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Abstract
The rigid-body degrees of freedom and elastic degrees of freedom of aeroelastic vehicles are

typically treated separately in dynamic analysis.  Such a decoupling, however, is not always justified

and modeling assumptions that imply decoupling must be used with caution.  The frequency

separation between the rigid-body and elastic degrees of freedom for advanced aircraft may no

longer be sufficient to permit the typical treatment of the vehicle dynamics.  Integrated, elastic

vehicle models must be developed initially and simplified in a manner appropriate to and consistent

with the intended application.  This paper summarizes key results from past research aimed at

developing and implementing integrated aeroelastic vehicle models for flight controls analysis and

design.  Three major areas will be addressed; 1) the accurate representation of the dynamics of

aeroelastic vehicles, 2) properties of several model simplification methods and 3) the importance of

understanding the physics of the system being modeled and of having a model which exposes the

underlying physical causes for critical dynamic characteristics.

Introduction
The means of obtaining the simplest valid mathematical model of an aeroelastic vehicle for

dynamic analysis and control system design is a major issue in flight vehicle dynamics.  The need to

account for aeroelastic effects will make model formulation very important for flight vehicles of the

future.  Reduced structural weight, potential for static instability, and application of high-authority

feedback control systems will result in reduced frequency separation between the "rigid-body"

modes and "elastic" modes.  In addition, the potential for using control systems to influence the

vehicle configuration, the so-called control configured vehicle concept [Schwanz (1977)], will

require accurate aeroelastic models to be available very early in the design cycle.

Of particular importance is the potential for dynamic aeroelastic effects to influence "rigid-body"

vehicle responses.  Schmidt (1985), and Swaim and Poopaka (1982) have addressed the effects of

aeroelastic/rigid-body modal coupling on flying qualities.  A simulation study using the elastic

vehicle model from Waszak and Schmidt (1988) and performed in the Visual and Motion Simulator

(VMS) facility at NASA Langley Research Center addressed these effects [Waszak, Davidson, and

Schmidt (1987)].  This study showed that increasing structural flexibility, even to moderate levels,

can have a negative impact on vehicle handling qualities.

The view of the authors is that an integrated elastic vehicle model should be developed initially

and simplified in a manner consistent with the intended application.  This must be done in such a

manner that the salient dynamic effects are retained in the model.  This view must also be tempered

with the need to have the simplest model possible to facilitate effective dynamic analysis and control
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synthesis, and to ease computational burden.

In this paper, several key aspects of formulating aeroelastic models for flight dynamics

applications will be addressed.  The development of the equations of motion for any aeroelastic

vehicle is presented in which the structure is in many ways very similar to the equations of motion

for a rigid vehicle.  The similarities and differences of the aeroelastic equations of motion and

traditional rigid-body equations of motion will be discussed and the important features of the

aeroelastic model structure will be addressed.

The methods used for model simplification depend to a large degree on the ultimate use for the

reduced-order model.  However, one must never lose sight of the objective:  obtain the simplest

vehicle model that possesses the requisite accuracy.  Techniques capable of delivering valid reduced-

order models for control system design will be discussed.

Another key issue associated with the inherent complexity of aeroelastic vehicles is interpreting

vehicle behavior.  Understanding the sources of undesirable (or desirable) dynamic behavior is often

required to design control systems or to design the airframe itself.  The structure of the equations of

motion and properties of the model simplification methods can aid the analyst/designer in developing

this understanding.  This is an area which is often overlooked in the development of modeling and

model simplification methods and will be specifically addressed herein.

Equations of Motion
The development of the equations of motion of an elastic aircraft has been addressed many times

in the literature [Milne (1962), Roger (1977), Schwanz (1977), Cerra and Noll (1986)].  This subject

has recently been revisited by the authors with emphasis on the need to develop accurate aeroelastic

vehicle models and to clarify the assumptions associated with their development and assess their

validity.  The development of the equations of motion discussed here are intended for application to

flight dynamics, simulation and control system design for elastic aircraft.  This application places

special requirements on the form and properties of the resulting equations.  They must be able to

describe large amplitude maneuvers in a body reference coordinate system while simultaneously

describing the small amplitude structural deflections.  This requires that the model be nonlinear in

variables which describe body orientation, but allows the structural dynamics to be linear.  The

equations must also account for inertial and aerodynamic coupling which are normally neglected.

An additional goal is to have the form of the equations be applicable over the entire design cycle,

from the conceptual through detailed design phases.

Two recent unrelated studies, one by Waszak and Schmidt (1988) and another by Buttrill, Zeiler,

and Arbuckle (1987), have sought to develop the equations of motion for elastic aircraft to meet

these goals.  The emphasis of the first study, which will be referred to as the Waszak Study, was the

assembly of a mathematical model which integrated "rigid-body" and "elastic" degrees of freedom

with particular emphasis on the assumptions made at the various stages in the development and on

obtaining a set of equations that constitute an analytical (or literal) model.  The second study, which
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will be referred to as the Buttrill Study, focused on including effects of nonlinear inertial coupling

between rigid-body angular rates and structural deformations and rates which are usually ignored in

conventional aircraft modeling.

Both studies utilized Lagrange's method of deriving the equations of motion relative to a "mean

axis" body reference coordinate system.  The use of mean axes minimizes the degree of inertial

coupling between the rigid-body and the elastic degrees of freedom.  As a result of using mean

reference axes and some key simplifying assumptions, the equations of motion from the Waszak

Study have a structure similar to conventional rigid aircraft (with additional degrees of freedom

associated with the elastic modes).  These equations have the added feature that they exhibit no

inertial coupling between the elastic and the rigid degrees of freedom (all coupling occurs through

the aerodynamic forces).  The Buttrill Study sacrificed some of the similarity to rigid aircraft

demonstrated in the Waszak Study in the interest of more accurately modeling the inertial coupling

effects.  This results in the body axis rotational equations having additional coupling terms.

