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ABSTRACT

A multigrid algorithm is combined with an upwind scheme for solving the two-

dimensional Reynolds-averaged Navier-Stokes equations on triangular meshes resulting

in an efficient, accurate code for solving complex flows around multiple bodies. The

relaxation scheme uses a backward-Euler time difference and relaxes the resulting linear

system using a red-black procedure. Roe’s flux-splitting scheme is used to discretize

convective and pressure terms, while a central difference is used for the diffusive terms.

The multigrid scheme is demonstrated for several flows around single and multielement

airfoils, including inviscid, laminar and turbulent flows. The results show an appreciable

speedup of the scheme for inviscid and laminar flows, and dramatic increases in efficiency

for turbulent cases, especially those on increasingly refined grids.
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I. INTRODUCTION

The recent increase in international competition in the commercial aircraft industry

has resulted in a renewed interest in high-lift aerodynamics. High-lift configurations for

commercial transports are characterized by multiple bodies generally in close proximity

of each other, resulting in complex, highly viscous flows involving merging turbulent

shear layers, laminar separation bubbles, and extensive regions of separated flow. The

combination of landing and takeoff flight conditions and aircraft size result in a high

Reynolds number flow at a relatively low free-stream Mach number. Circulation around

these configurations can be so great that supersonic flow can exist even at low free-

stream Mach numbers.

Given the above characteristics, it is clear that a computational method used to

simulate such flows must itself have certain features. First, it must be able to deal with

multiple bodies. This dictates that either unstructured grids or block-structured grids

be used. Second, it must resolve the flow features, namely the merging shear layers,

among others. This would require either extreme global grid refinement or an adaptive-

grid capability. Third, it must take into account compressibility effects. Finally, to

capture viscous effects, turbulence and transition modelling are required. While either

grid methodology is capable of performing the above modelings, the focus of this study

is on an unstructured-grid method.

Since it is relatively easy to implement an adaptive strategy with unstructured grids,

these methods have been very popular for solving high-lift flows. Their main drawbacks,

however, are the memory overhead associated with storing grid connectivity information

and the computer time associated with indirect addressing. In addition, due to the lack of

grid structure, it is difficult to implement simple implicit schemes such as approximate
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factorization, while explicit schemes suffer from slow convergence. Present solvers are

either implicit schemes utilizing iterative matrix solvers[1][2] or explicit schemes using

acceleration techniques such as implicit residual smoothing and multigrid[3][4].

The multigrid method is particularly appealing since, in theory, the number of

iterations required to reach a given level of convergence can be independent of the

grid size. In other words, the work required to achieve a given level of convergence

depends linearly on the number of grid points. Past efforts with structured-grid solvers

have shown that remarkable gains in efficiency can be achieved through the use of a

multigrid algorithm[5][6]. However, the implementation of a multigrid algorithm in an

unstructured-grid environment is much more difficult. The lack of directionality and

structure in the grid makes grid coarsening somewhat ambiguous, and intergrid transfers

are not straightforward.

The recent effort of Mavriplis[3] to use multigrid with an unstructured-grid solver

has been very successful. In his method, the solver and grid generator are closely

coupled. Structured grids are generated around each solid body in the flow field, and the

resulting points are overlaid and triangulated. For viscous meshes, the structured grid

is maintained near the surface so that interpolation coefficients can be calculated. The

scheme is a multistage Runge-Kutta scheme with residual smoothing and the various

levels of grid refinement used in the multigrid algorithm are generated independently.

The work presented here is an implementation of multigrid acceleration for an existing

implicit upwind solver using several of Mavriplis’ techniques. Modifications have been

made to eliminate the need for grid structure near the surface and hence uncouple the

solver from the grid generation process. The details of this work are presented in the

following chapters.

First is a more detailed description of multigrid methods as well as details of the
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implementation used in this work. Next, a model problem is described that was used to

test the multigrid method. Following this is a description of the original implicit upwind

flow solver, followed by results showing the marked improvement in efficiency obtained

by using multigrid.
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II. MULTIGRID

Many relaxation schemes damp high-frequency error components relatively quickly,

but are generally slower to damp low-frequency components. By interpolating the

solution to a coarser grid, these low frequency errors appear as higher frequencies that

can be damped well by the relaxation scheme. The coarse grid can be used to compute

a correction to the fine-grid solution to eliminate its low-frequency errors. By using

successively coarser grids recursively, lower and lower frequency components of the

fine-grid solution error can be eliminated, and by performing a direct solution on the

coarsest grid, the convergence rate of the multigrid cycle can be the same as that of the

relaxation scheme for only the high frequencies.

In the following sections are descriptions of the basic multigrid methods for both

linear and nonlinear equations, details of common multigrid cycles and their implemen-

tation using recursion, and specific details on the implementation of the intergrid transfer

operators used in the current work.

Linear Systems

A system of linear equations can be written as

L(u) = f (1)

whereL is a linear operator,u is the solution vector, andf is a forcing function. The

discrete approximation of the system on a grid characterized by spacingh is written

Lh ~uh = fh (2)

where~uh is the exact solution to the discrete system. Letuh be the current approximation

to the exact solution~uh and now define the errorvh as

vh = ~uh uh (3)
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Now equation 2 can be written as

Lh uh + vh = fh (4)

which, sinceL is a linear operator, can be rewritten as

Lh uh + Lh vh = fh (5)

The errorvh can be represented on a coarser grid characterized by spacing2h provided

that it is sufficiently smooth to prevent aliasing of high-frequency components on the

coarse grid.

