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In ion

There is continuing interest in manned exploration of the solar system, beginning with a return
to the Moon and followed by a manned mission to Mars!. The vehicles required for these
missions are large and massive and cannot be placed in orbit by a single launch of the Space
Shuttle (Space Transportation System [STS]) or a Heavy-lift Launch Vehicle. Multiple launches
will place large components of the vehicles in orbit where the assembly and servicing will be
conducted?.

Large portions of the Lunar and Mars Transfer vehicle (LTV, MTV) masses consist of the
propellant required for propulsive braking. Aerobraking, which uses aerodynamic drag forces
created during a pass (aeropass) through a planetary atmosphere, can be used as an alternative to
propulsive braking to achieve the reduction in velocity required to enter orbit around a planet. By
reducing the amount of propellant required for a mission, aerobraking provides a potentially
effective way to reduce the mass of LTV and MTV3-4-. To be viable, an aerobrake (as shown in
figure 1) must be lightweight (its mass must be less than that of the propulsion braking system,
including the propellant, it replaces), easily constructed on-orbit, reusable (in some cases), and
have minimum packaged volume for transporting to low Earth orbit.

A multidisciplinary conceptual study was performed at the NASA Langley Research Center
to define a reusable LTV aerobrake which could be assembled on orbit at Space Station Freedom
(SSF). Major objectives of the study included: developing an aerobrake structural concept which
could be assembled on orbit and would be compatible with thermal protection system (TPS)
requirements, defining a TPS, identifying the infrastructure, automation, robotic, and manned
Extravehicular Activity (EVA) requirements for assembling an aerobrake on-orbit, and identifying
ground and flight experiments essential to the success of an aerobrake development program. This
paper summarizes results from the conceptual structural design portion of the study.

Approach

The major objective of the conceptual structural design portion of the aerobrake study was to
size an aerobrake structure, which along with the aerobrake TPS, would comprise no more than 20
percent (9040 1bm) of the LTV lunar return mass. The structure was also to be designed for
efficient transportation to low earth orbit using either the STS or a Titan IV expendable launch
vehicle (ELV), and for assembly on orbit.

To meet these objectives some of the conceptual design issues considered were; the
segmentation of the aerobrake for packaging and on-orbit assembly, a joint design for assembly of
the aerobrake, a structural design which included material selection and structural analysis with
imperfection considerations, and the interaction between the TPS and the structure.

Three proposed segmentation concepts were evaluated for ease of packaging and assembly and
one was selected for structural sizing. Two structural concepts were sized to withstand
aerodynamic drag forces generated during deceleration into low-Earth orbit. The analysis yielded
structural mass estimates for a set of materials. A joint design was proposed for assembly of the



aerobrake components and an estimated joint mass was determined. A TPS thickness was sized
for each structural concept/material combination based on the thermal properties of the material and
the thickness of the structure. Finally a mass estimate was made for each structural
concept/material combination, including the TPS and joint mass.

This paper will discuss the aerobrake requirements and assumptions, the assessment of the
segmentation concepts, a description of the two structural design concepts, the joint concept and
assembly operations. Also the structural analysis and results, and an estimated mass for the
aerobrake including TPS will be presented.

Assumptions and Requirements

This section summarizes the assumptions and requirements that were used in the present study
for the conceptual design of the LTV aerobrake structure. The Earth-return portion of the LTV
consists of two major components: the Payload/Avionics (P/A) module and the aerobrake (see
figure 2). The target mass of the Earth-return LTV has been specified as 45,100 1bm, 20 percent
of which (9040 1bm) represents the mass goal of the aerobrake. The P/A module has an octagonal
cross section with a maximum diameter of 23.1 feet and a length of 22.0 feet. The P/A module is
mounted to the leeward (concave) side of the aerobrake structure. The aerobrake structure is
protected from aerodynamic heating on the windward side by the TPS. The aerobrake is a
spherical cap with a base diameter of 50.0 feet and a radius of curvature of 44.55 feet. The
spherical shape was chosen for the LTV aerobrake because its symmetry facilitates fabrication and
on-orbit assembly and reduces operational support requirements. A partial toroidal skirt is attached
to the outer edge of the spherical cap to prevent the protrusion of sharp aerobrake edges into the
aerodynamic flow and increase the shielded volume in the aerobrake's wake. This skirt is a
portion of a circular torus generated by rotating a 2-foot radius circle, which is tangent to the edge
of the spherical cap, around the aerobrake centerline.

