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Summary

LaRCsim is a set of ANSI C routines that implement a full set of equations of
motion for a rigid-body aircraft in atmospheric and low-earth orbital 
ight, suitable
for pilot-in-the-loop simulations on a workstation-class computer. All six rigid-body
degrees of freedom are modeled. The modules provided include calculations of the
typical aircraft rigid body simulation variables, earth geodesy, gravity and atmo-
sphere models, and support several data recording options. Features/limitations of
the current version include English units of measure, a 1962 atmosphere model in
cubic spline function lookup form, ranging from sea level to 75,000 feet, rotating
oblate spheroidal earth model, with aircraft C.G. coordinates in both geocentric
and geodetic axes. Angular integrations are done using quaternion angular state
variables. Vehicle X-Z symmetry is assumed.

A copy of this software is available upon request to the author.

Introduction

Historically, six degree of freedom aircraft simulations have been performed on
larger minicomputers or mainframe computers due to limited processing speed and
data storage capability on smaller workstation and desktop computers. With the
advent of more powerful reduced instruction set computer (RISC) architecture, the
processing capability of a desktop computer exceeds that of a supercomputer of a
decade ago.

Simultaneously with the rise in popularity of workstation and desktop com-
puters, the acceptance of UNIX-style operating systems has grown. This popular
operating system has brought with it the C programming language in which the
original UNIX kernal was written. While the standard C libraries lack some of the
mathematical procedures of FORTRAN, in which most digital aircraft models are
written, it is still possible to make use of this powerful and portable language. Ab-
stract data types, longer variable names, data structures, and recursion allow the
simulation architect to write maintainable and self-documenting software, with full
access, through standardized library routines, to operating system capabilities in a
nearly machine independent fashion.

Although not fully utilized in this version of LaRCsim, the popular X-Windows
facility is easily manipulated in C. This provides for graphical operator/user
interface capabilities on any X capable terminal or personal computer terminal
emulator (called a window server).

This version of LaRCsim utilizes a curses-based terminal interface, which will
support almost all types of computer terminals. X-windows support is planned for
later versions of LaRCsim. Also supported is a Silicon Graphics GL workstation
interface that includes out-the-window scenery and heads-up display symbology.
The pilot controls are provided through a mouse or, optionally, an analog-to-digital
interface (driver code for the analog-to-digital interface is not included since the
software depends upon the choice of host processor and interface hardware.)

Output options include time history information in ASCII text tab-delimited,
Dryden's GetData .ASC1, or Agile-Vu \.flt" format; a fourth option will write
the time history data into a text �le suitable for execution by one of several popular
controls analysis software tools. Any global or static local variable can be recorded.
The recording module uses debugger symbol to access static or global variables at
a user-selected frequency. Speci�cation of variables to be recorded can be made at
run-time.

Overview

What is LaRCsim?

LaRCsim is a set of C routines that implement a full set of equations of motion
for a rigid-body aircraft in atmospheric and low-earth orbital 
ight. It is intended
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to be used with additional, user-provided subroutines (either FORTRAN or C) that
describe the aerodynamics, propulsion system, and other 
ight dynamic elements
of a speci�c air vehicle. Once combined with the vehicle-speci�c routines, LaRCsim
provides a desktop- and/or cockpit-based near-real-time simulation of the vehicle
for engineering analysis and control law development.

The six rigid-body degrees of freedom are modeled. The modules provided
include all of the kinematic relationships, most of the conventional output vari-
ables, geodesy and atmospheric models, and a data recording option. Some fea-
tures/limitations of the current version are as follows:

� English units of measure.
� 1962 atmosphere model in cubic spline function lookup form, ranging from sea
level to 75,000 ft. Included in the model are density, speed of sound, and sigma.

� Rotating oblate spheroidal earth model, with aircraft C.G. coordinates in both
geocentric and geodetic axes.

� Vehicle X-Z symmetry is assumed.
� Quaternions are used in determining the angular orientation (although equiv-
alent Euler angles are also calculated) to avoid the singularity at �90 degrees
pitch angle.

� Gravitational harmonic e�ects due to the earth's oblateness are modeled.
� Modular design allows user to incorporate modi�ed atmosphere, turbulence, and
steady winds into the simulation.

� Rotating machinery e�ects are not modeled.

Origin and Purpose

LaRCsim was developed as part of an engineering 
ight simulation facility at
NASA Langley Research Center that is used to debug aircraft 
ight control laws.
This facility, known as Advanced Controls Evaluation Simulator (ACES), is used
in the Dynamics and Control Branch (DCB) and currently consists of a dual RISC
processer Silicon Graphics Onyx computer with RealityEngine-2 graphics driving
an evaluation cockpit with throttles and a side stick hand controller.

The LaRCsim routines are used to provide appropriate aircraft dynamic re-
sponses to 
ight control commands. The 
ight control laws may be written in C or
Fortran. The equations of motion are based upon work by McFarland in reference 1.
The axis frames and sign conventions comply with the ANSI/AIAA recommended
practice as outlined in reference 2; geodesy calculations use the relationships out-
lined in reference 3, as well as a custom geocentric to geodetic conversion developed
by the author. The atmosphere model is derived from data found in references 4
and 5; other physical constants were obtained from references 6 and 7. LaRCsim
itself is based upon FORTRAN routines originally developed by the author for the
U. S. Naval Air Test Center (now the Naval Air Warfare Center) under a project
known as CASTLE (see reference 8); these routines have ties back to the NASA
Ames FORTRAN simulation routines known as BASIC, written by McFarland and
others.

It is intended that LaRCsim applications be capable of running both with a
cockpit and pilot in the loop as well as in terminal interactive and batch modes.
This version includes both a generic display terminal and Silicon Graphics GL-based
keyboard/mouse interfaces in addition to an external cockpit interface.

Changes from version 1.3

The ACES facility is still being developed, and LaRCsim continues to evolve.
This release, version 1.4, di�ers from version 1.3 as follows:

� Six-degree of freedom trim capability has been added.

2



� The default settings �le has been renamed, and is automatically updated at the
end of a session so LaRCsim \remembers" settings from the previous session.

� Initial conditions may be speci�ed at by a 
ag on the command line.
� Time step and initialization 
ags are now passed to model routines.
Additional information on these changes is available in the README �le,

provided in the software distribution. Please see this �le for more information
on what is required to adapt a version 1.3 simulation model to version 1.4. This
report details the requirements to implement a new version 1.4 simulation model.

Input �les

Default settings �le. LaRCsim is fairly self-contained, and does not require any
special supporting �les to run. It does, however, utilize one �le if it is present in the
default directory: if present, a �le named .simname (also called the default settings
�le) speci�es what parameters are to be recorded during the simulation run, what
parameters are to be used to trim the vehicle and what parameters are to be set to
zero by the trim algorithm. The settings �le may specify a default initial condition
to which the model is initialized if no other initial condition �le is speci�ed on the
command line. This �le is automatically updated at the end of a LaRCsim session
to record any changes in these settings. A sample settings �le is shown in �gure 1.

In the present version of LaRCsim, the default settings �le contains four sections
of information: previous simulation operation settings, a list of parameters to record,
the default trim parameters, and the default initial conditions. These sections are
independent and may appear in any order.

The �rst few lines of the default settings �le demonstrates the use of a pound
sign (#) as the �rst non-blank character to denote a comment line; comments can
appear on any line (as long as the �rst non-blank character is a # ). Blank lines
are ignored.

