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Summary

This study addresses the axial compression of imperfect slender struts for large space
structures. The load-shortening behavior of struts with initially imperfect shapes and eccentric
compressive end loading is analyzed using linear beam-column theory and results are compared
with geometrically nonlinear solutions to determine the applicability of linear analysis.  A set
of aluminum-clad graphite/epoxy struts sized for application to the Space Station Freedom
truss are measured to determine their initial imperfection magnitude, load eccentricity, and
cross-sectional area and moment of inertia.  Load-shortening curves are determined from axial
compression tests of these specimens and are correlated with theoretical curves generated using
linear analysis.

Introduction

The Space Station Freedom represents the first of a new generation of spacecraft whose
components will be assembled on-orbit and integrated within a large lightweight truss structure
(see fig. 1).  Recent studies (refs. 1 and 2) have resulted in the selection of a 5-m erectable design
as the baseline configuration for this structure.  Advanced development programs (refs. 3, 4, and
5) underway for a number of years have resulted in the fabrication of high-stiffness aluminum-
clad graphite/epoxy truss struts (see fig. 2) and the development of quick-attachment erectable
joints (see fig. 3).

The depth of the space station truss structure (5 m) was selected primarily because of stiff-
ness instead of strength considerations.  Low packaged-volume constraints have dictated the
use of very long, slender struts.  However, the structure is also required to withstand signif-
icant loads due to thermal gradients, spacecraft operations, and attitude control maneuvers.
Consequently, elastic stability of these slender struts is a design concern.

Previous studies (refs. 6 and 7) addressed the elastic stability of long slender struts
for general large space structure applications.  This paper summarizes the results of a
study that extends this previous work and specifically addresses the effect of geometric
irregularities encountered during development of the aluminum-clad graphite/epoxy struts.
Such irregularities are common to the fabrication of long slender struts by most manufacturing
processes.  The load-shortening behavior of initially curved struts with eccentric compressive
end loading is studied herein analytically using both linear and nonlinear beam theory.  Results
from these analyses are compared to determine the applicability of linear analysis.  Several
struts produced during development of the strut fabrication process are measured to determine
cross-sectional variations and imperfections in straightness.  Finally, results from compression
tests of these specimens are correlated with results generated using linear analysis.

Symbols

A cross-sectional area

DCDT direct current differential transformer

E Young s modulus

e applied load eccentricity

I cross-sectional moment of inertia

Ip moment of inertia of cross section with no concentricity error

l strut length

l* distance between reference points for axial shortening measurements

P axial compressive load on strut
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Pe Euler buckling load of strut

Pep Euler buckling load of perfect strut

q ratio of axial compression load to Euler buckling load

ql limit load for applicability of linear analysis

qmax maximum load applied in compression test

ri inner radius of strut cross section

ro outer radius of strut cross section

t average thickness of strut cross section

tmin minimum thickness of strut cross section

tmax maximum thickness of strut cross section

∆t difference in minimum and maximum thicknesses of strut cross section

u longitudinal displacement of strut

w lateral displacement of strut

wh homogeneous portion of lateral displacement solution

wo initial imperfection of strut

x, y, z Cartesian coordinates

x0 longitudinal position of first reference point for axial shortening measurements

x1 longitudinal position of second reference point for axial shortening measurements

yi distance from centroid to center of inside surface of eccentric cross section (see
fig. 9)

yo distance from centroid to center of outside surface of eccentric cross section (see
fig. 9)

δ total axial shortening of strut

ε magnitude of strut initial imperfection at strut midlength

∆εrms percent-rms difference between measured imperfections and best-fit parabolic
curve

Analysis of Axial Shortening of Eccentrically Loaded, Imperfect Struts

The deformed shape w(x) of a strut with an initial imperfection wo(x) and acted on by a
Compressive axial load P applied at a distance e from the neutral axis is shown in figure 4.
The linear differential equation and the appropriate boundary conditions to determine w(x) are
given in equation (1) and are derived in ref. 8.

