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ABSTRACT

Many different failure criteria have been suggested for mixed-mode delamination

toughness, but few sets of mixed-mode data exist that are consistent over the full mode

I opening to mode II shear load range.  The mixed-mode bending (MMB) test was used

to measure the delamination toughness of a brittle epoxy composite, a state-of-the-art

toughened epoxy composite, and a tough thermoplastic composite over the full mixed-

mode range.  To gain insight into the different failure responses of the different

materials, the delamination fracture surfaces were also examined.  An evaluation of

several failure criteria which have been reported in the literature was performed, and

the range of responses modeled by each criterion was analyzed.  A new bilinear failure

criterion was developed based on a change in the failure mechanism observed from the

delamination surfaces.  The different criteria were compared to the failure response of

the three materials tested.  The responses of the two epoxies were best modeled with

the new bilinear failure criterion.  The failure response of the tough thermoplastic

composite could be modeled well with the bilinear criterion but could also be modeled

with the more simple linear failure criterion.  Since the materials differed in their mixed-

mode failure response, mixed-mode delamination testing will be needed to characterize

a composite material.  This paper provides a critical evaluation of the mixed-mode

failure criteria and should provide general guidance for selecting an appropriate

criterion for other materials.



INTRODUCTION

Delamination is a primary failure mode of laminated composite materials.

Delamination toughness under mode I opening load and mode II shear load can be

measured with the double cantilever beam (DCB) test and the end notch flexure (ENF)

test, respectively.  In structures however, delaminations are not just loaded in pure

mode I or pure mode II but grow under a mixture of mode I and mode II loading.

Several types of tests have been used to measure mixed-mode delamination fracture

toughness.  In the past, several different kinds of test specimens were needed to

measure delamination fracture toughness over the full range of mode I and mode II

combinations1.  Unfortunately it was unclear what effect the different test

configurations had on the measured failure response.  Recently however, the mixed-

mode bending (MMB) test2, which simply combines the DCB and ENF loadings, was

developed to measure mixed-mode delamination toughness and then redesigned3 to

avoid geometric nonlinearities encountered when testing tough composites.  The MMB

test allows almost any combination of mode I and mode II loading to be tested with the

same test specimen configuration.  Therefore, inconsistencies present in previous mixed-

mode toughness data sets can be avoided.

Many different mixed-mode failure criteria have been suggested for predicting

delamination growth, but these criteria were often based on inconsistent sets of

toughness data.  It is important that accurate mixed-mode failure criteria be developed

so that the extension of delaminations in structures can be predicted.  Once

delamination can be predicted accurately, fewer component and full scale tests will be

required to ensure the safety of composite structures.  The purpose of this paper is to

evaluate mixed-mode failure criteria by comparing them to consistent sets of mixed-

mode toughness data obtained using the MMB test.



The redesigned mixed-mode bending (MMB) test was used to measure the

delamination toughness of a brittle epoxy composite, a state-of-the-art toughened epoxy

composite, and a tough thermoplastic composite over the full mixed-mode range.  The

fracture surfaces of the composites were examined to gain insight into the failure

responses of the different materials.  Next, an evaluation of delamination failure criteria

which have been reported in the literature was performed, and the range of material

responses modeled by each criterion was evaluated.  In addition, a new bilinear failure

criterion was introduced.  The failure response of the three materials were compared to

the different mixed-mode failure criteria, and the best criterion for each material was

selected.

TOUGHNESS TESTING

The redesigned MMB test apparatus was used to measure the mixed-mode

delamination toughness of three different composite materials.  This test is capable of

testing over virtually the entire mixed-mode range with consistent test conditions.

Consistent sets of data with which to compare proposed failure criteria therefore were

obtained.

The materials used in this study were chosen to represent a wide range of

toughness properties.  AS4/3501-6 is a commonly used brittle epoxy composite.

IM7/977-2 is a state-of-the-art toughened epoxy composite.  It consists of a high

strength IM7 fiber and an epoxy matrix which has been toughened with a

thermoplastic additive.  The AS4/PEEK (polyether-ether-ketone) is a tough

graphite/thermoplastic composite and therefore radically different from the thermoset

epoxies.  The elastic properties of these three materials are listed in Table 1.  These

properties were used in the calculation of fracture toughness.  Because the toughness

calculation is very sensitive to the longitudinal modulus  E11,  it was measured using a



3-point bend test with a 3 inch span length.  E11  was measured in bending because for

composite materials a flexurally measured modulus has been shown to differ

significantly from an axially measured modulus,4 and the MMB test is a bending type of

test. The toughness calculation is not as sensitive to the transverse modulus  E22  and

shear modulus  G13.  Therefore, these properties were obtained from the literature3,5,6.

The materials were made into 24 ply unidirectional panels.  The panels were cut

into test specimen which were 6 in. long, 1 in. wide,  b,  and nominally 0.12 in. thick,

2h.  Each specimen contained a 0.5 mil thick insert at the midplane of the specimen to

act as a delamination starter.  A Teflon insert was used in the epoxy specimens while a

Kapton insert was used in the PEEK specimens.  Hinges were bonded to the specimens

as shown in Figure 1, so that the starter provided a 1 inch initial delamination length  a.

