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ABSTRACT

This report presents the development of the Gain Weighted Eigenspace Assignment
methodology.  This provides a designer with a systematic methodology for trading off
eigenvector placement versus gain magnitudes, while still maintaining desired closed-loop
eigenvalue locations.  This is accomplished by forming a cost function composed of a scalar
measure of error between desired and achievable eigenvectors and a scalar measure of gain
magnitude, determining analytical expressions for the gradients, and solving for the optimal
solution by numerical iteration.  For this development the scalar measure of gain magnitude
is chosen to be a weighted sum of the squares of all the individual elements of the feedback
gain matrix.  An example is presented to demonstrate the method.  In this example,
solutions yielding achievable eigenvectors close to the desired eigenvectors are obtained
with significant reductions in gain magnitude compared to a solution obtained using a
previously developed eigenspace (eigenstructure) assignment method.

1.0 INTRODUCTION

The Direct Eigenspace Assignment (DEA) method (Davidson 1986) is currently being
used to design lateral-directional control laws for NASA's High Angle-of-Attack Research
Vehicle (Davidson 1992).  This method allows designers to shape the closed-loop response
by choice of desired eigenvalues and eigenvectors.  During this design effort DEA has been
demonstrated to be a useful technique for aircraft control design.  The control laws
developed using DEA have demonstrated good performance, robustness, and flying
qualities during piloted simulation.  These control laws are scheduled for flight test at
NASA Dryden Flight Research Center in 1994.

During the control law design effort, one limitation of the DEA method became
apparent.  Using DEA the designer has no direct control over augmentation gain
magnitudes.  Often it is not clear how to adjust the desired eigenspace in order to reduce
individual undesirable gain magnitudes.  To reduce undesirable gain magnitudes the
designer must rely upon a strong physical insight into the dynamics or is forced to iterate
on the design.

This report presents the development of an eigenspace (eigenstructure) assignment
method that overcomes this limitation.  This method, referred to as Gain Weighted
Eigenspace Assignment (GWEA), allows a designer to place eigenvalues at desired
locations and trade-off the achievement of desired eigenvectors versus feedback gain
magnitudes.

This report is organized into four sections.  Background information on how
eigenvalues and eigenvectors influence a system's dynamic response and a review of the
Direct Eigenspace Assignment methodology is presented in the following section.  The
development of the Gain Weighted Eigenspace Assignment methodology is presented in
section 3.  Concluding remarks are given in the final section.



2

2.0 BACKGROUND

This section presents a review of how eigenvalues and eigenvectors influence a system's
dynamic response and a review of the Direct Eigenspace Assignment methodology.

Eigenvalues, Eigenvectors, and System Dynamic Response

The eigenvalues and eigenvectors of a system are related to its dynamic response in the
following way.  Given the observable and controllable linear time-invariant system

ẋ = Ax + Bu (2.1a)

and output equation

y = Cx (2.1b)

where x ∈  Rn, u ∈  Rm, and y ∈  Rl .

The Laplace transform of equation (2.1a) is given by

sx(s) − x(0) = Ax(s) + Bu(s) (2.2a)

x(s) = [sI − A]−1 x(0) + [sI − A]−1 Bu(s) (2.2b)

Solution of equation (2.1a) is given by taking the inverse Laplace Transform of equation
(2.2b)

  
x(t) = L −1 [sI − A]−1{ }x(0) + L −1 [sI − A]−1 Bu(s){ } (2.3)

Noting that

  
L −1 [sI − A]−1{ } = eAt (2.4)

the solution of (2.3) is (Brogan 1974)

x(t) = eAt x(0) + eA(t −τ )Bu(τ)dτ
0

t

∫ (2.5)

and system outputs are

y(t) = CeAt x(0) + CeA(t −τ )Bu(τ)dτ
0

t

∫ (2.6)

The system dynamic matrix, A , can be represented by
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A = V ΛV −1 = VΛ L (2.7)

where V is a matrix of system eigenvectors, L is the inverse eigenvector matrix, and Λ is a
diagonal matrix of system eigenvalues.  Given this result, eAt can be expressed by

eAt = VeΛt L = vj e
λ j t lj

j =1

n

∑ (2.8)

where λj is the jth system eigenvalue, vj is the jth column of V ( jth eigenvector of A ), and lj
is the jth row of L ( jth left eigenvector of A ).  Equation (2.6) can then be expressed as

y(t) = C vje
λ j (t )

lj x(0)
j =1

n

∑ + C vj e
λ j (t −τ )

lj Bu(τ) dτ
0

t

∫
j =1

n

∑ (2.9)

Noting that

Bu(t) = bk uk (t)
k =1

m

∑ (2.10)

where bk is the kth column of B and uk is the kth system input, the system outputs due to
initial conditions and input uk is given by

y(t) = C vj e
λ j (t )

lj x(0)
j =1

n

∑ + C vjljbk e
λ j (t −τ )

uk (τ) dτ
0

t

∫
k =1

m

∑
j =1

n

∑ (2.11)

The ith system output is given by

yi (t) = ci vj e
λ j (t )

lj x(0)
j =1

n

∑ + civjljbk e
λ j (t −τ )

uk (τ) dτ
0

t

∫
k =1

m

∑
j =1

n

∑ (2.12)

where ci is the ith row of C.  In the case of initial conditions equal to zero, the ith output is
given by

yi (t) = Rijk e
λ j (t −τ )

uk (τ)dτ
0

t

∫
k =1

m

∑
j =1

n

∑ (2.13)

where Rijk = ci vj lj bk . In this expression, Rijk is the modal residue for output i, associated
with eigenvalue j, and due to input k.

