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SUMMARY

Elliptic grid generation methods have been used for many years to smooth and improve grids
generated by algebraic interpolation schemes. However, the elliptic system that must be solved is
nonlinear and convergence is generally very slow for large grids. In an attempt to make elliptic
methods practical for large three-dimensional grids, a two-stage implementation is developed where
the overall grid point locations are set using a coarse grid generated by the elliptic system. The
coarse grid is then interpolated to generate a �ner grid which is smoothed using only a few iterations
of the elliptic system.

INTRODUCTION

Elliptic grid generation methods have become less applicable to large scale problems due to the
time required to solve the elliptic system of partial di�erential equations. The equations themselves
are nonlinear and are di�cult to solve e�ciently even using the traditional multigrid methods.
Although there are some variations of the equations, this report assumes the elliptic system is of
the form

g11(r�� + P r�) + g22(r�� +Q r�) + g33(r�� +R r�) + g12r�� + g13r�� + g23r�� = 0

where r = (x; y; z), gij are the contravariant metric tensor components and the functions P , Q, and
R are used to control the distribution of grid points. The objective of this report is to demonstrate
that in many cases it is not necessary to solve the elliptic system to generate a smooth grid with the
required grid point distributions. If a coarse grid is �rst generated by solving the elliptic system,
then this grid can be interpolated to generate a �ner grid and the �ne grid can be smoothed with
only a few iterations of the elliptic di�erence equations. If this procedure is to work in practice, it is
essential that the interpolated grid be smooth and give a good approximation of the �nal solution
of the elliptic system on the �ne grid. Thus, the �ne grid iterations are primarily used to eliminate
interpolation errors which are local and of high frequency. The actual residual on the �ne grid may
not be close to zero. This multilevel approach is e�cient if only a few �ne grid iterations are to
give a smooth grid. It is well known that if the initial grid deviates greatly from the �nal elliptic
grid, the �rst few iterations may generate large scale oscillations which decay very slowly. The
multilevel approach can also be used to generate grids with speci�ed boundary orthogonality and
spacing. Coarse grid computations can be used to generate good initial approximations of control
functions which may be �xed or further adjusted during the �ne grid iterations.
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The techniques described in this report can be easily implemented in existing software packages.
Coarse grids solutions have been used to generate starting values for the elliptic system in the
GRIDGEN code of Steinbrenner and Chawner (ref. 1) and the 3DGRAPE code of Sorenson (ref.
2). Eisman (ref. 3) has also employed a similar concept in using elliptic systems to distribute
control points for his algebraic grid generation scheme in the the GRIDPRO code.

It should be noted that the proposed scheme is not a true multigrid scheme. The scheme here is
a simple grid sequencing scheme progressing from a coarse grid to progressively �ner grids. There
is no cycling between coarse and �ne grids with the objective of eventually achieving a higher rate
of convergence to the solution of the elliptic system of partial di�erential equations on the �nest
grid. Multigrid methods have been shown to increase convergence rates, but there have been no
applications to large systems with moving boundary points and adaptive control functions. Some
di�culties that may arise are discussed in the paper by St�uben and Linden (ref. 4).

COARSE GRID ITERATIONS

The �rst step in the procedure is to coarsen the initial algebraic grid. This scheme that has
been used here is to remove every other grid point in each coordinate direction. This re�nement
may proceed to several levels as long as the grid dimensions in each direction are odd integers.
For large grids, this reduces the size of the problem by approximately eight. A second coarsening
would reduce the original problem by a factor of approximately 64. Complementing the reduction in
problem size is an increase in the rate of convergence when going to a coarser grid. The coarse grid
iterations should be optimized for rapid convergence. For example, all coarse grid calculations here
have used locally optimal acceleration parameters. Any control function and boundary condition
options should be implemented so that the converged coarse grid has all of the desired characteristics
of the �nal grid.

INTERPOLATION

The interpolation scheme is a critical component in this procedure. Therefore, a tricubic Her-
mite interpolation procedure has been developed to generate a smooth grid. The slope information
is calculated using central di�erences on the coarse grid. There are two options for the bounding
surface grids. Either the original surface grids can be used or the surface grids can be rede�ned
using the same interpolation scheme used at the interior points. The choice can have a signi�cant
e�ect on the success of the coarse grid solution in reducing the amount of work needed to obtain
a usable grid. If the coarse grid accurately resolves the surface so that there is little change is
curvature or spacings between grid points, then one can generally use the original �ne surface grids
and still have a reasonably smooth grid to start the elliptic system on the �ne grid. On the other
hand, if there are signi�cant changes in surface or grid properties between the interpolated grid
and the original surface grids, then using the original grids on the boundary surfaces will result in
large changes in grid spacings and angles at the boundary, and possibly even some places where the
interpolated grid folds over the boundary. This would result in a poor starting grid for the elliptic
system and the main purpose in using the coarse grid solution would be lost.