Both studies also made use of the same basic assumptions in the derivation of the equations of

motion;

a) the structure is treated as a collection of lumped masses with constant mass density,

b) the structural deformations are small (i.e. linear stress-strain and linear stain-displacement

relations are valid),

c) the structure exhibits synchronous elastic motion described by a complete set of normal

modes, and

d) a local Earth-fixed inertial reference frame with constant uniform gravitational field was

utilized.

The two studies differ slightly in that the Waszak Study used the additional assumptions that;

e) each mass element is a point mass with no rotational inertia, and

f) elastic deformation and rate are sufficiently small or colinear so that their cross product is

negligible and the inertia tensor is constant.

The equations of motion from the Buttrill study can be simplified to a form identical to those in

the Waszak study by adding these assumptions, therefore the two derivations are completely

consistent.

Mean Axes

A short discussion of mean axes is warranted before addressing the specific issues associated

with the two studies.  As previously stated, the form of the equations of motion is facilitated by the

use of a mean axes reference frame.  The mean axis reference frame is not fixed to a material point in

the body but floats so that its origin is always at the instantaneous center of mass of the body.
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Furthermore, the mean axis frame is oriented in such a way that the reference frame motions are

inertially decoupled from the structural deflections.  An excellent survey of five types of floating

reference frames is given in Canavin and Likins (1977).  The practical mean axis conditions of

Waszak and Schmidt (1988) are equivalent to the Buckins or linearized Tisserand frame of Canavin

and Likins (1977).

Elastic modes of free vibration calculated from a structural model unconstrained in translation

and rotation should satisfy the practical mean axis conditions [Canavin and Likins (1977)].  If the

structural model has been restrained to create a nonsingular stiffness matrix, the resulting modes are

inertially coupled with motion of the body frame and the equations of motion become more complex.

In the remainder of this section the important results from each of the two studies will be

reviewed.  Note that the equations of motion discussed herein are in a form which is applicable to a

wide class of problems.  Any airplane which has significant elastic dynamics and needs to be

described dynamically in a body reference frame can be represented using these equations.

The Waszak Study

Tables 1 and 2 summarize the form of the equations of motion of an arbitrary elastic aircraft

derived in Waszak and Schmidt (1988).  Table 1 contains three translational equations and three

rotational equations that describe the motion of the body reference coordinate system and a set of

equations which describe the structural deformations relative to body axes.

Notice that the translational and rotational equations are identical in form to conventional rigid-

body equations of motion.  The differences lie in the representations of the aerodynamic forcing

functions. These forces completely describe the coupling which exists between the rigid-body and
elastic degrees of freedom.  Also note that the moments of inertia, I(.), correspond to the deformed

structure and change as the vehicle deforms.  It is assumed, however, that the variations in the

moments of inertia due to elastic deformation are small and are hence neglected.  The moments of

inertia actually used in the equations of motion correspond to the undeformed vehicle.

In addition to the body axis translational and rotational equations there are a set of equations that

describe the elastic deformations of the body.  The elastic mode equations are typical of a second-

order oscillator with equivalent modal damping proportional to modal velocity.  The only coupling

with the rigid-body degrees of freedom is through the generalized aerodynamic forces,

Qj
η (see Tables 1 and 2) .

Table 2 summarizes expressions for the aerodynamic forces for an elastic aircraft.  These

expressions are presented in a stability derivative form.  The difference between these expressions

and those used for rigid aircraft is in the addition of elastic stability derivatives.  These terms are

similar to their rigid aircraft counterparts and serve to couple the elastic degrees of freedom with the

rigid-body degrees of freedom.  The relationships between the structural parameters (i.e. mode

shapes) and the elastic stability derivatives are developed in Waszak and Schmidt (1988) by using

strip theory aerodynamics.  The validity of this approximation will not be discussed further other
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Table 1 - Elastic aircraft equations of motion

M [ U̇  − rV + qW + g sinθ ]  =  QX

M [ V̇  − pW + rU − g sinφ cosθ ]  =  QY

M [ Ẇ  − qU + pV − g cosφ cosθ ]  =  QZ

Ixxṗ  − (Ιxyq̇  + Ixzṙ  ) + (Izz − Iyy )qr + (Ixyr − Ixzq )p + (r2 − q2)Iyz  =  Qφ

Iyyq̇  − (Ιxyṗ  + Iyzṙ  ) + (Ixx − Izz )pr + (Iyzp − Ixyr )q + (p2 − r2)Ixz  =  Qθ

Ixxṙ  − (Ιxzṗ  + Iyzq̇  ) + (Iyy − Ixx )pq + (Ixzq − Iyzp )r + (q2 − p2)Ixy  =  Qψ

Mj [ 
˙η̇ j + 2ζjωjη̇  + ωj

2ηj ]  =  Qj
η   ;  j=1,2,3,...