EI
d w
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where B1 and B2 are determined from the boundary conditions and q, the compressive axial load
normalized by the Euler buckling load for the simply supported strut, is defined as

q =
P
P

=
Pl

EIe

2

2π
(3)

The initial imperfection wo(x) is assumed to be parabolic with a maximum magnitude of ε, and
is given by
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Substituting equation (4) into equation (1), determining the particular solution, and applying
the boundary conditions, results in the following expression for lateral displacement of a
compressively loaded strut with a parabolic initial imperfection:
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For small lateral displacements, total axial shortening can be calculated by superimposing the
contribution due to uniform axial compression on that due to lateral displacement.  The axial
shortening between any two arbitrary points x0 and x1 is found by integrating the axial strain
between these limits.  In order to represent both the effect of uniform axial compression and the
effect of lateral displacement, it is necessary to include both the linear term and the first nonlinear
term of axial strain.  The equation for axial shortening is thus
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To determine the axial shortening of a strut with an initial lateral imperfection wo(x) equation
(6) must be modified.  In this case the total lateral displacement after application of load is w(x) +
wo(x) (see fig. 4).  Therefore, the axial shortening due to the elastic deflection w(x) is
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The linear strain in the first term of equation (7) is the uniform axial compressive stress
divided by the Young s modulus of the strut.  Making this substitution and evaluating the first
integral gives
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where l* = x1 — x0.
The remaining two terms in equation (8) can now be evaluated by substitution of the parabolic

initial imperfection wo given in equation (4) and the corresponding lateral displacement w given
in equation (5).  The following integral expression is obtained:
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The total axial shortening of the strut can be determined by setting x0 = 0 and x0 = l in equation
(9).  Integration and simplification of this equation lead to the following expression:

δ  = ε2 32 π q - sin (π q)

l (π q)3 1 + cos (π q)
 - 8

3l
 + εe 

8 π q - sin (π q)
l π q 1 + cos (π q)

 

+ e2 
π q π q - sin (π q)

2l  1 + cos (π q)
 + Pl

EA (10)

Equation (10) is the sum of four terms that make specific contributions to the axial shortening
of the strut.  The first term is due solely to the initial imperfection.  The second term accounts for
the interaction between initial imperfection and load eccentricity.  The third term is due solely to
the load eccentricity.  Finally, the fourth term is the contribution due to uniform axial
compression.

It is common in linear imperfect strut analysis to assume a half-sine rather than a parabolic
initial imperfection shape because the homogeneous solution to the differential equation is
already of this form (se eq. (2)).  Although the study is based on a parabolic initial imperfection, a
derivation of the equation for axial shortening of a strut with a half-sine initial imperfection is
presented in appendix A.

Of concern in the analysis of axial shortening of eccentrically loaded columns with initial
imperfections is the occurrence of large deflections and the importance of geometric nonlineari-
ties. The nonlinear solution for end shortening of an eccentrically loaded column with a circular
initial imperfection is presented in reference 9.  This solution is inherently transcendental and
requires the use of numerical iteration routines.  Consequently, it is desirable to use the linear
solution presented in equation (10) for problems involving sufficiently small deflections.  A
comparison of results from equation (10) with results from the nonlinear solution are presented in
appendix B.  From this comparison, loads are defined where the linear solution departs from the
nonlinear solution by a specified percentage for ranges of the initial imperfection and load
eccentricity magnitudes.

Testing of Imperfect Slender Truss Struts

Eleven struts, sized for application to the Space Station Freedom truss, were tested to
determine their load-shortening behavior.  Nine of the specimens were 5 m long and two of the
specimens were 7.1 m long.  Before loading, each specimen was measured to determine its initial
imperfection and cross-sectional uniformity.  Descriptions of the test setup and imperfection
measurements of the specimens are presented in this section.  Finally, experimental load-
shortening data are presented for each specimen and compared with analytical predictions based
on the linear analysis developed in the preceding section.

Description of Test Setup

Before testing, each specimen was mated to quick-attachment erectable joint hardware of the
type shown in figure 3, and the assembly was accurately set to length.  The specimen was
mounted vertically between a hydraulic jack for load introduction and a load cell for load
measurement.  This test setup is diagramed in figure 5 and shown in figure 6.

Centerline shortening of each specimen was determined from direct current differential
transformer (DCDT) measurements made at two stations along the length of the specimen
(x0 and x1 inches from the bottom of the specimen).  These locations spanned the portion
of the strut with a uniform cross-sectional area, thus displacement measurements between them
excluded any deformation in the erectable end-joints.  Displacement at the center of the
specimen cross section was calculated  by  averaging  the readings of three DCDT s located at the
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apexes of an equilateral triangle centered on the cross section.  This process eliminates
the effects of local bending rotations in the specimen regardless of the direction of rotation.
The approximate location of the measurement stations and a section view of the upper station
showing the DCDT placement are shown in figure 5.  The axial shortening of the specimen
between these two stations is determined by subtracting the centerline displacement at the
upper station (DCDT s 1, 2, and 3) from the centerline displacement at the lower station
(DCDT s 4, 5, and 6).

