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Introduction

This second study focuses on the suppression of instability growth using an auto-

mated active-control technique. This automated approach is the next logical step based

on previous experimental and computational studies reviewed by Joslin, Erlebacher, and

Hussaini
1
and by Thomas,

2
in which the control was in the form of wave cancellation. The

wave-cancellation method assumes that a wavelike disturbance can be linearly cancelled by

introducing another wave with a similar amplitude but that di�ers in phase. Both experi-

mental and computational results have demonstrated that two-dimensional (2D) Tollmien-

Schlichting (TS) waves can be superposed upon 2D waves in such a way as to reduce the

amplitudes in the original waves under the presumption of wave cancellation. Joslin et al.
1

have de�nitively shown that 
ow control by wave cancellation is the mechanism for the

observed phenomena. Three simulations were performed in their computational study to

demonstrate the wave-cancellation concept. The �rst simulation obtained the evolution of

a 2D instability generated by periodic suction and blowing forcing, the second simulation

yielded an instability caused by a suction and blowing actuator in the absence of and down-

stream of the forcing used in the �rst simulation, and the third simulation computed the

evolution of a disturbance resulting from both forcing and actuator suction and blowing
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(wave-cancellation test case). Joslin et al.
1
showed that the superposition of the �rst and

second simulation results exactly matched the wave-cancellation simulation results.

Based on the wave-cancellation assumption, the evolution and automated control of

spatially growing 2D disturbances in a 
at-plate boundary layer are computed. Although

the present active-control approach is demonstrated here for a 2D instability test case, the

ultimate goal of this line of research is to introduce automated control to external 
ow

over an actual aircraft or to any 
ow which has instabilities that require suppression.

The nonlinear computations consist of the integration of the sensors, actuators, and

controller as follows: the sensors will record the unsteady pressure or shear on the wall; the

spectral analyzer (controller) will analyze the sensor data and prescribe a rational output

signal; the actuator will use this output signal to control the disturbance growth and

stabilize the instabilities within the laminar boundary layer. This scenario is shown in Fig.

1. Although a closed-loop feedback system could be implemented (using an additional

sensor downstream of the actuator) to fully automate the control and lead to an exact

cancellation of the instability, the feedback will not be introduced here due to the added

computational expense of the iterative procedure.

Numerical Techniques

The nonlinear, unsteady Navier-Stokes equations are solved by direct numerical sim-

ulation (DNS) of disturbances, which evolve spatially within the boundary layer. The

spatial DNS
3;4

approach involves spectral and high-order �nite-di�erence methods and a

three-stage Runge-Kutta method
5
for time advancement. The in
uence-matrix technique

is employed to solve the resulting pressure equation.
6;7

Disturbances are forced into the

boundary layer by unsteady suction and blowing through a slot in the wall. At the out
ow

boundary, the bu�er-domain technique of Streett and Macaraeg
8
is used.

The equations are nondimensionalizedwith the free-stream velocity U
1
, the kinematic
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viscosity �, and the in
ow displacement thickness ��o . The Reynolds number becomes

R = U
1
��o=�, and the frequency is ! = !���o=U1.

Control Method

Here, the term \controller" refers to the logic that is used to translate sensor-supplied

data into a response for the actuator, based on some control law. For the present study, a

spectral controller requires a knowledge of the distribution of energy over frequencies and

spatial wave numbers. For this automated controller system, a minimum of two sensors

must be used to record either the unsteady pressure or unsteady shear at the wall. By

using Fourier theory, this unsteady data can be transformed via

f(!) =

Z
1

�1

f(t)e�i!tdt (1)

where f(t) is the signal and ! is the frequency. This transform yields an energy spectrum

that indicates which frequencies exist in the signal and how much relative energy each

frequency contains.

The largest Fourier coe�cient indicates the frequency that will be used to control the

instability, although the largest growth rate can be used instead of largest coe�cient. The

information from the two sensors is used to obtain estimates of both spatial growth rates

and phase via the relation

� =

1

A

dA

dx
(2)

This temporal and spatial information is then substituted into the assumed control

law, or wall-normal velocity boundary condition,

vs(x; t) = vw � [p1we
i(!+�t)t+�xs

+ c:c:] (3)

where p1w is the complex pressure (or shear) for the dominant frequency mode (or largest

growth-rate mode) at the �rst sensor, ! is the dominant mode determined from equ. (1), �t
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is the phase information, t is the time, � is the growth-rate and wave number information

calculated from equ. (2), and xs is the distance between the �rst sensor and the actuator.