The third line in the �le is the �rst line that is used by LaRCsim: \sim" appears
on a line by itself to indicated the beginning of a list of simulation options that were
in force at the end of the last session. This line is followed by \0010" on the next line
by itself; this 
ag line indicates which version of syntax is used (presently version
1.0) so that future version of LaRCsim will be able to recognize and use older input
�les. The contents of this section indicate what type of �les to record at the end
of the simulation session; the spacing with which to write the data �les, the end
time of the simulation; and the update rates for the model, screen refresh, and data
recording; and how long (in seconds) the data bu�er should be. In the example
given in �gure 1, a data �le in matrix format will be written when the simulation
ends. It will contain up to one hour's worth of simulation data, recorded at 20 Hz
and every frame will be written to the data set. The model itself will run up to one
hour, at 120 Hz, and the video screen (or terminal screen) will be updated at 30
frames per second.

In the next section, \record" appears on a line by itself to indicate the beginning
of a list of parameters to be recorded during the simulation session. The next six
lines are parameter declarations; these six parameters, if successfully located in
the debugger symbol tables, will be added to 19 prede�ned variables and recorded
during the simulation session.

The �rst three declaration lines are examples of how to specify scalar parameters.
Note that these declarations are local variables to each routine. LaRCsim, by way
of compiler-provided symbol tables, can locate and track the value of any local
or global variable, but the variables must be static variables, declared as such at
the top of each function. If the variables are automatic (i.e., not static), then
the variable is de�ned only as long as the program is executing that function;
thus, LaRCsim is unable to track automatic variables. The third declaration, of
variable forward mu in function navion gear, is actually an automatic variable (in
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# .navion created at 950406 22:57:12 by bjax
#============================== sim

sim
0010

write av 0
write mat 1
write tab 0
write asc1 0
write spacing 1
end time 3600.000000
model hz 120.000000
term update hz 30.00000
data rate 20.000000
buffer time 3600.0000

end

#============================== record

record
0010

aero elevator
aero aileron
gear forward mu
* generic .f gear v[0]
* generic .f gear v[1]
* generic .f gear v[2]

end

#============================== trim

trim
0010
controls: 3

# module parameter min val max val pert size
* generic .euler angles v[1] -7.853981E-01 7.853981E-01 1.000000E-02
aero long trim -1.000000E+00 1.000000E+00 1.000000E-02
* cockpit .throttle pct 0.000000E+00 1.000000E+00 1.000000E-02

outputs: 3
# module parameter trim criteria

* generic .omega dot body v[1] 5.000000E-05
* generic .v dot body v[0] 5.000000E-04
* generic .v dot body v[2] 5.000000E-04

end

#============================== init

init
0010
continuous states: 22

# module parameter value
* generic .geodetic position v[0] 2.374953E-04
* generic .geodetic position v[1] 7.714288E-07
* generic .geodetic position v[2] 1.099708E+01
* generic .v local v[0] 1.740701E+02
* generic .v local v[1] 1.522121E+03
* generic .v local v[2] -3.972784E+00
* generic .euler angles v[0] -1.481027E-04
* generic .euler angles v[1] 1.127979E-01
* generic .euler angles v[2] 2.089291E-03
* generic .omega body v[0] 5.395570E-06
* generic .omega body v[1] 0.000000E+00
* generic .omega body v[2] -2.788522E-05
* generic .earth position angle 0.000000E+00
* generic .mass 8.547270E+01
* generic .i xx 1.048000E+03
* generic .i yy 3.000000E+03
* generic .i zz 3.530000E+03
* generic .i xz 0.000000E+00
* generic .d cg rp body v[0] 0.000000E+00
* generic .d cg rp body v[1] 0.000000E+00
* generic .d cg rp body v[2] 0.000000E+00
aero long trim -1.365538E-03

discrete states: 0
# module parameter value
end

Figure 1. A sample default settings �le.

the example simulation), and thus LaRCsim will complain when it reads this input
�le and attempts to locate forward mu for the �rst time.

A local static variable is speci�ed by the name of the function or subroutine in
which it exists (e.g. aero or navion gear) and the name of the variable. Case is
important. Elevator is not the same variable as elevator.
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The next three lines are examples of global variables; these are variables that
have been declared outside the scope of a function. They are identi�ed to LaRCsim
as global by use of the * in place of a function name.

These last three lines also demonstrate the capability of LaRCsim to parse and
locate elements of complex data structures; here, the elements of the landing gear
force vector, f gear v, itself a part of the global data structure generic , will be
added to the list of variables to record. The syntax for non-scalar data elements
follows that of ANSI C. Arrays are all zero-index-based, as in C (unlike FORTRAN).

The end word must appear on a line by itself to delimit the list of recording
variables that began with record.

The next section of the default settings �le tells LaRCsim how to attempt to
trim the vehicle when requested. The format is similar to that used by the record
section, with the addition of a count of how many controls and how many output
variables are speci�ed (on the controls: 3 and outputs: 3 lines). Note: in
this version of LaRCsim, the number of controls must equal the number of outputs.
LaRCsim presently supports trim strategies with up to ten controls and outputs; in
practice, however, no more than six are required for a rigid �xed-wing aircraft. See
the section below for a description of the trim method and suggested techniques.

Each trim control speci�cation includes a module and parameter name, as
before for record speci�cations, as well as minimum and maximum values and
perturbation size (see the Trimming Strategies section below for more information
about these values).

Each trim output speci�cation includes a module and parameter name and a
criteria value that speci�es how close to zero the output must driven by the trim
algorithm before a successful trim is achieved.

The next section of the settings �le, the init section, speci�es what parameters
are considered states, and should include both continuous states and discrete states
(
ags, Booleans, and integers), as well as a speci�cation for the default values
of these states. The initial condition described in this settings �le do not have to
describe a trimmed 
ight condition. Each line of the init section includes a module
and parameter name, as before, as well as the initial value for that state.

Overriding the default settings. The user may specify on the command line, with
the -i option 
ag, a di�erent settings �le with an alternate initial condition (IC)
description. An IC settings �le should have a �le name that describes the initial
condition, and end with a .ic �le type, such as on ground.ic, two mile final.ic,
etc. The contents of this �le are identical in format to the init section of the default
settings �le; LaRCsim will substitute the optional initial conditions for those found
in the default settings �le.

As an example, the command line

navion -i on ground.ic

will cause the navion simulation to start at a speci�ed initial condition de�ned in
an IC settings �le named on ground.ic.

Similarly, the default trim strategy may be replaced with a new one by
identifying a �le containing the new trim portion of the settings �le using the
-i 
ag. By convention, the trim settings �le should end in .trim and contain only
a trim speci�cations section.

Additional parameters may be added to the list of recorded parameters by
specifying (again with the -i 
ag) a �le that contains a record speci�cation. Any
parameters thus speci�ed will be added to the existing list of recorded parameters.
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In the present version of LaRCsim, only one settings �le may be speci�ed at
run time; it is possible to combine several settings �le into a single �le, and specify
that �le name at run time to achieve the desired set of trim parameters, recorded
variables, and initial conditions.

Optional search path and redirection. At startup, LaRCsim will search the
directories listed in an environment variable LARCSIMPATH, if it is de�ned, to �nd
both the default settings �le (e.g. .navion) and any speci�ed settings �le �les (e.g.
on ground.ic). LaRCsim will use the �rst occurance of these �les discovered in the
path of directories speci�ed by LARCSIMPATH. The variable LARCSIMPATH should be
a colon-separated list of directories, similar to standard UNIX PATH environment
variables. If LARCSIM is unde�ned, only the default directory will be searched to
�nd the settings �le.

A settings �le may contain a line beginning with `@'; this indicates to LaRCsim
an additional �le that should be parsed. For example, the default settings �le for
the terminal version of a simulation (e.g. .navion term) could contain the single
line, @.navion; LaRCsim would interpret this to mean the contents of .navion
should be parsed instead of .navion term. (Note: .navion term should be set to
read-only to prevent it from being overwritten at the end of the LaRCsim session.)

The �le pointed to by the indirection 
ag `@' could itself contain an additional
indirection 
ag; caution should be used to avoid circular references.