Table 2 - Elastic aircraft generalized forces

QX  =  
ρV0

2S
2  ( CX0

 + CXα
α + CXδ

δ + ∑
i=1

∞
 CX

i
ηηi )  + 

ρV0Sc̄
4  ( CXα̇

α̇ + CXq
q + ∑

i=1

∞
 CX

i
η̇η̇i )  + TX

QY  =  
ρV0

2S
2  ( CY0

 + CYβ
β + CYδ

δ + ∑
i=1

∞
 CY

i
ηηi )  + 

ρV0Sb
4  ∑

i=1

∞
  CY

i
η̇η̇ i  + TY

QZ  =  
ρV0

2S
2  ( CZ0

 + CZα
α + CZδ

δ + ∑
i=1

∞
 CZ

i
ηηi )  + 

ρV0Sc̄
4  ( CZα̇

α̇ + CZp
p + CZq

q + ∑
i=1

∞
 CZ

i
η̇η̇i )  + TZ

Qφ  =  
ρV0

2Sb
2  ( CL0

 + CLβ
β + CLδ

δ + ∑
i=1

∞
 CL

i
ηηi )  + 

ρV0Sb2

4  ( CLp
p + CLq

q + ∑
i=1

∞
 CL

i
η̇η̇i )  + LT

Qθ  =  
ρV0

2Sc̄
2  ( CM0

 + CMα
α + CMδ

δ + ∑
i=1

∞
 CM

i
ηηi )  + 

ρV0Sc̄2

4  ( CMα̇
α̇ + CMq

q + ∑
i=1

∞
 CM

i
η̇η̇i )  + MT

Qψ  =  
ρV0

2Sb
2  ( CN0

 + CNβ
β + CNδ

δ + ∑
i=1

∞
 CN

i
ηηi )  + 

ρV0Sb2

4  ( CNp
p + CNr

r + ∑
i=1

∞
 CN

i
η̇η̇i )  + NT

Qj
η   =  

ρV0
2Sc̄

2  ( Cj
0 + Cj

αα + Cj
ββ + Cj

δδ + ∑
i=1

∞
 Cji

ηηi )  + 
ρV0Sc̄2

4  ( Cj
α̇α̇ + Cj

pp + Cj
qq + Cj

rr + ∑
i=1

∞
 Cji

η̇η̇i )  

than to say that it is a reasonable approach for high aspect ratio configurations if numerical values

are sought.  However, the real importance is that the expressions for the elastic stability derivatives

obtained using strip theory provide physical insight through a conceptual link between physical

parameters and their effect on the equations of motion independent of their numerical values.
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The use of stability derivatives has the added advantage that the same form of the equations of

motion can be used throughout the design cycle.  Early on, before detailed analyses have been

performed, strip theory or other first-order methods can be used to obtain a preliminary elastic

vehicle model.  Later, when more detailed analyses have been performed (e.g. computational fluids

dynamics analyses, wind tunnel tests, finite element analyses), the data can be converted to a

stability derivative form and substituted directly into the equations of motion.

The equations of motion summarized in Tables 1 and 2 also constitute a "literal" model for an

elastic airplane.  The literal model can be used to develop insight into the effects of various physical

parameters on the dynamic characteristics of the vehicle.  Such insight is difficult to obtain from

purely numerical models.  It is important to note that even if a "numerical" model is available, it can

be put in a form consistent with the "literal" model which allows the analyst to exploit his insight.

An example of the importance of modeling aeroelastic dynamics was demonstrated in Waszak

and Schmidt (1988).  The equations of motion discussed above were applied to a high speed

transport aircraft with a moderate level of structural flexibility.  The results of the study showed that

neglecting aeroelastic dynamics during model development resulted in a model which incorrectly

indicated the vehicle to have a stable phugoid mode and which had errors in short period frequency

and damping of approximately 55% and 14%, respectively,  compared to the complete aeroelastic

vehicle model.

The Buttrill Study

The equations of motion developed during the Buttrill Study [Buttrill, Zeiler, and Arbuckle

(1987)] were refined by Zeiler and Buttrill (1988) and are summarized in Table 3.  Zeiler and Buttrill

(1988) utilized nonlinear strain-displacement relations to improve the calculation of [∆2J]jk, which

appears as a stiffness term when nonzero rotational rates,    ω   , are present.  These three sets of

equations are presented in vector form and correspond to the scalar equations presented in Table 1

except for the addition of terms representing nonlinear inertial coupling.  In Table 3, an open dot

over a quantity indicates the time rate of change of that quantity expressed in body frame

components.

The translational equation is completely analogous to the previous study.  The use of mean axes

has eliminated any inertial coupling between the rigid-body degrees of freedom and the elastic

degrees of freedom.  The rotational equation, on the other hand, has additional terms not included in

the Waszak Study.  These additional terms account for variations in the inertia terms with structural

deformation (deflection induced changes in mass distribution) and second-order coupling associated

with the fact that

the cross product between structural displacement and rate are nonzero (since all modes do not act in

the same plane).  When these terms are neglected the rotational equations are completely analogous

to those in the Waszak Study.
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The elastic mode equations also have additional terms.  These are associated with angular

acceleration of the body reference frame, Coriolis acceleration, and centrifugal loading.  Neglecting

these effects also simplifies the elastic mode equations to those from the Waszak Study.

The objective of the Buttrill Study was to generate a high fidelity model of an elastic airplane

with special attention to the effects of inertial coupling.  Consequently, the representation of the

aerodynamic forces was not explicitly addressed other than to discuss the numerical methods by

which aerodynamic forces were computed for an example problem.  It should be noted, however,

that coupling between the rigid-body and elastic degrees of freedom also occurs through the
aerodynamic forces.  The terms    F   ,    L   , and Qηj

 are applied loads and include aerodynamic and thrust

forces and moments.

Table 3 - Elastic aircraft equations of motion with inertial coupling

m °    V       =     F    − m (     ω     €×     V     ) + m _g 

[J] °    ω      +    h   jk ηj
 ˙η̇   

k  =     L     +     ω     × [J]     ω     − [°J ]     ω     −    h   jk η̇ 
j
 η̇ 

k −     ω     ×    h   jk η 
j
 η̇  

k

Mjk ˙η̇   
k −  °    ω      •    h   jk ηk  =   Qηj

 − Mjj ωj
2

 ηj + 2    ω     •    h   jk 
η̇

 

k + 
1
2      ω    T {[ ∆J ]j + [ ∆2J ]jk ηk

 }     ω

[J]  =   [Jo]  +  [ ∆J ]jη
j  +  [ ∆2J ]jkηjηk

In summary, it was found that in general, nonlinear inertial coupling can become a significant if

at least one of the following characteristics are reflected in the vehicle:

a) aerodynamic loads are small,

b) expected rotational rates are of the order of the elastic frequencies,

c) the model geometry is sufficiently complex that transverse deflections result in changes in

mass distribution.

