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Summary

A method of deriving nondimensional equations and indentifying the
fundamental parameters associated with bifurcation buckling of shallow
shells subjected to combined loads is presented. More specifically,
analysis is presented for symmetrically laminated doubly-curved shells that
exhibit both membrane and bending anisotropy. First, equations for
nonlinear deformations of thin elastic shallow shells are presented, and
buckling equations are derived following the method of adjacent equilibrium
states. Next, the procedure and rationale used to obtain useful
nondimensional forms of the transverse equilibrium and compatibility
equations for buckling are presented. Fundamental parameters are identified
that represent the importance of both membrane and bending orthotropy and
anisotropy on the results. Moreover, generalizations of the well-known
Batdorf Z parameter for symmetrically laminated shells with full anisotropy
are presented. Using the nondimensional analysis, generalized forms of
Donnell’s and Batdorf’s equations for shell buckling are also presented, and
the shell boundary conditions and approximate solution methods of the
boundary-value problem are briefly discussed.

Results obtained from a Bubnov-Galerkin solution of a representative
example problem are also presented. The results demonstrate the advantages
of formulating the analysis in terms of nondimensional parameters and using

these parameters for parametric studies. The results specifically show that



shells with positive Gaussian curvature are much more shear buckling
resistant than corresponding flat plates and shells with negative and zero
Gaussian curvature. In addition, the results indicate that the importance

of bending anisotropy on shear buckling resistance is influenced by shell

curvature.

Introduction

Buckling behavior of laminated composite plates and shells has received
renewed interest in recent years due to the search for ways to exploit
anisotropy in the design of aerospace vehicles. The present study focuses
on buckling analysis of symmetrically laminated doubly-curved shallow
shells. These shells are candidates for aircraft applications such as wing
cover panels, empennage and fuselage skins, engine cowlings, and wing-to-
body fairings. In addition, these shells have potential spacecraft
applications such as liquid fuel tankage, pressure bulkheads, missle nose
cones, and payload modules. Understanding the fundamental parameters that
affect the performance of these shell structures, as well as the importance
of anisotropy, is a key ingredient of their design, and ultimately their
use. Moreover, these parameters can provide valuable information useful in
developing scaling laws for structural testing of plates and shells.

Symmetrically laminated shells exhibit anisotropy in the form of
material-induced coupling between pure bending and twisting deformations
that is commonly exhibited by symmetrically laminated plates undergoing
bending deformations. In addition, they exhibit anisotropy in the form of
coupling between pure biaxial stretching and membrane shearing. The
anisotropy is manifested in shell buckling theory by the presence of odd-

combination mixed partial derivatives in the partial differential equations



governing buckling and the natural or force boundary conditions. The
presence of the these derivative terms prevent simple closed form solutions
from being obtained. Studies that assess the importance of anisotropy on
buckling behavior of symmetrically laminated plates are presented in
references 1 and 2. 1In reference 1, nondimensionalization of the partial
differential equation governing plate buckling is presented and
nondimensional parameters are identified that provide physical insight into
plate buckling behavior. The results presented in reference 1 suggest the
potential for using nondimensional parameters to characterize plate buckling
behavior, assess the importance of anisotropy, and aid in their preliminary
design. The results presented in the present paper build upon the results
presented in reference 1.

A major objective of the present paper is to present nondimensional
parameters that will aid in, and simplify, buckling analysis and preliminary
design of laminated composite shallow shells. It is a well-known fact that
shells with a high degree of curvature are sensitive to small imperfections
in their geometry under certain loading conditions, and that this
imperfection sensitivity leads to collapse loads often substantially below a
predicted bifurcation buckling load [3]. However, there is a class of shell
problems for which imperfection sensitivity is minimal under certain loading
conditions and the addition of a slight amount of curvature has a positive
effect on increasing the buckling resistance of a flat plate [4]. 1In this
case, results obtained from a bifurcation buckling analysis can be used to
obtain credible estimates of the collapse load. It is for this class of
shallow shells that the nondimensional parameters and equations presented in
the present paper have been derived. A significant example of a

nondimensional parameter that has seen wide use in the buckling analysis and



design of isotropic cylindrical shells is the well-known Batdorf Z or
curvature parameter [5,6].

Nondimensional parameters can play a key role in the preliminary design
of aerospace vehicles. An important consideration is that, in the initial
preliminary design phase, a structural designer is usually under severe time
constraints and often prefers to have information available in a handy chart
form. Nondimensional parameters permit fundamental results to be presented
as a series of curves, on one or more plots, that cover the complete range
of shell dimensions, loading combinations, boundary conditions, and material
properties. 1In addition, the curves also furnish the designer with an
overall indication of the sensitivity of the structural response to changes
in geometry, loading conditions, boundary conditions, or material
properties. Often in preparing design charts of this nature, a special
purpose analysis is preferred over a general purpose analysis due to the
cost and effort involved in generating results encompassing a wide range of
design parameters. Examples of design charts for buckling and postbuckling
of orthotropic plates that use nondimensional parameters are presented in
references 7 and 8. Another very useful benefit of nondimensional
parameters is that they can be used to greatly simplify the equations and
results when performing analysis and to provide insight into the order and
importance of various terms appearing in the equations.

Two major objectives of the present paper are to present a method of
deriving nondimensional equations for doubly-curved shallow shells subjected
to combined loads, and to indentify the fundamental parameters associated
with bifurcation buckling of these shells. The paper begins with a
presentation of the equations for nonlinear deformations of symmetrically

laminated elastic shallow thin shells. Next, the equations for buckling are



presented using the method of adjacent equilibrium states, and are cast into
a form suitable for nondimensionalization. The paper then indicates the
steps required, and the rationale used, to obtain nondimensional forms of
the transverse equilibrium and compatibility equations for buckling.
Fundamental parameters are then identified that can be used to represent the
importance of membrane and bending orthotropy and anisotropy on shell
behavior. Parameters are also presented that are generalizations of the
Batdorf Z parameter for symmetrically laminated shells with full anisotropy.

After obtaining the nondimensional buckling equations and identifying
the nondimensional parameters, generalized forms of Donnell’s and Batdorf's
equations for shell buckling are presented. These generalized equations
contain the effects of both laminated material properties of the shell as
well as double curvature. Finally, a brief discussion of shell boundary
conditions and approximate solution methods for the shell buckling problem
is presented.

The analysis presented in the present paper was inspired by the work
presented in reference 8. For this reason, and for many useful discussions,
the author would like to dedicate this paper to the late Dr. Manuel Stein of

NASA Langley Research Center.