The ability to prescribe grid distributions on the �nal grid is very dependent on the control
functions of the elliptic system. There are two options for calculating control functions which seem



to work equally well. The control functions can either be calculated based on the initial �ne grid
and then restricted to each coarser grid, or the control functions can be calculated on each grid from
restrictions of the initial grid to that level. It is generally recommended that the control functions
not be computed on the coarsest grid and interpolated to the �ner grids. This will often result in a
loss of distribution on the �ner grid. The only time that control functions have been interpolated to
�ner girds is when using the control functions to control boundary spacing an orthogonality. Even
then, the interpolated control functions are blended with the control functions from the initial grid
so that the interpolated values are only e�ective near the boundary.

There is one important fact that should be emphasized when transferring control functions
between �ne and coarse grids. When the control functions are restricted to a coarser grid, then
they should also be multiplied by a factor of two. This scaling factor is necessary so that the same
elliptic system is approximated on both the coarse and �ne grids. Conversely, if the control functions
are transferred from a coarse to a �ner grid, then the control functions should be interpolated and
divided by two. This assumes that the grid coarsening is done by removing every other point in
each coordinated direction. Other coarsening schemes would result in di�erent scaling factors. For
example, if only every third point was retained in generating the coarse grid, then the factor of two
would be replaced by three.

FINE GRID ITERATIONS

At this point it is assume that the coarse grid iterations and interpolation procedure has resulted
in a smooth grid that has the desired distribution of grid points. In many cases this grid would
be good enough to compute a CFD solution. However, there may be a few ripples in the grid due
to the Hermite interpolation. If the original boundary surfaces are maintained, the grid may need
some additional smoothing near the boundary. Since the objective here is only to smooth the grid
and not to obtain convergence of the elliptic system, there should be a change in the relaxation
parameter so that the iterations are underrelaxed. Another e�ective way of smoothing the grid
while maintaining the existing distribution of grid points is to introduce a time derivative into
the partial di�erential equations, and solve the resulting parabolic system using a time marching
method.

EXAMPLES

Three sample grids will be considered to test the concepts of this report. All three initial grids
were generated using trans�nite interpolation. All three also are obviously not suited for CFD
computations because of negative Jacobians or extremely skewed cells. After applying the elliptic
smoothing, in two of the three cases the �nal grid was free of negative Jacobians. In the other case,
a few negative Jacobians remained after using the elliptic methods, even when convergence of the
elliptic system was attempted on the original �ne grid.

The �rst example is the grid in the interior of a duct. The duct is plotted in Figure 1(a). The
cross section is very irregular. An initial grid was constructed with dimensions of 33 by 33 by 65.
There are a large number of grid points which fall outside of the duct as can be seem in the plot of
an interior grid surface in Figure 1(b). This grid can be improved using elliptic methods, so that
no negative Jacobians appear. In fact, negative Jacobians can be eliminated without resorting to



grid coarsening in only seven iterations. However, it takes many more iterations to give a smooth
grid. The negative Jacobians in the initial grid cause large values of the residual in the solution
of the elliptic system. Nonelliptic phenomena like ripples and waves can develop in the numerical
solution. These perturbations may be of large magnitude and decay very slowly during the iterative
solution. For example, the plot in Figure 1(c) is the same interior grid surface after ten iterations
of the elliptic system. Ripples in the grid appear as triangular shaped cells in the lower part of
the surface grid. Now consider the case where the original grid is coarsened to give an 17 by 17
by 33 grid. The elliptic system can be converged on this grid in less than sixty iterations, which is
equivalent to less that eight iterations on the �nal grid. This coarse grid is interpolated and further
smoothed to eliminate any rough spots near the boundary. For comparison with Figure 1(c), ten
iterations on the �ne grid was performed after convergence on the coarse grid, and the resulting
grid plotted in Figure 1(d). As a further comparison, the original grid was used to calculate a
converged solution of the elliptic system and it took about twice as many iterations to converge on
the �ne grid as it did on the coarse grid. Thus, when considering both the size of the grid and the
convergence rate, it can be concluded that the use of coarse grid iterations resulted in a reduction
in work by a factor of �ve over what would be needed to generate a converged elliptically generated
grid. Zero control functions were used in all of these calculations. The grid points were �xed on
the walls of the duct, but were allowed to slide along the two circular end caps.