The redesigned MMB test apparatus shown in Figure 1 uses a lever to apply

mode Ι and mode ΙΙ loadings to a split beam specimen.  The load on the top hinge

tends to pull the delamination open resulting in mode I loading similar to that of the

DCB test.  The load at the fulcrum bends the specimen creating a mode II loading

similar to the ENF test.  The ratio of the mode I to mode II loading is controlled by the

lever load position,  c.  The value of  c  therefore determines the mixed-mode ratio

GI/GII.  The redesigned apparatus uses a saddle mechanism to hold the loading rollers

just above the specimen mid-plane and on either side of the test specimen.  This

configuration has been shown to drastically reduce geometric nonlinearity errors which

can develop when testing tough materials3.  The half span length  L  of the MMB

apparatus was 2 inches.

Each material was tested in at least three mixed-mode ratios (GI/GII) and at the

two pure-mode cases.  The three mixed-mode ratios tested were the 4/1, 1/1, and 1/4

cases which corresponded to  c  values of 3.83 in. , 1.66 in., and 1.09 in., respectively.

The AS4/3501-6 material was also tested at a 1/20 ratio with a  c  value 0.85 in. while

the IM7/977-2 material was tested at the 1/2 ratio with a  c value of 1.30 in.  The pure



mode I toughness was tested using a standard DCB configuration.  The pure mode II

toughness was tested using the MMB apparatus with a  c  value of 0.  This is equivalent

to an ENF configuration.  All the tests are consistent since the mixed-mode test is

simply a combination of the pure-mode tests.  Five tests at each test configuration were

performed on the epoxies while only 3 tests were performed for the PEEK material.

The specimens were loaded in displacement control at a rate of 0.02 in/min at the

lever loading point.  The load-displacement response was recorded, and the critical load

used in  Gc  calculations was taken as the load where the load-displacement curve

deviated from linearity.  The tests on the epoxy specimen measured the toughness

required for delamination to initiate from the insert.  The PEEK specimen which were

tested in a previous study3 were first precracked under a 4/1 mixed-mode loading to a

delamination length  a  of 1.25 in. and then tested.  Although Murri et. al.7 showed that

delamination toughness measured from a precrack could be significantly different from

values measured from an insert, a study involving a 4/1 type precrack showed good

agreement with insert initiation values.8  The critical applied load  Pc  for all tests were

taken as the load where the load displacement curve deviates from linear.  The PEEK

toughnesses presented here is slightly lower than that given in Reference 3 because that

data was calculated with  Pc  equal to the maximum applied load.  The edge of the

specimen was coated with a white water soluble typewriter correction fluid so that the

delamination could be observed more easily with a 7x magnifying scope.  The

delamination extension was observed at approximately the same time as the

nonlinearity in the loading curve.  The delamination length,  a,  was determined by

breaking the test specimen open after the test and measuring the length of the initial

delamination.  For the epoxy specimen this was the length of the insert while for the

PEEK specimen,  a   was the length to the marking on the fracture surface left by the

precrack.



The mixed-mode fracture toughness, G
Ic
m

 
and

 
G

IIc
m ,

 
of the IM7/977-2 and

AS4/PEEK specimen were calculated using the following equations:
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These equations are based on beam theory and include corrections to account for shear

deformation and deformation due to the rotation of the specimen cross section at the

delamination tip2.

The fracture toughness calculation of the AS4/3501-6 was more complicated.

The complication arose because the toughness of this material is small compared to the

other two materials resulting in smaller critical applied loads  Pc.  The critical loads in

some cases were of the same magnitude as the lever weight  Pg  (Pg=1.85 lb, Pc=10 lb),

and therefore, the lever weight could not be ignored.  A derivation of how the lever

weight was included is presented in Appendix A, and the resulting equations for mixed-

mode fracture toughness are:
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The equations in the appendix are written in terms of an applied load  Pa  and strain

energy release rates,  GI  and  GII,  while Eqs. 2 are written in terms of a critical load

Pc  and the fracture toughnesses, G
Ic
m

  
and

  
G

IIc
m .  Appendix A also includes criteria for

deciding when the lever weight corrections are needed.

The pure mode I toughness was calculated using Equation 3 for all materials.
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This equation was used in developing the mixed-mode equations and is consistent with

the mixed-mode equations.  The pure mode II toughness  GΙΙc  can be calculated from

the equations for G
IIc
m

  
in Equations 1 or 2 where  c  is set to 0.  Notice that the G

Ic
m

equations give erroneous results at this  c  value because for  c <~ 0.67, the delamination

surfaces do not separate.  The contact forces across the delamination surfaces which are
not modeled by Equation 1 and 2 cause the true  G

Ic
m

  
to be 0 but do not effect the

G
IIc
m   values.