Equations for Nonlinear Deformations
The basic equations for doubly-curved shallow shells of general shape
and uniform thickness t are presented in this section in terms of the

orthogonal lines-of-curvature curvilinear coordinates (£1,§2,§) shown in

figure 1. The equations presented consist of the strain-displacement
relations, nonlinear equilibrium equations, compatibility equations, and

constitutive equations for symmetrically laminated shells.



Strain-Displacement Relations

The nonlinear strain-displacement relations used herein to describe the
deformation of a shallow shell of general shape are the relations of
Donnell-Mushtari-Vlasov classical thin-shell theory. These relations are

well known (for example see reference 6, pp. 190-197), and are given by
o o
61(§1s 62’ g) = 61(61, €2) + ¢ nl(él’ 62)

(o] (o]
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The symbols uy and u, are the displacements of the shell reference surface
(in the tangent plane) in the 51 and 52 directions, respectively, and the

symbol w is the displacement along the direction normal to the shell
surface. The coordinate { corresponds to a distance along an axis normal to

the shell surface, at a given point, as shown in figure 1. The terms R1 and

R2 represent the principal radii of curvature of the reference surface along

the 51 and 52 coordinate directions, respectively, and the symbols Al and A2

are the coefficients of the first fundamental form of the surface given by
2 2 2
(dS) = (Ajdé)) + (A,d¢,) (10)

where dS is the differential arc-length between to neighboring points on the

0 0 [
surface. The terms €11 €9 and V1, are the membrane strains, and the terms

0 0 0
K1s Kqo and K1g> when multiplied by ¢ are the strains associated with

[o]

0
changes in curvature of the shell reference surface. The terms Y13 and Y93
are the transverse shearing strains and are assumed to be zero-valued in
accordance with the assumptions of classical first-approximation thin-shell

theory. Enforcing this condition yields expressions for the surface

rotations in term of the normal deflection w; i.e.,



1 dw

B, = - < (11)
1 A16§1
1l 9w

By, = - % 94 (12)
2 A26$2

Nonlinear Equilibrium Equations

The nonlinear equilibrium equations of Donnell-Mushtari-Vlasov shallow
shell theory are obtained by enforcing equilibrium of a differential shell
element in its deformed configuration. The equations resulting from this
process are given as follows. The equation corresponding to the summation

of forces in the 61 direction is given by

8A dA
N —2 + N —1 + A A

gz (NpAg) + ___(N12 R s, * 12 3g, 291

352 =0 (13)

3§1
where Nl’ N2, and N12 are the membrane stress resultants and 9 is an

applied membrane surface traction. Similarly, the equation corresponding to

the summation of forces in the 52 direction is given by

aAl 6A2
(N A ) - N 775 +N, 7 +A A

13, * M2 g 29y = 0 (14)

o7 (N ) + &
8§1 12 2 662
where q, is also an applied membrane surface traction. The equation

corresponding to the summation of forces in the { direction is given by

noN
ael(QlAZ) + EZ'(QzAl) + AjA,[q,- EI - E; ]+P =0 (15a)

where Pm denotes the contribution of the membrane forces to the transverse
(normal to the surface) equilibrium that is given by

1l 3w
Pm [N (A 851

afl ) + N

12 2 A 362)]
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The symbols Q1 and Q2 denote the transverse shearing stress resultants. The
equation corresponding to the summation of moments about the 51-axis is

given by

dA 6A2

1 M, 7= - AJA

asl(M ) * EZ_(Mlel) + M, a, M2ag, T h 2 =0 (16)

where Ml’ M2, and M12 are the bending stress resultants. Similarly, the
equation corresponding to the summation of moments about the §z-axis is

given by

dA dA
—2 M —1 . A_A

ae (Mphy) + Mg e, "M, M 2% =

agl(Mlz 2 ag (17)

A more convenient form of the nonlinear equilibrium equations, for the
purpose of defining nondimensional parameters, is obtained by requiring the

curvilinear coordinates &1 and 52 to be surface coordinates with units of

length. A new set of curvilinear coordinates s, and s, are introduced such

1 2
that
2 2 2
(as) = (dsl) + (dsz) (18)
For this set of coordinates, A1 =1 and A2 = 1. The nonlinear equilibrium
equations simplify to
N N
1 12
T+ +q, =0 (19a)
asl 352 1 -
N oN
12 2
asl + 682 +q, 0 (19b)



where
P~ %Zl[Nl %§1+ N2 gle + §§2[N12 §§1+ N, %le (1394)
%*%'QPO (19e)
%*al:ii " Q=0 (19£)

A similar set of equations derived for postbuckling analysis of isotropic
shallow shells subjected to thermal loads is presented in reference 9.
The equilibrium equations given in equation (19) are reduced to a set

of three equilibrium equations as follows. First, the expression for Pm

given by equation (19d) is rearranged, by differentiating, to give

Wy Mypow . M My 4y
Pm = [6s + ds ]as + 1 ds + ds ]as
1 2 981 1 2 95,
2w 2w 5
A\ w A\
N T Ny T+ 2Ny, G 6 (20)
8s1 6s2 1°72

Substituting equations (19a) and (19b) into equation (20) gives

2 2 2
aw aw a w aw d w
P = " Y gs, " Y9 9.t N 2 v Ny T+ 2N, T (21)
1 2 85, s, 198,

Next, eliminating the transverse shear stress resultants from equation (19c)

using equations (1%e) and (19f) gives

2 2 2
aM1+23MH+3M2 F_l. E_Z_+q qa_w qa_w
2 2 - - - -
351 651852 332 R1 R2 3 1 asl 2 352
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62 62 62
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asl 352 1772

=0 (22)

Equations (19a), (19b), and (22) are the nonlinear equilibrium equations

used in this paper to obtain the equations for buckling of shallow shells.