An approximation tovh can be calculated on the coarse grid by writing equation 5

for the coarse grid

L2hv2h = I2hh fh Lhuh (6)

whereI2hh is referred to as the restriction operator, which transfers quantities from the

fine grid h to the coarse grid2h. The implementation of this operator is described in

a following section. Equation 6 can be simplified by definingf2h = I2hh fh Lhuh

to obtain

L2hv2h = f2h (7)

Oncev2h is obtained, the fine grid solution can be corrected using

uh
new

= uh
old

+ Ih
2hv

2h (8)

where Ih
2h transfers quantities from the coarse grid to the fine grid and is called the

prolongation operator. Details of this operator are presented in a later section.

Low-frequency error components can be efficiently eliminated on coarse grids at a

fraction of the cost of a fine grid calculation. Eliminating these error components on the
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fine grid is very costly, as many more relaxation cycles are required than would be on

the coarse grid. In addition, this process can be performed recursively on successively

coarser grids (i.e. with spacings4h, 8h, etc.) with each coarse grid used to compute a

correction to the next higher grid level. Details on this recursive process are presented

in the section titled “Multigrid Cycles.”

Nonlinear Systems

For systems of nonlinear equations, the step taken between equations 4 and 5 in the

previous section cannot be performed, so a different formulation must be used. Following

is a description of the Full Approximation Storage (FAS) scheme [7].

Starting with equation 2, subtractLhuh from both sides to obtain

Lh uh + vh Lhuh = fh Lhuh = Rh (9)

Written for the coarse grid, this equation becomes

L2h I2hh uh + v2h L2h I2hh uh = I2hh fh Lhuh (10)

By rearranging terms and defining the coarse grid forcing function as

f2h = I2hh fh Lhuh + L2h I2hh uh (11)

equation 10 can be written as

L2hu2h = f2h (12)

Onceu2h is calculated, the fine-grid solution is updated using

uh
new

= uh
old

+ Ih2h u2h I2hh uh
old

(13)

Note that the difference in formulations does not preclude the use of the recursive

processes referred to in the preceding section and described in the next.
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Multigrid Cycles

The recursive formulations referred to in the preceding sections are described below

and closely follow those of Briggs [8]. A particular implementation of a recursive coarse-

grid correction scheme is referred to as a multigrid cycle. Two specific multigrid cycles

used in the present work are described along with a generalization of those cycles into

a single procedure.

The simplest multigrid cycle is one involving only two levels. A schematic diagram

of such a cycle is illustrated in figure 1. Each cycle begins with one or more relaxation

sweeps on the fine grid. Next, the restriction operator transfers the residual and solution

vectors to the coarse grid. One or more relaxation sweeps are then performed on the

coarse grid. Finally, a correction is prolonged from the coarse grid to the fine grid and

applied to the fine grid solution. This cycle works most efficiently when the coarse grid

is solved directly, but for most cases, this is still impractical.

The two-level cycle can approach its maximum performance without a direct solution

on the coarse grid by using what is known as a V cycle. The relaxation step on the

coarse grid is now replaced by another two-level cycle. This repeats recursively until

the coarsest grid available is reached. An example of the resulting cycle for four grid

levels is illustrated in figure 2 . During the first half of the cycle at each intermediate

grid level, residual and solution vectors are received from the finer grid, the solution

is relaxed a given number of times, and residual and solution vectors are then passed

to the coarser grid below. When the coarsest level is reached, a correction is passed

successively upward until finally reaching the finest grid.

A further improvement to the two-level cycle can be made by replacing the coarse-

grid relaxation with a pair of two-level cycles. This is again done successively at the
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coarser levels. The resulting cycle is called a W cycle and an example having four grid

levels is illustrated in figure 3.

The two cycles above can be combined into a single recursive procedure by specifying

a cycle index,�. The resulting generalized cycle is referred to as a� cycle. Since the

ultimate result of a multigrid cycle is a correction to the fine grid, the cycle can be

expressed as a function whose parameters are the current residual and solution vectors

and whose result is the new solution vector. Stated mathematically,

uh �h Rh; uh (14)

The � cycle can now be described by the following recursive procedure:

1. Relaxn times on gridh.

2. If grid h is not the coarsest level,

a. Restrict residual and solution vectors to grid2h.

b. Evaluateu2h �2h R2h; u2h � times.

c. Prolong correction from grid2h to grid h.

Appendix A gives details of the coding of this procedure.

Intergrid Transfers

The restriction of the solution from a fine grid to a coarser grid and the prolongation

of the correction from a coarse grid to a finer grid both utilize bilinear interpolation.

The procedure is described here for the restriction operator, but the process is identical

for prolongation.

To get information to the coarse grid, a bilinear interpolation is performed using the

data at the three vertices of the fine grid cell that encloses each coarse grid node. The

coordinates of the vertices along with the quantity being interpolated form a plane in
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a three-dimensional space. Finding the value of the transferred quantity at the coarse

grid node amounts to solving the equation of the plane at that node. This plane can be

expressed mathematically as:

Ax+By + C = q (15)

whereA;B; C are constant coefficients andq is the quantity being transferred. The

coefficients are determined by assembling a system of equations using the data at the

cell vertices as follows:
x1 y1 1

x2 y2 1

x3 y3 1

A

B

C

=

q1
q2
q3

(16)

where the subscript denotes a particular vertex of the fine grid cell. Solving this system

yields the following expressions for the coefficients:

A =
q1(y2 y3) + q2(y3 y1) + q3(y1 y2)

x1(y2 y3) + x2(y3 y1) + x3(y1 y2)
(17)