The delamination fracture surfaces were examined using a scanning electron

microscope (SEM).  SEM photomicrographs where taken just beyond the delamination

insert for the epoxy composites and just beyond the precrack marking for the PEEK

composite. Therefore, the fracture surfaces show the first increment of delamination

growth which correspond to the measured fracture toughnesses.

TOUGHNESS TEST RESULTS

The mixed-mode failure responses of the three composite materials are presented
by plotting the mode I component of fracture toughness,  G

Ic
m   vs. the mode II

component,  G
IIc
m .  These mixed-mode diagrams are plotted in Figure 2.  The failure

response of the two epoxy composites are quite similar in shape, but the AS4/3501-6

material is more brittle than the IM7/977-2.  For both epoxies, the  G
Ic

m
  values appear



to increase as the  G
IIc

m

  is introduced and then slowly decrease to zero as  G
IIc

m

approaches  GIIc.  The rising  G
Ic

m

  with  G
IIc

m

  may be somewhat surprising, but this

phenomenon can also be seen in data presented in References 9 and 10.  The overall

shape of the failure response is convex and very similar in shape to the mixed-mode

diagram for a brittle-epoxy composite system studied in Reference 1.  The AS4/PEEK

material is even tougher than the IM7/977-2 material at all mixed-mode ratios except

near pure mode II and the shape of the failure response is quit different.  G
Ic

m
  decreases

almost linearly with  G
IIc

m

 which produces a mixed-mode diagram very similar to those

presented in Reference 1 for different tough composite systems.  Since the shape of the

failure responses of the different materials are so different, it is clear that no single

criterion based on just  GIc  and  GIIc  will model all delamination failure.  One criteria

might be able to model the different materials if arbitrary parameters can be changed so

that the criterion can be fit to the data.  If this does not work then different criteria

would have to be used for different materials.

SEM photomicrographs show that the fracture surfaces of the different materials

change dramatically with mixed-mode ratio.  As discussed earlier, these

photomicrographs were taken just after delamination initiation.  Figure 3 shows the

delamination surfaces at different mixed-mode ratios for the AS4/3501-6 composite.

The photomicrographs were taken at a magnification of 1000x.  At pure mode Ι the

fracture surface is very flat indicating a brittle cleavage fracture which would explain

the low mode I fracture toughness.  As mode II is added, the fracture surfaces becomes

rougher as seen in the 4/1 ratio case.  Troughs have appeared where fibers have been

pulled away from the matrix indicating interfacial failure.  The side of the fracture

surface which did not contain a large percentage of fibers is shown here because the

texture of the fractured resin is easier to see in this view.  The increase roughness could

explain why the mode I component of fracture toughness rises as mode II is introduced.

At the 1/1 ratio, hackles11 have appeared, and there is little difference between the 1/1



fracture surface and the pure mode II.  The similarity between the 1/1 and pure mode II

fracture surfaces indicates a single failure mode through this region.  The difference

between these fracture surfaces and those at the pure mode I and 4/1 case may indicate

a change in the failure mechanism around the 1/1 ratio.

Figure 4 shows the fracture surfaces of the IM7/977-2 composite at several

mixed-mode ratios.  As seen from the figure, the fracture surfaces of IM7/977-2 are

very similar to that of AS4/3501-6.  The mode I fracture is cleavage, fiber troughs

appear at the 4/1 ratio, and hackling begins around the 1/1 ratio and continues through

the pure mode II condition.  The change in fracture surface between the 4/1 and 1/1

ratio is even more clear for this material than for the AS4/3501-6, and again may

indicate a changing failure mechanism.  The similarity in the fracture surfaces of these

materials may explain the similarity between the shapes of the failure responses of these

two materials which can be seen in Figure 2.  No indication of the increased toughness

of IM7/977-2 over AS4/3501-6 was noted by observing the fracture surfaces.

The fracture surfaces of the Peek composite shown in Figure 5 are noticeably

different from that of the epoxies.  All the PEEK fracture surfaces have cusps caused

by the extensive yielding of the matrix.  The larger strain to failure created by the

yielding gives this material a larger fracture toughness than the epoxies tested.  The

ridges and valleys seen in the figure are due to the fibers which have been pulled out of

the valleys.  The ridges form because the larger volume of matrix material found

between the fibers can deform more creating the ridges of cusps.  The primary

difference between the fracture surfaces at different mixed-mode ratios is the

orientation of the cusps.  The DCB fracture surface has cusps that  are randomly pulled

in different directions.  In the 1/1 fracture surface the cusps tend to be drawn slightly

toward the top of the micrograph due to the mode II action.  Larger amounts of mode