Compatibility Equation
The compatibility equation for the nonlinear boundary-value problem is

obtained by eliminating uy and u, from equations (2), (3), and (4). It is

convenient, for the purpose of the present study, to express equations (2)

through (4) in term of the length coordinates; i.e.,

du
° 1w 1 0w 2
€, = T + 0 + () (23)
as1 R1 2 851
du
0 1 3w 2
€, =T+ + =(TH) (24)
ds 2 2 652
du du
0 1 2, Jw_Jw
12 T 3s, t s, T 8s, as (25)
1772
Eliminating uy and u, yields
2 0 2 0 2 0 ) ) ) ) ,
d e ey My 3w 2 dwidw . 4 w. B _,w
2 Y2 " gsas,  $Gs,8s,) .2, 27 2@ 2@ (26)
352 asl 1772 1772 asl 352 asl 2 652 1
For shallow shells, for which the curvatures are mildly varying, the
following approximation is used to simplify the compatibility equation;
i.e.,
82 1 82
=G~z (27a)
ds 2 2 651

11



;0 =2 & (27)

Using this approximation, the compatibility equation becomes

2 0 2 0
2 2 2 2 2
9 € 8 €2 9 712 dw 2 dwaidw 1 w 1 3w
2 Y72 " 3ss. ” 9ses) " 2. 2tR _2TR _2 (28)
632 asl 1"72 1772 651 852 2 asl 1 652

Constitutive Equations
The shells considered in this paper are symmetrically laminated and
exhibit both anisotropic membrane and bending behavior. The corresponding

constitutive equations are given by

o

o o
N1 = Allel + Alze2 + A16712 (29a)
0 o 0
N2 = A12€1 + A22€2 + A26712 (29b)
0 0 0
Nig = A16€1 * 2962 + B66712 (29¢)
32 82 62
ow ow W
My = -Dyg T2 - Dyp T2 - 2016 G (302)
ds ds 1772
1 2
82 32 32
ow w W
My = -Dyy "2 = Dyy "2 - yq G g (30b)
ds ds 1772
1 2
32 62 32
dw dw W
Mig = Dig 2 " Dyg 2 - 2Dgg 35 s (30¢)
ds ds 1772
1 2
where All’ A12, A22, and A66 are the orthotropic membrane stiffnesses;

A16 and A26 are the anisotropic membrane stiffnesses; Dll’ D12’ D22, and D66

are the orthotropic bending stiffnesses; and D16 and D26 are the anisotropic

12



bending stiffnesses of classical laminated thin-shell theory (for example

see reference 10).

Buckling Equations
The equations governing buckling are derived using the method of
adjacent equilibrium described in reference 6 (see pp. 201-202). Prior to

buckling, the shell is assumed to be in a primary equilibrium state given by

the displacement field (ug, ug, wp). Near the point of buckling, there is

assumed to exist an adjacent equilibrium state (Sul, 6u2, é6w) sufficiently

close to the primary equilibrium state such that 8u1, 6u2, and éw are

infinitesimal quantities. Moreover, prebuckling displacements normal to the

P

shell reference surface are presumed to be negligible; i.e., w* = 0. Using

this method, the linearized bifurcation buckling equations are obtained by

substituting
u; > ug + 6u1 (31a)
u, » up + fu, (31b)
w > 0+ 6w (31c)

into the basic equations of the nonlinear boundary-value problem given
previously. Associated with the substitutions defined by equations (31) are
variations in the strains and changes in curvature. In addition, increments
in strains and changes in curvature produce increments in the stress
resultants via the constitutive equations. The relationships for the

strains and changes in curvature are given by

° ., .p
1~ € + 661 (32a)

€

13



where

p__1
1~ asl
p_ M
2 652
P )
12 652 831
e - 66u1 . S
1 asl R1
be, = 66u2 + fw
2 852 R2
aéu aéu
Sy =
12 832 as1
° 326
w
8&1 = - 2
asl
o 2
6n2 = - Q—%ﬂ
832
° 626
W
6k = -2 T
12 851652
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(32b)

(32¢)

(324d)

(32e)

(32f)

(33a)

(33b)

(33¢)

(334d)

(33e)

(33f)

(33g)
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and where the superscript p denotes the primary equilibrium state. The

relationships for the stress resultants are given by

N, - Ng + 6N) (34a)
N, - Ng + 6N, (34D)
Np, > Ngz + 6N, (34c)
M, - M{ + 6M) (34d)
M, - Mg + §M, (34e)
My, ~ MEZ +6M), (34f)

and result from substituting equations (32) into the constitutive equations
(29) and (30). The superscript p again denotes the primary equilibrium
state. In equations (32) and (33) terms of quadratic degree and higher in

6u1, 6u2, and éw have been omitted in accordance with the assumption that

the variations are infinitesimal in size. The specific form of the

constitutive equations are given by

65u1 Sw 66u2 Sw 36u1 36u2
SN, = A (77— + )+ A, (T—+ ) + A _(— + ) (35a)
1 11 asl R1 12 852 R2 16 852 851
déu aéu déu déu
1 Sw 2 Sw 1 2
6N, = A, . ( + )+ A (T—+ )+ A, (T— + ) (35b)
2 12 c’)s1 R1 22 652 R2 26 as2 as1
déu aéu aéu déu
1 Sw 2 Sw 1 2
§N =A (T +. ) +A, (T +7)+A (7—+ ) (35¢)
12 16 asl R1 26 as2 R2 66 652 as1
326 626 626
w w 0 oW
My = -Dyy 2 "Dy 2 - D6 a6 as (35d)
as1 as2 1772
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2 2 2
J_bw 36w d_6w

SM. = -D Sw _p 5w _ 5p (35¢)
2 12, 22 26 3s s,
1 2
2 s a2 s a5
W w 0 ow
Mg = -Dig 2 " Dyg T2 - 2ge T ag (35£)
o, as, 1989

The form of the buckling equations used herein are obtained by
substituting equations (31) through (34) into equations (19a), (19b), (22),
and (28). Neglecting terms greater than linear in the displacement, strain,
changes of curvature, and stress resultant increments yields the following

equations of the adjacent equilibrium state (buckling equations)

35N. 96N
- 1, 8512 -0 (36a)
1 2
35N 96N
6312 5 2 _o (36b)
1 2
2 2
3 oM, ., 3 oM, . 3 M, SN 6N, s .
2 ) ) L 88w a8w
3s 851632 3s R R2 1 as1 2 852
3 s a5 a5
W w \4
A R o T (36¢)
ds ds 1°72
1 2
2 2 2 2
9 6ey 986y Bbvy 1 55w 1 5 8w
2 ¥*7 2 " 3s549s. R.,.2 TR _2 (36d)
852 asl 172 2 asl 1 652

where the superscript p on the prebuckling stress resultants has been
dropped for simplicity. An additional operation used, but not explicitly
shown, to obtain the buckling equations given above is the enforcement of
the requirement that the primary equilibrium state satisfies the equilibrium
equations and compatibility equation of the nonlinear boundary-value

problem.
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Nondimensionalization of the Buckling Equations and Parameters

One objective of this paper is to determine the nondimensional
parameters governing the buckling behavior of shallow thin elastic shells.
This objective is accomplished following the procedure presented by Batdorf
in references 11 through 13 for isotropic curved plates, by Stein in
reference 8 for flat laminated orthotropic plates, and by the author in
reference 1 for flat symmetrically laminated plates. The rationale used in
this paper for deriving the nondimensional equations and selecting the
nondimensional parameters follows, to a great extent, the work presented by
Stein [8]. This rationale is to make the the field variables and their
derivatives of order one, minimize the number of independent parameters
required to characterize the behavior, and to avoid introducing preferential
direction into the nondimensional equations.