B =
q1(x3 x2) + q2(x1 x3) + q3(x2 x1)

x1(y2 y3) + x2(y3 y1) + x3(y1 y2)
(18)

C =
q1(x2y3 x3y2) + q2(x3y1 x1y3) + q3(x1y2 x2y1)

x1(y2 y3) + x2(y3 y1) + x3(y1 y2)
(19)

When equation 15 is evaluated using the coordinates of the coarse grid nodes, it is

apparent that the value of the quantity at the coarse grid node may be written as the

sum of geometric weights multiplied by the values of the quantity at the vertices of the

enclosing fine grid cell, i.e.

qn = W1q1 +W2q2 +W3q3 (20)

Given the coordinates(xn; yn) of the coarse grid node and the coefficientsA;B; C

substituted into equation 15, the quantitiesW1; W2; W3 are found by inspection to be

W1 =
xn(y2 y3) + yn(x3 x2) + (x2y3 x3y2)

x1(y2 y3) + x2(y3 y1) + x3(y1 y2)
(21)
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W2 =
xn(y3 y1) + yn(x1 x3) + (x3y1 x1y3)

x1(y2 y3) + x2(y3 y1) + x3(y1 y2)
(22)

W3 =
xn(y1 y2) + yn(x2 x1) + (x1y2 x2y1)

x1(y2 y3) + x2(y3 y1) + x3(y1 y2)
(23)

It is easily verified that the sum of these three weights is unity.

If the linear interpolation outlined above is used for the transfer of residuals from a

fine grid to a coarser grid, a situation may arise as shown in figure 4, where a nonzero

residual at fine grid nodeP is not utilized on the coarse grid, since none of the fine-grid

cells having nodeP as a vertex enclose any coarse-grid nodes; hence, much of the benefit

of multigrid is lost. In addition, the residual is actually the surface integral of the fluxes

around the boundary of the control volume and is therefore related to the time rate of

change of the conserved variables. In order for this rate of change to be the same for

all grids, it is necessary that the residual transfer be conservative, that is, that the sums

of the residuals on the fine and coarse grids be equal. For these reasons, the restriction

process for residuals is handled in the following manner.

For a given fine grid node, the coarse grid cell that surrounds the node is determined.

The residual for the fine grid node is then distributed to the vertices of the surrounding

coarse grid cell. The weights used for the distribution are the same weights used in the

linear interpolation from the coarse grid to the fine grid. This process ensures that all

fine-grid residuals contribute to the coarse grid, and that the total residual is conserved,

since the weights multiplying the residual at any given fine-grid node sum to unity.

To transfer information from one grid to another using the above interpolation

operators requires knowledge of which cell of one grid encloses each node of the other

grid. To determine this information, a tree search similar to that used by Mavriplis[9] is

used. In this procedure, the nodes of the first grid are first ordered into a list such that
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a given node has an immediate neighbor appearing earlier in the list. The search then

proceeds as described in the following paragraph.

For the first node, an arbitrary cell of the second grid is chosen to start the search.

If the cell does not enclose the node, the immediate neighbors of the cell are added to

a list of cells to check (provided the neighboring cells have not already been checked).

Next, the neighbors of the neighboring cells are checked, and so on until the enclosing

cell is found. For the remaining nodes, the cell enclosing a neighboring node appearing

earlier in the list of nodes (i.e. one whose enclosing cell is known) is used as a starting

point for the search.

The search algorithm can encounter problems near boundaries, where the grid is

actually a planar discretization of a curved surface, as illustrated in figure 5. Alternating

nodes on the fine-grid boundary are displaced away from the coarse-grid boundary. The

problem is aggravated by concave surfaces and highly stretched viscous meshes, where

several interior nodes may lie outside the coarse-grid domain, and fine-grid interior nodes

very close to the surface may receive interpolated information from coarse-grid cells

farther away from the surface. This latter case is illustrated in figure 6.

Simple structured-grid algorithms perform intergrid transfers in computational space,

where grid lines match nicely and operators are straightforward. The equivalent situation

in physical space is illustrated in figure 7. The following procedure is a way of

approximating this behavior on unstructured grids by preserving the distance to the

boundary for each node in a prescribed region. The procedure is described for a fine- to

coarse-grid transfer. The reverse operation is similar.

First, the list of boundary faces for each grid is sorted such that adjacent faces are in

order and the face with the greatestx–coordinate is first in the list. Then, starting at the

first boundary face of each grid, the boundaries are matched by determining which coarse-
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grid face is closest to each fine-grid node. Each fine-grid boundary node is assigned

interpolation coefficients by projecting the node onto the coarse-grid face and computing

a linear interpolation along the face. The physical displacement required to move the

fine-grid node to the coarse-grid face is also stored for later use.

Next, a region near the fine-grid surface is defined in which nodes will be shifted to

maintain their position relative to the boundary. This is done by first tagging the nodes

of the grid lying on viscous boundaries. The edges of the grid are then cycled through

a prescribed number of times. Each cycle through the edges, nodes neighboring tagged

nodes are themselves tagged. The result for the particular case of a triangulated structured

grid is that a certain number of layers of grid points have been tagged. In general, nodes

in a region surrounding the viscous boundary nodes will be tagged.

