
NASA Technical Paper 3480

Application of Navier-Stokes Code PAB3D With
k-" Turbulence Model to Attached and
Separated Flows

Khaled S. Abdol-Hamid, B. Lakshmanan, and John R. Carlson

January 1995



NASA Technical Paper 3480

Application of Navier-Stokes Code PAB3D With
k-" Turbulence Model to Attached and
Separated Flows
Khaled S. Abdol-Hamid
Analytical Services & Materials, Inc. � Hampton, Virginia

B. Lakshmanan
Old Dominion University � Norfolk, Virginia

John R. Carlson
Langley Research Center � Hampton, Virginia

National Aeronautics and Space Administration
Langley Research Center � Hampton, Virginia 23681-0001

January 1995



The use of trademarks or names of manufacturers in this

report is for accurate reporting and does not constitute an

o�cial endorsement, either expressed or implied, of such

products or manufacturers by the National Aeronautics and

Space Administration.

This publication is available from the following sources:

NASA Center for AeroSpace Information National Technical Information Service (NTIS)

800 Elkridge Landing Road 5285 Port Royal Road

LinthicumHeights, MD 21090-2934 Spring�eld, VA 22161-2171

(301) 621-0390 (703) 487-4650



Introduction

Computational 
uid dynamics (CFD) methods
and advanced turbulence models are needed to pre-
dict propulsion aerodynamic e�ects in transonic and
supersonic free-stream conditions. Analytical results
are frequently used to supplement the experimental
data in critical design decisions. Accurate predic-
tion of the pressure distribution and the skin friction
coe�cient is paramount to the design of propulsion
systems. In the area of propulsion integration, ac-
curate predictions of boundary layer structure, skin
friction, and 
ow separation by CFD methods are
critical.

Two-equation turbulence models (ref. 1) o�er sev-
eral advantages over other approaches that compute
practical 
ow problems. For example, algebraic mod-
els lack turbulence history-dependent nonlocal e�ects
(through the convection and viscous di�usion of the
Reynolds stress models), e�ects which are known to
be important in determining the turbulence struc-
ture in complex 
ows. The numerical calculations
that use the more advanced Reynolds stress mod-
els (refs. 2 and 3) require the solution of trans-
port equations for each component of the Reynolds
stress tensor in addition to solution of the Navier-
Stokes equations; this approach requires tremen-
dous computational time for three-dimensional 
ow
problems. The transport equations for second-order
models require closure approximations for higher or-
der turbulence correlations with uncertain physical
foundations. Large-eddy simulations (ref. 4) con-
stitute three-dimensional time-dependent computa-
tions that require enormous computational time com-
pared with traditional transport equation turbulence
models. Moreover, the application of large-eddy sim-
ulations to practical 
ows is often hindered by the dif-
�culties in modeling the turbulence near solid bound-
aries and the problem of de�ltering the results in
complex geometries.

Transport equations have been included in the
standard, two-equation turbulence model of energy
and dissipation rate (k-"). (See ref. 1.) The k-"
equations can be applied to the near-wall region as
well as far away from wall boundaries. For 
ow
regions far away from solid boundaries, the high
Reynolds number form of the model can be used;
however, wall-damping functions must be used near
wall boundaries.

Speziale (ref. 5) developed a nonlinear version of
the k-" model that broadened the range of linear
model application but maintained most of the pop-
ular features (such as reduction to mixing layer the-
ories for thin shear 
ows and the ease of application

in existing Navier-Stokes solvers without a substan-
tial increase in the computational time). Speziale
developed the new model by making an asymptotic
expansion subject to constraints of dimensional and
tensorial invariance, realizability, and material frame
indi�erence. The model thus obtained was shown
to yield substantially improved predictions in incom-
pressible turbulent channel 
ows and to yield normal
Reynolds stress di�erences that give rise to secondary

ows in square ducts. In the present research work,
the nonlinear model developed by Speziale was mod-
i�ed to include additional terms that contribute sub-
stantially to the magnitude of Reynolds stresses near
the wall boundaries.

For transonic and supersonic 
ow propulsion ap-
plications, the local density variation in standard in-
compressible models does not adequately duplicate
the experimentally observed reduction in growth rate
of the mixing layer with increasing convective Mach
number. However, substantial progress has been
made in the development of appropriate compress-
ibility corrections to the transport equation turbu-
lence models. (See refs. 6 and 7.) These corrections
resulted from direct numerical simulation of homoge-
neous compressible turbulence. Notably, Sarkar et al.
(ref. 6) recognized the importance of including com-
pressible dissipation in the two-equation turbulence
model when computing high-speed 
ows. A sim-
ple correction was proposed for compressible dissipa-
tion that can be included easily in the existing two-
equation turbulence models. The standard model is
recovered when the model constants for these correc-
tions are assumed to be zero.

The objective of this study was to system-
atically investigate the e�ect of grid resolution,
near-wall damping, and various turbulence models
on the computed 
ow �eld. A general-purpose,
three-dimensional, multiblock Navier-Stokes code
(described and applied in refs. 8{10) was used in the
present study. The 
ow solver contains the Baldwin-
Lomax turbulence model, a two-equation k-" turbu-
lence model with various near-wall damping func-
tions, and a nonlinear stress model for resolution of

ow-�eld anisotropies. In addition, the code has a
built-in performance module to compute quantities
such as lift, drag, thrust, and discharge coe�cients.
During a typical numerical simulation, these quan-
tities are constantly monitored to assess the perfor-
mance of the propulsion system.