The first step in the nondimensionalization procedure is to formulate
the boundary-value problem in its simplest form which corresponds to two
coupled homogeneous linear partial differential equations. This task is

accomplished by introducing a stress resultant function §® defined by

on, = 5% (37a)
852
2
on, - 5% (37b)
asl
a’s
o
N, = - L8 (37¢)
12 851852

This stress resultant function (or simply stress function) satisfies
equations (36a) and (36b) identically. Upon eliminating these two equations

from the boundary-value problem, the equation guaranteeing compatibility of

17



the buckling strains must be satisfied. This buckling compatibility
equation is given by equation (36d). To get the buckling compatibility
equation into a solvable form, the inverted form of the conséitutive
equations are used to express the buckling strains in terms of the stress

function; i.e.,

2 2 2
3 50 9 60 3 60
§eg =aj) T2 *tay, 2 - 310 3780 (38a)
ds as 198,
2 1
3 50 3 50 3 50
ey =815 T2 * a5 T - 8y 34 (38b)
9s 3s 1989
2 1
3 50 3 50 3 53
8919 =816 2 *t a8 2 - 8 3. 4s (38c)
652 asl 172

where equations (37) have been substituted into the usual constitutive

equations involving the membrane stress resultants, and where a1 3190 3995

a1 B9p> and ace denote the coefficients of the inverted form of the

membrane constitutive equations. Substituting equations (38) into the

buckling compatibility equation (36d) and simplifying gives

4 4 4 4 4
a a E@ - 2a 836@ + (2a. .+ a,) 826®2 - 2a 3 6@3 +a a i@ _
22 a 26 ds.d 12 66 ds.ds 16 ds,ds 11 ds
51 19%2 1%%2 1%%2 2
2 1 2
%_ a gw + E_ 3 gw (39)
2 asl 1 652
Following the analysis presented in reference 8, the following
nondimensional coordinates are used
z; = sl/L1 and z, = SZ/L2 (40)

18



where L1 and L2 are characteristic dimensions of the shell shown in figure

1. Substituting these nondimensional coordinates into equation (39) and

. . 2.2, — _.
multiplying through by L1L2//a11a22 yields

» 4 4 4 s 4 4
o da i@ + Zam7m 338@ + 2 626¢2 + 2;_ d 6¢s + 12 a ié _
621 azlaz2 azlaz2 m azlaz2 o 822
2 2
L La®sw L1a’su
Ja..a [R z * R 2 (41)
11722 2 az1 1 622
where
L
_ 2 1/4
a = L1(a22/a11) (42a)
2a, .+ a
u = —12 66 (42b)
2/a;;a,,
a
26
’Ym= - (a as )1/4 (42c)
11722
a
16
and Sm— - z;;‘;—‘;i7z (424)
11722

The next step in the nondimensionalization involves the buckling
equation given by equation (36c). To express this equation in terms of the
buckling displacement §w and stress function §®, the equations defining the
stress function and the constitutive equations given by equations (35d)
through (35f) are used. Substituting equations (37) and (35d) through (35f)

into equation (36c) and simplifying gives

19



4 4 4 4 4

.. 2 fw + 4D 335W + 2(D, .+ 2D, ) 825W2 + 4D d 5w3 +p,, 26w
11, 16 , %, 12 667, 2, 26 r 22 , 4
51 51989 1% $19%, S9
1 2% 1 3 50 36w as 35 35 85
1 o 1 w 96w w o w o w_o_
YR .2 YR 2 Y9 45 Y gs. N T2 Ny T - 2y, FTa =0
1 ds 2 ds 1 2 ds ds 1772
2 1 1 2
(43)

Substituting the nondimensional coordinates defined by equation (40) into

equation (43), multiplying through by L]2.L§//D11D22 yields

2 4 4 4 6b 4 1 4
o a fw + bo asaw + 28 628w2 + 42 o) 6w3 + 1, a fw
b b"b a
az1 621622 321322 b 821622 ab 622
2 2
2 2
L 9 50 L 3 66 ~ 86w ~ 38w
+ 2+ 2 Y4 5, t 9 g,
R)/D11Dy, 32, Ry/Dy Dy, bz, 1 2
2 2 K 2 2
2 3 6w 2 3 6w 12" 8 6w
CKm e s R - T %z.02, T ° (44)
82, 8z, b 9%19%)

where the nondimensional parameters appearing in this equation are given by

L

L, 1/4
o, = L1<D11/D22) (45a)
D..+ 2D
5 - 212" 26 (459
/D115,
D
Y= —16_ (45(:)
® (p,,p, "
1022
D
26
7 o ol /A e
11022
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K= g g— (4e)
m /14Dy
NL
K= ;;:;;f%;%: (45F)
11°22
N, L.
Ry T (45g)
™ (Dy1Dyy)
L1
q- /—:—1—11;—2 (45h)
11022
L1
q,- 2221 (451)
/D110,

To obtain equations of order one, a new stress resultant function

defined by
§F = 5@//011D22 (46)
is introduced into equations (44) and (41). Equation (44) becomes
2 646 646 646 ab 846 1 346
W W W W A4
o ” +4ab'yb 3 + 28 > 2,+4€_—"'3+_.2 p
az1 6z1322 8zlaz2 321322 o 622
2, 2,
L LasE L2 o sF | S Q8w - dbw
2 2
R1 8z R2 3z 1 azl 2 az2
2 1
2 2 K 2 2
2 2 n
RPLE ¥ R N B ¥ @
9z, 9z, % 9%19%9

Similarly, substituting equation (46) into equation (41) and simplifying

gives

21



2 46 4 4 6 4 4
o O8E g, BSE ,, 8SF . m 06F 1 asF
azl dz az2 azlaz2 m 621822 a 6z2
2 2 2 2
1 Ly 5 6w . L 8 sw 48
4211859011095 | Ry 5,7 1 8z
L 1 2 _
The term given by
1 1/2
12/a;;a,,D11D,,

has dimension 1/t, where t is the shell wall thickness. To get the equation
to a form of order one, a nondimensional displacement 6§W is introduced into
equation (48); i.e.,