Each tagged node is then associated with the boundary face it is nearest. The

node is projected onto the boundary face, and the previously computed boundary-node

displacements are then used to determine the displacement to be applied to the interior

node via linear interpolation. Note that these shifted node coordinates are used only in

the above procedure for calculating the interpolation coefficients and not in the rest of

the flow calculation.
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III. THE MODEL PROBLEM — LAPLACE’S EQUATION

For the purposes of developing and debugging code for the multigrid cycle and

its associated intergrid transfer mechanisms, it is beneficial to decouple the difficulties

associated with the numerics of a problem involving a system of nonlinear equations

from those associated strictly with information transfer between grids. To this end,

the two-dimensional Laplace equation (2� = 0) is coded and used as a test vehicle.

The boundary conditions are chosen such that the problem represents two-dimensional

nonlifting potential flow. Namely,@�
@n

= 0 on the airfoil surface(s) and� = x at the

outer boundary (i.e. free stream conditions).

Spatial Discretization

The equation is solved in integral form, i.e.

S

2�dA = 0 (24)

At each node, the equation is integrated over a control volume consisting of the cells

surrounding the node. This control volume surrounding a given node 0 is shown as the

dark outline in figure 8 and is known as the median-dual control volume. The median

dual mesh around a given node is formed by joining the centroids of the cells surrounding

the node and the midpoints of the edges joining to the node. Using Green’s theorem,

the integral equation becomes

C

� n̂dl = 0 (25)

and the integral over the control volume can be evaluated by integrating around its

boundary.

In reference 1, it is shown that integrating over the control volume described above is

equivalent to a Galerkin finite-element approximation. Now contributions from each edge

13



that connects to a given node can be considered individually given the nodes that form

the edge and the centroids of the cells on either side of the edge. Each edge contributes

two segments to the boundary of the median-dual control volume, as shown in figure 9.

The Laplacian operator can now be discretized as the sum of weights associated with

edges of the mesh multiplied by the difference in the solution along the edge, i.e.

2�
0
=

i2�0

Mi(�i �0) (26)

where�0 is the set of edges connecting to node 0 andMi is the edge weight. Reference

1 presents a detailed derivation of these edge weights for the Laplacian operator, and a

brief summary of the results is presented here. Using the notation of figure 9, the edge

weights can be expressed as:

Mi =
1

4

n̂i+1=2 n̂i+1

Ai+1=2

n̂i�1=2 n̂i�1

Ai�1=2

(27)

whereAi�1=2 and Ai+1=2 are the areas of the cells to the right and left of the edge

connecting node 0 and node i, respectively. Identities are then used to express this in

terms of the single edge. The resulting expression is:

Mi =
1

4

1
4
n̂i n̂i 9n̂Ri

n̂Ri

Ai+1=2

+
1
4
n̂i n̂i 9n̂Li

n̂Li

Ai�1=2

(28)

Note that these weights depend only on the geometry and not on the solution, so they

can be precomputed and stored for the duration of the calculation.

Iteration Scheme

Jacobi iteration with a relaxation parameter is used to advance the solution. Starting

with equation 26 , the residual at iterationn is defined as

Rn
0 =

i2�0

Mi(�
n
i �n0 ) (29)
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Laplace’s equation is now discretized using�0 at iterationn + 1 and�i at iterationn

as follows:

i2�0

Mi �
n
i �n+1

0
= 0 (30)

This equation is then solved for�n+1
0

to yield

�n+10 =
i2�0

Mi�
n
i

i2�0

Mi
(31)

Now subtract�n0 from both sides to yield:

�n+1
0

�n0 =
i2�0

Mi(�
n
i �n0 )

i2�0

Mi
(32)

The increment to the solution��n0 is then calculated by:

��n0 = �n+1
0

�n0 =
Rn
0

i2�0

Mi
(33)

Over- or underrelaxation is accomplished simply by adding a relaxation parameter

� as follows:

��n0 = �
Rn
0

i2�0

Mi
(34)

If � is greater than unity, the solution is overrelaxed, and if it is less than unity (but

greater than zero), the solution is underrelaxed. Of course, Jacobi iteration is recovered

when � is equal to unity.

Alternately, a red-black scheme may be used. In this scheme, the grid is divided into

two “colors” — red and black — depending on whether the node number is even or odd,

respectively. The increment to the solution is calculated as follows:

1. Calculate the residual for all nodes.

2. Update nodes colored red.

3. Recalculate the residual for all nodes.

4. Update nodes colored black.
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The scheme requires an additional residual calculation at each iteration, but exhibits better

smoothing properties from the perspective of multigrid methods.[8]

Results

The Laplace solver was run in different modes for two cases. The first case is the

simple case of a square with homogeneous Dirichlet boundary conditions on all its edges.

The grids consisted of Cartesian meshes with each cell cut across one of its diagonals

to form triangles. An example of one of these meshes is shown in figure 10. An initial

condition of unit potential was used on the interior grid. Finally, the solver was used to

simulate nonlifting potential flow over a NACA 0012 airfoil at zero angle of attack.

Square Domain

The first study, shown in figure 11, is a demonstration of the effect of the relaxation

scheme on the performance of the multigrid scheme. All three cases were run with a

direct solution on the coarsest grid and used a 4–level V cycle. Clearly, the Jacobi scheme

is inferior, as it poorly damps the high frequency components of the solution error. The

damped Jacobi scheme (�=0.5) exhibits better performance since underrelaxation greatly

improves the damping of the high frequencies[8]. The red-black scheme shows excellent

performance. The damped Jacobi scheme is used for the remaining studies on the square

domain.

In practice, a direct solution on the coarsest grid is not used, but by performing more

relaxations on the coarse grid, improving the cycle, and using additional grid levels, the

performance of the scheme can approach that which is achieved by a direct solution on

the coarse grid. The following studies illustrate this point.