Summary

Both of these studies indicate that the structure of the equations of motion of elastic aircraft are

quite complex, even when they are developed with the intent of minimizing the apparent modal

coupling.  Some of the complexities associated with the dynamics of aeroelastic vehicles are listed

below.

a) The models which result are of high dynamic order, two additional states for each elastic

mode.

b) The relationships between the various model parameters that are fairly well understood for
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rigid aircraft, (e.g. ωsp
2   ≈ ZwMq−Mα) are more difficult to identify for elastic aircraft.

c) The parameters that appear in the model, such as the generalized modal stability derivatives,
are less well understood than classical parameters such as Lα, and accurate numerical values

are more difficult to obtain.

d) There are significant uncertainties associated with the elastic parameters.

The complexity negatively impacts many aspects of aeroelastic aircraft dynamics and control.  A

natural next step is to address how the important effects of elastic dynamics can be retained in the

model while at the same time simplifying the model structure.  This is discussed in the next section.

Model Simplification
The design of effective and practical control systems requires that the designer understand which

aspects of the vehicle dynamics are important, the uncertainties associated with the model, and a

knowledge of the parameters which have a significant impact on critical vehicle responses.  The size

and complexity of the models which result from describing the aeroelastic interactions (via the

equations of motion discussed previously) make this an extremely difficult task.  It is likely,

however, that once the key interactions have been accounted for, many fewer physical parameters

need to be retained to capture the prominent aspects of the vehicle responses.  It is therefore

important to be able to simplify the models but still retain enough information to capture the salient

features of the aeroelastic interactions.  Note that the parameters which turn out to be key are not

usually discernable before the detailed model is obtained and requires that such a model be obtained

first followed by appropriate simplification.

Model simplification is also important for aeroelastic systems from the perspective of controller

complexity.  Many control design methodologies require the system model to be linear and result in

controllers which are of dynamic order equal to or greater than the design model.  The size and

complexity of aeroelastic models therefore dictates large, complex controllers.  A reduced-order

linear model which retains the salient aspects of the nonlinear system dynamics within a simplified

form may allow effective controllers to be designed with significantly simpler structure.

Model simplification has as its goal to obtain a model which, while simpler than the full-order

model, approximates some aspect of the true system.  The first step in this process is to linearize the

system dynamics about an equilibrium condition.  Reduction of the linear model is then performed

and the desired manner in which the reduced-order linear model approximates the full-order model

depends to a large degree on the intended application.  For example, in control system synthesis it is

important to accurately represent the system frequency response in the frequency range where

crossover of the loop transfer function is likely to occur [McRuer, Ashkenas, and Graham (1973)].

Note that this implies that there are frequencies both above and below the critical frequency range

which may not need to be well modeled.  The frequency range of interest is very important when

applying model simplification and plays a key role.
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There are many methods by which linear elastic aircraft models can be simplified.  A few of

these will be discussed herein and are summarized below.

1. Truncation - deletes some of the modes (modal truncation) or states (state truncation) from

the full-order model [Waszak and Schmidt (1988)].

2. Residualization - accounts only for the static effects of some modes or states whose dynamics

are not crucial [Kokotovich, O'Malley, and Sannuti (1976)].

3. Balanced reduction - minimizes frequency response error in a normed sense and has certain

advantages associated with obtaining desired accuracy which will be addressed subsequently

[Bacon and Schmidt (1989)].

4. Literal (or symbolic) simplification - addresses the impact of various physical parameters on

the system responses and ignores those which have little impact [Schmidt and Newman

(1988)].

Each of these methods have advantages and disadvantages as they apply to simplification of

elastic aircraft models.  In this section the four simplification methods will be discussed in these

terms.

Truncation

Truncation is a common form of model reduction.  In fact, it is the most common form of

reduction since every finite dimensional linear model is a truncated model in the sense that there is

always some aspect of the physical system that is neglected in the modeling process.  While

truncation is a well established model simplification technique, a slightly different view based on

Cramer's Rule is presented here with some interesting implications [Schmidt and Newman (1988)].

The degree to which truncation can be utilized depends on the degree to which the truncated

degrees of freedom directly influence the vehicle response and the degree to which they couple with

the retained degrees of freedom.  Consider a frequency domain representation of a linear system as

shown below.

 





A(s) c(s)

r(s) m(s)
 





  






Z(s)

zr(s)
 





   =   






B(s)

br(s)
 





  U(s) (1a)

Y(s)  =  M(s) Z(s)  +  mr(s) zr(s) (1b)

Y(s) is the vector of responses, U(s) is the vector of commands, and [ZT(s), zr(s)]T is the vector of

states or system degrees of freedom.  Assume for simplicity of discussion that zr(s) is a scalar.  In

this case m(s) is a scalar, r(s) and br(s) are row vectors, and c(s) and mr(s) are column vectors.  By

applying Cramer's Rule for the determinant of a matrix [Strang (1980)], and an identity for the

determinant of a partitioned matrix [Brogan (1974)]  the transfer functions for the ith output due to
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the jth input of the system can be written -

Zi(s)
Uj(s)  = 

det{(Ai(s)Bj(s)) − c(s)m-1(s)(ri(s)brj(s))}
det{A(s) − c(s)m-1(s)r(s)}

 (2a)

zr(s)
Uj(s)   =  

brj(s) det{A(s) − Bj(s)brj
-1(s)r(s)}

m(s) det{A(s) − c(s)m-1(s)r(s)}
 (2b)

where the notation AiBj represents the operation of replacing the ith column of A with the jth

column of B.  These forms of the system transfer functions are very useful in identifying some

important aspects of applying model reduction via truncation.
From inspection of the transfer function expressions above one can see that if ck(s)rl(s) << m(s)

and ck(s)(ribrj)l(s) << m(s) ; k,l = 1,2,...,n  where n is the number of states, then

Zi(s)
Uj(s)   ≈  

Ẑi(s)
Uj(s)   =  

det{Ai(s)Bj(s)}
det{A(s)}

 (3)

Also, if in addition Bjk(s) rl(s) << brj(s) ; k,l = 1,2,...,n then

zr(s)
Uj(s)   ≈  

brj(s)
m(s) (4)

Equation (3) is exactly what results if the degree of freedom zr is truncated from the model (or not

included in the model from the outset).