1 1/2

(49)
12/a;18,5,D1 1Dy,

The nondimensional displacement é§W defined in equation (49) has character
similar to éw/t. Using equation (49), equation (48) simplifies to

4 4 4
4 §F . d SF d SF

4+2<:zrIlm 3 + 20— 3
az1 321822 azlaz2 m 8z,0z a dz

2
m

+ Z1 ) (50)

where

Z.=

1" — 1/4 (51a)
Rl/lz[a11azzD11D22]

2
L

i 1/4 (51b)
R2/12[%11322D11D22]

Equation (47) also simplifies to

22—
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4 4 4 4
2 9 sW a oW a_6W ) a W 1 8 6W

ab s T Aaby 3 + 28 > 2 t 4; 3 + o "
azl azlaz2 3z1822 b 3z1822 oy 622
628F 325F aé aé
5 g oF ~ Jd6W  ~ QdéW
+ /12[21 2 +tZ, 51+ 9 3, * 9 3,
0z az 1 2
2 1
2 2 K 2 2
2 2 n
srw S g S 12 B (52)
9z, 9z, b 1°%2

Equation (50) can be expressed in operator form as

Dm(6F) - J12 DC(SW) =0 (53)
where
2 5* 3" sF 3 5y o'sF 1 &

D (5F) = o 8E 4 9q 4 4SE 5, O SF , ,m -+ L &E (5.,
m m dz m d0z,0z dz.0z am dz.0z a 0dz

1 1992 1992 1“2 2

2 2
and p_(sw) =z, 5% 4+ z LW (54b)
azl 622

The operators Dm and Dc are referred to herein as the membrane stiffness

operator and the curvature operator, respectively.

To get equation (52) into the desired form, it is necessary to express

the nondimensional stress resultants K K

10 Koo K12’ q;> and 4, (see equations

(45)) in terms of a loading parameter p. These relationships are given by

K) = -£18,(21,2,)P (55a)
K2 = "Zzgz(zl,zz)P (55b)
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qy = £585(2,,2,)P (55e)
where the minus signs are used to make compression loads produce positive

values of the critical loading parameter. The parameters ’Zl’ £ 9 ya 3% ,{4,
and/e5 are load factors that indicate the ratio of the nondimensional

membrane stress resultants and surface tractions prior to buckling. The

functions gl(zl’ZZ) through gS(zl’ZZ) indicate the spatial variation of the

nondimensional membrane stress resultants and surface tractions. Using

these relations, equation (52) is expressed in operator form as

Db(SW) + /12 D_(6F) = ng(SW) (56)
where the operators are defined by

4

4 4 6 4 4
2
D (6W) = o S8W 4y B, 5 O OW. B 6N 1 J8 5y
b LaP *" 8z.dz 8z 3z *b 8z.8z o 3z
1 1929 1929 192, &, 9%,
2 575w 2 5%
W
Kg(SW) = wﬁlgl(zl,zz)n 2 -'£2g2(zl’22)" 2+
dz 0z
1 2
2 2
‘ n_ 8 8W 85U a6W
24484(z1,2,) o, 3z,0z, £4g4(21’zz)az1 £ 585(27,2, 8z, (58)

The operators Db and Kg are referred to herein as the bending stiffness and

geometric stiffness operators, respectively.
Equations (53) and (56) constitute the eigenvalue boundary-value

problem for buckling of doubly-curved shallow shells. The smallest wvalue of

the loading parameter p for which the equations are satisfied constitutes

buckling of the shell. The equations are nondimensional and are of order
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one. Thus, the magnitude of the parameters multiplying the derivatives is a
direct indication of the effect each term in the equations will have on the

solution of a given problem. The parameters Z1 and 22 are generalizations

of the Batdorf Z parameter presented in references 11 through 13 for
isotropic cylindrical panels. These generalizations of the Batdorf Z
parameter rely heavily on the work presented by Stein in reference 8, and
thus are referred to herein as the generalized Batdorf-Stein Z parameters.

As the shell approaches a flat plate, the parameters Z1 and 22 approach zero

and the equations uncouple.

Parameters in Terms of Membrane Stiffnesses

The parameters o By Y § , Zl, and Z, have been given in terms of

m 2
the coefficients of the inverted form of the membrane constitutive equation.
Expressions for these parameters in terms of the usual membrane stiffness
coefficients are obtained as follows.

First, inverting the membrane stiffness matrix [A] associated with

equations (35) yields

2
a;; = (A22A66_ A26)/det(A) (59a)
2
ay, = (A A~ Al )/det(A) (59b)
a1p = (Bghygm Apohge)/det(A) (59¢)
2 594
age = (Aj1A, - Aj,)/det(A) (594)
316 = (Byghgg™ Apghyy)/det(h) (59e)
396 = (Byph1g Apphyg)/det(A) (391£)
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where

det(A) = (

2 2
Ajq8gg- App)hgem Apqhgg-

2
A A+ 2A. A A

228167 2810816826 (59g)

Substituting these expressions into the expressions for the nondimensional

parameters gives

2 11/4
Ly [A11%6~ 216
o =T |- 2z (60a)
L [Agohgs~ Agg
2
A11Bgpm Brg 2By A0+ 281 (A
B = 2 2 '1/2 (60b)
2 |(AyqAgem A1) (Ayohge- Aye)
A1186~ B19B16
Tm T T 2 3 2 71/4 (60c)
L(A11A66' A1) (Bgohge Boe)
AA. - A A
and 5= 2216 1226 T (60d)
(A11866™ B1g) (Boohge Bog)
L p
2 [ 2 2 2 '1/2
Ly | (8097 A1p)Age- ArqBge- Byohy et 28,58 6B
Z]_ = R 2 2 1/2 (606)
1 12[(AnAse' A1) (Byohee- Azs)D11D22]
2 - 2 2 2 '1/2
Ly [ (Ap18997 Ap)Age- AjqAgg- Mgl gt 28108 cB)e
z, = % - ! s (60F)
2 ] 12[(A11A66' Arg) (Agohge- A26)D11D22]
For the case when A and A are zero-valued; vy =0, § = 0, and the
16 26 m m
remaining nonzero parameters simplify to
Lo|Ayp 14
am =L |a (60g)
11222
A A - A2 - 2A A
P b il il ' (60m)

2846/81189,
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L2

Zy = El
1

L2

Zy = Eg
2

A11809"

2

)

1281895011095

A11899°

2

Ao

| 12/A174,,D11Dy, |

1/2

1/2

(601)

(603)

For the case of an isotropic material, the nonzero parameters are given by

L,
a =7 (60k)
1
p=1 (601)
L2
L 2 1/2
Z = - v) (60m)
1
L2
L 2 1/2
z, = o 1 -v) (60m)

where t is the total plate thickness.