Given an impulsive input in the kth input, equation (2.13) reduces to

yi (t) = Rijk e
λ j (t )

k =1

m

∑
j =1

n

∑ (2.14)
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As this expression shows, for an impulsive input, a system's dynamics are dependent on
both its eigenvalues and its eigenvectors.  The eigenvalues determine the natural frequency
and damping of each mode.  The eigenvectors determine the residues.  The residues are an
indicator of how much each mode of the system contributes to a given output.

Direct Eigenspace Assignment Methodology

One possible approach to the aircraft control synthesis problem would be to synthesize
a control system that would control both the eigenvalue locations and the residue
magnitudes associated with undesirable modes in certain outputs.  Since the residues are a
function of the system's eigenvectors this naturally leads to a control synthesis technique
that involves achieving some desired eigenspace in the closed-loop system ( Moore 1976;
Srinathkumar 1978; Cunningham 1980; Andry 1983; Smith 1990 ).  Davidson and Schmidt
(Davidson 1986) explored this approach by using Direct Eigenspace Assignment (DEA) to
synthesize flight control systems for flexible aircraft.  DEA is a control synthesis technique
for directly determining measurement feedback control gains that will yield an achievable
eigenspace in the closed-loop system.  For a system that is observable and controllable and
has n states, m controls, and l measurements; DEA will determine a gain matrix that will
place l eigenvalues to desired locations and m elements of their associated eigenvectors to
desired values † .  If it is desired to place more than m elements of the associated l
eigenvectors, DEA yields eigenvectors in the closed-loop system that are as close as
possible in a least squares sense to desired eigenvectors.  The following section will present
the development of the DEA synthesis technique.  A more detailed development can be
found in Davidson 1986.

Direct Eigenspace Assignment Formulation

Given the observable, controllable system

ẋ = Ax + Bu (2.15a)

where x ∈  Rn and u ∈  Rm, with system measurements given by

z = Mx + Nu (2.15b)

where z ∈  Rl.

The total control input is the sum of the augmentation input uc and pilot's input up

u = up + uc (2.16)

The measurement feedback control law is

                                                

† This assumes l > m.  For a general statement and proof of this property the reader is referred to
Srinathkumar 1978.
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uc = Gz (2.17)

Solving for u as a function of the system states and pilot's input yields

u = [Im − GN]−1GM x + [Im − GN]−1 up (2.18)

The system augmented with the control law is given by

ẋ = (A + B[Im − GN]−1GM )x + B[Im − GN]−1 up (2.19)

The spectral decomposition of the closed-loop system is given by

(A + B[Im − GN]−1GM )vi = λ ivi (2.20)

for i = 1,...,n where λi is the ith system eigenvalue and vi is the associated ith system
eigenvector.  Let wi be defined by

wi ≡ [Im − GN]−1GM vi (2.21)

Substituting this result into equation (2.20) and solving for vi one obtains

vi = [λ i In − A]−1 Bwi (2.22)

This equation describes the achievable ith eigenvector of the closed-loop system as a
function of the eigenvalue λi  and wi. By examining this equation, one can see that the
number of control variables (m) determines the dimension of the subspace in which the
achievable eigenvectors must reside.

Values of wi that yield an achievable eigenspace that is as close as possible in a least
squares sense to a desired eigenspace can be determined by defining a cost function
associated with the ith mode of the system

Ji = 1
2

(vai
− vdi

)H Qdi
(vai

− vdi
) (2.23)

for i = 1,...,l where vai is the ith achievable eigenvector associated with eigenvalue λi , vdi is

the ith desired eigenvector, and Qdi is an n-by-n symmetric positive semi-definite weighting
matrix on eigenvector elements † .  This cost function represents the error between the
achievable eigenvector and the desired eigenvector weighted by the matrix Qdi.

                                                

† Superscript H denotes complex conjugate transpose (Strang 1980).



6

Values of wi that minimize Ji are determined by substituting (2.22) into the cost
function for vai , taking the gradient of Ji with respect to wi , setting this result equal to zero,
and solving for wi .  This yields

wi = [Li
HQdi

Li ]
−1 Li

HQdi
vdi

(2.24)

where

Li = [λ di
In − A]−1 B (2.25)

and λdi is the ith desired eigenvalue of the closed-loop system.  Note in this development
λdi  cannot belong to the spectrum of A.

By concatenating the individual wi's column-wise to form W and vai's column-wise to
form Va , equation (2.21) can be expressed in matrix form by

W = [Im − GN]−1GM Va (2.26)

The feedback gain matrix that yields the desired closed-loop eigenvalues and achievable
eigenvectors is given by

G = W[MVa + NW]−1 (2.27)

Design Algorithm

A feedback gain matrix that yields a desired closed-loop eigenspace is determined in the
following way:

1) Select desired eigenvalues λdi , desired eigenvectors vdi, and desired eigenvector
weighting matrices Qdi .

2) Calculate wi 's using equation (2.24) and concatenate these column-wise to form W.

3) Calculate achievable eigenvectors vai 's using equation (2.22) and concatenate these
column-wise to form Va.

4) The feedback gain matrix G is then calculated using equation (2.27).