The next study shows the effect of the level of convergence of the coarsest grid on

the convergence rate of the multigrid scheme. Figure 12 shows convergence histories for
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a 4–level V cycle. The parameterMITER is the number of damped Jacobi relaxation

sweeps performed on the coarsest mesh during each multigrid cycle. The curve marked

MITER corresponds to a direct solution on the coarsest grid. It is obvious that a

relatively meager increase in the number of relaxation sweeps on the coarsest grid has a

profound impact on the convergence of the multigrid scheme. Although not shown, the

convergence history forMITER = 10 is virtually identical to that of a direct solution

on the coarsest mesh. These extra sweeps on the coarsest mesh are cheap in terms of

computational work in comparison with the finest mesh. It will be shown, however, that

the same increase in performance can be achieved by changing the multigrid cycle.

Figure 13 shows that using the W cycle instead of the V cycle results in the same

improved convergence of the multigrid cycle. Both cases use 4 grid levels with 1

damped-Jacobi relaxation sweep on the coarsest mesh. The residual is now plotted

against computer time to reflect the actual computational work done, since a W cycle

requires more computational work per multigrid cycle than does a V cycle.

In figure 14, the benefit of using additional grid levels in the multigrid cycle is

apparent. All cases use a V cycle with 10 damped-Jacobi relaxation sweeps on the

coarsest grid. Each level of coarsening allows the relaxation scheme to damp lower and

lower frequency components of the solution error more effectively. This figure along

with figure 12 shows that the scheme can approach its best performance without a direct

solution on the coarsest grid.

NACA 0012 Airfoil

To demonstrate the ability of the Laplace solver to calculate nonlifting incompressible

flows, results for a NACA 0012 airfoil at zero incidence are presented. The red-black

scheme has been used for this case with one relaxation sweep at each grid level. At the
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airfoil surface, the derivative of the potential normal to the surface vanishes, and free

stream potential is enforced at the far field boundary. Four levels of grid refinement were

generated, the finest consisting of 14,269 nodes. A portion of this grid is shown in figure

15. Table 1 summarizes the grid levels used for these cases.

Table 1.— Summary of grid sizes for grids around NACA 0012 airfoil for inviscid flow.

Grid level Total nodes Nodes on surface

0 14,269 256

1 3796 128

2 1081 65

3 424 36

Figure 16 shows convergence histories with and without multigrid. The multigrid

algorithm has clearly provided a substantial improvement in the rate of convergence.

A comparison of surface pressure coefficient is presented in figure 17 along with an

analytical solution[10]. The solution agrees well with the analytical data.
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IV. VISCOUS FLOW SOLVER

The solver used in the present work was developed by W. Kyle Anderson at the

NASA Langley Research Center. A summary of the salient features of the code are

presented in the following chapter for completeness. A more detailed description of the

solver is presented in appendix B, and further information can be found in reference 11.

The governing equations are the time-dependent two-dimensional Reynolds-averaged

Navier-Stokes equations in conservation-law form, which are integrated in time to obtain

a steady-state solution. Ideal-gas assumptions are made, and either of the one-equation

turbulence models of Spalart and Allmaras[12] or Baldwin and Barth[13] may be used

for calculating turbulent flows.

The temporal formulation consists of a backward-Euler time difference, with the

resulting linear system of discrete equations being solved iteratively using red-black

relaxation. The result is that at each iteration of the nonlinear system, a prescribed

number of “subiterations” are performed to obtain an approximate solution to the linear

system. A finite-volume formulation is used to discretize the governing equations in space

at each node. For the convective and pressure terms, the upwind scheme of Roe[14] is

used, while a simple central difference is used for the viscous terms.

The same scheme is used to solve the turbulence equation; however, this calculation

is carried out separately. At each iteration, a prescribed number of subiterations are

performed on the flow equations while holding the turbulence fixed, followed by an

update of the turbulence equation holding the flow quantities fixed.
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V. RESULTS

The following chapter presents results in the form of histories of the temporal

convergence of both theL2 norm of the residual for the continuity equation and the

lift coefficient, Cl. These quantities are shown versus computer time. Unless otherwise

noted, all cases were run on a Cray-YMP, and grids were generated using the advancing-

front method described in reference 15.

First, cases of inviscid and laminar flow over a NACA 0012 airfoil are presented,

followed by several cases of turbulent flow over both the RAE 2822 airfoil and a

3–element airfoil. Finally, results are presented for a turbulent case on a grid for which a

calculation without multigrid is impractical. All turbulent cases used the Spalart-Allmaras

turbulence model.

Euler Solution

The first case presented is that of inviscid, transonic flow over a NACA 0012 airfoil.

The free stream Mach number is 0.8, the angle of attack is 1.25�, and the same grids

that were used for the potential-flow case presented earlier are used (see table 1). Figure

18 shows the convergence histories for several V cycles in comparison to the original

scheme. Note that the multigrid scheme substantially improves the convergence rate, and

that the improvement increases as more grid levels are used. Results for the W cycle

are shown in figure 19. Note again the substantial improvement in convergence. Figure

20 shows the best V-cycle result and the best W-cycle result together with the results

for the scheme without multigrid. The V cycle and W cycle perform similarly versus

computer time; however, the relaxation parameters used were those found to work well

for the base scheme (i.e. without multigrid), specifically, 20 subiterations were used.
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If the scheme is used without multigrid, the tunable parameters (i.e. CFL number and

number of subiterations) must be chosen to give the fastest convergence. With a multigrid

method, only the high-frequency error components need to be damped quickly on all but

the coarsest grid. This would seem to imply that with the present scheme, a further

reduction in computer time could be achieved by reducing the number of subiterations.