The computed results were compared with pub-
lished experimental data for 
ow �elds of increas-
ing complexity. The geometries considered were a

at plate (ref. 11), 16� and 24� compression corners
(ref. 12), a two-dimensional airfoil section (ref. 13),



and supersonic 
ow through a square duct (ref. 14).
The 
at plate was selected because it is the simplest
of all the geometries for which the e�ects of vari-
ous near-wall grid spacing, turbulence models, and
damping functions can be tested. The compression
corner and airfoil geometries represent the next level
of 
ow complexity because these cases contain a sep-
arated 
ow region that interacts with a shock. In the
square duct, a secondary 
ow structure develops per-
pendicular to the main 
ow and is mainly attributed
to the 
ow-�eld anisotropy which is not simulated
by linear (isotropic) models. Depending on the na-
ture of the 
ow, either the space- or time-marching
options in the PAB3D code can be used. Space-
marching solutions were obtained for the 
at plate
and square duct geometries. Time-dependent options
were used to investigate separated and transonic 
ow
�elds (compression ramp and airfoil geometries).

Symbols

A+; Ccp; Cwk constants in Baldwin-Lomax
turbulence model

a duct half-width, m

CD; CE model constants for nonlinear
model

CF average skin-friction coe�cient,R x
0
Cf dx

Cf local skin-friction coe�cient,
�w

q1

Cp pressure coe�cient

C� turbulence viscosity coe�cient for
k-" model, 0.09

c airfoil chord length, m

cd section drag coe�cient

cl section lift coe�cient

D duct width, cm

E;F;G convective terms in x, y, and z

directions

bE; bF; bG 
ux terms in �, �, and �

directions

Ev;Fv;Gv di�usion terms in x, y, and z

directions

e total energy, Pa

Ffric total vector skin-friction force, N

Fkleb Klebano� intermittency factor

F (n) function in Baldwin-Lomax turbu-
lence model

Fmax maximum of F (n)

Fwake wake function for Baldwin-Lomax
turbulence model

f� damping function for k-" equations

H Heaviside function

J Jacobian of coordinate

transformation, m�3

k turbulent kinetic energy, Pa

Lk near-wall term for k equation

L" near-wall term for " equation

l mixing length for turbulent
viscosity, m

M Mach number

Mt turbulent Mach number

Mt0 cuto� turbulent Mach number for
Wilcox model

n normal distance from wall, cm

N(n1; n2; n3) unit normal vector

n+ law-of-the-wall coordinate,
n
p
�w�w

�w
=

n�wu�

�w

nmax normal distance from wall at Fmax

location, cm

P production term for k-" equations

Pr Prandtl number, 0.75

Prt turbulent Prandtl number, 0.9

p pressure, Pa

Q conservative variable

bQ =
Q

J

q heat 
ux

Rc cell Reynolds number, Rc =
Un

�

Rt turbulent Reynolds number

Rx Reynolds number based on stream-
wise distance from plate leading

edge,
u1�1x

�1

S source term for Navier-Stokes
equation

Sk source term for k equation

2



S" source term for " equation

T temperature, K

t time, sec

U; V;W velocity components in �, �, and �

directions, m/sec

u; v; w velocity components in x, y, and z

directions, m/sec

u+ law-of-the wall coordinate,
u

u�
=

Rc

n+

u� friction velocity,

r
�w

�

x; y; z spatial coordinates, cm

� compressibility correction factor


 ratio of speci�c heat, 1.4

�A incremental cell face area, m2

� Kronecker delta and boundary
layer thickness

" turbulent energy dissipation

� boundary layer momentum
thickness, cm

� Von K�arm�an constant

� dynamic viscosity

coe�cient, m2/sec

�; �; � generalized coordinates as func-
tions of x, y, z, and t

� density, kg/m3

�k di�usion coe�cient for k equation

�" di�usion coe�cient for " equation

�ij Reynolds stress components, where
i and j represent x, y, or z

�w wall shear stress, �
@u

@n

���
w

! vorticity

Subscripts:

cros matching point for inner and outer
boundary layer regions

e edge of boundary layer

i inner

max maximum

min minimum

o outer

w wall

x; y; z x, y, and z derivatives

1 free stream

Superscripts:

L laminar

T turbulent

Abbreviations:

k-"1 k-" model, Jones and Launder wall
damping

k-"2 k-" model, Van Driest wall
damping

k-"3 k-" model, Speziale et al. wall
damping

RMS residual mean square

WF wall function

Experimental Con�gurations

Flat Plate

The supersonic data for this model were ob-
tained for an insulated 
at plate tested in the NASA
Ames Research Center 6-inch Heat-Transfer Tun-
nel. The model was a 
at surface 40.64 cm (16 in.)
long and had a lower surface leading-edge chamfer
of 15�; it spanned the width of the tunnel. (See
ref. 11.) The leading edge was rounded to a radius
of 0.0076 cm (0.003 in.). The static pressure ori-
�ces were 0.0343 cm (0.0135 in.) in diameter and
were placed 2.54 cm (1 in.) from the side edges of
the plate. Transition from laminar to turbulent 
ow
was forced near the leading edge by a strip of lamp-
black 1.27 cm (0.5 in.) wide placed at the leading
edge of the plate. Data were obtained at a free-
stream Mach number of 2.5 and a tunnel total pres-
sure of 204 kPa (30 psia). The Reynolds number
based on the distance measured from the 
at-plate
leading edge ranged from 2:1 � 106 to 6:2� 106.

Boundary layer measurements were made over a
survey area 10.16 cm (4 in.) to 20.32 cm (8 in.)
from the plate leading edge. The boundary layer
measurements were performed with a total-pressure
probe. The centerline of the probe was 0.0165 cm
(0.0065 in.) above the surface when the probe was in
contact with the plate surface. The probe had a rect-
angular external dimension of 0.2032 cm (0.080 in.)
by 0.0330 cm (0.013 in.).
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The free-stream Mach number varied by no more
that 2 percent in the test section of the tunnel. That
variation resulted in a skin-friction coe�cient error of
less than 2 percent; the total instrumentation error
for the skin-friction coe�cient was �2.5 percent.