Output �les

.simname This default settings �le, if it does not already exist, is created at the end
of each simulation session and will contain the default values for record
parameters, trim controls, and initial conditions. If the default settings �le
already exists and is not write-protected it will be replaced with a new copy.

run.flt This �le, if requested with the -a 
ag, will be generated at the end of a
session and will contain a time history of each recorded parameter in Agile-
Vu format.

run.m This �le, if requested with the -r 
ag, will be generated at the end of a
session and will contain the time history information in matrix notation,
suitable for use as a script in one of the popular control system design and
analysis products.

run.asc1 This �le, if requested by use of the -x command line switch, wil be generated
at the end of a session and will contain the time history information in a
format understood by the Dryden Flight Research Center's GetData and
XPlot tools.

run.dat This �le, if requested with the -t command line switch, will contain ASCII
tab-delimited columns of the recorded data; the �rst line contains the names
of the parameters included. This format may be useful for importing time
history data into spreadsheet or other charting programs.

Running a LaRCsim Example

Compiling LaRCsim

Building LaRCsim from the distribution is straightforward:

1. De�ne an environment variable, LARCSIM, to point to the source directory for
the main LaRCsim routines. This should probably be done in the user's .login
�le (Example: setenv LARCSIM /aces/larcsim/v014)

2. Change the default directory to $LARCSIM.
3. Enter the command \make." This will:

a. create a new object library �le, libls.a
b. compile all of the LaRCsim source �les
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c. put all the generated object �les in the libls.a archive library

The object archive library libls.a only needs to be rebuilt after a LaRCsimmodule
has been modi�ed.

Compiling and building the example simulation

Once the libls.a �le has been built in the $LARCSIM directory, move to the
directory containing the aircraft �les (in the case of the example simulation, move
to the navion directory).
1. Enter the command \make" (for Silicon Graphics-based simulations) or \make

term" for a terminal-based simulation. This will compile all the navion source
�les and link them together to form the executable simulation program navion

(for Silicon Graphics-based simulations, or navion term, for a terminal-based
simulation).

2. If desired, create a default settings �le in the format described above. It should
be named .simname, where simname is the name of the executable simulation
program.

Running the example simulation program

Typing navion on the IRIX command line will run the navion example simu-
lation program on the GL console; the navion term command will run the navion
example simulation on most terminals.

Command line switches. The command for running a LaRCsim model may
include a number of optional 
ags or switches:

-A Run in conjunction with ACES cockpit (valid only for DCB users).
-k Run on the Silicon Graphics console using the mouse as a joystick

( -k and the -A 
ags are mutually exclusive).
-i �lename.ic Identi�es an optional settings �le that contains an alternate initial

condition, trim strategy, or additional parameters to be recorded.
-f <iteration rate> Speci�es an iteration rate, in iterations per second, that the

simulation model is to execute. Default frame rate is 120 iterations
per second.

-o <output rate> Speci�es the rate at which the terminal or GL display screen should
be updated, in frames per second. This rate must be an integral
sub-multiple of the iteration rate (see -f above). For example, if
the simulation model iteration rate is 120 iterations per second,
legitimate choices for output rate are 120, 60, 40, 30, etc. frames
per second (corresponding to 1; 1

2
; 1
3
; 1
4
; etc. of the iteration rate).

Default screen refresh rate is 20 frames per second.
-e <end time> Speci�es an end time for the simulation run. The simulation will

terminate when this value of simulated time is reached, if the
simulation is not reset prior to that time.

-b <bu�er length> Speci�es the length of the data storage bu�er, in seconds. This
circular bu�er retains the last bu�er length seconds of time his-
tory data. If not speci�ed, the default bu�er length equals the
simulation end time given by -e above.

-s <storage rate> Speci�es the rate, in records per second, at which the requested
parameters will be recorded to the circular data bu�er. This
rate must be an integral sub-multiple of the iteration rate (see -f

above). For example, if the simulation model iteration rate is 120
iterations per second, legitimate choices for storage rate are 120,
60, 40, 30, etc. records per second (corresponding to 1; 1

2
; 1
3
; 1
4
; etc.

of the iteration rate). If not speci�ed, the default storage rate will
be one-eighth of the iteration rate of the simulation model.
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-a <�lename> Speci�es that an Agile-Vu compatible \.
t" �le is to be written at
the end of the session. Default �lename is run.flt. If this option
is the last one on the command line, a �lename must be speci�ed.

-t <�lename> Speci�es that a tab-delimited ASCII listing of time history data be
written at the session. Default �lename is run.dat. If this option
is the last one on the command line, a �lename must be speci�ed.

-x <�lename> Speci�es that a GetData/X-Plot compatible \.asc1" �le is to be
written at the end of the session. Default �lename is run.asc1. If
this option is the last one on the command line, a �lename must
be speci�ed.

-r <�lename> Speci�es that a matrix manipulation software compatible .m �le is
to be written at the end of the session. Default �lename is run.m.
If this option is the last one on the command line, a �lename must
be speci�ed.

-d Speci�es that the run allow interactive debugging; this prevents
scheduling of timer interrupts and forces the GL display into single-
bu�er mode. This switch is probably not of great use to the typical
user.

GL console operation. The command navion -k will bring up the out-the-
window view, on the SGI console, with a heads-up display (HUD) overlay, and
allow the user to maneuver the aircraft using the mouse and keyboard. The mouse
movement simulates a control stick: push forward to move the stick forward, left to
roll left, etc.

When the simulation �rst comes up, the aircraft is placed in the speci�ed initial
condition and the display will indicate the simulation is paused (on a GL display,
this is indicated by the HUD symbology showing up in a red color). At this point
the simulation may be trimmed (using the `t' key) or put into operation (with the
`p' key). A trim may be requested at any time during a run by use of the `t' key;
this allows the vehicle to be 
own to an interesting point of the sky and retrimmed.
A successful trim will cause the current 
ight conditions to be remembered as the
new initial condition.

At any point, the `r' key will reset the simulation to the last remembered initial
condition, allowing repeated landing attempts, for example.

The simulation may be paused at any point by use of the `p' key to toggle
between pause and run modes. Data is recorded in run mode and during trim
attempts.

The simulation session will last for up to 60 minutes; a longer period of time
may be speci�ed on the command line as a parameter for the -e option (see the
previous section for information on various command line options).

Pressing the escape key causes the simulation to terminate, and any recorded
data will be written to the requested output �les.

Display terminal operation. The command navion term will operate the same
simulation, but does not use a mouse or provide GL graphics. Instead, a simple
instrument panel is presented on the user's terminal screen and several keyboard
keys are pressed into service for 
ight controls. Figure 2 shows the screen used in
LaRCsim version 1.4, with 
ight control keys indicated. No rudder command is
available in this version.

External cockpit operation. The command navion -A will operate the same
simulation, but LaRCsim will call the external cockpit interface routine to provide
control stick, rudder pedal, and throttle positions, as well as pause and reset buttons.
Most keyboard commands will still operate.

Note for DCB users: in the ACES cockpit, the upper red button on the handgrip
resets the simulation, and the thumb button pauses the simulation.
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L a R C S I M navion term 0:00:00.0

Mach 0.007 Psi 0.1 NZ-G 0.997

KEAS 4.3 Thet 0.4 Alt 4 Alpha 0.42

Throt 0 % Phi 0.0 Hdot 0.000 Beta 0.03

Elevator 0.00 Aileron 0.00 Rudder 0.00

stick

i

throttle quit

|

-a +s j -k- l <ESC>

|

<

Figure 2. Terminal mode display

Trimming strategies

The trim algorithm, new to this version of LaRCsim, uses up to ten user-speci�ed
\controls" to drive a like number of \outputs" to values near zero. LaRCsim also
forces pitch rate to zero prior to each trim attempt, so trimmed turns are not
currently possible. Steady-heading sideslip trims, however, are possible and have
been demonstrated. On-ground longitudinal trims are also supported.