Details of the fixture used to provide a pinned-end restraint to the specimen are shown in
figure 7.  The left-hand photograph shows the lower end of the specimen, the lower DCDT
station, and the hydraulic jack.  The right-hand photograph shows a close-up view of the
specimen end fixture.  A special joint adaptor was attached to the node fitting portion of the
erectable joint to cause end rotation of the specimen to occur at the theoretical node center
(see fig. 3).   Because of the arbitrary orientation of initial imperfections and eccentricities,
it was impossible to identify, a priori, the preferred direction of buckling of the specimens.
Therefore, it was necessary to provide an omnidirectional pinned-end restraint by incorporating
a hemispherical end on the joint adaptor and a mating hemispherical socket in the hydraulic
jack adaptor.  A thin sheet of greased Teflon was inserted between these adaptors to ensure
a low-friction interface.  Identical fixtures were used on both the top and the bottom of the
specimen.

The initial imperfections of the specimens were determined from lateral DCDT measurements
made along the strut length.  Measurements were made at evenly spaced stations as the specimen
was rotated 360ß around its longitudinal axis.  The lower lateral DCDT (DCDT 9) and a series of
indicator marks to locate the orientation angle around the circumference of the specimen are
shown in figure 8.  An explanation of the procedure used to determine initial imperfection
magnitudes from these readings is presented in the following section.

Description of Specimens

Each specimen was measured to determine an initial imperfection magnitude and variations in
its cross-sectional dimensions.  Results of these measurements are presented below.

Specimen initial imperfection magnitudes.  The initial imperfection was measured at three
points along the length of the specimen: 0.25l, 0.50l, and 0.75l.  To determine the imperfection
values at each point, DCDT readings were taken at 20ß increments as the strut was rotated
about its longitudinal axis.  The minimum reading was then subtracted from the maximum
reading with the result divided by two to give the imperfection value at this point.  These values
for the imperfection at the three span locations were used to obtain a least-squares regression fit
of equation (4).  The resulting expression for the best-fit ε is given in equation (11):

ε =
2

17
3 4 31 4 1 2 3 4w w w/ / /+ +( ) (11)

where w 1/4, w1/2, w3/4 are the measured values of imperfection at 0.25l, 0.50l, and 0.75l,
respectively.

To determine the quality of the parabolic curve fit of the imperfection data, the percent-rms
difference (∆εrms) between the data and the best-fit parabolic curve is also calculated.  These
results are presented in table I along with the specimen lengths and the location of the upper and
lower stations for measuring axial displacement (see fig. 5).  The parabolic curve fit
approximations to the actual imperfection shape of the specimens were found to exhibit rms
errors between 1.8 and 26 percent.
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Table I. Specimen Lengths and Initial Imperfections

Specimen l, in. x0, in. x1, in. l*, in. ε, in. ∆εrms, %

1 196.8 8.1 188.7 180.6 0.071 26.0
2 196.8 8.1 188.7 180.6 .307 8.8
3 196.8 8.1 188.7 180.6 .187 16.6
4 196.8 8.1 188.7 180.6 .232 8.0
5 196.8 8.1 188.7 180.6 .215 10.8
6 196.8 8.1 188.7 180.6 .145 10.7
7 196.8 8.1 188.7 180.6 .265 10.0
8 196.8 8.1 188.7 180.6 .214 1.8

a9 196.8 8.5 186.9 178.4 .075 15.0
10 278.4 8.1 270.3 262.2 .681 3.2
11 278.4 8.1 270.3 262.2 .382 9.6

aThe values of x0 and x1 for specimen 9 are different from those for the other 5-m struts
because of a manufacturing error that necessitated the addition of a tubular aluminum
extension to one end of the specimen.

Specimen cross-sectional variations.  Ideally, the inner and outer layers of aluminum in the
strut cross section (see fig. 2) should be concentric and of constant thickness as should the layer
of graphite/epoxy.  The nominal design values for the thicknesses of each aluminum layer, the
thickness of the graphite/epoxy layer, and the outer radius are 0.006, 0.060, and 1.066 in..,
respectively.

The specimen cross sections showed a lack of concentricity between the inner and outer layers
of aluminum and thus, significant variations from the nominal dimensions.  This lack of
concentricity results in a shift of the centroid of the cross section, and thus, a reduction in the
moment of inertia and the introduction of a load eccentricity.  In general, it was observed that the
cross-sectional imperfections were aligned with the initial imperfection bow in the strut such that
all effects (load eccentricity, reduced cross-sectional moment of inertia, and initial strut bow)
were additive in degrading the load-shortening performance of the strut.