The interface between the P/A module and the aerobrake is a docking ring which enables the
P/A module to separate from the aerobrake and land on the lunar surface while the aerobrake
remains in lunar orbit. The diameter of the docking ring is assumed to be equal to the maximum
diameter of the P/A module. The docking ring is restricted to a maximum depth of 3.28 feet (see
figure 2) to prevent the aerodynamic flow behind the aerobrake from impinging on the P/A
module. Detailed structural design and analysis of the docking ring were not included in this
study.

No existing or currently planned launch vehicle has a payload shroud large enough to
accommodate the fully assembled LTV aerobrake. Therefore, the aerobrake must be launched
disassembled (figure 3) for assembly in low Earth orbit (LEO). To provide flexibility with respect
to launch opportunities and payload manifests, the aerobrake subassemblies are sized to be
transported to LEO by either the STS (15-foot diameter by 60-foot length cargo bay) or the Titan
IV ELV (15-foot diameter by 66-foot length payload shroud) as described in reference 5. The
assembly operations are designed to be accomplished by either EVA or robotic techniques, and are
assumed to use the projected capabilities and utilities of SSF.



The TPS selected for use on the LTV aerobrake is an Alumina Enhanced Thermal Barrier
(AETB) tile which has evolved from the high temperature L12200 tiles that are currently used on
the STS. The tiles are either bonded or mechanically attached to the structure. As the aerobrake
structure deforms under load, gapping between the tiles or debonding of the tiles from the structure
can occur. Therefore structural deformation constraints must be considered in the design. For this
study a maximum tile dimension of one-meter was assumed and deformation constraints were
based on shuttle tile gapping and debonding criteria.

The aerobrake surface pressure distribution at the time of peak stagnation pressure during a
nominal aerobraking trajectory was chosen as the design loading for the present study (see figure
4). This pressure distribution is non-uniform because the angle of attack for the nominal trajectory
is 11 degrees. The maximum stagnation pressure is 0.737 psi.and is associated with a maximum
LTV deceleration value of 4.18 g's.

Concept Descriptions
Aerobrake Segmentation Concepts

The three segmentation concepts evaluated in this study are the longitudinally sliced panels, the
core-petal panels and the hexagonal panels (see figures 5 through 7). The core-petal and the sliced
panels concepts were previously proposed in reference 5 as part of phase one of the aerobrake
study, and the hexagonal panel concept was developed during this study, phase II. The panel sizes
for the three concepts are dictated by the launch vehicle cargo-bay cross-sectional dimensions, the
location of the docking ring attachment points, and compatibility with the rib intersections of an
isogrid pattern. The seams of the aerobrake segments were defined by projecting the intersection
points of an isogrid pattern in the base plane onto the spherical surface of the aerobrake, and
connecting the projected points by arc segments of great circles. These panel seams have curvature
in one direction only, which simplifies line joint manufacturing and on-orbit assembly of the
panels.

The attachment points of the docking ring were required to be located away from the panel
seams. These attachment points were located on the structure at a radius of 25 feet from the
aerobrake center and at isogrid rib intersection points.

The three segmentation concepts were given a cursory assessment based on launch vehicle
packaging, ease of assembly, number of parts, a preliminary mass estimate and compatibility with
SSF systems for storage and manipulation. Of these five concerns, launch vehicle packaging and
ease of assembly were determined to be the major discriminators for determining the preferred
segmentation concept.

Early in the assessment of the segmentation concepts it was shown that the longitudinally sliced
panel segmentation concept, shown in figure 5, would not meet the packaging requirements. The
concept consists of five longitudinal panels with three different geometric shaped panels. The
panels are sized to be of equal width, 10 feet, with the docking ring attachments located on the
interior of the three center panels. The aerobrake skirt section is included on the perimeter edge of



each panel. From figure 5 it can be seen that the panels can not be packaged within the 15 foot
diameter of the cargo bay area of either the STS or Titan IV. Since the panels can not be packaged
in either launch vehicle this segmentation concept was eliminated from further consideration in the
study.

The core-petal panel segmentation concept shown in figure 6 consists of a center or core
hexagonal panel ringed by 12 petal panels. The panels are sized so the docking ring attachments
are located on the interior of the petal panel geometry and occur at rib intersection points. The
core-panel has a planform dimension of 9.8 feet across the vertices and 8.4 feet across the flats.
The petal panels have a maximum planform dimension of 12.5 feet by 20.7 feet. The aerobrake
skirt section is included on the perimeter edge of each petal panel. As shown in figure 6 the core-
petal panels can be packaged in the STS cargo bay by laying the petal panels lengthwise so that
they overlap one another. The core panel is packaged on edge as was done with the hexagonal
panels. This packaging configuration requires 50 feet of the cargo bay length and does not account
for packaging supports or stowage canisters.