II draw the cusps more and more, and in the ENF fracture surfaces, all the cusps are



extensively drawn upward.  No indication of hackling or of changing failure mechanism

was observed on the AS4/PEEK fracture surfaces

REVIEW OF MIXED-MODE DELAMINATION CRITERIA

Many attempts have been made at describing the mixed-mode delamination

failure response of composite materials.  Failure criterion have been based on stress or

strain near the crack tip, crack opening displacement, stress intensity factor, or strain

energy release rate.  Strain energy release rate seems to be a good measure of a

materials resistance to delamination extension and most of the failure criteria that have

been suggested can be written in terms of a critical strain energy release rate or fracture

toughness.  Delamination fracture toughness testing under pure mode I loading and

pure mode II loading is well established.  Delaminations in structures are often subjected

to mixed-mode loading so mixed-mode fracture toughness is also important.  Since the

mode I and mode II fracture toughness data is readily available, the mixed-mode failure

criteria will be written in terms of the pure-mode toughnesses,  GIc  and  GIIc,  when

possible.  Although the primary interest here is delamination, criteria suggested for both

delamination and ply cracking will be presented.  In both ply cracking and

delamination, a crack is growing in the matrix in the direction of the fibers.  Because

the fiber-matrix geometry of both types of cracks are so similar, one would expect the

failure responses to be similar as well.

The mixed-mode failure response of a material can be described by plotting the
mode I component of fracture toughness,  G

Ic
m   vs. the mode II component,  G

IIc
m .  An

accurate failure criterion will match the material response when plotted on this mixed-

mode diagram.  Since the the material response of different materials can be quite

different, each failure criterion will be evaluated first by looking at the range of shapes

each criterion can model.  For comparison each criterion will be evaluated assuming



GIc = 1  and  GIIc = 3.  Some criteria also involve the ratio of  E11/E22.  For

comparison this ratio will be assumed to be 10.  Later criteria will be fit to measured

toughness data.

The simplest criteria assume that either the mode I component12, the mode II

component13, or total fracture toughness14 will stay constant as the mixed-mode ratio

changes.   These criteria are respectively:

G
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These criteria are plotted on the mixed-mode diagram (GI  vs.  GII) in Figure 6.  The

first criterion assumes that only the mode I component of loading controls delamination

growth which therefore assumes an infinite  GIIc. The second assumes that only the

mode II component of loading is important and therefore an infinite  GIc.  A more

reasonable criterion would be to combine the  GI  and  GII  criteria(Eqs. 4 & 5) by

assuming that delamination growth would occur if either Equation 4 or 5 is met.  This

criterion then models the assumption that the mode I and mode II failure processes

occur independently of each other.  The third criterion assumes that a delamination will

extend if the total strain energy  GTc  reaches some critical value.  The fracture

toughness is assumed not to be a function of mixed-mode ratio which means that GIc

should equal  GIIc.  Since  GIc  and  GIIc  are known to be quit different for most

materials, the  GTc  criterion(Eq. 6) was modified to account for materials with different

mode I and mode II toughnesses as seen in the next criterion.

The fourth criterion simply normalizes each component of fracture toughness by

its pure-mode value as given by14
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The resulting curve on the mixed-mode fracture toughness diagram is a line connecting

the pure mode I and pure mode II fracture toughnesses as shown on Figure 6.  This

linear criterion(Eq. 7) is perhaps the mixed-mode criterion most often referred to in

literature1,10,15,16,17.

A fifth criterion is obtained by generalizing the linear criterion(Eq. 7) as a power

law function12 as follows:
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By choosing  α  and  β,  a wide range of material responses can be modeled as shown

in Figure 7.  When  α=β>1  the failure curve is convex while when α=β<1 the curve is

concave.  If  β>α  then the curve is skewed so that the curve is more convex near the

mode I axis.  Besides  α=β=1  which reproduces the linear criterion(Eq. 7) several

(α,β) combinations have been used such as (2,2)18, (0.5,1)14, (1,1.5)19, (1.4,1.8)20, (.64,

.8)20.  An optimum value of  α  and  β  for a given material can be found by curve

fitting through experimental data.

Another criterion was developed by assuming that the total fracture toughness

would be a polynomial function21 of the ratio of mode II to mode I as given by
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The polynomial criterion(Eq. 9) can model a wide variety of material responses by

adjusting  ρ  and  τ  as seen in Figure 8.  This criterion can model both concave and

convex failure curves.  It is also the first criterion discussed which can allow the mode I

to increase as mode II is introduced as seen when  ρ=1.5 .  This material behavior is

exhibited by the epoxy composite systems of the present investigation.  However, this



criterion is unable to model low mode I to mode II ratios.  Either the  G
Ic
m   gets very

large or both  G
Ic
m   and  G

IIc
m   will go to zero as the mixed-mode ratio is decreased.

Neither response is realistic, and therefore this criterion is an inappropriate choice as a

general mixed-mode criterion.