Example

An example will be presented to demonstrate the method.  The design model is the
lateral/directional dynamics of a high performance aircraft at low angle-of-attack.  The
model is based on a steady-state one g trim flight condition of forward cruise speed
equaling 598 feet/second at 25,000 feet.  It includes the four standard lateral-directional
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rigid-body degrees of freedom.  The design goal is to improve the flying qualities by
placing eigenvalues at level one locations and choosing eigenvectors to decouple the roll and
dutch roll modes.

The model is as follows:

ẋ = Ax + Bu (system dynamics) (2.28a)

z = Mx + Nu  (system measurements) (2.28b)

u = up + uc  (total control input) (2.28c)

uc = Gz  (feedback control law) (2.28d)

up = Gpδ p  (pilot control input) (2.28e)

The system states are:

xT = [β ps rs φ ]T (2.29)

where

β = sideslip angle (rad)
ps = stability axis roll rate (rad/sec)
rs = stability axis yaw rate (rad/sec)
φ = bank angle (rad)

The system controls are:

uT = [aroll ayaw ]T (2.30)

where

aroll = stability axis roll acceleration (rad/sec2)
ayaw = stability axis yaw acceleration (rad/sec2)

The measurements considered for feedback are:

zT = [ ps rs ay β̇ ]T (2.31)

where

ps = stability axis roll rate (rad/sec)
rs = stability axis yaw rate (rad/sec)
ay = lateral acceleration at the c.g.(g's)

β̇  = sideslip rate (rad/sec)
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The open-loop system matrices and open-loop eigenvalues and eigenvectors are given in
Figure 1.  In this Figure, the open-loop eigenvectors have been scaled to allow comparison
with the desired closed-loop eigenvectors.

For this example, there are four states, two controls, and four measurements; therefore
using DEA one can place four eigenvalues to desired locations and exactly place two
elements of each associated eigenvector.  The desired eigenvalues are chosen to yield good
flying qualities.  The desired roll and dutch roll eigenvectors are chosen to decouple the roll
and dutch roll modes in the roll rate and sideslip responses.  The desired eigenvalues and
eigenvectors are given in Table 1.  In this Table, an x denotes eigenvector elements that are
not weighted in the cost function.  Therefore, the desired value for these elements is taken as
arbitrary.  Diagonal weighting matrices were used.  Desired elements are weighted unity and
other elements were weighted zero.

The gain matrix to obtain the achievable eigenspace in the closed-loop system and
closed-loop eigenspace is given in Figure 2.  In this Figure, the closed-loop eigenvectors
have been scaled to allow comparison with the desired eigenvectors.

The closed loop eigenvalues have been placed at desired locations.  As can be seen by
examining the desired and achievable eigenvector elements, all the desired elements were
obtained.

DEA Conclusions

DEA is a control synthesis technique for directly determining measurement feedback
gains that will yield an achievable closed-loop eigenspace.  For an observable controllable
system that has n states, m controls, and l measurements one can determine a gain matrix
that will place l eigenvalues to the desired locations and their associated eigenvectors as
close as possible in a least squares sense to desired eigenvectors.

Using DEA the designer has no direct control over augmentation gain magnitudes.
Often it is not clear how to adjust the desired eigenspace in order to reduce individual
undesirable gain magnitudes.  To reduce undesirable gain magnitudes the designer must
rely upon a strong physical insight into the dynamics or is forced to iterate on the design.

The next section presents an eigenspace assignment methodology that overcomes this
limitation.

3.0 GAIN WEIGHTED EIGENSPACE ASSIGNMENT

This section presents the development of the Gain Weighted Eigenspace Assignment
(GWEA) methodology.  This method allows a designer to place l eigenvalues at desired
locations and trade-off the achievement of desired eigenvectors versus feedback gain
magnitudes.

The GWEA formulation builds upon a matrix formulation of DEA.  The matrix DEA
formulation is presented first followed by the GWEA formulation.  The following
development assumes complex matrices have been converted to real Jordan form (Brogan
1974).
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Matrix DEA Formulation

Given the observable, controllable system

ẋ = Ax + Bu (3.1a)

where x ∈  Rn and u ∈  Rm, with system measurements available for feedback given by

z = Mx + Nu (3.1b)

where z ∈  Rl.

The total control input is the sum of the augmentation input uc  and pilot's input up

u = up + uc (3.2)

The measurement feedback control law is

uc = Gz (3.3)

Solving for u as a function of the system states and pilot's input yields

u = [Im − GN]−1GM x + [Im − GN]−1 up (3.4)

The system augmented with the control law is given by

ẋ = (A + B[Im − GN]−1GM )x + B[Im − GN]−1 up (3.5)

The spectral decomposition of the closed-loop system is given by

(A + B[Im − GN]−1GM )vi = λ ivi (3.6)

for i = 1,...,n where λi is the ith system eigenvalue and vi is the associated ith system
eigenvector.  In matrix form this is given by

(A + B(Im − GN)−1GM)V = V Λ (3.7)

Let W be defined by

W ≡ (Im − GN)−1GMV (3.8)

Substituting this equation into (3.7) and taking the vector value of each term yields
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vec(AV )+ vec(BW) = vec(VΛ) (3.9)

where vec(X) is a vector valued function denoting a vector description of the matrix X
(Graham 1981).  Applying properties and rules for Kronecker products, equation (3.9) can
be rewritten as

(Il ⊗ A)vecV + (Il ⊗ B)vecW = (ΛT ⊗ In )vecV (3.10)

where ⊗  denotes Kronecker product.  Some definitions and rules for Kronecker products
used in this development are given in the appendix.