Compression Ramps

The compression ramp investigations were con-
ducted in the 8� 8-in. Supersonic Blowdown Tun-
nel at Princeton University. (See ref. 12.) The tun-
nel can provide a test duration of 30 sec to several
minutes at stagnation pressures of 5.1 to 50.7 MPa
(50 to 500 atm) over a Mach number range of 2.84
to 2.95, depending on which test sections are uti-
lized. All of the models were tested in nearly adia-
batic wall conditions. The particular data used for
this study were obtained at a Mach number of 2.85
and a stagnation temperature of 262 K (472�R). The
corresponding free-stream unit Reynolds number was
0:64 � 106 cm�1 (1:6 � 106 in�1). The solid brass
model consisted of a short upstream 
at segment
joined to a ramp that was 15.24 cm (6 in.) long by
16� or 24� compression corners. Sidewall fences were
attached to each side of the ramp model to lessen the
in
uence of the tunnel wall boundary layer on the
compression corner 
ow. The boundary layer probe
used for this study had a 0.0178-cm (0.007-in.) 
at
tip with 0.0076-cm (0.003-in.) ori�ces.

Pitot pressure tubes were used to make detailed

ow-�eld surveys upstream of the compression ramps
to determine the approaching 
ow properties. The
displacement and momentum boundary layer thick-
nesses determined from these measurements were
subsequently used to determine the computational
in
ow boundary conditions. The estimated errors
were �5 percent in the streamwise velocity compo-
nent and �10 percent in the skin-friction coe�cient
determined from the Preston tube measurements.

Subsonic Airfoil Section

The airfoil test case has an RAE 2822 airfoil con-
tour (ref. 13) and is a subcritical design section with a
trailing edge thickness of zero. The airfoil is 12.1 per-
cent thick and is designed for a lift coe�cient of 0.56
at a free-stream Mach number of 0.66. The data were
obtained for a model with a 0.61 m (2 ft) chord and
that spanned 1.83 m (6 ft) during an experiment con-
ducted in the RAE 8� 6-ft Transonic Wind Tunnel.
(See ref. 13.) The tunnel is a continuous, closed cir-
cuit type that operates at a stagnation pressure range
of 10 to 355 kPa (1.5 to 50 psi) with an average stag-
nation temperature of 307 K (552�R). Surface static
pressure data, wake pitot and static pressure data,

and boundary layer pitot and static pressure data
were obtained for a variety of conditions with the
transition �xed. Additionally, the oil-
ow visualiza-
tion technique was used to observe 
ow separation.
An extensive description of the tunnel 
ow condition,
wall interference, and instrumentation can be found
in reference 13.

Square Duct

The experiment was set up in a continuous 
ow,
open-circuit wind tunnel with a test section in the
form of a square duct 50.8 cm (20 in.) long made of
Plexiglas1 material; it had a cross section of 5.08 cm
(2 in.) at the duct inlet. A square brass constant-
area duct with 2.54 cm (1 in.) on each side was
placed within the outer Plexiglas duct. This \duct
within a duct" con�guration was built to ensure a
clean starting condition for the inner duct 
ow by
allowing the distorted 
ow that develops along the
side walls of the outer duct nozzle to be bypassed
through the annular space between the inner and
outer ducts. The experiments were conducted at a
free-stream Mach number of 3.9. The total pressure
and total temperature at this location were 276 kPa
(40 psi) and 300 K (540�R), respectively. A circu-
lar pitot tube with an outside diameter of 3.05 mm
(0.12 in.) was used to obtain total pressure pro�les at
three streamwise locations; a 
attened-tip probe with
outside dimensions of approximately 2:5 � 6:6 mm
(0:1 � 0:26 in.) was used to obtain boundary layer
measurements. Wall shear stresses were calculated
from measurements obtained with several di�erently
sized Preston tubes resting on the wall. The experi-
mental uncertainty in measuring the skin-friction co-
e�cient is about 10 percent. Other pertinent details
of the experimental setup and instrumentation are
given in reference 14.

Theoretical Formulation

The governing equations of the Reynolds-
averaged Navier-Stokes formulation include the con-
servation equations for mass, momentum, energy,
and the equation of state. In the present study, the
perfect gas law is chosen to represent the properties of
air. For 
ow that contains turbulence, the Reynolds
stresses are modeled using the eddy viscosity concept.

Turbulence models are essential for the realis-
tic simulation of aerodynamics in the high Reynolds
number regime. Two turbulence models were used

1Plexiglas: Rohm and Haas Co., Inc., Philadelphia,

Pennsylvania.
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for the current study: the Baldwin-Lomax algebraic
turbulence model (ref. 15) and a two-equation k-"
turbulence model that follows the formulation of
Jones and Launder. (See ref. 1.) The Navier-Stokes
equations and the mathematical representations of
the relevant turbulence models are described in the
following sections.

