
Abstract

A multiple-scales approach is used to approximate the e�ects of nonparallelism and

streamwise surface curvature on the growth of stationary cross
ow vortices in incompress-

ible, three-dimensional boundary layers. The results agree with the results predicted by

solving the parabolized stability equations in regions where the nonparallelism is su�ciently

weak. As the nonparallelism increases, the agreement between the two approaches worsens.

An attempt has been made to quantify the nonparallelism on 
ow stability in terms of a

nondimensional number that describes the rate of change of the mean 
ow relative to the

disturbance wavelength. We �nd that the above nondimensional number provides useful in-

formation about the adequacy of the multiple-scales approximation for di�erent disturbances

for a given 
ow geometry, but the number does not collapse data for di�erent 
ow geometries

onto a single curve.

1 Introduction

In 
ows of aeronautical interest, laminar-turbulent transition often occurs after small distur-
bances in the external 
ow are internalized into the boundary layer in the form of instability
waves. These instability waves grow; eventually nonlinear e�ects become important; secondary
and higher instabilities occur; and the spectrum of disturbances rapidly spreads as the 
ow ap-
proaches a turbulent state. The longest extent of this process is typically dominated by the linear
growth of the instability waves. Hence, the correct calculation of the growth of the unstable
waves is critical to any rational approach to predict the onset of transition.

The evolution of an instability wave is often computed as the integral of its growth rate as it
propagates along the airfoil surface. The quasi-parallel approach assumes that at each speci�ed
location on the airfoil, the mean 
ow is parallel to the surface and locally invariant in the 
ow
direction, hence only a set of ordinary di�erential equations need to be solved to obtain the local
growth rate. Unfortunately, real boundary layers are not parallel and the surfaces of most airfoils
are not 
at, but contain curvature. A multiple-scales analysis (MSA) by Saric and Nayfeh [1]
showed that weakly-nonparallel e�ects can be incorporated into the calculation of the growth
rates. Masad and Malik [2] demonstrated that additional additive terms can be considered in
the MSA to account for weak curvature. Incorporation of both corrections in a quasi-parallel
stability program can greatly improve the results.

Here we look at the suitability of the MSA for providing instability-wave growth rates for
both canonical test cases and more complicated boundary layers. In Section 2 we discuss some
mathematical and computational considerations. In Section 3 we show results obtained with
the MSA and compare them with results obtained from the solution of the parabolized stabil-
ity equations (PSE). The signi�cance of the results are discussed in Section 4, and �nally we
summarize our conclusions in Section 5.

2 Mathematical and Computational Considerations

We follow the general MSA of Saric and Nayfeh [1] for including the weakly nonparallel e�ects.
Masad and Malik [2] show that weak surface curvature can be treated as a small perturbation
to the problem without curvature. We also include this e�ect here. Details of the approach
used are disclosed in Ref. [3]. All lengths are nondimensionalized by a length scale L� and all
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Flow L� R Sweep Angle

Swept Hiemenz 1 250 NA
Swept Circular Cylinder 0:457 m 1:18� 106 63�

ASU Airfoil 1:294 m 1:8385� 106 45�

Table 1: Summary of 
ow conditions.

velocities by a velocity scale U�. The 
ow Reynolds number is R = U�L�=�� where �� is the
dimensional kinematic viscosity. The normalized streamwise direction is denoted by x.

The numerical solution of the resultant equations involves the discretization of the equations
with the use of Chebyshev polynomials. A staggered grid is used for the pressure variable and
hence the continuity equation. An iterative procedure is used to determine the quasi-parallel
eigenvalue and eigenfunction. Direct solves are used to solve the systems of equations. The
computer code used for the calculations is a modi�ed version of SPECLS [4].

Code validation was performed by comparison of the results with those of El-Hady [5] and
Masad and Malik [2] for the nonparallel and curvature e�ects respectively. Singer and Choudhari
[3] showed that pointwise comparison of the nonparallel results was in excellent agreement with
the previously published results.

Linearized parabolized stability equations (PSE) are now commonly used to predict the linear
growth of disturbances in nonparallel boundary layers. Bertolotti, Herbert, and Spalart [6] show
that the linearized PSE approach reliably predicts the growth of small disturbances in a growing
zero-pressure gradient boundary layer. Malik, Li, and Chang [7] arrive at the same conclusion for
zero-frequency disturbances in swept Hiemenz 
ow by comparison with the results of linearized
Navier-Stokes calculations. The PSE code used in this study was described in Malik, Li, and
Chang [7]. In addition to the veri�cation tests reported there, the code was veri�ed against
tabulated data from Bertolotti (personal communication) for the Blasius boundary layer.

3 Results

Three comparisons of MSA and PSE are considered here. In all cases we will focus on zero-
frequency disturbances (i.e. stationary cross
ow vortices) in three-dimensional boundary layers.
The �rst case involves swept Hiemenz 
ow, i.e., 
ow past a swept 
at plate that is placed
broadside to an incident 
ow. This 
ow approximates the attachment-line region of a swept
wing and was analyzed in detail by Malik, Li, and Chang [7]. For ease of presentation, the
velocity scale for this 
ow is taken to be the constant free-stream spanwise velocity. In the
other cases, the velocity scale is the total free-stream speed. The second case considered is a
swept circular cylinder which matches the experimental conditions of Poll [8]. Unlike the swept
Hiemenz 
ow, where the surface curvature is zero, the cylinder case includes both nonparallel
and curvature e�ects. The nonparallel e�ects observed in this case are more severe than those
in the swept Hiemenz 
ow. Finally, we will compare results from PSE and MSA for a mean 
ow
computed by Streett (personal communication) to simulate the conditions of the swept-wing
experiment performed at Arizona State University [9]. A summary of the parameters used in
the various cases is given in Table 1.