The hexagonal panel segmentation concept shown in figure 7 consists of 19 hexagonal or
truncated hexagonal (at the perimeter) panels in a two-ring pattern. There are four different
geometric shapes: the center panel, the first-ring panels, and two shapes in the second-ring panels.
The panels are sized so the centers of the first ring of the panels are 12.5 feet from the center of the
aerobrake. This allows the docking ring attachments to be made in the center of the panels. The
panels have the maximum planform dimensions of 14.4 ft across the vertices and 12.5 ft across the
flats. The aerobrake skirt section is included on the perimeter edge of each second-ring panel. As
shown in figure 7, the hexagonal panels (including the skirt section and allowing for spacing
between the panels) can be stacked in a 25 foot length of the STS cargo bay. This arrangement
does not account for a stowage cannister.

Between the hexagonal panels and the core-petal panels the hexagonal panels were considered
the better concept for packaging in the STS or Titan IV ELV cargo bays. The hexagonal panels
were shown packaged in less than half of the cargo volume, including spacing for supports. (It
will be shown later that the panel and TPS thickness will be about 5 inches thick.). This packaging
arrangement allows for other hardware/equipment to be launched with the aerobrake panels if
desired. The core-petal panels require the majority of the cargo bay volume, not including spacing
for supports.

The other discriminator, ease of assembly, relates to the handling of the panels during
assembly. If all the panels were the same size then it follows that more panels will take longer to
assemble. However, if the panels are different sizes then the ability to maneuver a panel during
assembly can be effected to the point that a larger number of smaller panels could potentially be
assembled quicker and easier than a few larger sized panels. Such is the case with the hexagonal
panels versus the core-petal panels. The hexagonal panel concept has six more panels to assemble
than the core-petal concept (19 versus 13 panels), but the hexagonal panels are significantly smaller
therefore were considered more maneuverable than the core-petal panels. Also because of their
size the hexagonal panels had shorter length seams to align and join together than those of the core-
petal panels. For these reasons the hexagonal panels were chosen as the preferred segmentation
concept.



Structural Concepts

Two different structural concepts (sandwich and isogrid) were studied in order to identify a
low mass aerobrake structural design. This section describes the structural concepts and material
options evaluated in the study.

Sandwich Shell Sandwich construction, which features a lightweight honeycomb core and
thin, high stiffness face sheets (see figure 8a), was considered for the aerobrake structure because
it provides high flexural stiffness at low areal density. Composite face sheets were assumed to
have a mid-plane symmetric, quasi-isotropic lay-up. The primary consideration for sizing the
sandwich stiffness will be resistance to global shell buckling due to applied pressure. To
accommodate TPS requirements, local deflection and radius-of-curvature limits may also be
important.

Isogrid Shell A thinner sandwich shell stiffened with an isogrid arrangement of ribs (as
shown in figure 8b), was considered because it can also result in lightweight and efficient
structures®. The isogrid pattern has ribs which are oriented at 0, +60, and -60 degrees, as shown
in figure 8b, and gives the shell globally isotropic membrane stiffness. The rib spacing is
determined from the same projected isogrid pattern that defines docking ring attachment points, and
panel seams. In the present study, the ribs are assumed to be I-beams. In an isogrid design, the
ribs are designed to carry most of the loading; thus, when composite materials are used for the
ribs, a lay-up which maximizes the longitudinal stiffness is desirable. The rib design chosen, a
[+45, -45, On]s lay-up, uses a pair of +45-degree outer plies to stabilize the 0-degree plies which
run along the longitudinal axis of the rib. Both uniform and sandwich construction skins were
investigated for the isogrid structure. As before, composite skins were assumed to be mid-plane
symmetric and quasi-isotropic. Similar to the sandwich concept, the primary consideration for
sizing the isogrid ribs is resistance to global buckling of the shell. Prevention of local buckling of
the skin between the ribs, as outlined in reference 6, will dominate the skin design. However,
local deflection and radius-of-curvature limits imposed by the TPS must also be considered

Materials Because the aerobrake operates in a high temperature regime and is mass critical,
materials with high specific stiffness which can also operate at elevated temperatures are needed.
Five candidate materials were evaluated in the present study. The candidates, with properties listed
in Table 1, are aluminum, titanium, silicon carbide (particles)-aluminum (SiCp/Al), graphite-epoxy
(Gr/E), and Graphite Polyimide (Gr/Pl). Specific stiffness range from a high of 529 x 106 inches
for the uni-directional Gr/E to a low of 102 x 106 inches for aluminum, and the maximum
operating temperature ranges from a low of 260° F for Gr/E to a high of 7500 F for titanium. Each
of the materials was used to size aerobrakes for the sandwich structure concept, and three of the
materials, aluminum, SiCp/Al, and Gr/E, were used to size aerobrakes for the isogrid structure.
However, in the subsequent sections which discuss the analysis in detail, the Gr/E material results
will be presented as representative of all the material cases.