The current mechanism to specify (and modify) the trimmethod requires editing
the default settings �le, or specifying a settings �le containing a di�erent set of trim
controls and outputs by use of the -i 
ag on the command line. Listed below
are examples of trim speci�cations that have been tested and used successfully in
LaRCsim simulations at Langley Research Center.

In-
ight longitudinal trim. In this example, pitch attitude, throttle, and a local
variable in the aerodynamics module called \long trim" are used to zero out the
accelerations in pitch and body-X and -Z axes:

trim

0010

controls: 3

# module parameter min val max val pert size

* generic .euler angles v[1] -0.785 0.785 1.0E-02

aero long trim -1.0000E+00 1.0000E+00 1.0000E-02

* cockpit .throttle pct 0.0000E+00 1.0000E+00 1.0000E-02

outputs: 3

# module parameter trim criteria

* generic .omega dot body v[1] 5.0000E-05

* generic .v dot body v[0] 5.0000E-04

* generic .v dot body v[2] 5.0000E-04

end

On-ground trim. With this strategy, two controls (pitch attitude and altitude)
are used to obtain zero pitch and vertical acceleration, regardless of the aircraft's
velocity or heading:

trim

0010

controls: 2

# module parameter min val max val pert size

* generic .euler angles v[1] -0.785 0.785 1.0E-02
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* generic .geodetic position v[2] 0 30 0.0001

outputs: 2

# module parameter trim criteria

* generic .omega dot body v[1] 5.0000E-05

* generic .v dot local v[2] 5.0000E-04

end

Steady-heading sideslip trim. In this strategy, three pilot control trim variables
are used, along with throttle, pitch attitude, and heading angle to achieve zero
accelerations in angular and local velocities:

# this trim is for steady-heading sideslip, where

# sideslip is given by local velocities.

trim

0010

controls: 6

# module parameter min val max val pert size

subsystems longtrim -3.0000E+01 3.0000E+01 3.0000E-02

* generic .euler angles v[1] -0.5 0.5 1.0000E-03

* cockpit .throttle pct 0.0000E+00 1.0000E+00 1.0000E-03

subsystems lattrim -10 10 0.01

subsystems pedtrim -10 10 0.01

* generic .euler angles v[0] -0.5 0.5 0.001

outputs: 6

# module parameter trim criteria

* generic .omega dot body v[0] 5.0000E-05

* generic .omega dot body v[1] 5.0000E-05

* generic .omega dot body v[2] 5.0000E-05

* generic .v dot local v[0] 5.0000E-04

* generic .v dot local v[1] 5.0000E-04

* generic .v dot local v[2] 5.0000E-04

end

Creating a New Aircraft Simulation

Mandatory routines

A new simulation model must provide, as a minimum, an aerodynamics routine
with an entry point labeled aero(). The source code is usually kept in a �le named
after the speci�c vehicle, e.g. navion aero.c. In addition, a complete vehicle
model would include engine(), subsystems(), inertias(), and gear() routines,
although stub routines are provided for these.

Inputs to these routines come from the GENERIC global variable structure, for
which useful aliases are provided in the ls generic.h header �le (see Appendix A).
The more sophisticated models will undoubtedly create an aircraft-speci�c set of
global variables; the use of a struct or COMMON is recommended to share these global
speci�c variables between simulation components. Interface to the simple keyboard,
mouse and/or ACES cockpits is available through the COCKPIT data structure.

The expected outputs from aero() are simply the aerodynamic forces and
moments about the reference point, in lbs and ft-lbs, respectively, being stored
in the F aero v and M aero v vectors (scalar names F X aero, F Y aero, F Z aero,
M l aero, M m aero, and M n aero).

Likewise, the outputs from any engine() or gear() routines should be stored
in the F engine v, M engine v, F gear v, and M engine v vectors as appropriate.
Refer to the example simulation for samples of how to do this.

If desired, the LaRCsim user may craft an inertias() routine to keep track of
fuel burn (using an aircraft speci�c fuel 
ow parameter provided from engine())
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and adjust the inertia properties and center of gravity location values kept in
GENERIC: Mass, I xx, I yy, I zz, I xz, and vector quantity D cg rp body v (the
location of the center of gravity, measured from the reference point, in body axis);
for most simulation studies of an engineering nature, the fuel quantity is a constant
that can be, along with mass properties and C.G. location, be set at initialization
(through user routine model init(), or through a settings �le.).

The user must have a model init() routine, which is called before each
simulation run, to set certain parameters. See the section below for a list of
necessary parameters. Failure to set certain parameters will lead to an immediate
divide by zero error, or unreasonable dynamic response of the simulation.

The subsystems() hook allows control system models, navigation system
models, sensor models, autopilots, etc. to be included in the more elaborate
simulations. These routines will likely use some of the parameters provided in
GENERIC and get other inputs from and store outputs to user-de�ned common
memory structure(s).

Mandatory parameters

The following is a list of the variables for which the user-supplied vehicle routines
must provide reasonable values:

Mass vehicle inertial properties;
I xx these must be non-zero
I yy

I zz

I xz

D pilot rp body v pilot location w.r.t. reference point
D cg rp body v C. of Grav. location w.r.t. reference point
F aero v aero forces, body axes
F engine v engine forces, body axes
F gear v gear forces, body axes
M aero v aero moments, body axes, about ref. pt.
M engine v engine moments, body axes, about ref. pt.
M gear v gear moments, body axes, about ref. pt.
Runway altitude location of threshold of runway of interest
Runway latitude

Runway longitude

Runway heading

These values may be initialized once, in the model init() function, or may be
calculated each frame, in a procedure called by ls model(). The mass properties
must by non-zero to avoid mathematical errors.

The following variables should be speci�ed in model init() to the appropriate
initial conditions; they are thereafter calculated by the EOM routines:

Geodetic position v geodetic position in radiansfeet
Euler angles v aircraft attitude (�; �;  ), radians
V local v center of gravity velocities, in ft/s
Omega body v body axis rates, in rad/s

where geodetic position is latitude, longitude, and altitude above sea level. The
following variables may be set by the user routines if desired:

V local airmass v airmass velocity: steady wind
V local gust v body axis turbulence
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Support for FORTRAN routines

Existing FORTRAN routines can be interfaced to LaRCsim through use of
\wrapper" routines that translate between existing FORTRAN COMMON data struc-
tures and the GENERIC and other LaRCsim data structures. It is possible to write
FORTRAN versions of aero(), engine(), inertias(), etc., but the reader is en-
couraged to write new models in C (or even C++) for maintainability and compat-
ibility reasons.

The secret to writing these \wrapper" routines is to realize that, at least in
IRIX, FORTRAN entry points and commons appear (from the C side) as having
the same name that they do in FORTRAN, but in lowercase and with an underscore
(` ') appended, and vice-versa. Thus, a FORTRAN COMMON structure named SIMPAR
will appear to the C language routine as a global variable named simpar (it must
be declared as an external global structure in the C routine or header �le). Likewise,
a FORTRAN subroutine declared as SUBROUTINE PLSURF can be called from a C
program as plsurf (). Consult the documentation for each particular operating
system for more information on how to develop a \wrapper" for an implementation
on that system.