Examining the transfer function 
zr(s)
Uj(s)  from the context of physical systems one finds that the

polynomial m(s) is usually of higher order than brj(s).  Therefore, for frequencies above some value

determined by m(s) and brj(s) (as s→∞) the effect of zr on the output Y(s) is negligible which can be

approximated by

Y(s)  =  M(s) Ẑ(s) (5)

where the elements of Ẑ(s)  are described by

Ẑ i(s)  =  ∑
j

 
Ẑi(s)
Uj(s)  Uj(s) (6)



Modeling and Model Simplification of Aeroelastic Vehicles

11

The implication is that truncation should be used to simplify a model in which the degree of freedom

to be removed is much    slower    than the dynamics of interest.

The conditions that must be satisfied to apply truncation to slow dynamics have some important
implications.  The condition that ck(s)rl(s) << m(s) implies that the degree of coupling between the

deleted degree of freedom and the retained degrees of freedom is small.  Similarly, ck(s)(ribrj)l(s)

<< m(s) implies that the coupling effect between the deleted degree of freedom and the retained

degrees of freedom (via c(s)) combined with the ability of the jth control input to excite the deleted
degree of freedom is small.  Finally, Bjk(s) rl(s) << brj(s) implies that the combination of the coupling

effect between the retained degrees of freedom and the deleted degree of freedom (via r(s)) and the

ability of the jth control input to excite the retained degrees of freedom is small.  These conditions

will be referred to as the "decoupling conditions" and can generally serve as a test to determine if a

particular degree of freedom can be legitimately truncated.

Note that these conditions are identically satisfied if the system is in modal form since the off-

diagonal partitions, c(s) and r(s), are identically zero in this case.  Therefore, modal truncation can be

effectively applied whenever there is sufficient frequency separation between the deleted mode and
the dynamics of interest, so that in the frequency range of interest mr(s)zr(s) can be neglected from

the output equation, Eqn. (1b).

The truncation of slow modes is contrary to the typical use of truncation which is to remove

higher order dynamics.  The reason that truncation works for some higher order dynamics can be

seen by addressing the problem by using a partial fraction expansion of a transfer function,

Y(s)
U(s)   =  

R1

s+λ1

   +  
R2

s+λ2

   +  . . .  +  
Rn

s+λn

 (7)

where Ri are the residues and λi are the eigenvalues of the system [D'Azzo and Hoopis (1975)].  If

the desired frequency range of accuracy of the simplified model is well below λn, then the last term

in the expansion can be approximated by 
Rn

λn

 .  Since this term is associated with a high frequency

mode, the value of λn is most likely much greater than unity.  In addition, high frequency modes are

frequently difficult to excite which results in small residues.  Clearly, if Rn << λn then the last term

in the partial fraction expansion can be neglected without much impact on the frequency response in

the frequency range of interest.  Thus, truncation can be used to remove both low and high frequency

dynamics when the appropriate conditions are satisfied.

Residualization

Residualization is another common method of model simplification.  Many times a system may

have some dynamics that are fast compared to the dynamics of interest [Kokotovic, et al (1976)].

However, the fast dynamics can interact with the slower dynamics so that truncation of the fast
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dynamics may not be valid.  Residualization allows one to take into account the interaction without

including the dynamic effects of the fast dynamics.

The same model structure used previously in the discussion of truncation will be used again here.

Consider the frequency domain representation of a linear system presented in Eqns. (1).  The system

transfer functions can again be approximated by the expressions in Eqns. (3) and (4) when the
decoupling conditions are satisfied (i.e. ck(s)rl(s) << m(s), ck(s)(ribrj)l(s) << m(s), and Bjk(s) rl(s)

<< brj(s)).

Residualization is typically accomplished by letting the degrees of freedom to be removed from

the model reach their steady state values instantaneously by setting their derivatives zero.  An

analogous  in terpre ta t ion  is  to  le t  s→0 in  the  t ransfer  func t ion
zr(s)
Uj(s) (as opposed to letting s→∞ for truncation) .

The simplified model using residualization takes on the following form.

Y(s) ≈  M(s)Ẑ(s)   +  mr(s) 
brj(0)
m(0)  U(s) (8)

The implication here is that residualization can be legitimately applied to degrees of freedom

which are much   faster   than the retained modes.  Therefore, only degrees of freedom whose

frequencies are well above the expected crossover frequency range should be considered for

residualization.

Notice again that the decoupling conditions are automatically satisfied when the system is in
modal form. When the frequency range of interest is well below λn, the simplified model produced

by modal residualization (Eqn. (8)) is identical to the partial fraction expansion of the transfer

function (Eqn. (7)) with the last term approximated by 
Rn

λn

 .

While the validity of performing model simplification via truncation or residualization can be

evaluated by the degree to which the decoupling conditions are satisfied and the degree of frequency

separation between the deleted dynamics and the desired dynamics, there is no guarantee on the

accuracy of the resulting simplified model.  The current approach is a cut and try (i.e. iterative),

graphical procedure. A plot of the candidate frequency response is compared to that  of the full-order

system and a decision is made as to its acceptability.  This is a basic limitation of these approaches.