Aluminum and titanium were the two metals investigated for this study. The aluminum would
probably be the least expensive of the materials to use, however it has the lowest specific stiffness
and a low-to-mid range operating temperature. Titanium had the highest operating temperature of
the materials selected. This property could allow the thickness of the TPS required to be reduced



and thus lower the TPS mass. The disadvantages of the titanium are that it can be expensive and
difficult to machine. Its specific stiffness is identical to that of aluminum.

SiCp/Al is a metallic composite material which has a higher specific stiffness ratio than
aluminum and titanium. Although SiCp/Al is reported to have an operating temperature of 500° F,
experts recommend that the actual operational temperature be limited to approximately 3500 F.
Further investigation would be required to determine if the higher operating temperature would be
acceptable. Since SiCp/Al currently can not be manufactured as a honeycomb material, the
SiCp/Al sandwich structure in this study was comprised of an aluminum honeycomb core with
SiCp/Al facesheets.

Gr/E and Gr/P1 were two composite materials investigated for this study. Gr/E is a commonly
known composite with a high specific stiffness ratio and high strength. It also had the lowest
operating temperature (260° F) of the five candidates. However, reference 8 indicates that for
short term use and a dry thermal environment the Gr/E could operate at a temperature of 3500 F.
For this study both the 260° F and the 350° F thermal environments were considered since the
aerobrake operates in space and experiences a short, high temperature environment. Gr/Pl is a
high temperature composite material. Its specific stiffness ratio is not as high as Gr/E but it is
higher than the metals. The Gr/Pl material used in this study is based on a Gr/P] with a newly
developed resin, LaRC-RP469. This material is capable of duplicating the properties of current
Gr/Pl but with a higher operating temperature. However the material would need more
development work and verification of its capability. Also Gr/Pl composites are known to have
exhibited problems with micro-cracking during processing and use which would have to be taken
into consideration in the design process.

Joint Concept

The joints required to assemble the aerobrake panels must not only provide sufficient strength
and stiffness for the aerobrake to function as a continuous structure, they must also seal the seams
between the panels to prevent hot gas flow through the aerobrake. In addition the joints must be
compatible with EVA astronaut or robotic assembly. To minimize the number of parts handled, the
joints should have captured fasteners.

The joint concepts considered herein are based on a quick-attachment joint developed for on-
orbit assembly of large space trusses by astronauts during EVA10, Two joints are needed for
assembling the aerobrake panels. The line joint shown in figure 9 is used to join sandwich panels
at the seams. The node-joint shown in figure 10 is used to join isogrid rib intersections.

Both joint concepts consist of two matching halves which include tapered tongues and
grooves. The tongue and groove feature allows easy insertion of the joint halves, and a continuous
load path across the joint. For the line joint, the tongues and grooves are wedged together
removing the free-play and sealing the seams between the panels. A drogue-capture feature (not
shown in the figure) is incorporated into the joint to aid in aligning the panels and then holding the
panels together while the joint is being locked. The ribs are joined together by a node which is
inserted at the rib intersection. The end of the ribs and the node have the same type of tongue and
groove arrangement as the line joint. The rib joint connection is made after all line joints common



to the rib intersection have been assembled. As shown in figures 9 and 10, captured bolts are used
to lock all the joint halves together. This feature reduces the number of parts that must be managed
during assembly thus simplifying the closure operation. Both joint concepts were also assumed to
be 7075-T73 aluminum alloy. To reduce the mass of the line joint some of the joint material was
removed and replaced with the core honeycomb material.

mbl n

The aerobrake assembly was to be accomplished using either EVA astronauts with robotic
assistance or robotics alone. With both assembly methods, the aerobrake can be assembled from
the SSF as illustrated in figure 11. If necessary, the aerobrake could also be assembled out of the
STS cargo bay in a similar fashion. The components are stowed in canisters near the assembly
site. The aerobrake is assembled in rings, beginning with the center panel which is attached to a
turnstile and rotated to allow subsequent panels to be attached. Because the panels of the aerobrake
overlap, they are assembled by being brought in alternately from the back and the front of the
structure. Thus, all of the edges of a single panel will not have the same line joint orientation. The
rib node joint will be attached at all rib intersections along the seams after all the adjoining panel
line-joints are assembled. For assembly by EVA astronauts with robotic assistance, the Space
Station Remote Manipulator System (SSRMS) retrieves aerobrake panels from their stowage
canisters and positions them within reach of the EVA astronauts. The astronauts, positioned by an
auxiliary mobile transporter with positioning foot restraints, take the panels from the SSRMS and
align and mate the panels with adjacent panels on the turnstile. After the astronauts have assembled
the aerobrake, the Special Purpose Dexterous Manipulator (SPDM) tightens all of the captured
bolts. For the robotic assembly scenario the SPDM would be used to align and mate the panels.