When the real-time loop is entered, the routines speci�ed in ls model() are
called once per loop. The user is expected to replace the simple aero() and
engine() routines provided in this package with more realistic aerodynamic and
propulsion system models. These models should calculate, based upon the current
Mach, altitude, angle of attack, etc. the appropriate forces and moments due to
aerodynamics, engines, and perhaps landing gear, if appropriate. These forces and
moments are to be provided in units of lbs and ft-lbs, in the X-Y-Z body axis system
(positive indicates forward, right, and down, respectively) acting at the prede�ned
reference position. If fuel consumption or weapon drops are to be simulated, an
inertias() routine should be added, and the values of Mass, I xx, I yy, I zz

and I xz should be updated in each loop. Center of gravity movement should be
re
ected in updates to the D cg rp body v vector as well. It is also possible to
change runway location during simulation operation, if appropriate; the code to
provide this capability is not included in the present LaRCsim version, however.

Function Data Interpolation

Overview. Mathematical descriptions of the aerodynamics of most 
ight vehicles
usually include non-linear elements, such as the stall \break" characteristic exhib-
ited by straight �xed-wing aircraft at higher angles of attack. Other aerodynamic
properties exhibit even more pronounced non-linearities with respect to angles of
attack, sideslip, Mach number, control surface de
ection and other \independent"

ight conditions. Other components of a 
ight vehicle model, such as propulsion
systems and control law gain tables, often need to represent a very non-linear pa-
rameter in some fashion.

Many ways have been developed in previous years to represent these non-linear
functions, including specialized mechanical analogues and electrical circuits. In
present 
ight simulators these functions are represented through special-purpose
software. To save memory, early software-based functions were generated using
polynomials to approximate the non-linear characteristics of the actual airplane.
As memory became less expensive, small tables of numbers were stored and
then interpolated at run time. The present industry practice is to use large
amounts of memory to store multi-dimensional tables; a return to polynomial
representation may be underway to generate models that are mathematically
smooth (see reference 10). The atmosphere model developed for LaRCsim uses
a combination of these techniques; it represents atmospheric properties by use of a
table, based upon altitude, of the coe�cients of a set of cubic spline functions that
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provide smoothly varying curves that agree with the original atmosphere model at
the \knots".

To provide a general, C-based function generation capability, the ls funcgen.c

module was developed. This simple code makes use of an object paradigm to
represent the function tables and a recursive C-routine to perform the interpolation
along each dimension. This particular solution is, in the opinion of the author,
elegant in its object-oriented design, recursiveness and the capability to handle
function sets of unlimited size and dimension; it is, on the other hand, a little
di�cult to understand, and not as fast as an in-line, non-recursive, FORTRAN
routine used for comparision.

To become really useful, a set of tools to generate the function data code for a
particular simulation would be nice and may become available in a later version of
LaRCsim.

Terminology. The following terms are used to describe the function generation
routine:

Breakpoint data set A monotonically increasing vector of real numbers that
represent the values of an independent variable for which
the dependent function is known and tabulated.

Dependent variable The value of the function, or the return value from the
function generation subroutine. Known values of the
dependent variable for speci�c values of the independent
variable(s) upon which it depends are provided by the
user in the form of data tables; the routines described
in this section provide linearly interpolated values of the
dependent variable for an arbitrary set of independent
variable values.

Dimension Each dimension of a data table represents an independent
variable upon which the dependent variable, represented
as points in the function table, are based.

Function table A multi-dimensional table of dependent variable values
that correspond to a given number of breakpoint data sets.
In LaRCsim, the �rst dimension varies most rapidly.

Independent variable An argument to the function. In terms of aerodynamic
tables, the independent variables are usually one or more
of the following: angle of attack, angle of sideslip, Mach
number, and control surface de
ection.

Index and weights value A 
oating point number, corresponding to a speci�c break-
point set, that represents the present location of the inde-
pendent variable in that breakpoint set. The integer before
the decimal represents the index (0-origin based) of the
breakpoint data point that is closest to, but less than, the
actual independent variable value; the fractional portion
of the number represents the fractional distance the inde-
pendent variable is between the indexed and next-higher
breakpoint value. It is de�ned as w, where

w = i+ d

where d is the interpolation ratio given below and i is the
current index of the next-lower value of the breakpoint set.

Interpolation ratio This fractional quantity, d, represents the location of the
independent variable between the next lower and next-

13



higher values of the breakpoint set. It is de�ned as:

d =
x� xi

xi+1 � xi

where x is the value of the independent variable, xi+1 is
the next-higher value of the breakpoint set, and xi is the
next-lower value of the breakpoint set.

Normalization The process of determining the proper index and weights
value w (see above) for the present independent variable
value.

Implementation. If one were to describe the problem of data interpolation, one
might use the following description:

The value of a function is represented in an orthagonal N-
dimensional table. Each dimension of the table corresponds to a
monotonicly increasing independent breakpoint variable. The data
in the table is arranged such that each entry represents the known
value of the function, or dependent variable, corresponding to �xed
value(s) of the breakpoint, or independent variable(s), at that index
of the table. The problem is to determine the value of the dependent
variable at any arbitrary value(s) of the independent variable(s). This
is done by interpolating the known value of the function between the
two surrounding table entries; in e�ect, generating a new table entry.
If multidimensional, this process may be repeated for each dimension
of the table, but the \known" values used for each succeeding interpo-
lation are actually interpolated values from the previous dimension.
This recursion continues until the value of the dependent variable has
been interpolated for the last dimension; this quantity is the value of
the function corresponding to the arbitrary values of the independent
variables.

In the most general case, some breakpoint sets may be shared between function
tables; and since breakpoint normalization is relatively CPU intensive, re-use of
normalized breakpoints is a good idea. Similarly, often times the function table
itself may be duplicted to represent similar but independent functions; a common
example is a set of spoilers on an aircraft that are operated independently, where
the spoilers have similar or identical aerodynamic e�ect (except for perhaps a minus
sign) but may well be operated at di�erent de
ections.

The function generator data structures used in LaRCsim allow for re-use of
breakpoints and function table data; for this reason, understanding the data
structures may take a little examination and thought. Separate \objects" that
represent the breakpoint sets, the function values themselves, the actual function
data (which associates the function data with the corresponding breakpoint sets)
and the �nal object, the non-linear function (which associates function data with
breakpoint normalization data) are all stored as separate data structures, as
described below.

In keeping with the object-oriented abstraction of the problem, breakpoint data
sets and function tables are stored separately in BREAKPOINTS and DATA structures.
They are associated together in an individual FUNC DATA structure; the FUNC DATA

structure is an abstraction of a multi-dimensional curve or surface. These data
structures are de�ned in the header �le ls funcgen.h.

The NONLINEAR FUNCTION structure associates this function data with the
interpolation information (index and weights as well as the last value returned
on the previous lookup call). This structure is an abstraction of the process of
interpolating a FUNC DATA curve; it includes a pointer to the function data as well as
state information about where the function was most recently found, which speeds
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up subsequent searches since a sequential search through the breakpoint vector,
starting with the last index used, is used instead of a binary search. The crawl
search is believed to be better for 
ight simulation function generation applications
than a binary search, since the traditional independent arguments change fairly
slowly.

The tables are e�ectively unlimited in size and number of dimensions; the
maximum length in any dimension is set by MAX LENGTH, and the number of
dimensions is set by MAX DIMENSION; both are declared in the ls funcgen.h header
�le.

Another data structure, ARG LIST, is used to pass interpolation information to
the lookup function. It contains the current index value and interpolation ratio for
each dimension of the nonlinear function.

For an example implementation of these data objects and an actual implemen-
tation of this code, refer to the header information found in ls funcgen.c.