Because the sensor information can be used only to approximate the actuator amplitude

and temporal phase, vw and �t are parameters which must be optimized to obtain exact

wave cancellation. This may be accomplished through, for example, a gradient descent

algorithm. (Here, no attempt was made to demonstrate exact wave cancellation.)

This control law is used only for this feasibility study. Aspects of formal optimal-

control theory and arti�cial neural-network algorithms are currently being tested by the

authors for use in a subsequent study.

Numerical Experiments

For this study, we are not concerned with the method by which disturbances are

ingested into the boundary layer; the underlying assumption here is that natural transition

involves some dominant disturbances that can be characterized by waves. In a subsequent

study, we will explore controlling transition consisting of either random unsteady or three-

dimensional nonlinear and arbitrary instabilities. Here, the instabilities are assumed to be

characterizable by discrete frequencies within the spectrum.

For the computations, the grid has 661 streamwise and 61 wall-normal points. The

far-�eld boundary is located 75��o from the wall, and the streamwise distance is 308��o

from the in
ow, which is equal to approximately 11 TS wavelengths. The disturbance

frequency is Fr = !=R � 10
6
= 86, and the Reynolds number is R = 900 at the in
ow.

(The streamwise range of the computations and the relative sensor and actuator are located

within the unstable region of the linear stability neutral curve.) A time-step size of 320

steps per period is chosen for the three-stage Runge-Kutta method. To complete a 2D

simulation, 0.9 hr on the Cray Y/MP are required with a single processor. (Refer to ref.

3 for details on accuracy issues with grid re�nement.)
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For this study, the disturbance forcing slot has a length 5:13��o and is centered 23:10�
�

o

downstream of the computational in
ow boundary. The �rst sensor is located 57:88��o

downsteam of the in
ow, and the second sensor is located 2:33��o downsteam of the �rst

sensor. The actuator has a slot length 4:67��o and is located 77:94��o downstream of the

in
ow boundary. These seperation distances were chosen arbitrarily for this demonstration.

Ideally, the forcing, sensors, and actuator should have a minimal seperation distance to

improve the accuracy of the sensor information provided to the actuator.

A small-amplitude disturbance (vf = 0:01%) is forced at the in
ow and controlled

via the automated control law without feedback. Figure 2 shows the TS wave amplitudes

with downstream distance for the present results compared with the control case (vw =

0:9vf ; �t = 1:2�=!) of Joslin, Erlebacher, and Hussaini
1
and the uncontrolled wave. The

present results demonstrate that a measure of wave cancellation can be obtained from the

automated system prior to initating feedback; however, feedback is necessary to optimize

the control amplitude and phase for exact cancellation of the disturbance.

Next, the evolution and control of a large-amplitude disturbance (vf = 3%) is studied.

This large-amplitude case excites harmonics and a mean-
ow distortion component with

much smaller amplitudes than the fundamental-mode amplitude. Figure 3 shows compar-

isons for the control of the large-amplitude case. Again, the automated control can clearly

obtain a degree of wave cancellation for large-amplitude instabilities without optimization

and without causing the harmonics to prematurely grow. These test cases demonstrate

that automated control can be e�ective with the presumption of discrete frequency insta-

bility waves.

Conclusions

Full Navier-Stokes simulations were conducted to determine the feasibility of automat-

ing the control of wave instabilities within a 
at-plate boundary layer with sensors, actu-
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ators, and a spectral controller.

The results indicate that a measure of wave cancellation can be obtained for small- and

large-amplitude instabilities without feedback; however, feedback is required to optimize

the control amplitude and phase for exact wave cancellation.

This study is only the second in a series aimed at suppressing the instabilities that

lead to transition within an otherwise laminar boundary layer with unsteady 
ow control.

Follow-on research will focus on coupling optimal control theory with the Navier-Stokes

equations to devise a control methodology without distinct control laws. This methodol-

ogy focuses on the minimization of the wall shear at a prescribed region downstream of

the actuator. This 
ow control could lead to suppression of arbitrary instabilities in a

laminar boundary layer, drag reductions in a turbulent boundary layer, or enhanced lift

by seperation control.
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Figure 1. Schematic of active control with wave cancellation.
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Figure 2. Active control of small-amplitude TS waves in 
at-plate boundary layer.
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Figure 3. Active control of large-amplitude TS waves in 
at-plate boundary layer.
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