Structural Analysis

Models -

A finite element model was constructed of the aerobrake for analysis and structural sizing. The
mesh was chosen to incorporate features of both the sandwich and the isogrid structural concepts
-so that only one model was required. The resulting finite element mesh, composed of triangular
plate (bending plus membrane) elements, is shown in figure 12. Node points are included along
the boundaries of the hexagonal panels so that loads and stresses at the joints between the panels
can be obtained. Node points have also been located along the ribs of the isogrid structural concept
with rib spacing equal to the edge length of the hexagonal panels as shown in the figure. The finite
element mesh uses six elements along the edge of a triangular cell formed by the ribs which is
sufficiently refined to capture the second skin buckling mode between the isogrid ribs (reference
6).

The six support points shown with circles represent the docking ring attachment points for the
isogrid structural concept. These are the only six points that meet the requirements that the support
points be located at a rib intersection and not on a panel boundary. However, a major advantage of
the sandwich structural concept is that since it has no ribs, the P/A module can be continuously
supported by the shell leading to a much better distribution of the interface loads and potentially a



lighter structure. The mesh shown in figure 12 does not have sufficient fidelity to model this
continuous support condition. However, six additional supports (giving a total of 12) could be
located on the model at panel boundaries, as indicated by the squares in the figure, to study the
performance benefits that could be achieved by using additional supports.

The non uniform pressure loading applied to the aerobrake is illustrated in figure 4. A factor of
safety of 1.4 was used for all analyses and was applied to the pressure loading. Since the buckling
load of spherical caps (like the aerobrake) under external pressure is very sensitive to small
deviations (or imperfections) from the ideal shape!l, relatively small structural imperfections can
lead to large reductions in the buckling load. Thus, even at the conceptual level, buckling
sensitivity to imperfections should be taken into account when sizing aerobrake shell structures.
An approximate method for considering imperfection sensitivity in the design process is described
in the next section.

Sandwich Structure

Analysis Procedure A simple reduced stiffness method, that provides a basis for designing
shells which are sensitive to imperfections, is described in reference 12. There, the following
formula is proposed for calculating the buckling load of a shell with imperfections,

p* - UB,m
&M (Ugm+ UMm)

Pc,m ' - 1)

where pc,m is the classical critical pressure for buckling mode m, UB,m and UM,m are the
bending and membrane strain energies in the associated critical mode. Although additional
research is needed to establish the validity of this approach, it was assumed to be satisfactory for
conceptual design purposes and was used in the present study.

Results from a preliminary study of the sandwich concept, using a coarser mesh than that
shown for the aerobrake in figure 12, showed a difference of 7.6 percent between the buckling
load predicted by a linear bifurcation analysis and a nonlinear analysis of a perfect spherical cap
supported at six points. Thus, the linear bifurcation analysis13 was considered to be accurate
enough for conceptual design purposes. To design the aerobrake to account for imperfections,
several buckling modes are calculated, the amount of bending and membrane strain energy is
calculated for each mode, then the reduced critical load is calculated using equation (1). The
reduced critical load is used as the aerobrake design load.

Initially, the sandwich face sheet and core thicknesses are sized to obtain sufficient bending
stiffness to resist buckling at the design pressure. The bending stiffness of a sandwich shell is

p= Ertr i
2(1-v3) @

where Ef and vf are the modulus and Poisson's ratio of the face sheet, tf is the face sheet
thickness, and t¢ is the core thickness. The areal density of a sandwich shell is given by
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where pf and p¢ are the densities of the face sheets and core respectively. A minimum mass
sandwich design can be obtained by solving equation (2) for t¢, substituting that expression into
equation (3), and setting the partial derivative with respect to tf of the resulting expression equal to
0. This results in the following expression for the face sheet thickness of a minimum mass design,
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Initial analyses were used to determined a value of D sufficient to prevent buckling at the design
pressure. Then, equations (4) and (2) were used to obtain initial estimates for sandwich shell core
and face sheet thicknesses that approximate a minimum mass design. Since these values do not
consider the beneficial effect of the shell membrane stiffness on buckling, using these values
results in an over-designed structure (the shell buckles at a load which is greater than the design
load). Further refinement in the design, and thus, less mass, was obtained by using the linear
bifurcation buckling analysis to size the structure (as described in the next section).