Figure 21 shows the effect of reducing the number of subiterations for a four-level

W cycle. While convergence per cycle is slightly compromised, convergence versus

computer time is improved due to the decrease in computational work per cycle.

Residual and lift histories for the V and W cycles using five subiterations at each

grid level are shown in figure 22. In this case, the W cycle slightly outperforms the V

cycle, while both obtain a steady value for the lift approximately four times faster than

the base scheme alone.

Laminar Navier-Stokes Solution

Figure 23 shows convergence histories for a case of laminar flow over a NACA 0012

airfoil at an angle of attack of 3�, a free-stream Mach number of 0.5, and a Reynolds

number of 5000. The grids used in the multigrid cycle are shown in figure 24 and are

summarized in table 2. The two multigrid cycles achieve a steady lift coefficient in a

Table 2.— Summary of grid sizes for grids around a NACA 0012 airfoil for laminar flow.

Grid level Total nodes Nodes on surface

0 16,116 256

1 5004 128

2 1891 65

3 1237 40

fraction of the time taken by the original solver, and the W cycle has a slight edge over

the V cycle, particularly in the convergence of the lift coefficient.
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Turbulent Navier-Stokes Solutions

After presenting a case of transonic flow over an RAE 2822 airfoil, several cases

of flow past a 3–element airfoil are shown, including a case previously impractical to

calculate. For all 3–element cases presented, the free-stream Mach number is 0.2 and

the Reynolds number is 9 million.

Figure 25 shows convergence histories for flow past an RAE 2822 airfoil at 2.81�

angle of attack, free-stream Mach number of 0.75, and a Reynolds number of 6.2 million.

The grids were generated using the method described in reference 16, and a summary

of their characteristics is presented in table 3. The residual for both multigrid cases

Table 3.— Summary of grid sizes for grids around RAE 2822 airfoil for turbulent flow.

Grid level Total nodes Nodes on surface

0 13,385 208

1 3359 104

2 847 52

3 219 26

converges a few orders of magnitude before cycling about a nearly constant level. Other

runs have shown that this phenomena is a result of an adverse coupling of multigrid

and the turbulence model, as holding the turbulence quantity constant after some level

of convergence has been reached causes the residual to continue decreasing. Steady

lift for both multigrid cases is still achieved prior to the cycling of the residual and in

significantly less time than for the original scheme.

Figures 26 and 27 show the distributions of the surface pressure coefficient and

skin friction coefficient, respectively, for the 4–level W cycle along with experimental

data[17]. The computed results are in good agreement with the experimental data, and

are virtually identical to results obtained with the base scheme.
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A case of turbulent flow over the 3–element airfoil shown in figure 28 at 16.21�

is shown in figure 29, and the characteristics of the grids are summarized in table 4.

The multigrid cases again cycle about some level after a certain level of convergence is

Table 4.— Summary of grid sizes for grids around a 3–element airfoil for turbulent flow.

Grid level Total nodes Nodes on surfaces

0 97,088 1340

1 34,987 671

2 14,278 340

3 6657 178

reached. The lift, however, converges for all three cases and does so much more rapidly

for the multigrid cases, with the W cycle having a significant edge.

The same configuration at a higher angle of attack is shown in figure 30. The precise

angle of attack is 21.34� and is near maximum lift as determined by experiment[18].

The spikes in the residual histories are a result of restarting the code. Specifically, a

point-vortex is applied at the outer boundary whose strength depends on the lift, which

is not available during the first iteration since it is presently calculated after the residual.

This is easily cured by computing the lift before computing the residual. Note that for

this run, the V-cycle case continues converging while the W-cycle residual again cycles

after less than two orders of magnitude of convergence. The multigrid scheme again

shows considerable improvement over the base scheme.

To further demonstrate the advantages of multigrid, the 3–element airfoil was run at

an angle of attack of 16.21� on a grid consisting of 309,770 nodes. The characteristics

of the full set of grids is given in table 5. This case had been considered impractical
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Table 5.— Summary of grid sizes for grids around a 3–element airfoil for turbulent flow.

Grid level Total nodes Nodes on surfaces

0 309,770 2679

1 97,088 1340

2 34,987 671

3 14,278 340

with the original solver due to the nonlinear increase in computer time required with the

increase in the number of grid points. The convergence histories are shown in figure

31. Computer restrictions dictated that only 50 cycles could be calculated in a single

run. As explained earlier, the spikes in the convergence histories are a result of restarting

the code. The W cycle exhibits oscillatory behavior in the residual, while the V cycle

continues converging. The lift seems nearly steady for the W cycle, but when viewed on

a smaller scale, it exhibits small-scale oscillations. The lift for the V cycle, however, is

steady, and the surface pressure distributions for this case are presented in figure 32.
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VI. CONCLUSIONS

A multigrid algorithm has been implemented in an existing code for solving turbulent

flows on triangular meshes. Intergrid transfer operators have been used that ensure

conservation of the residual and preserve smoothness of the solution near solid surfaces.

Once coded, the multigrid algorithm and intergrid transfer operators were used to solve

Laplace’s equation to verify correct operation.

The Laplace solver with the red-black relaxation scheme and multigrid algorithm

is very efficient for solving nonlifting potential flow on unstructured grids, and was

indispensable for validating intergrid transfer operators and the multigrid cycle itself.