Navier-Stokes Equations

The mass, momentum, and energy conservation
equations of the Reynolds-averaged Navier-Stokes
equations can be written in terms of generalized
coordinates and in a conservative form as follows:

@ bQ
@t

+
@bE
@�

+
@bF
@�

+
@ bG
@�

= S (1)

where S = f0; 0; 0; 0; 0gT for laminar or algebraic
turbulence modeling. However, if a turbulence ki-
netic equation is used, the source term for the en-
ergy equation is replaced by the source term �Sk.
In equation (1),

bQ =
Q

J

bE =
1

J
[�xE + �yF + �zG]

� [�xE+ �yF+ �zG]

bF =
1

J
[(�xE + �yF + �zG)

� (�xEv + �yFv + �zGv)]

bG =
1

J
[(�xE + �yF + �zG)

� (�xEv + �yFv + �zGv)]

Q =

8>>><>>>:
�

�u

�v

�w

e

9>>>=>>>;

E =

8>>><>>>:
�u

�u2+ p

�uv

�uw

(e + p)u

9>>>=>>>;

F =

8>>><>>>:
�v

�uv

�v2+ p

�vw

(e + p)v

9>>>=>>>;

G =

8>>><>>>:
�w

�uw

�vw

�w2+ p

(e + p)w

9>>>=>>>;

Ev =

8>>><>>>:
0
�xx
�xy
�xz

�qx + u�xx+ v�xy +w�xz

9>>>=>>>;

Fv =

8>>><>>>:
0
�xy
�yy
�yz

�qy + u�xy + v�yy+w�yz

9>>>=>>>;

Gv =

8>>><>>>:
0
�xz
�yz
�zz

�qz + u�xz + v�yz + w�zz

9>>>=>>>;
�qx =

1


 � 1

 
�L

Pr
+

�T

Prt

!
@a2

@x

�qy =
1


 � 1

 
�L

Pr
+

�T

Prt

!
@a2

@y

�qz =
1


 � 1

 
�L

Pr
+

�T

Prt

!
@a2

@z

In these equations, � is the density; u, v, and w are
the velocity components in the x, y, and z directions,
respectively; e is the total energy per unit volume;
the pressure p is related to e by

p = (
 � 1)

�
e�

1

2
�
�
u2 + v2+ w2

��
(2)

and, for example, �xy = �Lxy+�Txy. The laminar shear

stress �Lxy may be expressed in the following forms:

�Lxx =
2

3
�L
�
2
@u

@x
�

@v

@y
�

@w

@z

�

�Lxy = �L
�
@u

@y
+

@v

@x

�

�Lyy =
2

3
�L
�
2
@v

@y
�

@w

@z
�

@u

@x

�

�Lyz = �L
�
@v

@z
+

@w

@y

�
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�Lzz =
2

3
�L
�
2
@w

@z
�

@u

@x
�

@v

@y

�

�Lzx = �L
�
@w

@x
+

@u

@z

�

The forms of the turbulent shear stress �Txy for various
turbulence models are described in the sections that
follow. In the PAB3D code, all streamwise deriva-
tives of the Reynolds stress (@=@�) have been omit-
ted from equation (1) for computational economy.
This formulation is known as the simpli�ed Navier-
Stokes equation. The remaining cross-stream deriva-
tives can be numerically implemented either coupled
or uncoupled. The uncoupled derivative is the thin-
layer Navier-Stokes approximation. In all the results
in this paper, the derivatives are uncoupled.

Baldwin-Lomax Turbulence Model

The Baldwin-Lomax model (ref. 15) is an alge-
braic two-layer turbulence model in which the tur-
bulent eddy viscosity is evaluated as follows:

�T = (�T )i (n � ncros)

�T = (�T )o (n > ncros)

where n is the normal distance from the wall and
ncros is the smallest value of n at which magnitudes
of the viscosities at the inner i and outer o boundaries
(�T )i and (�T )o are equal. The turbulent stress is
determined from

�ij = �T

" 
@ui
@xj

+
@uj

@xi

!
�

2

3

@uk
@xk

�ij

#

For the inner layer,

(�T )i = �l2j!j (3)

where the mixing length for turbulent viscosity

l = 0:4n
h
1� exp

�
�n+=A+

�i
(4)

and the vorticity

! =
q�

uy � vx
�
2 +
�
vz �wy

�
2 +(wx � uz)2 (5)

For the outer layer,

(�T )o = 0:0168Ccp�FwakeFkleb(n) (6)

where Fwake is the smaller of nmaxFmax or
Cwknmax(u

2+v2+w2)maxFmax. The term nmax is the
value of n that corresponds to the maximum value of
the model function F , Fmax, where

F (n) = nj!j
h
1� exp

�
�n+=A+

�i
(7)

and the Klebano� intermittency factor Fkleb is cal-
culated by

Fkleb =

�
1 + 5:5

�
nCkleb

nmax

�
6
�
�1

(8)

The values of the constants appearing in equa-
tions (3){(8) are listed in reference 15 as A+ = 26,
Ccp = 1:6, Cwk = 0:25, and Ckleb = 0:3.

Two-Equation k-" Turbulence Model

The Jones and Launder (ref. 1) formulation for the two-equation turbulence model uses k and " as the

principal variables. A modi�ed form of the original Jones and Launder model is used in this study. This

modi�ed formulation is fully three dimensional, and the governing equations are written in a conservative form

in terms of generalized coordinates. The governing equations can be cast in the same form as the Navier-Stokes

equations (eq. (1)) with the following new de�nitions of the dependent variable and source terms:

S =

�
S"
Sk

�
Q =

�
�"
�k

�
F =

�
�v"
�vk

�

E =

�
�u"
�uk

�
G =

�
�w"
�wk

�

Ev =

(
�"

@"
@x

�k
@k
@x

)
Fv =

8<
:
�"

@"
@y

�k
@k
@y

9=
; Gv =

(
�"