Results The fundamental buckling mode for the sandwich aerobrake supported at the six
points shown in figure 12 has three circumferential waves. The percentage of the total strain
energy associated with bending represents a knock-down factor which takes into account buckling
sensitivity to initial imperfections (see equation 1). Its value ranged between 53 and 55 percent for
the sandwich panel with graphite epoxy face sheets, and the reduced critical load was equal to the
design load when

tc tf = 0.076 o)

When equation (5) is solved for t¢, and the result is substituted into equation (3), the areal mass
of the sandwich design becomes a function of a single parameter, tf, as shown in figure 13.
Minimum mass for the sandwich, .0094 lbm/in2, is achieved for 0.0355t£<0.04 inches. The value
of 0.04 was chosen for the design because it requires a thinner core (1.90 versus 2.17 inches) and,
thus, leads to a thinner structure which packages more efficiently for launch. (Values of tc and tf
calculated for minimum mass designs for the other materials are listed in Table 2.)

When the number of supports on the sandwich aerobrake is increased from 6 to 12, a minimum
mass design is achieved when t¢ is 1.84 inches and tf is 0.034 inches. The resulting mass for the
12-support case is 9.5 percent less than in the 6-support case (see Table 3). Further reductions in
the sandwich aerobrake mass could be expected in the case of continuous support representing for
example, a continuous docking ring bonded to the aerobrake structure. The imperfection related
knockdown factor on buckling is 4 percent smaller for the 12-support design than for the 6-support
design.

A maximum TPS tile size of 39.37 inches is used for this study. The structural deflection over
a 39.37 inch reference length is not allowed to exceed 0.1 inches to insure that the tiles do not



debond. These values lead to a requirement that the minimum allowable radius-of-curvature from
elastic deformation be 1938 inches for the structure. A contour plot of the displacements in the x-
direction (see figure 12 for axis orientation) for the Gr/E sandwich aerobrake (with 6 supports, tc
of 1.9 inches, and tf of 0.04 inches) subjected to the design pressure is shown in figure 14. The
maximum out-of-plane (x) displacement is 1.24 inches and occurs on the aerobrake leading edge.
The deflection contour plot shows that the most rapid change in deflections, and thus, the greatest
amount of induced curvature, occurs near the support points. The radius-of-curvature induced by
the deflections in the sandwich aerobrake is calculated to be 2606 inches using equations found in
reference 12. Since this is above the minimum allowable of 1938 inches, the TPS deflection
criteria is met by the sandwich structure.

Stresses in the graphite epoxy face sheets for the sandwich design (with 6 supports, tc of 1.9
inches, and tf of 0.04 inches) were also checked for acceptability. In reference 7, representative
values of ultimate stress in a quasi-isotropic lay-up are given for a high-modulus graphite epoxy
system (P75/1962) of the type considered for this study. Ultimate stress values used in the present
study were 45 x 103 psi in tension, and 27 x 103 psi in compression for a quasi-isotropic lay-up.
The maximum and minimum average nodal stresses in the face sheets were 44.2 x 103 and -37.0 x
103 psi respectively. The peak tensile and compressive stresses occur locally at the supports, as
shown by the stress contour for the radial stress, Or, in figure 15a, whereas most of the skin isin a
very low stress state. Although the peak compressive stress is greater than the material ultimate,
the design can be made acceptable without adding significant mass to the aerobrake by locally
stiffening the support region because the stress reduces to an acceptable level in less than one sixth
of the panel radius (see figure 15b).

Isogrid Structure

Analysis Procedure Predicting buckling in an isogrid structure under transverse pressure
loading generally requires nonlinear analysis for two reasons. First, because prebuckling
deformations are important, a linear bifurcation analysis is not valid for this design problem6,13,
Second, the first buckling mode predicted by the bifurcation analysis is not a buckling mode for
this structure-loading combination; buckling actually occurs at the second mode®. A lightweight
isogrid design features thin skins; hence local skin buckling between the ribs must be considered in
addition to the global instability, as described in reference 6, if a lightweight design is desired.
Thus, in this study, geometrically nonlinear analysis is used to size the isogrid acrobrake concept.
Although no attempt is made here to determine the imperfection sensitivity of the isogrid design,
the same knock-down factor (54 percent) determined for the sandwich design is applied in the
analysis of the isogrid design for comparison.

After the isogrid structure was sized to meet the buckling criteria, the stresses in the skins and
ribs were checked for acceptability. Since preliminary studies showed that the isogrid aerobrake
was unnecessarily heavy when a uniform skin was assumed, sandwich construction was chosen
for the isogrid skins. For the results which follow, the skins had graphite-epoxy face sheets and
aluminum honeycomb core, and the ribs were also made from graphite-epoxy. Ultimate stresses
for the face sheets (quasi-isotropic lay-up) were given in the section on sandwich results. The
ultimate strength of the ribs was assumed to be the longitudinal strength of a unidirectional lay-up
of P75/19627 which is 124 x 103 psi in tension and 63 x 103 psi in compression. As with the
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sandwich panel, stresses which exceeded ultimate values were allowed only in a localized region
surrounding the supports.