Implementation Details

File Descriptions

The source and header �les that make up the LaRCsim application are listed
below, along with individual �le version numbers:

In the LARCSIM directory:

Makefile, v 1.0 ls funcgen.c, v 1.6

ls ACES.h, v 1.4 ls geodesy.c, v 1.5

ls cockpit.h, v 1.3 ls gravity.c, v 1.2

ls constants.h, v 1.0 ls ifgl.c, v 1.15

ls err.h, v 1.1 ls ifterm.c, v 1.1

ls funcgen.h, v 1.1 ls init.c, v 1.4

ls generic.h, v 1.0 ls matrix.c, v 1.1

ls matrix.h, v 1.1 ls model.c, v 1.3

ls sim control.h, v 1.11 ls record.c, v 1.11

ls sym.h, v 1.9 ls settings.c, v 1.6

ls tape.h, v 1.6 ls step.c, v 1.5

ls types.h, v 1.0 ls sym.c, v 2.7

LaRCsim.c, v 1.4.1.7 ls sync.c, v 1.7

atmos 62.c, v 1.0 ls trim.c, v 1.9

default model routines.c, v 1.3 ls writeasc1.c, v 1.7

ls ACES.c, v 1.8 ls writeav.c, v 1.10

ls accel.c, v 1.5 ls writemat.c, v 1.11

ls aux.c, v 1.12 ls writetab.c, v 1.4

ls err.c, v 1.2

In the example directory:

Makefile, v 1.0 navion engine.c, v 1.1

navion.h, v 1.3 navion gear.c, v 1.0

.navion, v 1.0 navion init.c, v 1.0

navion aero.c, v 1.0

Each of these components of the LaRCsim simulation program are described below.

Compilation support �les.

Makefile A simple make�le that allows the LaRCsim object library libls.a to be created
and/or updated on most Unix platforms by the simple command make. To build
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the example simulation, issue the make command in the LaRCsim directory, and
then move to the navion subdirectory and issue another make command.

Header �les.

ls ACES.h This header �le describes various constants and data structures
used with the Dynamics and Control Branch Advanced Controls
Evaluation Simulator (ACES) hardware; it is not of interest to a
non-DCB user.

ls types.h This �le de�nes the two principal data types used in LaRCsim:
SCALAR and VECTOR 3. The SCALAR data type, which is de�ned
as a double, is suggested for use by any C or C++ routines added
to LaRCsim. This de�nition allows easy modi�cation of the level
of precision of calculations, since changing the type de�nition of
SCALAR in this routine to, say, float, would halve the precision of
all LaRCsim module calculations.
Prior to version 1.3, the scalar 
oating-point type DATAwas de�ned,
but is not recommended for further use to avoid confusion with
the FORTRAN compiler directive of the same name. It remains
de�ned in this module for commonality with older routines, but
may be removed in future versions.
A 3-element vector of SCALAR elements, VECTOR 3, is de�ned for use
by routines which may bene�t from using vector notation. Many
of the components of the generic global variable structure are
de�ned in terms of VECTOR 3 elements, with an alternative set of
three scalar names de�ned for convenience.

ls constants.h This header �le de�nes useful constants, such as PI, equato-
rial radius of the earth EQUATORIAL RADIUS as well as its square
RESQ, earth geodesy parameters FP, E, and EPS, the inverse of
nominal gravitational acceleration INVG, the rotation rate of the
earth, OMEGA EARTH (in radians per second), useful conversion fac-
tors V TO KNOTS, DEG TO RAD, and RAD TO DEG, and standard sea-
level atmospheric density, SEA LEVEL DENSITY, in English units
(slug/ft3).

ls generic.h This header �le de�nes the generic aircraft parameter global
structure which is used to pass global parameters between aircraft
subsystem models and the various equations of motion routines.
The generic parameters provide the common aircraft state infor-
mation (positions and velocities) as well as other parameters such
as accelerations, forces and moments, vehicle geometry, mass and
inertia, and atmospheric properties. A complete description of the
contents of the generic data structure is given in Appendix A.

ls sim control.h This header �le de�nes the SIM CONTROL global structure which
is used to indicate command-line and other options set by the
user. It contains the mode 
ag sim type to indicate what mode
of operation has been requested (batch, terminal, GLmouse, or
cockpit), as well as information about run number, date and time
stamps, and output formats requested for trajectory information.

ls cockpit.h This header �le de�nes the COCKPIT global structure which is
used to pass pilot control position information between the cockpit
(either a keyboard, mouse, or actual cockpit) and the rest of the
simulation routines. Some abbreviations for locations within the
COCKPIT structure are also provided for convenience.

ls err.h This header �le de�nes the ERROR global structure which is used to
signal error conditions to the rest of the simulation. At present, the
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only errors de�ned are those relating to the table lookup routines
de�ned in ls funcgen.c.

ls funcgen.h This header �le provides prototypes for the linear interpolation
(data table lookup) routines available in this version of LaRCsim.
See the section \Function Data Interpolation" above for more
information.

ls matrix.h This header �le provides function prototypes for general real matrix
manipulation routines; it is used by the ls trim routines.

ls sym.h This header �le provides prototypes for various symbol table lookup
and manipulation routines, ls findsym(), ls put sym val(), and
ls get sym val(). This particular header �le is probably of not
much interest to the casual LaRCsim user.

ls tape.h This header �le de�nes the time-history data recording structure,
tape , which is used in the ls record() and ls writexxx() rou-
tines, and is of not much interest to the casual LaRCsim user.
However, the number of parameters that may be stored is deter-
mined by the de�nition of MAX TAPE CHANNELS which is contained
in this header �le (currently set to 1024 parameters).

Routines called in the main execution loop.

ls accel.c The �rst of three main EOM routines. This function sums the
body-axis forces and moments provided by the aero(), engine(),
and gear() routines (these are written by the user; example aero()
and engine() routines are found in the �le navion.c included in
this package) and calculates the resulting total angular and linear
accelerations in geocentric coordinates. Forces and moments are
taken to act at the reference point, which is �xed to the body. The
center of gravity location is de�ned relative to the reference point
by variables D[xyz] cg (found in vector D cg rp body v). The
total angular and linear accelerations are corrected to act through
and about the center of gravity.

ls step.c This is the second of the three main EOM routines. This function
performs the integration of the vehicle accelerations and velocities
to form the updated vehicle velocities and positions. The time
variable, Simtime, is integrated as well. The integration of ac-
celerations uses a predictive (forward) integration; the integration
of velocities is a modi�ed trapezoidal backwards integration algo-
rithm. These integration routines have been used successfully at
NASA-Ames, NASA-Langley, and NATC/NAWC Patuxent River
for many years and are well proven.

ls aux.c This is the third major EOM routine. This function calculates
most of the auxiliary variables based upon the updated vehicle
state, including conventional accelerometer readings at both the
C.G. and the pilot station, new values for angles of attack, sideslip,

ight path, Mach number, gravity, and numerous descriptions of
velocity and position in several axes. The state variables for
geocentric latitude, longitude, and radius are converted to more
useful geodetic (map coordinates) latitude, longitude and altitude
(M.S.L.) as well as runway relative coordinates from a prespeci�ed
runway.

The next three routines are called by the main EOM routines to perform supporting
calculations.

atmos 62.c The 1962 Standard Atmosphere Tables for density and speed of
sound, in cubic spline lookup format, along with the necessary
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interpolation routines. Data is included from sea level to 240,000
ft.; however, the ambient temperature and pressure are described
as parametric equations and are only valid to about 75,000 ft. in
this version of LaRCsim.

ls geodesy.c This function converts geocentric latitude and radius to geodetic
latitude and altitude above sea level, and vice versa. It is based
upon relationships provided in reference 3, which de�ne the trans-
formation from geodetic to geocentric; unfortunately, reference 3
doesn't include the opposite transformation, which is fairly com-
plex. Since LaRCsim uses geocentric coordinates as the inertial
axes set, and performs the translational integrations in the geocen-
tric frame, it is necessary to have a means to e�ciently convert back
to geodetic coordinates, since these are the coordinates most often
used for navigation (map latitude, longitude, and altitude). The
ls geoc to geod() routine, found in the ls geodesy.c module
performs this approximate conversion. Note: recently an engineer-
ing note in the AIAA Journal of Guidance, Control and Dynamics
describes a closed-form solution; it is quite complex and has not
yet been evaluated for this application (reference 9).

ls gravity.c This routine calculates the value for local gravity, based upon
geocentric latitude and radius, including e�ects due to oblateness
of the earth (harmonics), based on equations given in reference 3.