Another criterion was developed by assuming the fracture toughness to be a

linear function of the mode I stress intensity factor22  KIc.  This criterion has been

written here in terms of  G
Ic
m   and  G

IIc
m   as

G
Ic
m

+ G
IIc
m

= G
IIc

− G
IIc

− G
Ic( ) G
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m
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If  GIc=GIIc  the  KIc  criterion(Eq. 10) reduces to the linear criterion(Eq. 7).  If

GIc<<GIIc  then the  KIc  criterion(Eq. 10) reduces to the power law criterion(Eq. 8)

where  α=.5  and  β=1.  This criteria is completely defined by the  GIc  and  GIIc  values

and produces a concave failure envelope as seen in Figure 9.

The next criterion was developed by modeling delamination growth through

hackle formation23.  The hackle criterion(Eq. 11) was based on a linear function of

1+ K
II

/K
I( )

2

  which is a measure of the hackle angle.  The criterion is written here in

terms of the pure-mode fracture toughnesses, modulus values, and an arbitrary constant

χ.
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The hackle criterion(Eq. 11) is plotted on the mixed-mode diagram in Figure 10.  χ

can be chosen to model a variety of material responses, including an increasing G
Ic
m

with  G
IIc
m   as seen when  χ=1.  However, except for when  χ=0  which gives the  GTc

criterion(Eq. 6), the hackle criterion(Eq. 11) will always predict an infinite  GIIc  so this

criterion is also an inappropriate choice as a general mixed-mode criterion.



A second criterion was based on the hackle angle parameter 1+ K
II

/K
I( )

2
,  but

this time it is related as an exponential instead of a linear function10.   The exponential

hackle criterion(Eq. 12) can also be written in terms of the pure-mode toughness values

and only one arbitrary constant  γ  as follows:
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This exponential hackle criterion(Eq. 12) has the advantage that it does model a finite

GIIc  as seen in Figure 11.  The  γ  constant can be chosen to model a great variety of

material responses.  The failure envelope can be concave or convex and it can model an
increasing  G

Ic
m

 
 with increasing  G

IIc
m .

Another mixed-mode criterion was based on an exponential function of the

mixed-mode stress intensity factor ratio24 KIc/KIIc.  The criterion has been written here

in terms of strain energy release rates and the arbitrary constant  η.
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The exponential  KIc/KIIc  criterion(Eq. 13) is plotted on the mixed-mode diagram in

Figure 12.  This criterion can model the same types of responses modeled by the

exponential hackle criterion(Eq. 12), but a strange jog in the failure curve near the

mode I axis is introduced for  η<1.

Critical crack opening displacement (COD) was the basis of yet another criterion.

A delamination is assumed to extend when the mode I or mode II critical crack opening

displacement is reached.  A Dugdale plasticity model was used to derive the following

criterion25:
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The first equation assumes a critical mode I crack opening displacement while the

second assumes a critical mode II displacement.  The delamination is assumed to extend

if either criterion is met.  This criterion is plotted on the mixed-mode diagram in Figure

13.  The COD criterion(Eq. 14) is plotted with  E11/E22  equal to both 10 and 1.  The

higher ratio corresponds to the ratio of global stiffnesses.  Since this criterion is based

on crack opening displacement, a localized phenomenon, a local stiffness ratio

corresponding to a crack in a isotropic matrix material and therefore the lower ratio,

may be more appropriate.  With either stiffness ratio, the mode I criterion, which

produces a concave failure response, is critical for most of the  GI/GII  values.

Another criterion was developed based on a mode I-mode II interaction

parameter  κ26.
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The arbitrary interaction parameter  κ  is a measure of how much effect the mode I

and mode II loadings have on each other.  As shown in Figure 14, this criterion can be

describe both concave and convex material responses.  If  κ=0  then the fracture modes

are independent and the criterion is the same as combining the  GIc  and  GIIc

criteria(Eqs. 4 & 5), and if  κ=2  the criterion is the same as the linear criterion(Eq. 7).

The material responses modeled by this criterion seem to be almost identical to those

modeled by the power law criterion(Eq. 8) when the arbitrary constants of the power

law are equal.  Values of  κ  from 0.26 to 3.1227 have been suggested for different

materials.



The interaction criterion was made more versatile by allowing the interaction
parameter to be a linear function of  G

Ic
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m )  as given by28
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The linear interaction criterion(Eq. 16) can model all the responses of the simpler

interaction criterion(Eq. 15), but by adjusting the arbitrary parameter  ϕ,  many more

responses can be obtained including an increasing mode I with mode II. (κ,ϕ) values of

(3,-4) and (4,-3) were suggested for different materials.  The linear interaction criterion

is a rather complicated implicit function of  GIc  and  GIIc  which could make this

criterion difficult to use.

BILINEAR FAILURE CRITERION

The delamination fracture surfaces indicated that a change in failure mechanism

may take place in the epoxy around the 1/1 ratio.  The mixed-mode fracture toughness

data of the epoxy composites also reach a peak at this ratio.  If the failure mechanism

does change one might expect different failure criteria to hold in different regions of the

mixed-mode diagram.  Shifting from one criterion to another could easily result in a

peak in the toughness response as observed in the epoxy composite data around the 1/1

mixed-mode ratio.  Since the linear criterion(Eq. 7) is simple and has seen widespread

use, a reasonable assumption would be that the failure response would be linear in each

region.  The two regions of both the AS4/3501-6 and IM7/977-2 delamination failure

data in Figure 2 do appear rather linear which further supports this assumption.  The

resulting bilinear failure criterion depends on the arbitrary parameters  ξ  and  ζ,  as

well as the two pure-mode toughnesses.