Solving for vecV as a function of Λ and vecW one obtains

vec V = [(ΛT ⊗ In )− (Il ⊗ A)]−1(Il ⊗ B)vecW (3.11)

or

vec V = AD vecW (3.11b)

where

AD = [(ΛT ⊗ In )− (Il ⊗ A)]−1 (Il ⊗ B) (3.12)

This equation (3.11) describes the achievable eigenvectors of the closed-loop system as
a function of the desired closed-loop eigenvalues and vecW.  If one could calculate a vecW
that would make the achievable eigenvectors as close as possible in a least squares sense to
some desired eigenvectors, it could be used to determine a gain matrix that would yield this
eigenspace.  One way this can be done is to define a cost function

Je = vecT (Va − Vd )Qdvec (Va − Vd ) = eTQde (3.13)

where

Va = achievable system eigenvectors
Vd = desired system eigenvectors
Qd = symmetric positive semi-definite weighting matrix (eigenvector weighting matrix)
e = vec( Va – Vd ).

This cost function represents the error between the achievable eigenvectors and the desired
eigenvectors weighted by the matrix Qd.

The value of vecW that will minimize Je can be obtained by taking the partial of Je with
respect to vecW.  This partial can be determined in the following way.  Substituting equation
(3.11) into equation (3.13) for Va yields Je as a function of vecW.  By applying the vector
chain rule property (Graham 1981), the partial of Je with respect to vecW is given by
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∂Je

∂vecW
= ∂e

∂vecW






∂Je

∂e




 = ∂e

∂vecW






∂
∂e

(eTQde)



 (3.14)

Differentiating each term yields

∂
∂e

(eTQde) = Qde + Qd
Te = 2Qde (3.15)

and

∂e

∂vecW
= ∂

∂vecW
(vec(Va − Vd )) = ∂

∂vecW
( ADvecW − vecVd ) = AD

T (3.16)

Therefore, the partial of Je with respect to vecW is given by

∂Je

∂vecW
= 2AD

TQde = 2AD
T Qd (vecVa − vecVd ) (3.17)

In this case, a closed form solution for vecW exists.  This is obtained by setting equation
(3.17) equal to zero and solving for vecW.  This yields

vec W = [AD
TQd AD ]−1 AD

T QdvecVd (3.18)

where

AD = [(Λd
T ⊗ In )− (Il ⊗ A)]−1 (Il ⊗ B)

and Λd is a block diagonal matrix of desired closed-loop eigenvalues.  Note in this
development the desired closed-loop eigenvalues cannot belong to the spectrum of A.

The gain matrix that will yield the desired eigenvalues and achievable eigenvectors is
obtained by solving equation (3.8) for G.

G = W(MVa + NW)−1 (3.19)

By noting that

Va = (vec T Il ⊗ In )(Il ⊗ AD )(I
l 2 ⊗ W)(Il ⊗ vec Il ) (3.20)

the feedback gains can be expressed as a function of the desired closed-loop eigenvalues
and W by

G = W(MK2 (I
l 2 ⊗ W)K3 + NW)−1 (3.21)

where
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K2 = (vec T Il ⊗ In )(Il ⊗ AD )

K3 = (Il ⊗ vec Il )

Gain Weighted Eigenspace Assignment Formulation

The Gain Weighted Eigenspace Assignment formulation extends the Direct Eigenspace
Assignment formulation to allow trading off eigenvector placement versus gain magnitudes,
while still maintaining desired closed-loop eigenvalue locations.  This is accomplished by
appending a scalar measure of gain magnitude that is a function of vecW to the cost
function given in equation (3.13), determining partials with respect to vecW, and solving for
the optimal solution by numerical iteration (Fletcher 1963).

For this development, the scalar measure of gain magnitude is chosen to be a weighted
sum of the squares of all the individual elements of the feedback gain matrix.  To maximize
design flexibility, the gain magnitude term is formulated to allow weighting individual
elements of the feedback gain matrix.  A gain magnitude cost function that allows this can
be formed in terms of the vector value of G.

The vector value of G as a function of vecW is obtained by taking the vector value of
equation (3.19) and noting that

Va = (vec T Il ⊗ In )(Il ⊗ vecVa ) (3.22)

W = (vec T Il ⊗ Im )(Il ⊗ vecW) (3.23)

thus yielding

vecG = (MVa + NW)−T ⊗ Im[ ]vecW

= (M(vec T Il ⊗ In )(Il ⊗ ADvecW) + N(vec T Il ⊗ Im )(Il ⊗ vecW))−T ⊗ Im[ ]vecW

(3.24)

The gain magnitude cost function is given by

Jg = vecT (G)Qgvec(G) = gT Qgg (3.25)

where

Qg = symmetric positive semi-definite weighting matrix (gain weighting matrix)
g = vec(G).

This cost function represents the sum of the square of the individual feedback gains, each
weighted by an element of the diagonal of the matrix Qg.  The value of vecW that yields
minimum gain magnitudes while achieving the desired closed-loop eigenvalues is
determined by minimizing this cost function.
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Trade-offs between achievement of desired system eigenvectors and minimizing gain
magnitudes can be made by forming the composite cost function

J = ρe Je + ρg Jg (3.26)

where ρe and ρg are scalar positive cost function weights on the eigenvector placement error
and gain magnitudes, respectively.