The user-supplied aircraft model is called by the next routine.

ls model.c This routine is an executive to the vehicle (user supplied) routines
engine(), subsystems(), aero(), and gear(), or whatever set
of routines the user decides are needed to adequately model the
vehicle properties.

Any functions that are not satis�ed by user-provided routines are provided by the
next routine:

default model routines.c This module contains stub routines for what are normally user-
provided functions, inertias(), subsystems(), engine(), and
gear(). If these are not provided by the user, these stub routines
satisfy the loader at link time, with no ill e�ects aside from �xed
weight, thrust, and the lack of ability to land. The user must
provide initial values of certain mass properties, as well as force
and moment vectors, in a routine named model init(). See the
section above on creating a new model for more details on what
parameters must be initialized by user software.

Data logging is provided by a call to the next routine:

ls record.c This routine stores preselected global variables into a data structure
for later playback or analysis. ls record() automatically saves
19 channels of data (e.g. these outputs are hardwired) that contain
state and basic input information from each run; in addition, the
user can specify (through the settings �le) additional parameters to
record. Variables are addressed via memory locations found in the
debugger symbol table of the executable; for this reason, the various
modules that comprise a LaRCsim executable must be compiled
and linked using the symbol table option (usually a -g switch).
A LaRCsim simulation that can't locate a speci�ed variable will
complain at invocation, but continue to execute; those parameters
that are not found will not be recorded. The data structure TAPE

utilizes a circular bu�er that, when full, begins to replace the oldest
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time history data with newer data. In the version 1.4 distribution
of LaRCsim, this bu�er records every eighth time slice.

Finally, interfaces with the pilot and synchronization with the real world are
accomplished by the following routines:

ls sync This module contains routines involved with synchronizing the
operation of LaRCsim to match simulated time with real-world
time on some UNIX platforms. The portability of this module is
in question, however. It makes use of system services signal(),
setitimer(), pause(), and the itimerval data structure, which
are supported on both SGI (IRIX 5.2) and Sun (SunOS 4.1.3)
platforms.

ls ifgl.c This module contains an IRIS GL (Graphics Library) interface for
interactive runs on Silicon Graphics computers (running IRIX 5.x),
as well as dummy synchronization routines (which aren't needed
if run under GL, since the drawing calls e�ectively synchronize to
real-time). This module replaces ls ifsun.c for Silicon Graphics
implementations.

ls ifterm.c This module contains a simple interface for interactive runs on
most Unix computers, using the curses library of terminal rou-
tines, as well as routines to synchronize simulation with real-time,
using standard unix system routines setitimer(), signal(), and
pause(). It was the intent of the author to keep the routines very
generic, without relying on either BSD or System V style system
calls; our ignorance of these nuances may well show through, how-
ever; this routine works well on a SunSPARCstation-1 and -2, and
will work on an SGI IRIS 4D machine.

ls ACES.c This module contains driver code to communicate with the Ad-
vanced Controls Evaluation Simulator (ACES) cockpit used in the
Dynamics and Control Branch, and is of little interest to the non-
DCB LaRCsim user.

Support routines. The following routines provide additional services for the
LaRCsim application, and are not typically called during the main simulation loop:

LaRCsim.c This routine is provided as an example executive function to call
the appropriate routines in the proper sequence both prior, during,
and at the end of a simulated run. LaRCsim.c includes the main()
procedure for the simulation. It also interprets any command
line options provided by the user, and initializes some simulation
data structures with default values. At the conclusion of the
simulation, it calls the output routines ls writemat, ls writeav,
ls writetab, and ls writeasc1.

ls err.c This module reports errors in a semi-meaningful way. By properly
loading the ERROR structure elements (see ls err.h) and then
calling print error(), a LaRCsim routine can have an error
message printed on stderr.

ls funcgen.c The ls funcgenmodule provides a simple linear interpolation rou-
tine for doing function generation using data tables. At present,
this routine is limited to functions of six dimensions and 63 break-
points along each dimension. It reports errors via the ls err()

routine. See the section above on \Function Data Interpolation"
for more information on using this capability.

ls init.c This routine calls the EOM functions and the user-supplied vehicle
initialization routines in the proper sequence to initialize the vehicle
prior to a run, or to reset at the end of a run.
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ls matrix.c This module contains several utilities to create, delete, print, and
invert general real matrices. It is used by the trim routine.

ls settings.c This module contains the code that deals with settings �les.
Two main routines are de�ned: ls get settings() and ls -

put settings(). A single parameter, desired file name, is ac-
cepted by ls get settings(). Calling ls get settings() with
a �le name speci�ed will cause a search for a �le by that name
along the LARCSIMPATH directory path; if a null string is passed to
ls get settings(), a default settings �le with the name of the ex-
ecutable simulation program, prepended with a `.', will be hunted
for along the path. If either �le is found, that �le will be opened,
read into memory, and parsed by the ls parse settings() rou-
tine. A table of facilities is kept that provide entry points for
both reading and writing each type of information (e.g. trim,
init, record). ls parse settings() will call the appropriate rou-
tine as the designated keyword is found, passing a pointer to
the appropriate location in the �le bu�er to that routine. If
ls parse settings() encounters a line in which the �rst non-
blank characters is `@', it will use the characters following the `@'
sign as a �le name, search for and open that �le, and recursively
call itself. A call to ls put settings() will create a default set-
tings �le, replacing the previous one, if it exists, and then calls each
facilities' put settings() routines, as kept by the facility table, in
sequence, causing the current LaRCsim settings to be recorded.

ls sym.c This routine performs symbol table lookups to resolve static local
and global variable names into virtual memory addresses. It is
used by ls record() to record time history data during run time.
It is not intended for use by the general LaRCsim user; and
its portability is in question, as this capability is usually highly
platform-dependent. It does appear to work on SGI (IRIX 5.2)
and Sun (SunOS 4.1.3) operating systems, however.

ls trim.c This module contains a Newton-Raphson algorithm for solving
simultaneous non-linear equations. Given n \control" parameters,
ls trim() will perturb those parameters and observe the e�ect
upon n other \output" variables. After measuring these partial
derivatives, using a single-sided di�erence approach, the algorithm
makes a constrained step of all n controls simultaneously to try
to reduce the root-mean-square value of the sum of the n outputs.
This process repeats for up to Max Cycles or until all outputs are
within a speci�ed tolerance of zero.

ls writeav.c This module writes time history data from the Tape data storage
structure to a �le named run.flt at the end of the simulation
session. This data �le is in a format recognizable to the Agile-Vu
trajectory visualization tool developed for Silicon Graphics work-
stations by McDonnell-Douglas and the Naval Air Development
Center. The -a command line switch will choose this output for-
mat; by default, no run.flt �le is created.

ls writeasc1.c This module writes time history data from the Tape data storage
structure to a �le named run.asc1 at the end of the simulation
session. This data �le is in a format recognizable to the GetData
and XPlot programs, written for X-windows machines by the kind
folk at NASA Dryden Flight Research Center. (see reference 11
for information on this time history format.) The -x command
line switch will choose this output format; by default, no run.asc1
�le is created.
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ls writetab.c This module writes time history data from the Tape data storage
structure to a �le named run.dat at the end of the simulation
session. This data �le contains a ASCII based, tab-delimited listing
of each parameter at each recording point; these �les can therefore
become quite large for a long simulation session. The -t command
line switch will choose this output format; by default, no run.dat

�le is created.
ls writemat.c This module writes time history data from the Tape data storage

structure to a �le named run.m at the end of the simulation session.
This data �le is in a format recognizable to a typical commercial
matrix manipulation application. The -r command line switch will
choose this output format; by default, no run.m �le is created.