Reduction to a Single Equation in Terms of W

Generalized Donnell-Stein Equation. Donnell showed (see references 11
through 13) that a single eighth-order differential equation could be
obtained for isotropic cylindrical shells by eliminating the stress function
appearing in the buckling equations. This task is performed by applying
successive differentiation to obtain a single equation referred to by
Batdorf as an escalated equation (see reference 14). Applying Donnell'’s
approach to a doubly-curved shallow shell, equation (53) is operated on by

the curvature operator to give

— 2
Dc(Dm(6F)) = /12 DC(SW) (6la)
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Using the fact the the differential operators in equation (61) are linear,

their order of operation can be interchanged to give

— 2
Dm(Dc(SF)) = /12 DC(SW) (61b)

Next, operating on equation (56) with the membrane stiffness operator yields

Dm(Db(SW)) + J12 Dm(Dc(6F)) = EDng(6W) (62)

Substituting the right-hand-side of equation (61b) into equation (62) yields
an eighth-order partial differential equation referred to herein as the

generalized Donnell-Stein equation; i.e.,

2 ~
Dm(Db(SW)) + 12Dc(6W) = poKg(SW) (63)

Modified Batdorf-Stein Equation. The doubly-curved shallow shell

counterpart to Batdorf’s equation is obtained by expressing equation (53) as
§F = J12 Dél(Dc(SW)) (64)

-1 . . . . . .
where Dm ( ) denotes the inverse differential operator (anti-derivatives)

which symbolically represents integration. A detailed account of the use of
inverse differential operators is given in references 11 through 14. Using

the fact that the differential operator and inverse differential operator in
equation (64) are linear, their order of operation can be interchanged to

give

— -1
§F = J12 Dc(Dm (6W)) (65)

Substituting equation (65) into equation (56) yields the desired equation;

i.e.,

2 .1 -
Db(SW) + 12Dc[Dm (w1 - ng(SW) =0 (66)
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This integro-differential equation is a generalization of Batdorf’s modified
equilibrium equation presented in reference 12 and is referred to herein as
the Modified Batdorf-Stein equation.

Implied Membrane Boundary Conditions. As pointed out by Batdorf in
references 11 through 13, the original Donnell and Modified Batdorf
equations for isotropic cylindrical shells implicitly prescribe boundary
conditions on the membrane displacements and stress resultants. This
attribute of these equations is a direct consequence of the elimination of
the stress resultant function. Thus, the Generalized Donnell-Stein and
Modified Batdorf-Stein equations presented in this paper also possess this
attribute. Results presented by Batdorf [11-13], Rehfield and Hallauer
[15], and Sobel, et. al. [16] suggest that the effect of membrane boundary
conditions on the predicted buckling load and mode shape of shallow
isotropic cylindrical shells may, in several cases, be small. For these
cases, buckling results obtained from the Generalized Donnell-Stein and
Modified Batdorf-Stein equations give reasonable estimates of the collapse
load. This information, however, is not generally known for shallow
laminated composite shells. It does seem reasonable that, for the class of
slightly curved shells which are not imperfection sensitive, the coupling of
membrane and bending behavior is mild enough that the analytical predictions
of buckling that are obtained from the Generalized Donnell-Stein and
Modified Batdorf-Stein equations are reasonably accurate and thus useful in
preliminary design of shallow shells.

The actual membrane boundary conditions implied by solutions to the
Generalized Donnell-Stein and Modified Batdorf-Stein equations are
determined from the displacement form of the membrane equilibrium equations.

These equations are obtained by substituting constitutive equations (35a)
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through (35c) into membrane equilibrium equations (36a) and (36b). This
step yields two coupled partial differential equations that relate the

unknown membrane buckling displacements 6u1 and 6u2 to the known transverse

\
buckling displacement §w. Using differentiation, the two coupled equations
are converted to two independent uncoupled equations; i.e., one equation

relating 8u1 to 6w and another relating 6u, to éw. Performing these

2
operations and nondimensionalizing the resulting equations yields the

following equations for the special case of A,  and A,, being zero-valued.

16 26
A 3
2
D (§U) = -la_ 2, + —2— g | &
JA11899 9z4
3
v 1 8 _&W
- on + V2, -~z - (67a)
JA A 1 a 2 dz.dz
11422 - 1929
A 3
D_(5U) = -|—ti=z + — z, [&EF
JA11899 % 9z,
A ) s
s —t2— 1z .o z |-L5Y (67b)
JA A 2 m 502
11422 1929

where the nondimensional membrane displacements 8U1 and 6U2 are given by

2

Aj1hgp- A

6U1 = L1 2D 1§ 6u1 (68a)
11722711722
A A A2
and 6U2 = L2 12/11 22 . 1§ 6u2 (68b)
11722711722

These differential equations are generalizations of those presented by

Donnell (see reference 11) for isotropic cylindrical shells.
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A general method of determining the membrane boundary conditions

implied by 6W is to expand both 6U1 and 6U2 into full double Fourier series

and then determine the Fourier coefficients using the orthogonality of the
functions forming the double Fourier series. Once the Fourier series are
determined, stress resultants are computed directly from the membrane
constitutive equations. The boundary conditions are identified by examining
the functional form of the Fourier series for the displacements and stress

resultants on the boundary of the shell.

Approximate Solution of the Buckling Equations
Simple closed form solutions to equations (63) and (66) are not readily
avaliable since the geometric stiffness operator generally has variable
coefficients and both the geometric stiffness and bending stiffness
operators have odd-combination mixed partial derivatives (e.g., three
derivatives with respect to z

and one with respect to z Approximate

1 2)'
solutions, however, can be obtained by methods such as the Bubnov-Galerkin
method (see reference 12 for example). The usual way of solving equations
(63) and (66) by the Bubnov-Galerkin method involves using series expansions
for 6F and 6W that satisfy all the boundary conditions of a given problem.
These expressions are then substituted into equations (63) and (66) to
obtain two residuals (one for each equation) since the series expansions
generally do not satisfy the two differential equations. Then, the
residuals are expanded in the same series (i.e., same basis of the solution
space) and the components of the residuals are forced to be zero-valued in
an integrated sense. This process results in a generalized algebraic

eigenvalue problem whose eigenvector includes the buckling displacement

modal amplitudes and the stress function amplitudes.
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Often in performing analysis for preliminary design, or parametric
study, it is desirable to simplify the analysis as much as possible. One
such simplification was introduced in shell buckling analysis by Batdorf
(see references 12 and 13). The method associated with this simplification
consists of a Bubnov-Galerkin solution to Batdorf'’s counterpart of the
Modified Batdorf-Stein equation. The results and discussion presented by
Batdorf in references 12 and 13 suggest that use of the Modified Batdorf-
Stein equation is preferred to the use of the Generalized Donnell-Stein
equation when applying the Bubnov-Galerkin method. By eliminating the
stress function using the inverse differential operator, the size of the
generalized algebraic eigenvalue problem to be solved in the Bubnov-Galerkin
method is significantly reduced, and thus the attractiveness of the analysis
for parametric study is greatly increased. The application of this method
to the Modified Batdorf-Stein equation is outlined in the subsequent

section.