@"
@z

�k
@k
@z

)
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S" = C1P
"

k
�C2�

"2

k
+ L" Sk = P � �(1 + �)" + Lk

L" =
2�L�T

�

( 
@2u

@x2

!
2

+

 
@2u

@y2

!
2

+

 
@2u

@z2

!
2

+

 
@2v

@x2

!
2

+

 
@2v

@y2

!
2

+

 
@2v

@z2

!
2

+

 
@2w

@x2

!
2

+

 
@2w

@y2

!
2

+

 
@2w

@z2

!
2

+ 2

" 
@2u

@x@y

!
2

+

 
@2u

@x@z

!
2

+

 
@2u

@y @z

!
2

+

 
@2v

@x@y

!
2

+

 
@2v

@x@z

!
2

+

 
@2v

@y @z

!
2

+

 
@2w

@x@y

!
2

+

 
@2w

@x@z

!
2

+

 
@2w

@y @z

!
2
#)

(9)

Lk = 2�L

( 
@
p
k

@x

!
2

+

 
@
p
k

@y

!
2

+

 
@
p
k

@z

!
2
)

(10)

Here, P is the fully three-dimensional production term de�ned as

P = �Txx
@u

@x
+ �Tyy

@v

@y
+ �Tzz

@w

@z

+ �Txy

�
@u

@y
+

@v

@x

�
+ �Tyz

�
@v

@z
+

@w

@y

�
+ �Tzx

�
@w

@x
+

@u

@z

�

or is expanded to

P = �T
��

@u

@y
+

@v

@x

�
2

+

�
@v

@z
+

@w

@y

�
2

+

�
@w

@x
+

@u

@z

�
2

+ 2

��
@u

@x

�
2

+

�
@v

@y

�
2

+

�
@w

@z

�
2
�
�

2

3

�
@u

@x
+

@v

@y
+

@w

@z

�
2
�

�
2

3
�k

�
@u

@x
+

@v

@y
+

@w

@z

�
(11)

where

�T = C��
k2

"
�" = �L +

�T

�"
�k = �L +

�T

�k
C� = 0:09f� (12)

C1 = 1:44 C2 = 1:92
h
1� 0:3 exp

�
�R2

t

�i
(13)

�" = 1:3 �k = 1:0 Rt =
�k2

�1"
(14)

�Tij = �T

" 
@ui

@xj
+

@uj

@xi

!
�

2

3

@uk

@xk
�ij

#
�

2

3
�k�ij (15)

where i and j represent x, y, or z. The compressibility correction � and the damping function f� are described

next.

Compressibility correction functions for k-"

model. High-speed turbulent 
ows have di�erent
characteristics than low-speed 
ows (incompressible


ows). For example, the rate of spread of the shear
layer in high-speed 
ows is much slower compared
with that of low-speed 
ows. Several corrections for
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this e�ect have been developed in the last few years.
The two most widely used compressibility corrections
are given below.

Sarkar et al. model (ref. 6):

� =M2

t
(16)

Wilcox model (ref. 7):

� =
�
M2

t
�M2

t0

�
H(Mt�Mt0) (17)

where H(x) is the Heaviside step function; Mt is the

local turbulent Mach number de�ned as
p
k=a, in

which a is the local speed of sound; and � = 0 for no
compressibility correction.

Damping and wall functions for k-" model. Solv-
ing wall-bounded 
ows requires the use of damping
or wall functions. These functions adjust the turbu-
lence viscosity near solid surfaces. The details of the
damping and wall functions are given as follows.

Damping functions. The damping function f�
adjusts the turbulent viscosity through the term C�.
Far from the wall, f� = 1; at the wall, f� = 0.
Three damping function forms were investigated in
this study. They are referred to as k-"1, k-"2, and
k-"3 and are de�ned as follows.

The k-"1 (Jones and Launder) form (ref. 1):

f� = exp

�
� 3:41

1 + (Rt=50)

�
(18)

The k-"2 (Van Driest) form (as used by Nagano
and Hishida, ref. 16):

f� = 1� exp
�n+
A+

(19)

Also, the quantity 2 in the near-wall term L" (eq. (9))
is replaced with 1� f�.

The k-"3 (Speziale, Abid, and Anderson) form
(ref. 17):

f� =

�
1 +

3:45p
Rt

�
tanh

n+

70
(20)

On any solid surface, the dissipation is set equal to
Lk. Then, L" and Lk are set to zero.

Simple wall function form. Neither the Baldwin-
Lomax nor the two-equation turbulence model (even
with damping functions) is capable of producing ac-
curate aerodynamic predictions based on minimal

grid spacing normal to a wall with n+ � 5. One way
to achieve greater accuracy for grids with n+ � 50
is through the use of the simple wall function (WF),
although the use of this function is limited to the
calculation of attached 
ows. The concept estimates
the wall shear stress from law-of-the-wall coordinates
n+ and u+ of the �rst cell from the wall (i.e., a sur-
face cell). The equivalent turbulence viscosity at the
wall is subsequently calculated from the estimated
shear stress. (In the standard two-equation turbu-
lence model, the turbulence viscosity at the wall is
normally set to zero.) The wall function approach
can be used to relax the restriction on n+, which
permits use of values up to 50. This approach typ-
ically speeds solution convergence rates by reducing
the total grid count to describe the problem. The
following steps describe the procedure for the wall
function approach.