The following routines, contained in a separate directory, provide an example
aircraft simulation including simple aerodynamic, engine, and initialization routines.

navion.h This header �le de�nes a data structure that contains the linear
aero coe�cients, COEFFS, which can be made available for run-time
modi�cation of the example aircraft's aerodynamic properties and
stability characteristics.

navion aero.c A simple, linear aerodynamics model of the North American
Navion for a trimmed level 
ight at 100 knots.

navion engine.c This �le contains a simple engine() routine with an optimistic
thrust calculation that allows the venerable Navion to break Mach
1 in level 
ight.

navion gear.c This module includes a fairly simple landing gear (mass-spring-
damper) model of tricycle arrangement, and is not representative
of the North American Aviation Navion.

navion init.c This module initializes the mass properties and sets forces and
moments and velocities to zero. It also initializes elements of the
pilot and cg displacement vectors (relative to the reference point).

Makefile This make�le is used to build either a GL-based (for Silicon Graph-
ics machines) or terminal-based version of the navion example
LaRCsim executable. Invoke with make to generate the GL-based
executable (which will be named navion), or specify make termi-

nal to create the curses-based executable, navion term.
.navion This ASCII data �le contains a list of any parameters that are to

be added to the recorded parameters list, as well as the desired set
of trim parameters and initial condition states and controls. This
�le shows an example of the format to be used, and may be opened
and modi�ed with a text editor.

Theory of Operation

Inspection of the LaRCsim code (see Appendix B), beginning with the main()
routine found in module LaRCsim.c, will demonstrate how and in what order the
software is called. The main() routine initializes the contents of the sim control

data structure and certain execution variables, such as the local variables endtime,
speedup, io dt (the terminal refresh period), multiloop (the number of model
loops per terminal refresh), and model dt (the model iteration time step). A call is
then made to ls get settings() which opens the default settings �le, if it exists,
allows it to override these hardwired default values.

ls get settings() parses the default settings �le and makes calls to ls -

record get settings(), ls trim get settings(), and ls init get settings(),
each of which initialize their various data structures and parse the appropriate
section of the default settings �le. ls get settings() then returns control back to
main().
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main() then makes a call a call to ls check opts()which looks at any command
line arguments, allowing them to override the default settings, if appropriate. (If
the -i 
ag is encountered, for example, another call is made to ls get settings(),
this time passing the name of the requested optional settings �le). ls stamp() is
then called to generate a time and date stamp for the simulation run. These are
stored in the sim control data structure.

The main() routine then calls ls init(), which sets Simtime = 0 and then
initializes the initial conditions data structure. If no initial conditions were speci�ed
in the default settings or optional settings �le, the initial conditions data structure
is set to contain information about the thirteen rigid body and environment states.
ls init() then uses the values of the initial conditions data structure to set the
simulation to the speci�ed initial condition and then calls model init(), normally
a user-supplied routine. The sample routine provided in this package is found in
�le navion init.c; it initializes control positions, inertia properties, vehicle forces
and moments, and vehicle positions and velocities. Routine ls init() then calls
ls step() with a time step of 0 and the initialization 
ag set.

Responding to the initialization 
ag, ls step() initializes the integrator internal
states (\past values") to zero, converts the initial geodetic latitude, longitude,
and altitude values into geocentric latitude, longitude and radius (from the center
of the earth) values; corrects the eastward velocity component to account for
earth rotation; initializes the quaternion variables based upon the present Euler
angles; initializes the local-to-body transformation matrix; calculates local gravity;
and calls ls aux() so that the miscellaneous output variables (such as angles
of attack and sideslip, various velocities, and Mach number) re
ect the current
initial conditions. A call is then made to ls model(). This routine calls the
user-supplied vehicle routines inertias(), subsystems(), aero(), engine(), and
gear(), passing to them a value of 0 for time step and with the initialization 
ag
non-zero, indicating a reset is requested. These user-supplied routines calculate
the forces and moments for the current 
ight conditions, setting the appropriate
values in the generic data structure. A call is then made by ls step() to the
ls accel() routine to sum the forces and moments and calculate appropriate initial
accelerations at the vehicle center of gravity. ls aux() is then called to calculate the
appropriate accelerometer outputs. ls step() then sets the local variable dt = 0

and performs the normal state integration equations. Since dt is 0, the vehicle state
is not updated; however, the past values of the integration �lters become initialized
to the appropriate initial condition values. Control 
ow then returns to ls init(),
which returns control to main().

Continuing with the initialization process, main() calls ls record() to record
the initial time history data. The initial call to ls cockpit() is then made, which
initializes either the GL screen or the terminal display, depending on which interface
routine was linked in at compile time - either the curses library routines to draw
a simple instrument panel on the terminal, or the IRIS GL routines to draw an
out-the-window and heads-up-display (HUD) presentation on a Silicon Graphics
screen. A call is then made to ls sync(), with io dt passed as a parameter, which
schedules an interval timer to signal SIGALRM on timer expiration.

The real-time loop portion of the program is then entered. This consists of
multiloop number of passes to ls loop(). ls loop() calls the following sequence:
ls step(), which advances the simulation one dt in simulated time to a new
state; ls aux() which calculates the new 
ight conditions, based on the new state;
ls model(), which calculates new control positions as well as vehicle forces and
moments at the reference point; and �nally ls accel(), which sums the forces and
moments at the vehicle reference point, transfers them to the center of gravity,
and then calculates the resulting accelerations. ls loop() then returns control to
main().

main() then calls ls record(), to record the current 
ight conditions, velocities,
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accelerations, and other parameters speci�ed in the settings �le. main() then makes
a call to ls cockpit() which refreshes the instrument panel display and gets new
values for controls from the keyboard (or mouse, if GL is used). ls cockpit()

returns a non-zero integer if the user has signaled a desire to end the simulation.
If ls cockpit() returns zero, ls pause() is called to await the arrival of the
SIGALRM signal, which is caught and rescheduled, with command passing back to
main() (see �le ls sync.c). If Simtime has exceeded the value of endtime or
ls cockpit() returned a non-zero value, the simulation calls the ls unsync() and
ls cockpit exit() routines, writes out any data �les, calls ls put settings() to
update the default settings �le, and the program exits.
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Concluding Remarks

This report describes how to implement, modify, and utilize a generic 
ight
simulation software package on a UNIX-based computer. A description of each
routine and all global variables are provided. The software is written entirely in
ANSI C; listings of each routine are provided as well.

The structure of the code lends itself to pilot-in-the-loop operation on a
su�ciently fast computer, and can be operated from a display terminal, a keyboard
and mouse on a Silicon Graphics computer, or some modi�cation, with an actual
simulator cockpit. Time histories of selected parameters may be recorded in a
variety of formats.

This software is patterned after similar FORTRAN routines used at the Manned
Flight Simulator facility at the U.S. Navy's Naval Air Warfare Center/Aircraft
Division, Patuxent River, Maryland. Those routines were themselves rewrites
of older FORTRAN simulation routines that comprised a simulation architecture
called BASIC used at NASA-Ames since the early 1970s.

The potential user is cautioned that results obtained from this software should be
validated using conventional design methods. It is believed that equations of motion
are implemented properly, but a full validation of LaRCsim against a benchmark
simulation has not yet been performed. Simulated 
ight near either the North or
South pole should be avoided, due to a singularity in the vehicle position calculations
at either pole.

A copy of the latest version of this software is available upon request:

E. Bruce Jackson
MS 489
NASA Langley Research Center
Hampton, VA 23681-0001
e.b.jackson@larc.nasa.gov
(804) 864-4060
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