Measurements of outside diameter and wall thickness were made at various orientations
around both ends of each specimen and these values were used to derive average cross-sectional
properties.  For the purpose of these calculations, the three-layer, two-material, annular cross
section was assumed to be a single-layer, one-material annular cross section with an effective
Young s modulus to be determined from experiment.

A strut cross section in which the inner and outer circular surfaces are not concentric is
shown in figure 9.  The axes shown are centroidal and the distances to the centers of the inner
and outer circular surfaces from the origin are defined as yi and yo, respectively.  The radii of
these inner and outer surfaces are ri and ro, respectively, and the minimum and maximum
thicknesses are tmin and tmax, respectively.  The difference in the minimum and maximum
thicknesses is given by

∆t t t y yi o= max min ( )− = −2 (12)

The average thickness, t, is defined to be

t t t=
1
2

( )max min+ (13)

From the definition of the centroid of a planar region, it follows that

ydA y r y r
Area

o o i i∫ ⇒ == 0 2 2 (14)
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During manufacture, the inside of the ends of each tube was machined on a lathe to accept a
tapered, bonded adaptor fitting for the erectable joint hardware.  The center of machining was the
center of the outside surface of the strut cross section.  Therefore, after assembly, the center of the
hemispherical end of the joint adaptor fitting (see fig. 7) was coincident with the center of the
outside surface.  Accordingly, the center of the outside surface was assumed to be the point of
application of the load, and therefore the load eccentricity e is given by the following equation
(see fig. 9):

e yo= (15)

Substituting equations (12) through (14) into equation (15) and simplifying gives the
following expression for load eccentricity in terms of the outer radius, the average thickness, and
the difference between the maximum and minimum thicknesses:

e
t r r t t

r t t

o o

o

=
∆ 2 2

2

2

2 2

− +( )
−( )

(16)

To quantify the concentricity effect, the eccentricity given by equation (16) can be expressed
as a function of the concentricity error (yi — yo).  Inserting equation (12) into equation (16) and
substituting the nominal value of ro/t ¯ 14.8 gives

e
y y r t r t

r t
y y

i o o o

o
i o=
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( )
. ( )

− − +( )
−

≈ −
2 2 2 1

2 1
6 6 (17)

Thus the resulting load eccentricity is over six times greater than the concentricity error.  This
illustrates the importance of maintaining concentricity (or equal material distribution around the
strut circumference) during manufacture of the struts.

The minimum moment of inertia I for the eccentric cross section can be calculated by
performing the appropriate area integral.  The result is

I y dA r r y r y r
Area

o i i i o o= −( ) − −( )∫ 2 4 4 2 2 2 2

4
=

π π (18)

The first term in this expression is the moment of inertia of the concentric cross section, and the
second term is the reduction due to deviation from concentricity.

Substituting equations (12) through (16) into equation (18) and simplifying gives the equation
for cross-sectional moment of inertia in terms of the outside radius, the average thickness, and the
applied load eccentricity.  This equation is
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where Ip is the moment of inertia of the perfect  cross section (one with no concentricity error).
A concentricity error does not affect the area of the cross section, which is given by

A r r r r to i o o= π π2 2 2 2−( ) = − −[ ]( ) (20)

Values for t, ∆t, and ro were determined from averaged measurements made at each end of
each specimen and values for e, I, Ip, and A were calculated for each specimen using equation
(17), equation (11), and equation (12).  A summary of these measured and calculated values as
well as a list of the nominal design values for comparison are presented in table II.
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Table II. Average Cross-Sectional Parameters for Test Specimens

Specimen r0, in. t, in. ∆t, in. e, in. Ι, in4 Ιp, in4 Α, in2

Nominal 1.066 0.072 0.000 0.000 0.248 0.248 0.466
1 1.070 .089 .021 .056 .300 .302 .575
2 1.072 .088 .014 .037 .299 .301 .568
3 1.070 .086 .016 .044 .291 .293 .555
4 1.069 .085 .015 .042 .288 .289 .548
5 1.066 .091 .015 .038 .303 .304 .584
6 1.064 .087 .026 .070 .287 .291 .558
7 1.062 .074 .017 .055 .249 .251 .477
8 1.069 .092 .027 .068 .306 .310 .591

a9 1.065 .093 .027 .067 .306 .309 .595
10 1.065 .084 .015 .042 .281 .283 .540
11 1.062 .084 .012 .034 .280 .281 .541

aBecause of problems in the manufacture of specimen 9, it was possible to make these
measurements at only one end; therefore, the values given do not represent a strut average.