Because eigenvectors can be scaled by an arbitrary constant, a unique solution to this
cost function (3.26) does not exist when ρe is zero ( or in practice when ρe is small
compared to ρg ).  To ensure a unique solution for all values of ρe and ρg it is necessary to
constrain the eigenvectors to be unique.  This can be accomplished by forcing one element
of each eigenvector to be a specific reference value.  To be consistent with the eigenvector
error term Je in equation (3.26), this specific value is chosen to be an element of each
desired eigenvector.  This equality constraint can be expressed in the form of a penalty
function (Bryson 1975) as

Jr = vecT (Va − Vd )Qrvec (Va − Vd ) = eTQre (3.27)

where

Qr = symmetric positive semi-definite weighting matrix (reference weighting matrix)
e = vec( Va –  Vd ).

This penalty function will be referred to as an eigenvector reference constraint.  It represents
the error between an element of each achievable eigenvector and the corresponding reference
element of the desired eigenvector.  The weighting matrix  Qr  is chosen to weight one
element of each desired eigenvector.

Appending this penalty function to the cost function (3.26) yields

J = ρe eT Qde + ρg gT Qgg + ρr eT Qre (3.28)

where ρe , ρg , and ρr  are scalar positive cost function weights on the eigenvector placement
error, gain magnitudes, and the eigenvector reference constraint; respectively.  With this cost
function, trade-offs between achievement of desired system eigenvectors and minimizing
gain magnitudes can be made by choice of values of ρg  and  ρe .  To ensure a unique
solution the eigenvector reference constraint weighting ρr  should be chosen to be very large
compared to the values of ρg  and  ρe .

Partials of J with respect to vecW

The value of vecW that will minimize J can be obtained by determining the gradient of J
with respect to vecW.  The partial of J with respect to vecW, is given by

∂J

∂vecW
= ρe

∂Je

∂vecW
+ρg

∂Jg

∂vecW
+ρr

∂Jr

∂vecW
(3.29)
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The partial of Je with respect to vecW is given by equation (3.17).

The partial of Jg with respect to vecW can be determined in the following way.
Applying the vector chain rule yields

∂Jg

∂vecW
= ∂g

∂vecW






∂Jg

∂g







= ∂g

∂vecW






∂
∂g

(gTQgg)






(3.30)

Differentiating each term yields

∂
∂g

(gTQgg) = Qgg + Qg
T g = 2Qgg (3.31)

and

  

∂g

∂vecW
= ∂vecG

∂vecW
= vec

∂G

∂w11

Mvec
∂G

∂w21

MLMvec
∂G

∂wml











T

(3.32)

where wij is the (i,j)th element of W.

By applying the matrix chain rule, the partial of G with respect to wij is given by

∂G

∂wij

= ∂
∂wij

W(MK2 (I
l 2 ⊗ W)K3 + NW)−1( )

= ∂W

∂wij







(MK2 (I

l 2 ⊗ W)K3 + NW)−1 + W
∂

∂wij

(MK2 (I
l 2 ⊗ W)K3 + NW)−1








(3.33)

The first partial with respect to wij in this equation is given by

∂W

∂wij







= Uij (3.34)

where Uij  is a matrix of order m-by-l which has unity in the (i,j)th position and all other
elements are zero.

The second partial in equation (3.33) is given by
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∂
∂wij

(MK2 (I
l 2 ⊗ W)K3 + NW)−1







=

−(MK2 (I
l 2 ⊗ W)K3 + NW)−1 ∂

∂wij

(MK2 (I
l 2 ⊗ W)K3 + NW)







(MK2 (I

l 2 ⊗ W)K3 + NW)−1

(3.35)

where

∂
∂wij

(MK2 (I
l 2 ⊗ W)K3 + NW) = MK2

∂
∂wij

(I
l 2 ⊗ W)







K3 + N

∂W

∂wij

= MK2 (I
l 2 ⊗ ∂W

∂wij

)K3 + N
∂W

∂wij

= MK2 (I
l 2 ⊗ Uij )K3 + NUij

(3.36)

Therefore, the partial of G with respect to wij is

∂G

∂wij

= Uij (MK2 (I
l 2 ⊗ W)K3 + NW)−1

− W(MK2 (I
l 2 ⊗ W)K3 + NW)−1(MK2 (I

l 2 ⊗ Uij )K3 + NUij )(MK2 (I
l 2 ⊗ W)K3 + NW)−1

= Uij (MVa + NW)−1 − G(MK2 (Il ⊗ vecUij ) + NUij )(MVa + NW)−1

= (Im − GN)Uij (MVa + NW)−1 − GMK2 (Il ⊗ vecUij )(MVa + NW)−1

(3.37)

Taking the vector value of both sides of this equation yields

vec
∂G

∂wij

= (MVa + NW)−T ⊗ (Im − GN)( )vecUij − (MVa + NW)−T ⊗ GMK2( )vec(Il ⊗ vecUij )

(3.38)

Substituting equation (3.38) into equation (3.32) yields
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∂g

∂vecW
= (MVa + NW)−T ⊗ (Im − GN)( ) vecU11MvecU21M L MvecUml[ ][ ]T

− (MVa + NW)−T ⊗ GMK2( ) vec(Il ⊗ vecU11)M L Mvec(Il ⊗ vecUml )[ ][ ]T

= vecU11MvecU21M L MvecUml[ ] T (MVa + NW)−1 ⊗ (Im − GN)T( )
− vec(Il ⊗ vecU11)M L Mvec(Il ⊗ vecUml )[ ] T (MVa + NW)−1 ⊗ (GMK2 )T( )