Bubnov-Galerkin Formulation for the Modified Batdorf-Stein Equation
To obtain an approximate solution to equation (66), the nondimensional
transverse buckling displacement is expressed as
M N
§W > 6Wo = pzl qilapqép(zl)tlfq(zz) (69)

where the basis functions Qp(zl) and @q(zz) are selected such that 5WMN
satisfies all the boundary conditions of the given problem, and are at least
a linearly independent set. Substituting equation (69) into equation (66)

yields a residual since the assumed displacement series does not satisfy the

integro-differential equation, equation (66). The residual is given by
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N 2

-1 ~
z D, (2 ¥ ) + 12D (D ® v - pK (2 ¥ =0 70
RALALACAR Py (@)Y - PR (27 ) (70)

M=

and is dependent on the number of terms taken in the series. The evaluation

of the terms involving Db and Kg are straightforward, however, the

evaluation of the term involving the inverse operator is somewhat involved.
The general procedure for determining D;1(¢p¢q) is to first expand D;1(6W)
in a general double Fourier series as if it is an arbitrary function of two
variables (see reference 14). Next, the condition that Dm(D;1(6W)) = §W is
enforced by operating on the Fourier series with Dm (i.e., the left-hand-

side of the equality) and then substituting equation (69) for éW appearing
on the right-hand-side of the equality. The Fourier coefficients are then
determined using the orthogonality property of the functions forming the

basis of the Fourier series. The resulting equations yield the following

equation
D M N
D;1(8W) = —%Q + = 3 Dél(é v )a (71)
p=1 g=1 P a4 Pq

The leading constant term is of no significance in the Bubnov-Galerkin
. 2 -1
solution since it vanishes once Dc(Dm (6W)) is computed.

In the Bubnov-Galerkin method, the residual is assumed to be a function
that can be expanded in the same basis functions as éW; i.e., it is assumed
that the residual can be expressed as

M N

= 3 Zr & (zl)wq(z

(72)
p=1 q-1 P4 P

9)

The coefficients rpq represent the components of the residual in the

function space spanned by @p and Wq. The coefficients r_ are determined by
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multiplying equation (72) through by the set of functions @mwn (form =1,

2, ..., Mand n=1, 2, ..., N) and integrating the resulting equation over

the region on which the boundary-value problem is defined. This step gives

1.1

M N
JOJORWQm(zl)Wn(zl)dzldzz = p§1 qilrpq Fpqun (73)
where
1
Fpm = <I>m(zl)<I>p(zl)dz1 (74a)
Jo
1
and an = IIIn(zz)\I!q(zz)dz2 (74b)
Jo

An approximate solution to the boundary-eigenvalue problem is obtained by
requiring that the components of the residual series expansion be zero-

valued. Noting that the Fpm and an coefficients of the right-hand-side of

equation (73) constitute a nonsingular coefficient matrix of the linear
system of equations defined by equation (72), a sufficient condition for the

components of the residual series to vanish is given by

1.1
J J RMNém(zl)II!n(zl)dzldz2 =0 (75)
oJo
for all combinations of m =1, 2, ..., Mandn=1, 2, ..., N. More

precisely, the following equations must be satisfied.

M N _ M N G
b Kmn a =p = 2 K a (76)
p=1 g=1 Pqd Pq

where Kmnpq constitutes the stiffness matrix given by

B C

K = + K (77a)
mnpq mnpq — mnpq
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The stiffness coefficients associated with bending are given by

1.1

B
R npq = J J D (2 ¥ )% ¥ dz,dz, (77b)
0oJ O

and the stiffness coefficients associated with shell curvature are given by

1.1

c 2 -1
J J 12DC(Dm (@p@q))@mwndzldzz (77¢)
oJo

K =
mnpq

G . . . : .
The term Kmnpq constitutes the geometric stiffness matrix and its

coefficients are given by

1.1

G
Kmnpq = J J Kg(<I>p\I!q)<I>mII!ndzldz2 (774)
oJo

Once the specific form of @m and wn are given, the inverse differential

operator can be obtained, the stiffness and geometric stiffness matrices can

be computed, and the eivenvalue problem can be solved. Buckling is defined

by the smallest value of p that satisifes the generalized algebraic

eigenvalue problem defined by equation (76).

Results and Discussion
Following the procedure presented in the previous section of this

paper, the buckling behavior of a shell can be determined in terms of o B,

Ty Sb, a s By Yo 5 , Zl’ and Z,. For a given family of laminates, such as

m 2

the [(iﬂ)n]s laminates (n =1, 2, ...) described in reference 1, changes in

the fiber orientation and stacking sequence of a laminate generally results
in changes in all the nondimensional parameters presented herein. Plots

showing the dependance of several of the parameters on fiber orientation and
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stacking sequence are presented in reference 1. The point to be made is
that the parameters are not independent with respect to laminate
construction. However, insight into determining, and understanding, the key
parameters affecting buckling behavior can be obtained by studying how the
parameters vary with respect to laminate construction, and by studying the
sensitivity of the buckling behavior with respect to varying each parameter
in an independent manner. For example, an indication of the sensitivity of
the buckling behavior with respect to variations in these parameters can be
obtained from plots of a buckling coefficient as a function of each
parameter. To demonstrate this philosophy, some typical results of a
parametric study are presented in the next section of this paper for a

representative example problem.