On the average, these specimens were approximately 20 percent thicker than the nominal
design, with as much as a 30-percent variation in thickness around any given cross section.
However, the presence of errors in concentricity caused only 1-2 percent reductions in the
moment of inertia.  In the following section, results are presented from axial compression tests
and analysis which illustrate the effect of these dimensional irregularities on the load-shortening
behavior of the struts.

Results from axial compression analyses and tests.  A value for the effective Young s
modulus, E , for each specimen was determined by considering the initial slope of the
experimental load-shortening curve of the specimen.  With this value and the values for the
dimensional parameters given in tables I and II, the specimen s theoretical load-shortening curve
can be generated by solution of equation (9) or equation (10) for a series of load values.  Equation
(10) gives the axial shortening between the ends of the strut, and therefore cannot be used for
comparison with the experimental data.  Consequently, theoretical load-shortening curves were
generated by numerical integration of equation (9).

The experimental load-shortening curve for each specimen was determined using the
compression test setup previously described.  During each test, the specimen was subjected to a
slowly increasing compressive load while a real-time plot of the load-shortening curve became
nearly zero.  Data from these tests are plotted in figures 10 through 20 for specimens 1 through
11, respectively.

The initial slopes of these curves, EA/l*, were used to determine experimental values for E.
These values are presented in table III for each specimen along with calculated values for the
Euler buckling load (Pe = π2EI/l2); the perfect cross section Euler buckling load (Pep = π2EIp/l

2);
and the normalized maximum loads achieved in each test, qmax.  A comparison of Pe and Pep in
table III illustrates the small reduction in I (and consequently Pep) resulting from lack of
concentricity.  Differences in the cross-sectional dimensions and effective Young s modulus of
different specimens led to 10 percent variations in Euler buckling loads and effective axial
stiffnesses.
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Table III. Results From Axial Compression Tests

Specimen E, psi Pe, lb Pep, lb qmax ql

1 27.3 x 106 2088 2102 0.90 0.96
2 27.6 2108 2122 .80 .93
3 28.9 2141 2156 .86 .95
4 28.8 2106 2113 .83 .94
5 25.7 1979 1986 .89 .94
6 29.2 2134 2164 .72 .95
7 32.9 2083 2100 .83 .93
8 27.8 2166 2194 .87 .94
9 26.7 2080 2100 .91 .96

10 27.7 1011 1018 .77 .90
11 27.7 1014 1018 .84 .94

Also included in table III are load values ql at which the linear load-shortening analysis differs
from the nonlinear analysis by 2 percent.  These values were determined from analyses presented
in appendix B.  None of the specimens were tested to a load level above these limiting values
(qmax < ql).  Thus, geometric nonlinearities were unimportant, and the linear load-shortening
analysis presented in equation (9) and equation (10) is applicable.

The theoretical load-shortening curves as determined from numerical integration of equation
(9) are shown in figures 10 through 20.  Good agreement is seen between the theoretical and
experimental curves for all of the specimens except 4, 6 and 9.  The specimens that had the
greatest rms error in the parabolic approximation of their imperfections (specimens 1 and 3)
showed reasonably good agreement between the theoretical and experimental load-shortening
curves.  Therefore, the poor agreement for specimens 4, 6, and 9 may be due to variations in their
cross-sectional dimensions near the midspan.  The cross-sectional dimensions in table II were
determined from measurements made near the ends of the specimens (only one end for specimen
9); thus, any significant cross-sectional variations near the middle of the strut would not be
represented in these measurements.

Initial imperfections and errors in cross-sectional concentricity significantly degraded the load-
shortening behavior of all specimens as evidenced by the fact that all the specimens deviated
markedly from linear elastic behavior characteristic of a corresponding perfect strut.  This implies
that control of cross-sectional concentricity and strut straightness is very important to achieve
satisfactory performance from long slender truss struts.

Concluding Remarks

The results of a study of the load-shortening behavior of initially imperfect struts under the
action of eccentrically applied compressive loads have been presented.  Linear analysis has been
performed and compared with experimental results from 11 developmental aluminum-clad
graphite/epoxy truss struts.  These comparisons showed good agreement for most specimens.

The specimens were measured to determine deviations from straightness and nominal cross-
sectional dimensions.  These measurements were used to calculate values for initial imperfection
magnitude and load eccentricity, as well as cross-sectional area and moment of inertia.  It was
determined that the load eccentricity resulting from an error in cross-sectional concentricity is
over six times greater than the concentricity error.