Results A Gr/E isogrid aerobrake design which met the buckling and stress requirements had
the following properties. The skins had a core thickness of 0.894 inches and a face sheet thickness
of 0.023 inches. The ribs had a width of 2.0 inches, height of 2.7 inches, web thickness of 0.1
inches and flange thickness of 0.35 inches, resulting in a rib area of 1.6 in? and a moment of
inertia about the primary bending axis of 2.01 in4. (The skin core and facesheet thickness
dimensions calculated for minimum mass designs for the other materials are listed in Table 4.) A
contour plot of the displacements in the x direction for the Gr/E isogrid aerobrake is shown in
figure 16. The maximum out-of-plane displacement for this configuration with 6 support points is
1.48 inches and occurs on the aerobrake leading edge. For the associated deflection shape, 54
percent of the strain energy is in the ribs and 46 percent is in the sandwich skins. Normally in an
isogrid structure, the majority of the loading is carried by the ribs. However, in the aerobrake
structure, nearly half the load is carried by the skin because the skin must be relatively stiff to resist
buckling.

The greatest change in curvature in the isogrid structure occurs near the support points. The
minimum radius-of-curvature induced by the deflections is 2338 inches along a rib, and 700
inches in the center of a skin between ribs. Since the radius-of-curvature in the center of the skins
is smaller than the TPS requirement of 1938 inches, local stiffening of the skin would be required
in critical areas near the supports. However, the additional mass required to make the TPS and
isogrid structure compatible were not addressed in this study.

Stresses in the graphite epoxy sandwich skin face sheets and the graphite epoxy ribs were also
checked for acceptability (with ultimate stress values for both cited previously). The maximum and
minimum average nodal stresses in the isogrid skin face sheets, 41.5 x 103 and -8.8 x 103 psi
respectively, occurred locally at the support points as for the sandwich design (see figure 17 for a
typical skin stress distribution for Or). The maximum compressive stress in a rib, which is not
local to a support point, was 64.4 x 103 psi. Although this value is slightly higher than the
ultimate (63 x 103 psi), it occurred over a small area. Thus, reducing the stress to an acceptable
level would not add much mass, and no attempt was made to reduce the stress any further in this
study. The maximum compressive rib stress near the support points is 83.6 x 103 psi. As with
the sandwich design, the ribs could be stiffened in the support point region to reduce stresses to an
acceptable level without adding significant mass.

Line Joints Results

Analysis of the aerobrake sandwich structural configuration shows that the maximum line joint
load, tangent to the shell and perpendicular to the line joint, is about 10,000 1bf/in. However,
since the line joint depth is assumed to be equal to the thickness of the sandwich shell, the mass of
the line joints should be different for the different shell material cases. To estimate the line joint
mass, the joint shown in figure 9 is sized for 2-inch and 4-inch depth such that it sustains a net
section stress corresponding to two times the maximum line joint load of 10,000 Ibf/in. From this
preliminary joint sizing, the 2-inch and 4-inch joint cross-sections were determined to have cross-
sectional areas of 2.182 in2 and 5.228 in2 for the joint material and 1.818 in2 and 10.772 in2 for
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the honeycomb material, respectively. Since the maximum line load, 10,000 1bf/inch, is the same
for both joint sizes, the minimal thickness of the aluminum joint material is 0.268 inches for both
joints. This thickness is based on an ultimate strength value of 75.0 x 103 psi for 7075-T73
aluminum alloy.

TPS Sizing

For a low-mass, high-stiffness design, the structural and TPS materials must be selected as a
system. The material properties (stiffness, density, etc.) and material operating temperatures must
be assessed in combination with the required TPS thickness to determine the structural-TPS system
with the lowest mass. A one-dimensional, analytical study was performed to determine the TPS
thickness required for each of the material candidates for both the sandwich structure and the
isogrid structure. Results from the study are listed in tables 2 and 4.

Table 2 presents the results for the sandwich structure and Table 4 presents the results for the
isogrid structure. The tables list the core and face sheet thicknesses (the rib dimensions are not
presented since they are not used in the TPS analysis), the maximum allowable temperatures for
each material, and the resulting TPS thickness for the sandwich panels and the isogrid panel skins.
As indicated in table 2 and 4, except for G1/E, the TPS thickness required (and thus mass) for all
cases was the same. This thickness (.6125 inches) is the TPS minimum gauge thickness. Since
all materials except for the Gr/E require minimum gauge thickness, the temperature is not a
discriminator in the use of the materials, other than Gr/E.