Example Problem

The example problem presented in this section is a shallow shell that
is loaded on its edges by a uniform shearing traction r as shown in figure
2. The shell is supported such that the transverse displacement and
rotation along the edges are zero-valued (clamped with respect to bending
behavior). The basis functions used in the approximate analysis presented

herein that satisfy these boundary conditions are given by

Qp = cos(p-l)ﬁzl- cos(p+1)1rz1 (78a)
Wq = cos(q-l)nzz— cos(q+1)1rz2 (78b)
forp=1, 2, ..., Mand q=1, 2, ..., N. Associated with these basis

functions, and the use of the Modified Batdorf-Stein equation, are implied
membrane boundary conditions. To greatly simplify the analysis, the example

problem is defined as a shell that has A16 = A26 = 0; i.e., its membrane
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behavior is specially orthotropic. The corresponding implied boundary

conditions are given by 6U., = éN,, = O on the edges z

1 12 =0 and 1, and 6U2 =

1

6N12 = 0 on the other two edges.

Applying the procedure for approximate solution of the Modified
Batdorf-Stein equation described in the previous section of this paper

yields explicit expressions for the stiffness and geometric stiffness

coefficients defined in equations (77). The stiffness coefficients Kinpq

and geometric stiffness coefficients Kﬁnpq are identical to those obtained
from a Bubnov-Galerkin analysis of a flat plate and are not presented

herein. The contribution of the stiffness coefficients associated with

shell curvature to equation (76) is expressed by

M N
4 c _ 1 . . 1.n- -
22 X Kmnpqapq = Z(m-1,n-1) am-2,n-2 {Z(m-1,n-1) + Z(m+1,n 1)}am,n-2 +
n p=1 g=1
Z(m+l,n-1) 4042 g ~(Z(@-1,0-1) + Z(m-l,n+1)}am_2,n +
{Z(m-1,n-1) + Z(m-1,n+l) + Z(m+1l,n-1) + z(m+1,n+1)}am n +
-{Z(m+1,n-1) + Z(m+].,n+1)}am+2’n + Z(m-1,n+1) am-2,n+2 +
-{Z(m-1,n+1) + Z(m+1,n+1)}am’n+2 + Z(m+l,n+l) am+2,n+2 (79)
where
12[Z,( 1)2 Z ( 1)2]2
Z,(m- + n-
2 1 80
Z(m-1,n-1) = —3 4 2 2 4 2 4 89
{am(m-l) + 2u(m-1) (n-1) + (n-1) /am}n
form=1, 2, ..., Mandn=1, 2, ..., N.
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Results obtained from the approximate analysis are presented in figures
2 and 3. The buckling resistance of a shell is indicated in these figures

by the nondimensional shear buckling coefficient KS defined by

2
7L

2
2 3 1
™ (Dy7Dyy)

K =

s (81)

/4

where 7 is the applied shearing traction. For the results presented in the

figures, the orthotropic parameters (ab, B, a s and p) and the anisotropic
parameters (7b, Sb’ T and 6m) that are not varied are set equal to one and

zero, respectively. This baseline set of values corresponds to an isotropic

shell with sides of equal length (L1 = L2).

Results showing shear buckling coefficient as a function of the

Batdorf-Stein shell curvature parameters, Z1 and 22, are presented in figure

2. Results are shown in this figure for flat plates and for shells with

zero, negative, and positive Gaussian curvature with values of Z1 and 22

ranging from O to 100. The results presented in figure 2 indicate that the
shear buckling resistance of a shell is significantly influenced by shell

curvature, especially for the larger values of Z1 and 22 shown in the

figure. The results also indicate that the shells with positive Gaussian
curvature are the most buckling resistant. Moreover, the shells with
positive Gaussian curvature are more buckling resistant than those with
negative Gaussian curvature, which are more buckling resistant than those
with zero Gaussian curvature. Flat plates exhibit the lowest buckling
resistance.

Results showing shear buckling coefficient as a function of the

curvature parameters, Z1 and 22, and the bending anisotropy parameters T
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and Sb (see equations (45c) and (45d)) are presented in figure 3. Results

are shown in this figure for flat plates and for shells with positive

Gaussian curvature corresponding to Z, = Z, = 100. Values of the

1 2

anisotropic parameters range from O to 0.5. This range of values is
considered to be representative of a large class of laminated plates [1].
Results are presented in figure 3 corresponding to both positive and
negative directions of the applied shear traction. The distinction of
loading direction results from the presence of the bending anisotropy.

The results presented in figure 3 indicate the shear buckling
resistance of a shell with positive Gaussian curvature is more sensitive to
variations in the anisotropic parameters than a corresponding flat plate.
The results show substantial reductions in buckling resistance with
increasing values of the anisotropic parameters for shells loaded in
positive shear, and similar increases in buckling resistance for shells
loaded in negative shear. Similar results were obtained for a corresponding
shell with negative Gaussian curvature that indicate the same trend, but not
to as large an extent as exhibited by the shell with positive Gaussian
curvature.

The results presented in figures 2 and 3 show that varying parameters
independently can give insight into the factors driving the structural
response. For example, by independently varying the parameters associated
with shell curvature it has been found that positive values of Gaussian
curvature substantially improve the shear buckling resistance of a shell.
In addition, it has been determined that shell curvature can significantly
affect the importance of the bending anisotropy on the shear buckling

resistance. Both of these observations clearly indicate the benefits of

39



using nondimensional parameters to formulate the analysis and to perform

parametric studies.

Concluding Remarks

A method of deriving nondimensional equations and indentifying the
fundamental parameters associated with bifurcation buckling of shallow
shells subjected to combined loads has been presented. Analysis has been
presented for symmetrically laminated doubly-curved shells that exhibit both
membrane and bending anisotropy. The analysis includes equations for
nonlinear deformations and buckling of thin elastic shallow shells, and the
procedure and rationale used to obtain useful nondimensional forms of the
transverse equilibrium and compatibility equations for buckling are
discussed. Fundamental parameters of the problem have been identified that
explicitly indicate, in a compact manner, how both membrane and bending
orthotropy and anisotropy influence buckling behavior. Generalizations of
the well-known Batdorf Z parameter for symmetrically laminated shells with
full anisotropy have also been presented, as well as generalized forms of
Donnell’s and Batdorf’s equations for shell buckling. In addition, shell
boundary conditions and approximate solution methods of the nondimensional
boundary-value problem have been briefly discussed.

Results obtained from a Bubnov-Galerkin solution of a representative
example problem have also been presented. The results demonstrate the
advantages of formulating the analysis in terms of nondimensional parameters
and using them to perform parametric studies. The results specifically show
that shells with positive Gaussian curvature are much more shear buckling
resistant than corresponding flat plates and shells with negative and zero

Gaussian curvature. In addition, the results show that the importance of

40



bending anisotropy on shear buckling resistance is affected by shell

curvature.
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