First, evaluate the surface cell Reynolds number
as

Rc =
�wun

�w

The Reynolds number Rc can also be written as a
function of the two nondimensional parameters u+

and n+ as Rc = u+n+. Thus,

u+ =
Rc

n+
(21)

A normalized velocity pro�le that relates u+ and
n+ near a solid wall is described in many 
uid
mechanics textbooks. In a turbulent 
ow along a
wall, Von K�arm�an and others have suggested that
the 
ow should be divided into three zones governed
by the value of n+. Therefore,

u+ = f(n+) (22)

In turbulent 
ow along a wall, the 
ow may
be divided into three regions. First is the laminar
sublayer in which the viscous stress is much greater
than the Reynolds stress:

u+ = n+ (n+ < 5) (23)

The region immediately above the laminar sublayer
is called the bu�er zone. In this zone, the Reynolds
and viscous stresses are of the same order:

u+ = 11:5 log10 n
+� 3:05 (5 < n+ < 30) (24)

Farther from the wall, in the turbulent zone, the
Reynolds stress is much greater than the viscous
stress. Thus,

u+ = 5:75 log10 n
+ + 5:50 (30 < n+) (25)
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In the solution to equations (21) and (22), n+ is
evaluated and the value of �w can be speci�ed at the
wall as follows:

�w =

��
�wn

+
�
=n
�
2

�w
(26)

Then, because �w = (�L+�T) @u
@n

��
w, a corrected tur-

bulent viscosity �Tw at the wall can be obtained. This
corrected viscosity replaces the turbulent viscosity in
all the transport equations.

Nonlinear k-" model. The nonlinear k-" model
is obtained by adding quadratic terms to the linear
model �Tij to treat the mean velocity gradients. In

equation (27), the �rst two terms on the right-hand
side correspond to the linear model and the addi-
tional terms represent the contribution due to non-
linear e�ects. These changes to �Tij in Ev, Fv, and

Gv as well as P are as follows:

�Tij = ��u0iu0j = �2

3
�ij

�
�T

@uk
@xk

+ �k

�

+ 2�TDij + CDC
2
�

�k3

"2

�
�
DimDmj �

1

3
DmnDmn�ij

�

+ CEC
2
�

�k3

"2

�
Dij �

1

3
Dmn�ij

�

+
2

3
�L

k

"

 
@
p
k

@xn

!
2

Wij(n;m) (27)

Wij(n;m) = ��ij � �in�jn+ 4�im�jm (28)

Dij =
@Dij

@t
+ v � rDij �

@ui
@xk

Dkj �
@uj

@xk
Dki (29)

where

Dij =
1

2

 
@ui
@xj

+
@uj

@xi

!

CD and CE are model constants, and CD =
CE = 1:69.

This new nonlinear model di�ers from the origi-
nal model developed by Speziale (ref. 5) by the addi-
tion of the last term on the right-hand side of equa-
tion (25). (See development in ref. 18.) Because both
k and " vary rapidly near solid boundaries, the addi-
tional term contributes signi�cantly to the near-wall

anisotropies. The nonlinear terms added to the stan-
dard model are important for the prediction of sec-
ondary 
ow in a square duct. The secondary 
ow de-
velops in the cross-
ow planes due to the cross-stream
gradients of the Reynolds stress. For linear mod-
els the cross-stream gradient of the Reynolds stress
di�erence is small; therefore, anisotropic 
ow fea-
tures do not develop. However, the nonlinear mod-
els produce gradients of su�cient magnitude to de-
velop the anisotropic or secondary 
ow feature. For
CD = CE = 0, the linear model is recovered.

Performance Method

The performance method (refs. 19 and 20) obtains
body forces through the application of the momen-
tum theorem to a control volume that surrounds the
model. The choice of surfaces over which the integra-
tion of forces is performed provides several options for
calculation of the momentum and pressure forces on
the model. The method used for this investigation
integrates the mass 
ux and pressure forces over the
model with

F =
X

[�U(U �N) + (p� p1)N] �A+ Ffric (30)

where F is the total vector body force, �A is the
area attributed to the cell face, and N is the unit
normal vector of the cell face. The static pressure
force on a solid wall is calculated by extrapolating the
cell-centered static pressure to the wall surface and
by assuming a zero velocity at the wall. The term
U �N for solid walls vanishes as solution convergence
is obtained.

Skin friction is calculated for the solid wall bound-
aries of the control volume. The viscous stress ten-
sor used to determine the skin-friction force is cal-
culated with only the velocity derivatives normal to
the surface. The velocity gradients are determined
by a two-point di�erence. The �rst velocity is a zero-
magnitude vector positioned on the surface. The sec-
ond velocity is the velocity at the cell center. The
local shear stress tensor is constructed from the nor-
mal velocity gradients multiplied by the local viscos-
ity. The viscosity was determined from Sutherland's
formula (ref. 21) and used the static temperature at
the local cell center.

Method of Solution

The simpli�ed Reynolds-averaged Navier-Stokes
equations and the associated turbulence models have
been implemented in the computer code PAB3D. As
mentioned previously, the numerical code has the op-
tion for either space- or time-marching solutions. In
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particular, the space-marching option is well suited
for supersonic 
ows with no embedded subsonic re-
gion or for 
ows in which pressure gradients are
practically absent. The space-marching algorithm in
the PAB3D code is also much more robust than the
parabolized marching procedure. For cases in which
the space-marching scheme criterion is met, the solu-
tion is as accurate as those obtained with the time-
dependent algorithm. However, the space-marching
procedure requires signi�cantly less computer time
(approximately a factor of 20 less) than does the
time-dependent procedure.

Computational Procedure for Navier-Stokes

Equations

The solver for the Navier-Stokes equations has
been implemented in the PAB3D code with three dif-
ferent numerical schemes: the Van Leer 
ux-vector
splitting scheme, the Roe 
ux-di�erence splitting
scheme, and the space-marching scheme which is a
modi�ed version of the basic Roe scheme. These
schemes are basically implicit and upwind and are
constructed by using the �nite volume approach.

Only the inviscid portion of the 
ux vectors bE, bF,

and bG are subjected to the splitting and upwind pro-
cedures. The di�usion terms of the Navier-Stokes
equations are centrally di�erenced. A detailed de-
scription of the mathematical formulation for these
schemes can be found in reference 8.

