbb

where

x - don't care

a - mantissa bits

b - exponent bits (power of 2)

and

interarrival time - eeaaaaaaaaaaaaaa

where

e - exponent bits (0.1 microseconds times 10 raised to the power ee)

a - mantissa bits

The following arrays are used:

rawu - 16-bit integer array holding the input data from the high-

speed burst counter

rawt - 16-bit integer array holding the input interarrival time

measurements

rawux - 16-bit integer working array

rawtx - 16-bit integer working array

u - floating point array containing the velocity values

t - floating point array containing the interarrival time values

scratch - floating point scratch array

Begin the conversion process by masking and isolating the components

of the velocity: Isolate the lowest 4-bits (b) and place them in array

rawux where n is the number of measurements in the array as passed

from the Fortran program:

cal l vsan16(#F,rawu,rawux,n)

Isolate the next 10- bits (a) and place them back in the original array:

7

cal l vsan16(#3FF0,rawu,rawu,n)

Logical shift right the mantissa bits by 4 to make the least significant bit

(LSB) the 0 bit:

cal l vlsr16(rawu,4,rawu,n)

Convert the exponent to floating point and raise 2 to the exponent

power:

cal l vf l t16(rawux,scratch,n)

cal l vexp2(scratch,scratch,n)

Convert the mantissa to floating point and multiply by the exponential

v a l u e t o o b t a i n t h e numb e r o f ma s t e r c l o c k p u l s e s f o r e a c h

measurement:

cal l vf l t16(rawu,u,n)

cal l vmul(u,scratch,scratch,n)

Load the value 1.0 x 10
30

into the velocity array. Since n may be less than

or equal to maxdata, this value will serve as an end-of-data indicator for

the remaining portion of the program:

cal l vff i l l (a1e30,u,maxdata)

Divide the array into 32000 to convert the number of master clock pulses

to measured signal frequency in MHz and place in the velocity array:

cal l vsdivr(a32k,scratch,u,n)

Use a similar code to convert the interarrival time data:

cal l vsan16(#C000,rawt,rawtx,n)

cal l vsan16(#3FFF,rawt,rawt,n)

cal l vlsr16(rawtx,14,rawtx,n)

cal l vf l t16(rawtx,scratch,n)

cal l vssubl(s7,scratch,scratch,n)

cal l vexp10(scratch,scratch,n)

cal l vf l16u(rawt,t ,n)

cal l vmul(t ,scratch,scratch,n)

8

cal l vff i l l (a1e30,t,maxdata)

cal l vmov(scratch,t ,n)

The frequency and interarrival time measurements are now stored in

floating point notation in the arrays u and t respectively. The next step

is to remove extraneous data, i f any, from the ensemble, convert

frequency to ve loc i ty and bui ld the ve loc i ty histogram. This is

accomplished by l imit ing the data to ±128 percent of the simple

ensemble mean. The following code sequence continues processing and

contains comments following the character !.

cal l meanv(u,s3,n) !compute mean and store in s3

cal l vmul(s3,s5,s6,n1) !mult iply mean by 0.01 (in s5)

!and store result in s6

cal l vsmssl(s4,s6,s3,s5,n1) !mult iply 0.01 of frequency

!(s6) by the value 128 (s4) and

!subtract from the mean (s3)

!and store result in s5

cal l vsmsad(s4,s6,s3,s6,n1) !mult iply 0.01 of frequency

!(s6) by the value 128 (s4) and

!add to the mean (s3) and

!store result in s6

cal l vssubl(s2,s5,s5,n1) !subtract the Bragg frequency

!from the lower l imit of

! frequency

cal l vssubl(s2,s6,s6,n1) !subtract the Bragg frequency

!from the upper l imit of

! frequency

cal l vssubl(s2,u,u,n) !subtract the Bragg frequency

!from the data in the velocity

!array

cal l vsmul(s1,s5,s5,n1) !mult iply lower l imit of

! frequency by the fr inge

!spacing to obtain velocity

9

cal l vsmul(s1,s6,s6,n1) !mult iply upper l imit of

! frequency by the fr inge

!spacing to obtain velocity

cal l vsmul(s1,u,u,n) !mult iply data in the velocity

!array by the fr inge spacing to

!obtain velocity

cal l mnmxv(u,s1,s2,n) !obtain the minimum (s1) and

!maximum (s2) of the velocity

!array

cal l vhistz(u,vhis,n256,s5,s6,n) !bui ld a 256 bin histogram

!of the velocity data (vhis)

! l imited by s5 and s6

cal l maxvi(vhis,s3,s4,n256) !determine the maximum

!number of occurrences in the

!histogram and its index

The process continues in the manner described by Meyers (1988) using

the array processor to complete the statistical calculations of the

velocity data ensemble.

Performance Tests

The completed code was tested using a 12.5 MFLOP array processor

placed in a 33 MHz 80386 microcomputer containing a 80387 math

coprocessor. The coded high-speed burst counter data and the coded

interarrival time data were placed on the hard drive (16 msec average

access time). The test consisted of reading the coded data from disk,

converting it to floating point, storing the floating point values to disk,

performing the statist ical analysis using the procedure to insure

independent, non-biased data developed by Edwards and Meyers (1984)

as implemented by Meyers (1988), and displaying the results in numeric

form with plots of the three velocity histograms shown in Figure 2. The

t e s t da t a s e t c ons i s t ed o f th r e e componen t ve l o c i t y da ta w i th

interarrival times for 49 measurement locations.

The p r e v i ou s m in i c ompu t e r s y s t em us ed a t Lang l e y f o r l a s e r

velocimeter applications required 14 minutes, 40 seconds to perform

t h e t e s t w i t h o u t h i s t o g r am p r e s e n t a t i o n wh i l e t h e p r e s e n t

10

minicomputer only required 6 minutes, 50 seconds. The microcomputer

system using the array processor required 2 minutes, 25 seconds to

perform the test without histogram presentation and 4 minutes, 30

seconds with the histograms. Clearly the toy computer with its

primitive operating system can perform, with the help of an array

processor, the laser velocimeter data acquisition and processing tasks a

factor of three faster than the present real computer with all of its

sophistication.

Summary

The concept of array processing was presented and the hardware system

for microcomputer applications described. The concept of parallel

programming used by array processors was discussed using examples

including the laser velocimeter data processing program. And finally

p e r f o rman c e t e s t s u s i n g t h e s y s t em c l e a r l y s h ow t h e ma j o r

improvements in computing speed obtained using an array processor to

solve computationally intensive problems.

Bibliography

Edwards, R.V. and Meyers, J.F. 1984 An Overview of Particle Sampling
Bias , Second Internat ional Sympos ium on Appl icat ions of Laser

Anemometry to Fluid Mechanics, Lisbon, Portugal.

Meyers, J.F. 1988 Laser Velocimeter Data Acquisition and Real Time
Processing Using a Microcomputer , Fourth International Symposium

on Applications of Laser Anemometry to Fluid Mechanics, Lisbon,

Portugal.

11

Figure 1.- Block diagram of a microcomputer based array processor.

12

MEMORY

Floating Point

Processor

(32/40-bit)

Integer

Processor

(16-bit)

Figure 2.- Display screen from the laser velocimeter data acquisit ion and on-line

processing program for a microcomputer.

13