(3.39)

By noting that

  Iml = vecU11MvecU21M L MvecUml[ ] (3.40)

and defining

  U = vec(Il ⊗ vecU11) M vec(Il ⊗ vecU21) MLM vec(Il ⊗ vecUml )[ ] (3.41)

the partial of g with respect to vecW is

∂g

∂vecW
= (MVa + NW)−1 ⊗ (Im − GN)T( ) − U

T
(MVa + NW)−1 ⊗ (GMK2 )T( )

(3.42)

Therefore, the partial of Jg with respect to vecW is

∂Jg

∂vecW
= 2 (MVa + NW)−1 ⊗ (Im − GN)T( )−U

T
(MVa + NW)−1 ⊗ (GMK2 )T( )[ ]Qgg

(3.43)

The partial of Jr is determined in a manner similar to the partial of Je.  The partial of Jr
with respect to vecW is given by

∂Jr

∂vecW
= 2AD

T Qr e = 2AD
T Qr (vecVa − vecVd ) (3.44)

Design Algorithm

A feedback gain matrix can be calculated using the GWEA algorithm in the following
way:

1) Select desired eigenvalues Λd , desired eigenvectors Vd , and desired eigenvector
weighting matrix Qd.
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2) Select gain weighting matrix Qg and reference weighting matrix Qr.

3) Select cost function weights (see (3.28)) on eigenvector error ρe  and gain magnitude ρg.

4) Set cost function reference constraint weighting ρr = 100.0*max( ρe , ρg ).

5) Calculate W that minimizes cost function (3.28) using analytic gradients in (3.17), (3.43),
and (3.44) along with numerical optimization techniques in Fletcher 1963.

6) Achievable eigenvectors Va. can be calculated using equation (3.20).

7) The feedback gain matrix G is then calculated using equation (3.24) or (3.19).

8) Adjust cost function weights ρg and ρe as necessary to achieve desired design trade-offs.

Example

An example will be presented to demonstrate the method.  This example uses the same
model presented in Section 2; the lateral/directional dynamics of a high performance aircraft
at low angle-of-attack.  The open-loop system matrices and open-loop eigenvalues and
eigenvectors are given in Figure 1.

The desired eigenvalues and eigenvectors are chosen to be the same as in the previous
example.  The desired eigenvalues are chosen to yield good flying qualities.  The desired
roll and dutch roll eigenvectors are chosen to decouple the roll and dutch roll modes in the
roll rate and sideslip responses.  The desired eigenvalues, desired eigenvectors, and
eigenvector weighting matrix are given in Table 1.  The gain weighting matrix Qg was set to
identity.  The desired eigenvector elements weighted in the reference weighting matrix Qr
are given in Table 2.  The reference constraint weighting ρr  was set to 100.0*max(ρe , ρg).

The algorithm was implemented in MATLAB † and executed on a SUN SPARC 10 ††

workstation.  Designs were determined for ten values of ρg / ρe .  Solutions for each design
were obtained in less than five minutes and within 50 iterations.  Values of ρg / ρe , Je , and
Jg for these designs are given in Table 3.  A plot of Je versus the square root of Jg is given
in Figure 3.  Gain matrices, closed-loop system matrices, and closed-loop eigenspaces for
four values of ρg / ρe (0.0, 0.1, 100.0, 1.0e05) are given in Figures 4 - 7.  In these Figures,
the closed-loop eigenvectors have been scaled to allow comparison with the desired
eigenvectors.

Cost function weighting ρg / ρe = 0.0 yields the DEA solution - four eigenvalues at
desired locations and their associated eigenvectors are as close as possible in a least squares
sense to the desired eigenvectors.  The solution for this weighting is the same as the DEA
solution presented in Figure 2.  The RMS gain magnitude for this design is 5.73.

Cost function weighting ρg / ρe = 0.1 yields four eigenvalues at desired locations and
their associated eigenvectors close to the desired eigenvectors with a RMS gain magnitude
of 4.08.  This is a RMS gain magnitude reduction of approximately 28% compared to the
DEA solution.

                                                
† MATLAB is a registered trademark of The MathWorks, Inc.
†† SUN SPARC 10 is a registered trademark of Sun Microsystems, Inc.
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Cost function weighting ρg / ρe = 1.0e05 yields four eigenvalues at desired locations
and eigenvectors that minimize feedback gain magnitudes (as defined by equation (3.25)).
The RMS gain magnitude for this design is 2.13.  This is a RMS gain magnitude reduction
of approximately 63% compared to the DEA solution.

4.0 CONCLUDING REMARKS

This report has presented the development of the Gain Weighted Eigenspace
Assignment methodology.  This provides a designer with a systematic methodology for
trading off eigenvector placement versus gain magnitudes, while still maintaining desired
closed-loop eigenvalue locations.  This was accomplished by forming a cost function
composed of a scalar measure of error between desired and achievable eigenvectors and a
scalar measure of gain magnitude, determining analytical expressions for the gradients, and
solving for the optimal solution by numerical iteration.  For this development the scalar
measure of gain magnitude was chosen to be a weighted sum of the squares of all the
individual elements of the feedback gain matrix.  To achieve a solution it was necessary to
constrain the system eigenvectors to be unique.  This was accomplished by appending a
penalty function to the cost function.