An advantage of these approaches, however, is that the form of the model which results after

simplification is the same as the corresponding portion of the original.  Therefore, if the model had a

special structure before simplification then that structure is retained in the simplified form.  This can

be important in allowing the analyst to use his knowledge of the physics to interpret the accuracy of

the resulting simplified model as well as the effect of various physical parameters on the system

response.
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A comparison of truncation and residualization applied to a high speed transport aircraft is

presented in Waszak and Schmidt (1988).  The results indicate the these methods are often quite

acceptable.  However, as structural flexibility increases these methods may not provide the required

accuracy for the desired model order.

Balanced Reduction

Internally balanced reduction and frequency weighted internally balanced reduction are two more

model simplification methods that have received considerable attention recently.  A considerable

body of literature has addressed the concept of balanced reduction and its variants [Enns (1984),

Bacon and Schmidt (1989), Glover (1984)].  We will simply address some of the issues that should

be kept in mind when considering this model simplification approach.

Briefly stated, the balanced realization approach to model reduction chooses an ordered

combination of state directions which dominate the input/output behavior of the system in decreasing

order.  An advantage of this approach is that the accuracy of the reduced-order model can be

measured in a normed sense.  The frequency response error between the full-order system and the

simplified system is bounded by twice the sum of the Hankel singular values of the deleted degrees

of freedom [Bacon and Schmidt (1989)]. In addition, the measure of accuracy is a direct by-product

of the reduction process.

Unfortunately, the balanced reduction method results in a simplified model which matches the

frequency response of the full-order model in regions where the magnitude is greatest.  This may   not  

be the region of crossover.  As a result the model may not be acceptable for application to control

design regardless of the "accuracy."  An example of this limitation is presented in Schmidt and

Newman (1989).  The weakness of the method can be resolved by applying weighting functions to

the basic approach to emphasize a desired frequency range (e.g. the crossover region) [Enns (1984),

Bacon and Schmidt (1989)]. However, when this is done the measure of the accuracy of the

simplified model is no longer valid.  Research into resolving this issue is currently underway.

Yet another limitation of the balanced reduction methods is associated with the fact that the state

space form of the simplified model which results is only related to the original model through their

frequency responses.  The states of the simplified model are entirely different from those of the full-

order model.  In fact, the simplified state space model looses all structure that appeared in the full-

order model.  The implication is that any insight that the analyst has concerning the physical nature

of the system cannot be readily utilized in subsequent analyses using the simplified model.

An application of frequency weighted internally balanced model reduction was presented in

Schmidt and Newman (1989).  This study demonstrated the importance of appropriate model

reduction for application in control synthesis.  If the reduced order model does not show good

agreement with the full order model in the region of crossover, even where the transfer functions

have relatively small magnitude, the resulting control law may not perform as expected when applied

to the full order model (even to the point of destabilizing the system).
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Literal Simplification

The last model reduction method which will be discussed here and one which is often overlooked

is literal approximation.  This method is based on first-order perturbation theory and can, in

principle, be applied to high order models.

An advantage of this approach is that it allows one to identify the cause and effect relationships

between physical parameters and dynamic behavior.  A disadvantage of this approach is that it is

tedious to apply to more than very simple systems.  The recent advances in symbolic mathematics

computer programs however have fostered a renewed interest in this approach [Schmidt and

Newman (1988)].

In an earlier section the equations of motion for an elastic aircraft were described in a literal form

using modal structural representations.  This form of the equations of motion lends itself to literal

(symbolic) formulation of system transfer functions.  This can be accomplished by hand or with the

aid of one of the many symbolic mathematics computer programs.

Consider literal representations of the numerator and denominator polynomials for a pitch-rate-

to-elevator transfer function of an elastic airplane in which the short period approximation has been

applied [McRuer, Ashkenas, and Graham (1973)] and with one structural mode included in the

model.  These polynomials are presented in Table 4.

The parameters that appear in the polynomials represent stability and control derivatives (Z, M,

and F)1 , structural parameters (ω, ζ, and φ')2, and the flight speed V.  Those terms with subscripts α
and q are associated with the rigid-body degrees of freedom (angle of attack and pitch rate,
respectively).  Those terms with the subscript δe are associated with the elevator deflection. Those

Table 4 - Example of literal transfer function polynomials - Gδe
q   = 

N(s)
D(s) 

N(s)

Zδe

V  {s[Mα(s2
 + (2ζω − Fη̇ )s + (ω2

 − Fη)) + Fα(Mη̇ s + Mη)] − φ's[MαFqs + Fα(s2 − Mqs)]} +

Mδe
{s[(s − 

Zα
V  )(s2

 + (2ζω − Fη̇ )s + (ω2
 − Fη)) − Fα(

Zη̇
V   s + 

Zη
V  )] − φ's[Fqs(s − 

Zα
V  ) + Fα(1 + 

Zq
V   )s]}

+ Fδe
 {s[(s − 

Zα
V  )(Mη̇ s + Mη) + Mα(

Zη̇
V   s + 

Zη
V  )] − φ's[(s − 

Zα
V  )(s2 − Mqs) − Mα(1 + 

Zq
V   )s]}

D(s)
− (

Zη̇
V   s + 

Zη
V  )[MαFqs + Fα(s2 − Mqs)] − (Mη̇ s + Mη)[Fqs(s − 

Zα
V  ) + Fα(1 + 

Zq
V   )s] +

(s2
 + (2ζω − Fη̇ )s + (ω2

 − Fη)) [(s − 

Zα
V  )(s2 − Mqs) − Mα(1 + 

Zq
V   )s]

                                                
1 Z is the force oriented along the body axis orthogonal to the plane of the wing (and is predominantly lift), M is the

pitching moment, and F is the generalized force associated with the elastic degree of freedom.