The multigrid algorithm has improved convergence significantly for both inviscid and

laminar viscous flows. For the turbulent flows, the improvement with multigrid can be

quite dramatic, with increasing improvement with grid refinement.

Several avenues of future study exist as a result of this work. The apparent adverse

interaction between the W cycle and the turbulence model will require a significant effort

to resolve. The method can also be extended to three-dimensions, or to higher-order

methods.
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APPENDIX A: CODING OF MULTIGRID CYCLE USING RECURSION

Since the main driver of the flow solver is written in C, which allows a function

to call itself recursively, implementation of the� cycle described in the text is very

straightforward, and can be nearly literally translated into C-code. Following is the code

fragment representing the multigrid cycle:

mucyc(mu,ifine,igrid1,igrid2,grid,miter)
GRID *grid;
int mu,ifine,igrid1,igrid2;
int *miter;
{
int i,j;

relax(miter[igrid1],grid[igrid1]);
if (igrid1 == ifine)

{
f77L2NORM();
f77FORCE();
}

if (igrid1 < igrid2)
{
restricter(grid[igrid1],grid[igrid1+1]);

for (i = 0; i < mu; ++i)
{
mucyc(mu,ifine,igrid1+1,igrid2,grid,miter);
}

prolong(grid[igrid1],grid[igrid1+1]);
}

}

In this routine, f77L2NORM and f77FORCE are FORTRAN routines that calculate

quantities used to monitor convergence on the fine grid. These two routines have many

arguments, but they are omitted here for clarity. Note that grids are denoted by index

numbers (0, 1, 2, ...) rather than characteristic spacings (h; 2h; 4h; ...). The parametermu
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is the cycle index, whileigrid1 and igrid2 are the finest and coarsest grid levels in

the cycle, respectively. The parameterifine is a copy of the initial value ofigrid1 .

The argumentgrid is an array of structures having one entry for each grid level. Each

structure contains parameters indicating the size of the corresponding grid, as well as

pointers to arrays containing connectivity and field information. The argumentmiter is

an array containing the number of relaxation sweeps to be performed at each grid level.
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APPENDIX B: DESCRIPTION OF ORIGINAL VISCOUS FLOW SOLVER

Governing Equations

The relaxation scheme solves the Reynolds-Averaged Navier-Stokes (RANS) equa-

tions in conservation-law form. These equations are given in vector form by

A
@Q

@t
+

@


~Fi n̂dl

@


~Fv n̂dl = 0 (35)

wheren̂ is the outward-pointing unit normal to the surface of the control volume@
. Q

is the vector of conserved state variables given by

Q =

�

�u

�v

E

(36)

and ~Fi and ~Fv are the inviscid and viscous fluxes, respectively, through the surface of

the control volume@
 and are given by

~Fi = f î+gĵ =

�u

�u2+p

�uv

(E+p)u

î+

�v

�vu

�v 2+p

(E+p)v

ĵ (37)

~Fv = fv̂i+gvĵ =

0

�xx
�xy

u�xx+v�xy qx

î+

0

�xy
�yy

u�xy+v�yy qy

ĵ (38)

The shear stress and heat conduction terms in the viscous fluxes are given by

�xx = (�+ �t)
M1

Re

2

3
[2ux vy] (39)

�yy = (� + �t)
M1

Re

2

3
[2vy ux] (40)

�xy = (� + �t)
M1

Re
[uy + vx] (41)
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qx =
M1

Re(
 1)

�

Pr
+

�t

Prt

@a2

@x
(42)

qx =
M1

Re(
 1)

�

Pr
+

�t

Prt

@a2

@y
(43)

The perfect-gas equation of state is used to define the pressurep and is given by

p = (
 1) E � u2 + v2 =2 (44)

and the laminar viscosity� is given by Sutherland’s law

�

�1
=

(1 + C�)

(T=T1 + C�)
(T=T1)

3=2 (45)

whereC� = 198:6
460:0 is Sutherland’s constant divided by a free-stream reference temperature

assumed to be 460� Rankine.

The eddy viscosity�t is obtained by either of two one-equation turbulence closure

models. The first, developed by Baldwin and Barth[13], is derived from thek-� equations.

The second, developed by Spalart and Allmaras[12], relies more heavily on empiricism

and dimensional analysis. The turbulence model is solved separately from the rest of the

system, but uses the same solution scheme, and, although multigrid is also used with the

turbulence model, it remains decoupled from the rest of the system. The Spalart-Allmaras

model is used for all turbulent calculations in this study.

Time Integration

The governing equations are integrated in time to the steady-state solution using

a linearized backward-Euler time-differencing scheme. The resulting system of linear

equations can be expressed as

[A]
n

�Q
n
= R

n (46)
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where

[A]
n
=

A

�t
I+

@Rn

@Q
(47)

The solution of this linear system is obtained iteratively via a classic relaxation procedure.

To differentiate between the nonlinear and linear systems, the term “iteration” is used to

refer to the nonlinear system, while “subiteration” is used to refer to the linear system.

To illustrate the scheme used, let the matrix[A]
n be written as the sum of two

matrices representing the diagonal and off-diagonal terms

[A]
n
= [D]

n
+ [O]

n (48)

The simplest method for solving the linear system is commonly referred to as Jacobi iter-

ation and consists of moving all off-diagonal terms to the right-hand side and evaluating

them at the previous subiterationi. This can be written as

[D]
n

�Q
i+1

= R
n

[O]
n

�Q
i (49)

The convergence of this method is accelerated somewhat using a red-black scheme

where even-numbered nodes are update using the Jacobi scheme just described, followed

by the odd numbered nodes using the update values at the even-numbered nodes. This

scheme can be written as

[D]
n

�Q
i+1

= R
n

[O]
n

�Q
i+1

i (50)

where �Q
i+1

i is the most recent value of�Q and will be at subiterationi+ 1 for

the even-numbered nodes and at subiterationi for the odd-numbered nodes.