G
Ic
m

= ξ G
IIc
m

+ G
Ic

G
Ic
m

= ζ G
IIc
m

− ζ G
IIc

(17)

ξ  and  ζ  are the slopes of the two line segments used in the bilinear criterion(Eq. 17).

As shown in Figure 16, this criterion can model concave or convex responses, and it

can model an increasing mode I fracture toughness component with mode II. If  ξ=ζ=-

GIc/GIIc,  then the bilinear criterion(Eq. 17) would reduce to the linear criterion(Eq. 7)

CRITERION EVALUATION

The fact that so many radically different mixed-mode criteria have been

suggested and used indicate that there is still much to be understood about this

phenomenon.  The true test of a failure criterion is how well it models the response of

the material of interest.  In the past, there was no good way to evaluate these criteria.

Little mixed-mode data was available, and that which was available was often obtained

from several different tests and was therefore inconsistent.  Consistent sets of mixed-

mode data for three different materials where presented in Figure 2.  These data sets

will be used to evaluate the different criteria.

Each criterion that produced a general shape close to that of one of the material

responses was fit to the data.  A least squares analysis was performed to optimize the

curve fits.  The least squares analysis was conducted by minimizing the distance

between each data point and the failure curve.  The shapes of the failure curves

produced by the  GIc,  GΙΙc,  GTc  criteria(Eqs. 4, 5, & 6) are not even close to the

material responses observed so no attempt was made to fit these criteria to the

experimental data.  Since the shape of the linear criterion(Eq. 7) was only close to the

shape of PEEK data, no attempt was made to use this criterion for either of the

epoxies.  The power law criterion(Eq. 8) was fit to each material response even though

it cannot model the increasing  G
Ic

m
  with  G

IIc

m

  observed in the epoxy composite data.



The increase in  G
Ic

m

  was not that large, and failing to model this increase would at

least produce a conservative model for the material.  The polynomial, the  KIc,  the

hackle, and the COD criteria(Eqs. 9, 10, 11, & 14) were not able to model a material

response similar to that seen in the experimental data.  The exponential hackle, the

exponential  KIc/KIIc,  and the bilinear criteria(Eqs. 12, 13, & 17) were used to model

all three material responses.  The simple interaction criterion(Eq. 15) was not fit to the

data because it is a specialized case of the linear interaction criterion(Eq. 16) which was

fit to each set of data.

The results of the least square fit of each criterion to the experimental data is

given in Table 2.  The best fit curves for AS4/3501-6, IM7/977-2, and AS4/PEEK

materials response are shown in Figure 17, 18 and 19, respectively.  The linear

interaction criterion(Eq. 16) shown by the heavy dashed line and the bilinear

criterion(Eq. 17) shown by the solid line, appear to model the epoxies better than the

other criteria.  This is also indicated by the coefficients of variation  R2  given in Table

2.  The closer the coefficient is to 1 the better the model fits the data, and as seen in the

table, the linear interaction and the bilinear criterion(Eqs. 16 & 17) produced the

coefficients closest to 1 for both AS4/3501-6 and IM7/977-2.  The power law

criterion(Eq. 8) also had a very low  R2  value for the AS4/3501-6 material, but since

the curve does not model the rising  G
Ic

m

  with  G
IIc

m
,  the other criteria are believed to

be better choices.  Both the linear interaction criterion and the bilinear criterion model

the epoxy based composites well and with the same number of arbitrary constants.

The complexity of the linear interaction criterion(Eq. 16) makes it difficult to work with

since it is an implicit function of  G
Ic

m
  and G

IIc

m
.  The bilinear criterion is based on very

simple equations and is therefore easier to use.  For this reason the bilinear is believed

to be the best choice of failure criteria for these materials.

The PEEK composite was modeled fairly well by all the criteria tested as seen in

Figure 19.  The coefficients of variation for this material are all about the same, but



they are all noticeably smaller than the coefficients of the other materials because there

are fewer experimental points.  The power law criterion(Eq. 8) produced the smallest

coefficient of variation, but the linear criterion(Eq. 7) produced a curve that was almost

as good and with two less independent variables.  For this reason, the linear model is

believed to be the best failure criterion for this material.  Since the bilinear criterion(Eq.

17) contains two extra degrees of freedom, it models the PEEK material slightly better

than the linear criterion(Eq. 7) and might be chosen to be consistent with the criterion

used for the epoxy composites.