An example was presented to demonstrate the method.  In this example it was shown
that cost function weighting ρg / ρe = 0.0 yielded the Direct Eigenspace Assignment
solution - closed-loop eigenvalues at desired locations and their associated eigenvectors are
as close as possible in a least squares sense to desired eigenvectors.  As the cost function
weighting ρg / ρe tended towards infinity the solution yielded closed-loop eigenvalues at
desired locations and eigenvectors that minimized feedback gain magnitudes.  Solutions
yielding achievable eigenvectors close to the desired eigenvectors could be obtained with
significant reductions in gain magnitude compared to the Direct Eigenspace Assignment
solution.
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APPENDIX

This appendix presents some definitions and rules used in the development of the Gain
Weighted Eigenspace Assignment methodology.  For more information and proofs of these
properties the reader is referred to Graham 1981.

Definition of the VEC Operator

Given a matrix A of order m-by-n, a vector valued function of matrix A, denoted by vecA,
is defined by

  

vecA =

a11

a21

M

amn



















where aij  denotes the (i,j)th element of the matrix A.  The vector vecA is of order mn-by-1.

Definition of the Kronecker Product

Given a matrix A of order m-by-n and a matrix B of order r-by-p, the Kronecker
product of the two matrices, denoted by A ⊗  B, is defined as

  

A ⊗ B =

a11B a12B L a1nB

a21B a22B L a2nB

M M O M

am1B am2B L amnB



















where aij  denotes the (i,j)th element of the matrix A.  The matrix A ⊗  B is of order mr-by-
np.

Some Rules for Kronecker Products

A ⊗ ( B + C) = (A ⊗ B) + (A ⊗ C)

(A + B) ⊗ C = (A ⊗ C) + (B ⊗ C)

(A ⊗ B) (C ⊗ D) = AC ⊗ BD   (provided matrix dimensions are compatible)

(A ⊗ B)T = AT ⊗ BT

(A ⊗ B)-1 = A-1 ⊗ B-1   (subject to existence of matrix inverses)

vec(A Y B) = (BT ⊗ A) vecY
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Open-loop System Matrices

A =

   -0.1305    0.0003   -0.9978    0.0537
  -11.1989   -1.5271    0.6757         0
    2.9944    0.1152   -0.1529         0
         0    1.0000         0         0

B =

   -0.0033   -0.0319
    1.1179   -0.1941
    0.0096    1.3527
         0         0

M =

         0    1.0000         0         0
         0         0    1.0000         0
   -1.2576    0.0535   -0.0462         0
   -0.1198    0.0003   -0.9992    0.0538

N =

         0         0
         0         0
   -0.0614   -0.0669
   -0.0033   -0.0319

Open-loop Eigenvalue Matrix

  -0.2072 + 1.6584i        0                 0          0
       0            -0.2072 - 1.6584i        0          0
       0                   0              -1.4004       0
       0                   0                 0       0.0043

Open-loop Eigenvector Matrix

   1.0000             1.0000             -0.0147    0.0026
  -3.6375 + 3.7717i  -3.6375 - 3.7717i    1.0000    0.0043
   0.2110 - 1.5598i   0.2110 + 1.5598i   -0.0569    0.0535
   2.5092 + 1.8800i   2.5092 - 1.8800i   -0.7141    1.0000

Figure 1 - Open-Loop System Matrices and Eigenspace.
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Gain Matrix and Gain Magnitude

G =

  -0.3096   -0.8200   -5.1642   -0.6697
   0.0230    0.1138   -0.6396    2.1203

gainmag =

    5.73

Closed-loop System Matrix
 A+B*inv(Im-G*N)*G*M =

   -0.1916    0.0044   -0.9324    0.0501
   -0.0519   -2.5051    0.0209   -0.0136
    4.2491    0.0552   -2.8083    0.1509
         0    1.0000         0         0

Closed-loop Eigenvalue Matrix

  -1.50 + 1.50i          0               0             0
        0          -1.50 - 1.50i         0             0
        0                0            -2.50            0
        0                0               0         -0.0050

Closed-loop Eigenvector Matrix

  1.0000             1.0000             -0.0000    -0.0000
 -0.0225 + 0.0000i  -0.0225 - 0.0000i    1.0000    -0.0050
  1.4036 - 1.6084i   1.4036 + 1.6084i   -0.0168     0.0537
  0.0075 + 0.0075i   0.0075 - 0.0075i   -0.4000     1.0000

Figure 2 - DEA Design Closed-Loop System Matrices and Eigenspace.
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Gain Matrix

G =

  -0.3096   -0.8200   -5.1642   -0.6697
   0.0230    0.1138   -0.6396    2.1203

gainmag =

   5.73

Closed-Loop System Matrix
A+B*inv(Im-G*N)*G*M

  -0.1916    0.0044   -0.9324    0.0501
  -0.0519   -2.5051    0.0209   -0.0136
   4.2491    0.0552   -2.8083    0.1509
        0    1.0000         0         0

Closed-Loop Eigenvalue Matrix

  -1.5000 + 1.5000i        0                   0            0
        0            -1.5000 - 1.5000i         0            0
        0                  0             -2.5000            0
        0                  0                   0      -0.0050

Closed-Loop Eigenvector Matrix

  1.0000             1.0000             -0.0000    -0.0000
 -0.0225 + 0.0000i  -0.0225 - 0.0000i    1.0000    -0.0050
  1.4036 - 1.6084i   1.4036 + 1.6084i   -0.0168     0.0537
  0.0075 + 0.0075i   0.0075 - 0.0075i   -0.4000     1.0000