The 
ux-vector or 
ux-di�erence splitting is used
in all three computational directions. The updated
solution at each iteration is obtained by using an
implicit procedure in the � and � mesh planes at
each constant � value. The relaxation procedure in
the � direction consists of a forward and backward
sweep. This particular implementation strategy has
an important advantage: because the metrics for
the implicit procedure are only required for up to
three planes, they are not stored for the entire grid
domain. Instead, they are recomputed one plane at
a time at the advancing front of the prevalent sweep
direction. This approach requires less memory for the
intermediate data structure. Typically, 20 words of
memory are required for each grid point for moderate
to large mesh sizes.

For a general time-dependent solution that uses
the Van Leer or the Roe scheme, each iteration
count contains a forward and backward sweep in the
i direction, with one step of an implicit update of the
solution in each of the cross planes. For several super-
sonic and subsonic 
ow conditions, the numerical
scheme of Roe can be further simpli�ed into a space-
marching method as follows. The inviscid terms

in the Navier-Stokes equation are discretized as an
approximate Riemann problem. The interface 
ux
in the streamwise direction is determined by separate
terms that depend on the quantities on the upstream
and the downstream sides of the interface. For fully
supersonic or subsonic 
ow with a small pressure
gradient, the information can travel only in the 
ow
direction and is carried by the terms on the left-
hand side. For these 
ow problems, the upstream
e�ect carried by the terms on the right-hand side
can be ignored when compared with the streamwise
in
uences. A solution is obtained by performing
su�cient implicit iterations in each plane until the
convergence criteria are met. A solution in the
entire computational domain is established in a single
forward sweep. All solutions in this paper were
obtained with either the standard or space-marching
version of the Roe scheme.

Computational Procedure for k-" Equations

The governing equations of the two-equation tur-
bulence model are written as a pair of coupled trans-
port equations in conservative form. In principle this
model could be implemented with the Navier-Stokes
equations as a set of seven coupled equations, or the
model could be a separate implementation that is un-
coupled from the Navier-Stokes equations. The fully
coupled approach would result in an increase in the
computational requirements and numerical sti�ness.
For this study, the k-" equations are implemented un-
coupled from the Navier-Stokes equations and from
each other. Although the sti�ness remains, it is al-
leviated to some degree by solving these two equa-
tions with a much smaller Courant-Friedrichs-Levy
(CFL) number (usually 0.25 of the CFL number of
the Navier-Stokes equations). The potential di�er-
ences in the development of the 
ow over time and
turbulence variable sets have not noticeably a�ected
the convergence rate or the quality of the solutions.

The governing equations for the nonlinear model
are the same as for the linear model except for
the di�erences in the expressions for the Reynolds
stresses. Because the additional nonlinear terms in
the Reynolds stresses are not large, they are treated
simply as added source terms in the code. However,
the variables u, v, w, k, ", and their �rst deriva-
tives are already calculated for the linear model. The
new variables that need to be calculated are the sec-
ond derivatives. When the �rst and second deriva-
tives are known, the nonlinear contribution of each
component of the Reynolds stresses can be obtained.
The nonlinear model required only 2 percent addi-
tional computational time at each time step and con-
verged somewhat more slowly than the linear model.
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This result is not surprising because the nonlinear
k-" model contains Reynolds stress relaxation terms
that are dispersive rather than dissipative.

Multiblock Structure and Boundary Conditions

The PAB3D code uses a general multiblock grid
topology to handle complex con�gurations. One-to-
one, multiple-to-one, or general patched interfaces
between the blocks are accepted by the code. An
important feature of the PAB3D code is the partition
concept in the streamwise direction. If di�erent
viscous stress models are employed within a block,
the length of the block can be partitioned by means
of the starting i index for each viscous stress model.

The boundary conditions often include in
ow,
out
ow, free stream, solid walls, and geometrical
symmetry. Five types of in
ow and out
ow boundary
conditions are provided: Riemann characteristics,
�xed in
ow total temperature and pressure, com-
pletely �xed in
ow parameters, constant pressure for
subsonic out
ow, and extrapolation for supersonic
out
ow. The Riemann characteristics boundary con-
dition is used at free-stream boundaries. On a solid
boundary, either a no-slip or an inviscid-slip bound-
ary condition can be speci�ed. Finally, the sym-
metry boundary conditions include mirror imaging
across a plane and polar symmetry around an axis
in any direction. A universal high-order symmetry
boundary condition is used that was developed by
Abdol-Hamid and Pao. (See appendix.) A logically
simple control structure is required to direct the code
execution for dimensions of the zones and blocks,
solver options, connections between blocks, bound-
ary conditions, time-stepping requirements, and tur-
bulence models.

For the turbulence transport equations, either
zero-order extrapolation or free-stream values are
used for k and " along the outer boundaries. If
the 
ow is outgoing along the outer boundary, zero-
order extrapolation is used. If 
ow entrainment
is involved, then free-stream values are used along
the outer boundaries and the values of k and "

are set such that a preselected nominal turbulence
intensity is achieved. For all the results in this
paper, this level is 1 percent of the 
ow velocity. For
the in
ow condition, laminar or algebraic turbulence
model solutions were computed for the �rst few
planes of the upstream blocks. In that 
ow region,
the in
ow pro�le for k takes the same shape as
the vorticity pro�le except that it is multiplied by
a speci�ed value of maximum turbulence intensity.
(See �g. 1.) When the k pro�le is known, the " pro�le
is obtained based on the hypothesis that production

equals dissipation. These values of k and " are used
as boundary conditions for the k-" blocks. On any
solid surfaces in which the k-"3 model is applied, the
dissipation "w is set equal to the value of L

k
(eq. (10))

and k is set to zero. For k-"2 and k-"2, "w = kw = 0.