In Fig. 1 the growth rate of the disturbance is plotted versus distance downstream of the
leading edge for the swept Hiemenz 
ow. The solid line represents the quasi-parallel contribu-
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tion. The dotted line represents the nonparallel result from MSA. The chain-dot line shows the
growth rate (based on the local umax) that was predicted by PSE. Note that the relatively small
disagreement between the growth rates computed using MSA and PSE is almost constant over
most of the 
ow domain.

In Fig. 2 we show the growth rates for 
ow over the swept circular cylinder. Both curvature
and nonparallel e�ects are included in both the PSE and MSA. The PSE and MSA agree closely
near the upstream end of the body, but the results diverge downstream. Calculations without
the curvature e�ect included indicate that the bulk of the discrepancy between PSE and MSA
is associated with the nonparallel e�ect.

Finally we compare results from PSE and MSA for 
ow over a swept wing in Fig. 3. All
three results di�er near the leading edge, but downstream of approximately 8% chord, the MSA
and PSE results are essentially indistinguishable, with growth rates slightly less than the quasi-
parallel case.

4 Discussion

The MSA is designed to be suitable for 
ows with weak nonparallelism. Quantitative criteria for
the determination of how weak the nonparallelism must be for the MSA to perform satisfactorily
have never been determined and for the general 
ow case, possibly never will be determined.
However, we can make some progress by seeking a parameter that varies in such a way that the
error trends in the MSA are correctly characterized. The nondimensional quantity

� � �
1

l�
dl�

dx

where l� =
p
�x=U1 is a mean-
ow length scale and � is the streamwise wavelength of the

disturbance has many of the desired properties. The parameter is the ratio of the disturbance
wavelength to a length scale over which changes to the mean 
ow occur. When � is small,
the mean 
ow does not vary signi�cantly over the wavelength of the disturbance; hence, one
would suspect that when the value of � is small, MSA and PSE would agree quite well. Is this
suggestion supported by the data?

In the case of swept Hiemenz 
ow, dl
�

dx
is identically zero, even though the 
ow is not perfectly

parallel. However, the nonparallelism is weak and, as Fig. 1 shows, the di�erence in MSA
compared with PSE is quite small, especially when compared to the error in the quasi-parallel
result. In addition, these errors remain essentially constant over the range tested.

For 
ow over Poll's swept circular cylinder, � is small near the leading edge of the cylinder;
the parameter's value increases with distance along the cylinder. The errors between MSA and
PSE in Fig. 2 re
ect the same trends; i.e., the di�erences are small near the leading edge but
increase further downstream. We sought to determine whether the di�erences between the MSA
and PSE results would collapse on a single curve when plotted versus the parameter �. Fig. 4
shows the di�erences between the growth rates of the PSE and MSA normalized with the local
streamwise wavelength for three di�erent spanwise wavenumbers. Although three distinct curves
are illustrated, these curves cluster together tightly and suggest satisfactory agreement of PSE
and MSA in the region where � < 0:007.

A similar analysis was performed for ASU airfoil data. On the ASU airfoil at �4� angle of
attack, the parameter � is large near the leading edge, lessening in the downstream direction.
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This behavior is consistent with the observed behavior of the di�erences between PSE and MSA
in Fig. 3. The normalized di�erences between the growth rates from PSE and MSA for three
widely spaced spanwise wavenumbers are plotted in Fig. 4. Satisfactory agreement of the PSE
and MSA growth rates is observed for � < 0:03. The discrepancies rapidly become large for all
spanwise wave numbers when � exceeds 0:03. Although the value of the parameter � required
for satisfactory results is quite di�erent for the two di�erent 
ows, within each 
ow, the range
of values of � for which MSA is appropriate is not strongly in
uenced by the spanwise wave
number.

5 Conclusions

We used MSA to approximate the e�ects of nonparallelism and streamwise curvature on the
stability of disturbances in a variety of incompressible 
ows. The results of MSA were compared
with results from PSE for a variety of di�erent 
ows. The results suggest that the nondimensional
number � � �

l�
dl�

dx
, which is the ratio of the disturbance wavelength to the rate of change of the

mean 
ow, provides useful information about the adequacy of the multiple-scales approximation
for di�erent disturbances for a given 
ow geometry. Unfortunately, the 
ows that we tested gave
di�erent restrictions for values of � required for the MSA to give satisfactory results. Because
no uniform value of the number collapsed the data for the di�erent 
ow geometries, the use of
MSA for predicting the growth of small disturbances on new geometries is risky. However, if
the growth rate history of a single disturbance computed using MSA can be checked by some
other means (like PSE), then the error in the MSA result as a function of the parameter � can
be used to estimate the range of validity of the MSA for other disturbances in the same 
ow.
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Figure 1. Growth rates for swept Hiemenz 
ow. R = 250, F = 0, � = 0:4.

Figure 2. Growth rates for 
ow over Poll's swept cylinder. R = 1:18� 106, F = 0, � = 0:261.
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Figure 3. Growth rates along ASU airfoil at �4� angle of attack. Spanwise wave number
� = 900.

Figure 4. Normalized error in MSA versus � � �

l�
dl
�

dx
for Poll's swept cylinder.
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Figure 5. Normalized error in MSA versus � � �

l�
dl
�

dx
for ASU airfoil.
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