Figure 4 - GWEA Design ρg / ρe = 0.0.
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Gain Matrix
G =

  -0.5988    0.1195   -3.6945   -0.2224
   0.3561   -0.9005   -0.8321    0.9629

gainmag =
  4.08

Closed-Loop System Matrix
 A+B*inv(Im-G*N)*G*M

  -0.1927   -0.0053   -0.9384    0.0520
  -4.2145   -2.6323    1.0924   -0.0081
   4.7782    0.4762   -2.6800    0.0720
        0    1.0000         0         0

Closed-Loop Eigenvalue Matrix

 -1.5000 + 1.5000i        0                  0            0
       0            -1.5000 - 1.5000i        0            0
       0                  0            -2.5000            0
       0                  0                  0      -0.0050

Closed-Loop Eigenvector Matrix

   1.0000             1.0000            -0.1044    0.0148
  -1.5835 + 0.5681i  -1.5835 - 0.5681i   1.0000   -0.0050
   1.4418 - 1.5829i   1.4418 + 1.5829i  -0.2844    0.0525
   0.7172 + 0.3384i   0.7172 - 0.3384i  -0.4000    1.0000

Figure 5 - GWEA Design  ρg / ρe = 0.1.
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Gain Matrix

G =

   -1.0725    0.4415   -0.8696   -0.0573
    0.3095   -0.5105   -1.0925    1.2173

gainmag =
  2.25

Closed-Loop System Matrix
 A+B*inv(Im-G*N)*G*M

  -0.1778   -0.0017   -0.9450    0.0515
 -10.0658   -2.8715    1.5224   -0.0120
   4.8368    0.3527   -2.4556    0.0918
        0    1.0000         0         0

Closed-Loop Eigenvalue Matrix

  -1.5000 + 1.5000i        0                   0           0
        0            -1.5000 - 1.5000i         0           0
        0                  0             -2.5000           0
        0                  0                   0     -0.0050

Closed-Loop Eigenvector Matrix

  1.0000             1.0000             -0.0637     0.0083
 -3.4556 + 2.0378i  -3.4556 - 2.0378i    1.0000    -0.0050
  1.5052 - 1.5652i   1.5052 + 1.5652i   -0.1801     0.0530
  1.8311 + 0.4726i   1.8311 - 0.4726i   -0.4000     1.0000

Figure 6 - GWEA Design ρg / ρe  = 1.0.
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Gain Matrix

G =

  -1.0238    0.3554   -0.2791    0.1474
   0.1539   -0.3809   -0.9694    1.4704

gainmag =
  2.13

Closed-Loop System Matrix
A+B*inv(Im-G*N)*G*M

  -0.1662    0.0023   -0.9402    0.0511
 -11.0128   -2.7160    1.2526   -0.0054
   4.4611    0.1667   -2.6228    0.1097
        0    1.0000         0         0

Closed-Loop Eigenvalue Matrix

 -1.5000 + 1.5000i        0                  0           0
       0            -1.5000 - 1.5000i        0           0
       0                  0            -2.5000           0
       0                  0                  0     -0.0050

Closed-Loop Eigenvector Matrix

  1.0000             1.0000             -0.0301     0.0068
 -3.7635 + 3.0195i  -3.7635 - 3.0195i    1.0000    -0.0050
  1.5322 - 1.5744i   1.5322 + 1.5744i   -0.0940     0.0532
  2.2610 + 0.2480i   2.2610 - 0.2480i   -0.4000     1.0000

Figure 7 - GWEA Design ρg / ρe = 1.0e05.
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Desired Eigenvalues

λ1 = − 0.005 (spiral)

λ2 = − 2.5 (roll)

λ3,4 = − 1.5 ± 1.5 j (ωn = 2.1 (rad/sec), ζ = 0.7) (dutch roll)

Desired Eigenvectors

Mode 1

(spiral)

Mode 2

(roll)

Mode 3

(dutch roll)

Mode 4

(dutch roll)

0 0 1.0 1.0

x 1 x x

x x x x

1 x 0.0075 + 0.0075 j 0.0075 − 0.0075 j

(x denotes eigenvector elements that are not weighted in the cost function)

Table 1 - Desired Eigenvalues and Eigenvectors.
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Mode 1

(spiral)

Mode 2

(roll)

Mode 3

(dutch roll)

Mode 4

(dutch roll)

0 0 1 1

0 1 0 0

0 0 0 0

1 0 0 0

Table 2 - Reference Weighting of Desired Eigenvector Elements.
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ρe ρg ρg / ρe Sqrt( Jg ) Je

1.00 0.0 0.0 5.7274 1.99e-17

1.00 0.010 0.01000 5.3075 0.00767

1.00 0.0667 0.0667 4.5356 0.2926

1.00 0.10 0.100 4.0780 0.6168

1.00 0.125 0.125 3.7757 0.8785

1.00 0.20 0.200 3.1843 1.5105

1.00 0.50 0.500 2.4804 2.6575

1.00 1.00 1.00 2.2663 3.3091

1.00 2.00 2.00 2.1821 3.9256

1.00 10.0 10.0 2.1352 4.7903

0.010 1.00 100.0 2.1319 5.0980

0.0010 1.00 1000.0 2.1318 5.1330

1.00e-05 1.00 1.00e05 2.1318 5.1372

Table 3 - GWEA Design Points.