Deviations from concentricity coupled with initial imperfections in straightness led to
significantly degraded load-shortening behavior for all specimens tested.  This illustrates the
importance of maintaining concentricity and straightness during the manufacture of the struts.
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Appendix A

Axial Shortening of an Eccentrically Loaded Strut With a Half-Sine Initial
Imperfection

The half-sine initial imperfection given in equation (A1) is commonly selected for linear
imperfect strut analysis because it is the same shape as the homogeneous solution to the
governing differential equation (see eq. (1)).  The solution for axial shortening of an eccentrically
loaded strut with this initial imperfection follows the same steps as outlined for the parabolic
initial imperfection.

w =o ε π
sin

x
l

(A1)

Substituting equation (A1) into equation (1), determining the particular solution, and applying
the boundary conditions results in the following expression for lateral displacement of an
eccentrically loaded strut with a half-sine initial imperfection:
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Equation (8) is evaluated by substitution of the half-sine initial imperfection wo given in
equation (A1) and the corresponding lateral displacement w  given in equation (A2).  The
following integral expression is obtained for the axial shortening between any two points x0 and
x1 of the strut:
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The total axial shortening of the strut can be determined by setting x0 = 0 and x0 = l (thus l* =
l) in equation (A3).  The result is
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Recall that e is the load eccentricity, ε  is the midlength magnitude of the half-sine
imperfection, and q is the applied compressive load normalized to the Euler buckling load.
Equation (A4) is the sum of four terms similar to those in equation (10).  In fact, the third and
fourth terms are identical to those in equation (10) because they account for the effects of load
eccentricity and uniform axial compression, which are unchanged from the first case.  The
different assumptions for initial imperfection shape account for the differences in the first two
terms of equation (10) and equation (A4).
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Appendix B

Importance of Geometric Nonlinearities

A recent study (ref. 9) has used the nonlinear formulation for axial compression of a strut (ref.
8) to investigate the load-shortening behavior of an eccentrically loaded strut with a constant-
curvature (i.e., circular) initial imperfection.  For small initial imperfection magnitudes, the
parabolic shape presented in equation (4) closely approximates the circular shape assumed in the
nonlinear analysis of reference 9.  Thus, comparison of the linear solution presented in equation
(10) with the corresponding nonlinear solution from reference 9 will identify the importance of
geometric nonlinearities.

Linear analysis predicts larger deformations for large loads than those predicted with nonlinear
analysis.  From equation (10), it is evident that as q approaches 1, linear analysis predicts infinite
axial shortening.  However, nonlinear analysis predicts finite axial shortening for q = 1.  The error
in linear analysis increases with increasing load.  Therefore, a load ql at which the axial
shortening from linear analysis is in error by a specified amount is defined as the limit of
applicability of linear analysis.

Values for ql can be determined for ranges of the strut parameters e/l and ε/l and general plots
of this limiting load can be constructed.  Figure 21 presents a carpet plot of ql for an allowable
error in linear analysis equal to 10 percent, and figure 22 presents a similar plot for an allowable
error equal to 2 percent.  These plots can be used to readily determine the limit of applicability of
linear analysis for specimens with given values of e/l and ε/l.  All experimental load-shortening
data analyzed in the present study fall below the 2-percent-error limit for the respective specimen.
Therefore, errors in linear analysis due to geometric nonlinearities are less than 2 percent.
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Figure 4. Axial compression of an initially imperfect column with eccentrically applied loads.
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Figure 5. Diagram of test setup.
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L-89-163

Figure 6. Test setup.
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Figure 9. Nonconcentric strut cross section.

Figure 10. Load-shortening curve for specimen 1.
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Figure 11. Load-shortening curve for specimen 2.

Figure 12. Load-shortening curve for specimen 3.
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Figure 13. Load-shortening curve for specimen 4.

Figure 14. Load-shortening curve for specimen 5.
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Figure 15. Load-shortening curve for specimen 6.

Figure 16. Load-shortening curve for specimen 7.
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Figure 17. Load-shortening curve for specimen 8.

Figure 18. Load-shortening curve for specimen 9.
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Figure 19. Load-shortening curve for specimen 10.

Figure 20. Load-shortening curve for specimen 11.
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Figure 21. Limit of applicability of linear analysis (10 percent error in solution).

Figure 22. Limit of applicability of linear analysis (2 percent error in solution).
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