2 ω and ζ are the invacuo frequency and damping of the elastic mode, and φ' is the mode slope at the point where pitch

rate is measured.
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terms with subscripts η and η̇  are associated with the modeled elastic degree of freedom and its time

derivative.

The numerical form of the transfer function structure represented by the polynomials in Table 4

is presented in Eqn. (9) for a high speed transport aircraft example from Waszak and Schmidt

(1988).  The numerical form of the transfer function was obtained by truncating the forward velocity

perturbation degree of freedom and residualizing the second, third and fourth structural modes from

the elastic equations of motion of the aircraft.  Note that the numerator has three real roots and one

root at the origin and the denominator has two pairs of complex conjugate roots and one root at the

origin.

Gδe
q   = 

13.06s(s + 0.231)(s − 3.362)(s + 3.959)

s(s2+ 0.874s + 1.572)(s2+ 0.993s + 36.51)
 (9)

Once the numerator and denominator polynomials of the desired transfer function are obtained,

the approximate terms are chosen so that the following two criteria are satisfied.

a) The literal expressions must factor into the same form as the original polynomials (e.g. order

of polynomial, number of real and complex roots), and

b) numerical values based on the simplified terms should accurately approximate the values

based on the original polynomials.

The underlined terms of the numerator and denominator polynomials in Table 4 involve the key

model parameters (stability derivatives and structural parameters), which factor into the appropriate

form, and result in approximate polynomials with the desired properties described above.  These

terms are used to obtain the approximate literal model presented in Table 5.  The corresponding

numerical values for this approximate model are also presented in Eqn. (10).

Table 5 - Approximate literal transfer function polynomials - G̃δe
q   = 

Ñ(s)
D̃(s)

 

Ñ(s) 
(Mδe

 − φ' Fδe
 )s[s + (− 

Zα
V  )][s + (

b − (b2 − 4c)1/2

2  )][s + (
b + (b2 − 4c)1/2

2  )]

D̃(s) s[s2 + (− 

Zα
V   − Μq)s + ( 

Zα
V   Μq − (1 + 

Zq
V   )Mα)] (s2

 + (2ζω − Fη̇ )s + (ω2
 − Fη))

     b = [Mδe
(2ζω − Fη̇ ) + φ'Fδe

Mq ] / (Mδe
 − φ' Fδe

 )          c = Mδe
(ω2

 − Fη) / (Mδe
 − φ' Fδe

 )
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G̃δe
q   = 

13.06s(s + 0.416)(s − 3.265)(s + 4.177)

s(s2+ 1.246s + 3.758)(s2+ 0.621s + 34.83)
 (10)

Note that the numerical values from the approximate model agree to varying degree with the "truth"

model in Eqn. (9).  Those terms which are deemed to be of insufficient accuracy can be modified by

computing correction terms.

Corrections to the approximate factors can be obtained in literal form by applying perturbation
theory.  Expanding the true polynomial coefficient, pi,  in a Taylor series about the approximate

value, p̃ i, allows one to compute literal corrections.  This requires that the Taylor series be truncated

after the first-order term,

pi  ≈  p̃ i  +  
∂p̃i

∂χ
  ∆χ (11)

Here χ is the vector of model parameters that contribute to the value of the polynomial coefficient pi.

The correction ∆χ clearly requires literal expressions for pi − p̃ i and 
∂p̃i

∂χ
  to be available.  The

difference expression, pi − p̃ i, is simply what remains after the approximate factor is extracted from

the literal expression for pi and corresponds to the non-underlined terms in Table 4.  The partial

derivative term can be obtained by direct symbolic differentiation with respect to the model

parameters, χ.

The correction factors can be used either to enhance the accuracy of the approximate model or to

identify the sensitivity of the simplified model to variations in various physical parameters.

A numerical form of the literally simplified model can be obtained by substituting the values of

the various parameters directly into the literal expressions.  The literally simplified model, unlike

strictly numerical models, can be used to assess the reason behind mismatches with the original

model.  If an error occurs at a particular frequency, the model parameters which are dominant at that

frequency and contribute significantly to the error can be directly identified.  In addition, the impact

of potential variations or uncertainties in a particular model parameter can be quantified in terms of

its effect on the vehicle response.

An example of literal model simplification is presented in Schmidt and Newman (1988).  This

approach was shown to yield excellent results when applied to a high speed transport aircraft.

Furthermore, the closed-form analytical expressions for the key dynamic characteristics that result

allow one to identify critical parameters affecting the vehicle dynamics.
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Summary

Each of the model reduction methods described here have clear advantages and disadvantages.

As such, it is unlikely that any one method will be able to satisfy all model simplification needs.  In

fact, the analyst should make efforts to recognize the strengths and weaknesses of each method and

use one which best suits the particular needs.

These methods are not necessarily mutually exclusive either.  One method can be used to

compliment another and enhance ones understanding of the vehicle's dynamic behavior.  For

example, truncation and residualization may be used initially to reduce the model to a tractable form.

Then literal methods may be used to identify the sensitivity of the model to parameter variations and

uncertainties.  Finally, internally balanced reduction might be used to obtain a numerical form of the

model or further simplify a numerical version of the literal model.

The most important recommendation, however, is to use caution whenever applying model

simplification to aeroelastic systems.  Blindly applying any simplification method will lead to a

simpler model, but one which may not accurately convey the important dynamic characteristics

which influence the vehicle behavior.

Concluding Remarks
The objective of this paper was to emphasize some of the key issues associated with modeling

elastic aircraft for dynamic analysis and control law synthesis.  Emphasis has been placed on the

importance of initially developing high fidelity models which are subsequently simplified for

particular applications.  This approach assures that the salient features of the vehicle dynamics will

be represented in the design model.  In addition, this approach results in a model structure which is

consistent and applicable over the entire development cycle, including preliminary design.  This is

especially important in allowing control technologies to play a role in shaping the vehicle

configuration.