Because the response of the epoxy composites was quite different from that of

the PEEK composite, it is clear that no one failure criterion based on just the pure-

mode toughnesses will be able to model all materials.  Since delaminations will often be

subjected to mixed-mode loading and because the mixed-mode failure response cannot

be determined from the pure-mode toughnesses, it is important that mixed-mode

toughness testing be included during the characterization of a material.  Once  the

mixed-mode response of a material has been determined, the shape of the response can

be compared to the different failure criteria presented here.  When choosing the best

failure criterion for a given material one should consider which criterion has been used

for similar materials.  Hopefully a standard choice of failure criteria will emerge for

different classes of material such as a linear criterion for thermoplastic composites and a

bilinear for epoxy composites.  When choosing a failure criterion, one should also

consider the number of arbitrary variables and whether criterion is in a form which can

be easily used.  A simpler criterion with fewer variables is preferred if it models the

material as well as a more complicated one.  After the appropriate failure criterion for

the material is chosen, a least squares fit to the experimental data can be performed to

optimize any arbitrary constants of the criterion.

CONCLUDING REMARKS



Many delamination failure criteria which predict a wide variety of mixed-mode

fracture toughness responses have been reported in the literature, but few consistent

sets of mixed-mode data exist with which to compare these criteria.  The MMB test

was used to measure the mixed-mode delamination toughness of three different classes

of material.  A common brittle graphite/epoxy composite (AS4/3501-6), a state of the

art toughened graphite/epoxy composite (IM7/977-2), and a tough

graphite/thermoplastic composite (AS4/PEEK) were tested.  The MMB test is a

combination of the pure mode I, DCB test and the pure mode II, ENF test, and can

measure fracture toughness at virtually any mixed-mode ratio using a single test

specimen configuration.  The toughness data are plotted on the mixed-mode diagram

(GI  vs.  GII).  The delamination surfaces were examined and a possible change in failure

mechanism was observed in the epoxy composites.

Criteria which have been suggested by other investigators were reviewed and the

range of material responses modeled by each criterion were explored.  A new bilinear

failure criterion was also developed in an attempt to model the possible change in

failure mechanism observed in the epoxy composites.  The different criteria were

compared to the failure response of the three materials tested.  The new bilinear failure

criterion was considered the best choice for the two graphite/epoxy composites because

it modeled the material responses well and because it is relatively simple.  The

AS4/PEEK composite, which did not show signs of a changing failure mode, was

modeled well with either the bilinear or a simpler linear criterion.

Since the response of the epoxy composites was quite different from that of the

PEEK composite, it is clear that no one failure criterion based on just the pure-mode

toughnesses will be able to model all materials.  Because delaminations will often be

subjected to mixed-mode loading and because the mixed-mode failure response cannot

be determined from the pure-mode toughnesses, it is important that mixed-mode

toughness testing be included during the characterization of a material.  Once mixed-



mode toughness testing has been conducted the evaluation of the different failure

criteria provided in this paper should provide general guidance for selecting an

appropriate failure criterion.
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APPENDIX A

LEVER WEIGHT CORRECTION FOR THE MMB TEST

The MMB test uses a lever to apply mode Ι and mode ΙΙ loading to the split

beam specimen using only one applied load,  Pa.  As shown in Figure A1, a gravity

load,  Pg,  also acts on the lever at a point determined by length  cg,  and this load also

contributes to the mode Ι and mode ΙΙ loading of the test specimen.

The mode Ι and mode ΙΙ loading were given in Reference 2 as
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but these equations did not account for the weight of the lever.  The weight of the lever

can be thought of as a second applied load which is superimposed on the true applied

loading.  The mode Ι and mode ΙΙ loadings are therefore given by
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The equations for mode Ι and mode ΙΙ strain energy release rate are given by

Equations A3.
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Substituting Eq. A2 into Eq. A3 gives an expression for  G  in terms of the

applied load and lever weight.
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Notice that since the load is squared in Eq. A3, a cross term develops in Eq. A4

between the applied load and the weight.  These equations that account for the weight

of the lever are equivalent to the equations for  G  given in Reference 2 if the terms

involving  Pg  are removed.

Eq. A4 has been developed assuming the delamination faces are not in contact.

When  c  is small (c <~ 0.67), the delamination faces do not separate and load is

transferred across the faces.  PΙ  (Eq. A2) is the load pulling the delamination open so

that a negative  PΙ  is the load pushing the delamination faces together.    If  PΙ  is

negative, the faces are in contact so  GI  will equal zero, but  GII  can still be found

using Eq. A4.

The errors caused by ignoring the weight of the lever are calculated using Eq.

A5.
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× 100
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The subscripts  w  and  o  indicate that the lever weight was included or neglected,

respectively.   The errors are normalized by  total strain energy release rate,  GI + GII,

so that a small nominal error in  GI  or  GII  does not cause a large apparent error just

because that component also happens to be small.