To further accelerate convergence, local time-stepping is used. A separate time step

is calculated at each node using the inviscid stability limit.
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Spatial Formulation

The spatial discretization is a finite-volume formulation in which the inviscid and

viscous fluxes are integrated over the median-dual control volume surrounding each node

(see figure 8). Green’s theorem is used to change the volume integrals to surface integrals

over the edges of the dual mesh. These surface integrals can be calculated using edge

formulas as described in reference 1.

The inviscid fluxes,~Fi, are obtained on the edges of the control volume using Roe’s

approximate Riemann solver[14]. The viscous fluxes,~Fv, are computed using a simple

central difference.
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FIGURES
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Figure 1: Schematic of two-level multigrid cycle.
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Figure 2: Schematic of V cycle for four grid levels.
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Figure 3: Schematic of W cycle for four grid levels.
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Figure 4: Example of a fine-grid nodeP that will not contribute

information to the coarse grid if linear interpolation is used.

Solid surface

Fine−grid boundary node

Fine−grid boundary face

Coarse−grid boundary node

Coarse−grid boundary face

Figure 5: Discretization of a curved boundary surface for both a fine and a coarse grid.

Fine Grid

Coarse Grid

Figure 6: Effective interpolation near viscous surfaces. The diagonal edges

cutting across the quadrilateral cells are omitted for visual clarity.

Fine Grid

Coarse Grid

Figure 7: Effective interpolation near viscous surfaces for structured grids.
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Figure 8: Median-dual control volume for node 0.
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Figure 9: Contribution of an individual edge

to the median-dual control volume for node 0.
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Figure 10: Sample unstructured grid for a square.

Figure 11: Effect of relaxation scheme on multigrid performance. All runs are

made using a 4–level V cycle with a direct solution on the coarsest mesh.
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Figure 12: Effect of coarse grid convergence level on convergence of

the multigrid cycle. Although not shown, convergence for

MITER = 10 are virtually identical to those forMITER .

Figure 13: Effect of multigrid cycle on convergence. Both cases use 4 grid

levels with 1 damped-Jacobi relaxation sweep on the coarsest grid.
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Figure 14: Effect of number of grid levels on convergence of the multigrid scheme. All

cases use a V cycle with 10 damped-Jacobi relaxation sweeps on the coarsest grid.

Figure 15: Portion of grid around a NACA 0012 airfoil.
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Figure 16: Convergence history for nonlifting potential

flow over a NACA 0012 airfoil at zero incidence.

Figure 17: Surface pressure coefficient distribution

on a NACA 0012 airfoil at zero incidence.
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Figure 18: Convergence histories for several V cycles versus both cycle number and

computer time for inviscid flow over a NACA 0012 airfoil (M1 = 0:8, � = 1:25�).

Figure 19: Convergence histories for several V cycles versus both cycle number and

computer time for inviscid flow over a NACA 0012 airfoil (M1 = 0:8, � = 1:25�).
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Figure 20: Comparison of performance of V and W cycles versus both cycle number

and computer time for inviscid flow over a NACA 0012 airfoil (M1 = 0:8, � = 1:25�).

Figure 21: Effect of number of subiterations on performance of a 4–level W

cycle for inviscid flow over a NACA 0012 airfoil (M1 = 0:8, � = 1:25�).
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Figure 22: Comparison of performance of V and W cycles for

inviscid flow over a NACA 0012 airfoil (M1 = 0:8, � = 1:25�).

Figure 23: Comparison of performance of V and W cycles for laminar

flow over a NACA 0012 airfoil (M1 = 0:5, � = 3�, Re = 5000).
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a. Grid level 0.

b. Grid level 1.

c. Grid level 2.

Figure 24: Grids around NACA 0012 airfoil

used for laminar-flow case. (Continued) . . .
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d. Grid level 3.

Figure 24: Grids around NACA 0012 airfoil used for laminar-flow case.

Figure 25: Comparison of performance of V and W cycles for turbulent

flow over an RAE 2822 airfoil (M1 = 0:75, � = 2:81�, Re = 6:2 106).
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Figure 26: Comparison of surface pressure coefficient distribution with

experiment on RAE 2822 airfoil (M1 = 0:75, � = 2:81�, Re = 6:2 106).

Figure 27: Comparison of skin friction coefficient distribution with

experiment on RAE 2822 airfoil (M1 = 0:75, � = 2:81�, Re = 6:2 106).
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Figure 28: Geometry of 3–element airfoil.

Figure 29: Comparison of performance of V and W cycles for turbulent flow

over a 3–element airfoil (M1 = 0:2, � = 16:21�, Re = 9 106).

Figure 30: Comparison of performance of V and W cycles for turbulent flow

over a 3–element airfoil (M1 = 0:2, � = 21:34�, Re = 9 106).
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Figure 31: Comparison of performance of V and W cycles for turbulent flow over a

3–element airfoil (M1 = 0:2, � = 16:21�, Re = 9 106) on a grid of 309,000 nodes.

Figure 32: Comparison of distributions of surface pressure coefficients for V

cycle with experiment for turbulent flow over a 3–element airfoil

(M1 = 0:2, � = 16:21�, Re = 9 106) on a grid of 309,000 nodes.
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