The second example is a grid for a region about an aircraft wing. The initial grid is a C-grid
constructed using trans�nite interpolation. The grid was constructed as a four block grid each of
which was 33 by 53 by 33 for a total of slightly over 230 thousand grid points. The edges of the
blocks are illustrated in Figure 2(a) There are no negative Jacobians in this grid, but the grid is
highly skewed in regions near the wing tip as can be seen in Figure 2(b). Several options have been
exercised in this example which tend to reduce the rate of convergence for the elliptic system. The
control functions have been interpolated from the block boundaries (using the Thomas - Middleco�
technique) to maintain the interior grid point distribution during the solution of the elliptic system.
The control functions have been allowed to adjust near the surface of the wing (as in the GRAPE
code) to generate orthogonal grid lines at the wing surface. Finally, the grip points have been
allowed to 
oat along the two planar boundary surfaces intersecting the ends of the wing. An
indication of the slow rate of convergence is evident in Figure 2(c). After 10 iteration, starting
with the original algebraic grid, there is little di�erence between the grid generated using the
elliptic di�erence equations and the original algebraic grid. There is some indication of boundary
orthogonality. However, there is considerable di�erence when examining Figure 2(d) which was
generating using 100 coarse grid iterations followed by 10 �ne grid iterations. The control functions
were treated as described above. The control functions were �rst interpolated from the coarse grid
to the �ne grid and divided by two, since the coarse grid was generated by taking every other point
of the �ne grid. These control functions were then blended with the control functions computed
from the initial interpolated grid. For this example, the original surfaces were used with the �ne
grid. It was therefore necessary to continue to adjust the control functions during the �ne grid
iterations to correct the slight skewness at the boundary which resulted from the interpolation.

The �nal example is included to demonstrate that this method can be applied to a grid with
highly nonuniform spacing. The initial grid was again constructed using trans�nite interpolation.
The grid was to be used to compute viscous 
ow about an HSCT con�guration. The wing/fuselage
con�guration is plotted in Figure 3(a). Since the HSCT con�guration was symmetric, only half of
the body was used to generate the grid. The grid was constructed in two blocks, each of which
was 177 by 81 by 61. Thus the total grid consists of nearly one and three-quarter million points.



There are a large number of negative Jacobians. A comparison of the initial grid and the elliptic
grid after 100 coarse grid iterations appears in Figures 3(b) and 3(c). For clarity, only the coarse
grid points are plotted. The elliptic method was able remove most of the negative Jacobians and
still maintain the spacing at the boundary. However, it could not remove all negative Jacobians
and generate a grid which would be suitable for CFD calculations. While this may be considered
a failure of elliptic methods, it is a successful application of the multilevel method. Knowing when
and where elliptic methods fail to generate a suitable grid will allow the user to proceed with his
e�orts in rede�ning the topology or redistributing points.

CONCLUSIONS

The discussion and examples contained in this report should give the grid generator a guide for
using coarse grid iterations for smoothing and improving computational grids for CFD applications.
The main point is that the coarse grid solution should be converged to some speci�ed tolerance.
After that, only a few �ne grid iterations are needed. It is also important to treat the control
functions correctly to generate the desired distribution of grid points along boundary surfaces.
Simply interpolating these functions from the coarse grid to the �ne grid is generally not su�cient.

There is one area where further study is needed. There should be some way of projecting an in-
terpolated volume grid onto the original boundary surfaces without e�ecting the overall smoothness
and orthogonality of the grid. One possible approach would be to include boundary information
into the interpolation scheme.
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Figure 1. (a) Duct geometry, (b) initial surface grid, and surface grids after 10 iterations
starting with (c) initial grid and (d) converged coarse grid solution.



a b

c d

Figure 2. (a) Region about wing, (b) initial surface grid at wing tip, and surface grids after
10 iterations starting with (c) initial grid and (d) converged coarse grid solution.
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Figure 3. (a) HSCT con�guration, and (b) initial and (c) elliptic coarse grid
at wing fuselage junction.