The development of two modeling approaches were specifically addressed with particular

attention paid to the underlying assumptions.  The first approach results in a model structure with

which literal models can be developed.  The second modeling approach addressed the issues

associated with including additional inertial coupling terms in the model and provided guidelines for

when inertial coupling should be included.

The importance of model simplification was also addressed by considering the advantages and

disadvantages of four model simplification methods.  The first two simplification methods,

truncation and residualization, represent traditional approaches.  These were viewed in a way which

resulted in some guidelines for when they can be legitimately applied.  The third method, internally

balanced reduction, represents the newer model simplification approaches which provide added

capabilities subject to certain limitations which were discussed.  The last method, literal

simplification, summarized an approach which, while currently often overlooked, will become more

attractive as symbolic mathematics computer programs become more capable.
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The results from the studies described herein and the perceived need for accurate models of

elastic aircraft for control design applications indicate that more emphasis should be placed on the

modeling process.  It is recommended that model development should involve both formulating

equations of motion and model simplification.  Each phase should be treated separately but with

knowledge of the other.  This approach makes more likely the possibility that the salient aspects of

the system dynamics will be accurately modeled.

References

Bacon, B.J. and Schmidt, D.K., "Multivariable Frequency-Weighted Order Reduction," Journal of

Guidance, Control and Dynamics, Vol. 12, No. 1, Jan-Feb, 1989, pp. 97-107.

Brogan, W.L., Modern Control Theory, Quantum Publishers, Inc., New York, 1974.

Buttrill, C.S., Zeiler, T.A., and Arbuckle, P.D., "Nonlinear Simulation of a Flexible Aircraft in

Maneuvering Flight," AIAA Paper 87-2501-CP, AIAA Flight Simulation Technologies

Conference, Monterey, CA, August, 1987.

Canavin, J.R. and Likins, P.W., "Floating Reference Frames for Flexible Spacecraft," Journal of

Spacecraft  and Rockets, Vol. 14, NO. 12, Dec. 1977, pp 724-732.

Cerra, J.J., and Noll, T.E., "Modelling of Rigid-Body and Elastic Aircraft Dynamics for Flight

Control Development," AIAA Paper Number 86-2232, 1986.

D'Azzo, J.J., and Hoopis, C.H., Linear Control System Analysis and Design: Conventional and

Modern, McGraw-Hill, Inc., New York, 1975.

Enns, D.F., "Model Reduction for Control System Design," Ph.D. Dissertation, Dept. of Aeronautics

and Astronautics, Stanford University, Stanford, CA, June, 1984.

Glover, K., "All Optimal Hankel-Norm Approximations of Linear Multivariable Systems and Their

L∞-Error Bounds," International Journal of Control, Vol. 39, No. 6, pp. 1115-1193, 1984.

Kokotovich, P.V., O'Malley, R.E., and Sannuti, P., "Singular Perturbations and Order Reduction in

Control Theory - An Overview," Automatica, Vol. 12, 1976, pp. 123-132.

McRuer, D., Ashkenas, I., and Graham, D., Aircraft Dynamics and Automatic Control, Princeton

University Press, Princeton, New Jersey, 1973.

Milne, R.D., "Dynamics of the Deformable Aeroplane (Part I & II)," Queen Mary College,

University of London, Reports and Memoranda No. 3345, September 1962.

Milne, R.D., "Some Remarks on the Dynamics of Deformable Bodies," AIAA Journal, Vol. 6, March

1968, pp. 556-558.

Roger, K.L., "Airplane Math Modeling Methods for Active Control Design," Structural Aspects of

Active Control, AGARD-CP-228, April 1977.

Schwanz, R.C., "Consistency in Aircraft Structural and Flight Control Analysis," Structural Aspects

of Active Control, AGARD-CP-228, April, 1977.



Modeling and Model Simplification of Aeroelastic Vehicles

19

Schmidt, D.K., "Pilot Modeling and Closed-Loop Analysis of Flexible Aircraft in the Pitch Tracking

Task," Journal of Guidance, Control and Dynamics, Vol. 8, No. 1, Jan.-Feb. 1985, pp. 56-61.

Schmidt, D.K. and Newman, B., "Modeling, Model Simplification and Stability Robustness with

Aeroelastic Vehicles," AIAA Paper No. 88-4079-CP, AIAA Guidance, Navigation, and

Control Conference, Minneapolis, MN, August, 1988.

Schmidt, D.K. and Newman, B., "On the Control of Elastic Vehicles - Model Simplification and

Stability Robustness," AIAA Paper No. 89-3558, AIAA Guidance, Navigation, and Control

Conference, Boston, MA, August, 1989.

Strang, G., Linear Algebra and Its Applications, Academic Press, Inc., New York, 1980.

Swaim, R.L. and Poopaka, S., "An Analytical Pilot Rating Method for Highly Elastic Aircraft,"

Journal of Guidance, Navigation and Control, Vol. 5, No. 6, Nov.-Dec. 1982, pp. 578-582.

Waszak, M.R., Davidson, J.B., and Schmidt, D.K., "A Simulation Study of the Flight Dynamics of

Elastic Aircraft: Volume 1 - Experiment, Results and Analysis," NASA CP 4102, Dec. 1987.

Waszak, M.R. and Schmidt, D.K., "Flight Dynamics of Aeroelastic Vehicles," Journal of Aircraft,

Vol. 25, No. 6, June 1988, pp. 263-271.

Zeiler, T.A. and Buttrill, C.S., "Dynamic Analysis of an Unrestrained, Rotating Structure Through

Nonlinear Simulation," AIAA Paper 88-2232-CP, Proceedings of the

AIAA/ASME/ASCE/AHS 27th Structures, Structural Dynamics and Materials Conference,

Williamsburg, VA, April, 1988, pp 167-174.