Total Mass

The total mass of the aerobrake structural system consists of the structure, joints, TPS and TPS
attachment systems. The structural masses of the sandwich concept and the isogrid concept skin
were based on a total acrobrake surface area of 354,122 in2. The sandwich core density was
chosen as .00231-1bm/in3 (4 1bm/ft3) for all materials. The isogrid rib mass was based on the
cross-sectional area of the ribs, the material density, and a total rib length of 15,860 inches.

An attempt was also made to estimate the mass of the joints in the aerobrake structure. The
mass of the sandwich concept line joint was determined by using the cross-sectional areas of the
joints discussed in the previous section. By using a linear interpolation between the two-inch and
four-inch sized joints, a cross-sectional area for the joint could be determined which included the
amount of cross-sectional area attributed to the solid joint area and the honeycomb-filled area. The
joint fasteners are assumed to be distributed along the seam at every 12 inches. At the joint
fastener location the joint was assumed to be solid 1-inch along the seam on either side of the
fastener to allow enough material for the fastener. The mass of the structure that the joint replaced
was subtracted from the structural mass. Table 5 shows the resulting structural mass, the joint
mass and the TPS mass for the sandwich structure material cases.

For the isogrid structural concept, masses were determined for the skin line joints and the rib

joints. Because the skin line joints were too thin for use of the linear interpolation between the
two-inch and four-inch joint designs, an approximate cross-sectional area was used maintaining the
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.268 in. minimal thickness from the sandwich concept line joint as a reference thickness. The
minimal thickness dimension of .268 in. was reduced by the percent of total strain energy carried
by the ribs under the applied pressure load (since the skin face sheets were no longer carrying the
total load). This new dimension was used to calculate solid joint and hollowed honeycomb cross-
sectional areas for each material candidate. The skin line-joint mass was then determined in the
same manner as the mass of the sandwich concept line joint. The rib joint mass was calculated
from the determined geometry of the joint. Again the mass of the structure that the skin and rib
joints replaced was subtracted from the structural mass. Table 6 shows the resulting structural
mass, the joint mass, and the TPS mass for the isogrid structure material cases.

The total mass of the aerobrake structure is a sum of the structural mass, joint mass and TPS
mass and is listed in the next to last columns of Tables S and 6. The aerobrake mass as a
percentage of the LTV Lunar return mass is listed in the last columns. Five configurations which
met the 20 percent mass goal were sized. The sandwich concepts, using either the SiCp/Al or the
Gr/E materials, and all the isogrid material concepts had predicted masses of 17-20 percent of the

- LTV mass.

ncluding Remark

A multidisciplinary conceptual study was performed to define a reusable Lunar Transfer
Vehicle (LTV) aerobrake which could be assembled on orbit at Space Station Freedom. This paper
described the aerobrake segmentation concepts, structural concepts, a joint concept for assembly of
the aerobrake, a structural design which included material comparisons and structural analysis with
imperfection considerations, and the sizing of the TPS.

The major goal of the present study was to determine if an integrated structure/TPS system
could be designed having a mass which is less than 20 percent (9040 1bm) of the LTV lunar return
mass. Aerobrakes using both the isogrid and sandwich structural concepts with associated TPS
systems, were sized which met this goal. The isogrid aerobrake mass was slightly less than the
sandwich design for all of the materials considered.

Results from this study show that a 50-foot-diameter LTV aerobrake can be designed for on-
orbit assembly, and can also be efficiently packaged for transporting to low Earth orbit aboard the
Space Shuttle Transportation System. An erectable line joint concept, which is lightweight and
amenable to on-orbit EVA and robotic construction methods has been described. This joint
concept is based on the erectable space station joint and includes important assembly features such
as self-contained attachment mechanisms and a joint capture feature. Additional design and
analysis are needed to characterize the strength, stiffness, and structural linearity of the joint
concept and to better estimate its mass.

Since small structural imperfections can seriously degrade the predicted buckling performance
in shell structures such as the LTV aerobrake, structural sizing, even at the conceptual design
phase, must take the effect of these imperfections into account. A reduced stiffness method for
designing shells which are sensitive to initial imperfections was used to design the sandwich LTV
aerobrake. For comparison, the same method was used to size both aerobrake structural concepts.
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Although the reduced stiffness method provided a theoretical approach to design the aerobrake
structure, more research is needed to assess the validity of this method and its applicability to the
aerobrake problem.
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Figure 3. On-orbit assembly of an aerobrake from a Space Station-type platform.
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