The error caused by ignoring the lever weight of the MMB apparatus used in the

present study is presented in Figure A2.  The errors in  GI  and  GII  are plotted as a

function of lever load position for total strain energy release rate values from 0.3 to

3 in-lb/in. The redesigned MMB apparatus used in this study was found to weigh 1.85

lb.  The weight is partly due to the saddle mechanism which moves when the lever load

point is moved.  Since the saddle mechanism is moved when the lever load point is

changed, the center of gravity of the lever assembly given by length  cg  also changes.

The relationship between  c  and  cg  was found for this apparatus to be  cg = 0.38 +

0.24 c .  The  c  values that produce the mixed-mode ratios used in this study are also

marked on the Figure.  For the range of lever lengths tested in this study, the largest

error in GI was at the 4/1 mixed-mode ratio (c=3.83 in.) and the largest error in GII 

was at  c= 0.66 in.  The error in both  GI  and  GII  increases rapidly as  GI + GII  goes

below 1 in-lb/in2, but for  GI + GII  above 2 in-lb/in2 the error is always below + 5%

which is negligible for this type of testing.

A simple test was developed to determine when the added complexity of

accounting for the lever weight is necessary.  First Eq. A4 was substituted into Eq. A5.

The error calculations were first simplified as shown in Eq. A6 by neglecting the end

foundation  (λ=0)  and shear correction  (G13=∞)  terms found in Eq. A4.  Higher

order term involving  Pg2  were also neglected.
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Equation A6 is a function of  Pa,  but the critical value of  Pa  is usually not know

before testing.  Pa  was replaced by a function of the total strain energy release rate,  GI

+ GII.  The expression for total strain energy release rate was obtained from Eqs. A4

and simplified by neglecting the correction for lever weight, shear and end foundation



as discussed earlier.  Equations for the maximum  GI  and  GII  errors were created

using the  c  values that gave the worst errors in  GI  and  GII  as seen in Figure A2.

Therefore c=3.84 in. and c=.66 in. were substituted into the  GI  and  GII error

equations, respectively.  Since the largest  GI  error occurs near the pure mode I

condition and the largest  GII  error occurs near the pure mode II condition,  GIc  and

GIIc  were substituted into the two equations respectively.  The resulting estimates of

the maximum errors due to lever weight are
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  If the maximum error for both mode Ι and mode ΙΙ are below say + 5%, then

the weight of the lever can be ignored.  If the error is larger than + 5%, the additional

terms in Eq. A4 involving  Pg  should be used in calculating  G.  If the additional terms

are needed at one mixed-mode ratio, they should be used at all mixed-mode ratios

tested for that material so that the data is consistent.



Table 1.   Material Properties

Material E11 (measured)  E22 G13

AS4/3501-6 19.1 Msi 1.4 Msi 0.85 Msi

IM7/977-2 20.8 Msi 1.33 Msi 0.694 Msi

AS4/PEEK (APC2) 18.7 Msi 1.46 Msi 0.8 Msi

Table 2.  Least Square curve fit parameters for various criteria

Material Criterion GIc GIIc Constants R2

Power Law(Eq. 8) .5185 3.990
α= 0.0571
β= 5.039 .9956

Exponential Hackle(Eq. 12) .4422 3.713 γ= 0.1964 .9924

AS4/3501-6 Exponential K(Eq. 13) .5172 3.092 η= 1.664 .9888

Linear Interaction(Eq. 16) .4740 4.050
κ= 1.279
ϕ=-4.905

.9960

Bilinear(Eq. 17) .4548 3.269
ξ= 0.2039
ζ= 0.2473 .9956

Power Law(Eq. 8) 1.792 8.635
α= 0.126
β= 5.447 .9960

Exponential Hackle(Eq. 12) 1.345 8.354 γ= 0.304 .9962

IM7/977-2 Exponential K(Eq. 13) 1.730 7.833 η= 1.050 .9948

Linear Interaction(Eq. 16) 1.616 8.557
κ= 0.868
ϕ=-2.962

.9974

Bilinear(Eq. 17) 1.619 8.106
ξ= 0.2107
ζ= -0.371 .9976

Linear(Eq. 7) 4.745 7.147 .9787

Power Law(Eq. 8) 4.753 6.649
α= 1.662
β= 0.7329

.9811

AS4/PEEK Exponential Hackle(Eq. 12) 4.538 6.734 γ= 0.8701 .9797

Exponential K(Eq. 13) 4.509 6.733 η= 0.4940 .9799

Linear Interaction(Eq. 16) 4.778 6.736
κ= 0.8679
ϕ= 1.058

.9803

Bilinear(Eq. 17) 4.433 6.861
ξ= -0.1261
ζ= -0.7477 .9801
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Figure 2.  Mixed-mode failure responses of graphite composite materials.



Figure 3.  Delamination photomicrographs of AS4/3501-6 at different 
                 mixed-mode ratios. (1000x)
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Figure 4.  Delamination photomicrographs of IM7/977-2 at different 
                 mixed-mode ratios. (1000x)
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Figure 5.  Delamination photomicrographs of AS4/PEEK at different 
                 mixed-mode ratios. (1000x)
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                       interaction criterion(Eq. 16).
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