Results and Discussion

We selected the well-established properties of 
ow
over a 
at plate to calibrate the di�erent forms of the
two-equation k-" model utilized in this report. Mach
numbers of 2 and 0.4 were selected for comparisons.
Figure 2 shows law-of-the-wall solutions (u+ = u�=u�
versus y+) that use the k-"1 model for subsonic and
supersonic 
ows at R

�
= 30000, where u� is de�ned

as

u� =

Z
u1

0

q
�=�w du

Similar results were produced for both subsonic and
supersonic 
ows. Then, the supersonic 
ow case was
computed based on the Baldwin-Lomax turbulence
model. (See �g. 3.) Both turbulence models agreed
well with the theoretical curves. The k-"1, k-"2, and
k-"3 turbulence models are compared (�g. 4) and all
three models produce very similar results; that is,
all three models predicted the Von K�arm�an constant
of k = 0:41 within less than 2 percent. As expected,
the di�erent forms of the turbulence models give very
similar predictions for this attached 
ow case.

Supersonic Flow on Flat Plate

In many cases, skin-friction drag represents a sig-
ni�cant portion of the total drag of a supersonic ve-
hicle. Accurate prediction of skin friction is essential
for CFD applications in design and analysis. An in-
sulated 
at plate (ref. 11) operated at a Mach num-
ber of 2.5 over a Reynolds number range of 2:1�106

to 6:2 � 106 is modeled in the present study. Pre-
dicted velocity and average skin-friction predictions
are compared with the experimental data. Both the
Baldwin-Lomax and the k-" turbulence models are
used to predict the aerodynamic characteristics of
this 
ow.

In the present analysis, a grid distribution of
71 � 2 � 81 was used. The plate was 12 in. long,
and the Reynolds number at the back of the plate was
taken to be 6:2�106. First, the number of grid points
was �xed at 81 in the k direction (normal to the
wall) and the value of n+ (nondimensional distance
normal to the wall of the �rst grid) varied from 0.5
to 10. Figure 5 shows the streamwise velocity pro�le
(at x = 6 in.) versus y=�, where � is the boundary
layer momentum thickness. Both turbulence models
predict reasonably well the overall boundary layer
velocity development for n+ < 10. However, the
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k-"1 model kept a very well-de�ned boundary layer
development at n+ = 10. On the other hand, the
Baldwin-Lomax turbulence model gives a boundary
layer development for n+ = 10 similar to the one
produced from a laminar solution. Figure 6 shows
the average skin-friction predictions compared with
experimental data as a function of Reynolds number.
The Reynolds number is calculated based on the free-
stream condition and the distance along the plate
from the leading edge. The k-" model average skin-
friction prediction agreed well with experiment for
n+ � 5. However, the Baldwin-Lomax turbulence
model gave poor predictions of CF for n+ > 2:5.

We performed a second set of computations by
�xing n+ = 5 and changing the number of grid points
in the normal direction from 21 to 81 with the k-"
turbulence model. Figure 7 shows the comparison
of experimental data for a Baldwin-Lomax solution
computed with 81 grid points in the normal direction
and the k-" turbulence models solutions with varying
numbers of grid points. The k-" model produces
similar results for all grid distributions computed.
A similar result was obtained for the average skin
friction on the plate. Thus, the distance of the
�rst grid point from the wall is a very important
parameter in predicting boundary layer 
ows, but
the number of grid points is not important.

As shown in �gure 6(a), the two-equation k-"1
turbulence model fails to predict the wall skin friction
for n+ > 5. Figures 8 and 9 show the improvement
obtained by using the simple wall function in k-"1
to predict the streamwise velocity variation and skin
friction at n+ = 10 and 50, respectively.

The 
at-plate test case was selected because it
is the simplest of all the geometries for which the
e�ects of various near-wall grid spacing, turbulence
models, and damping functions can be easily tested.
The results obtained with the k-" turbulence model
were much more accurate and consistent than those
for the Baldwin-Lomax turbulence model for a wider
range of n+ (height of �rst grid line normal to
solid surface). The n+ value is a very important
parameter for accurate prediction of boundary layer
development in attached and separated 
ows. The
number of grid points normal to the solid surface is
not as important as a correct value of n+.

16� and 24� Compression Ramps

The compression ramp is a very simple test case
but contains complex aerodynamic characteristics.
A 
ow of Mach 2.85 over 16� and 24� ramps has
been computed and compared with data by Settles,

Vas, and Bogdono�. (See ref. 12.) The free-
stream unit Reynolds number was 0:64� 106 cm�1

(1:6� 106 in�1). For the 16� compression corner,
both the Baldwin-Lomax and k-" solutions were ob-
tained. Only k-" solutions were obtained for the
24� compression ramp because a steady-state solu-
tion could not be obtained from the Baldwin-Lomax
turbulence model. Figures 10 and 11 show the com-
puted wall pressures and local skin-friction distribu-
tions and comparisons with the experimental data
for ramps at 16�. The calculations were done with a
two-block con�guration. The �rst block employs the
Baldwin-Lomax turbulence model with 10� 2� 101
grid points and sets the initial boundary condi-
tions for the values of k and " for the downstream
second block. The second block spans the region
from upstream of the separated 
ow region to the
out
ow boundary. This block had the dimensions
152�2�101 and used the k-"1 code option to simu-
late the 
ow �eld. Mesh sequencing is used to assess
the e�ect of grid re�nement on the computed results
for the 24� compression ramp. The grid is setup such
that the �rst index refers to the number of points in
the j direction and the last index refers to the num-
ber of points in the k direction. The base grid, the
half grid in the j direction, and the half grid in the
j and k directions were selected to investigate the
e�ect of grid resolution on the k-" solutions. Only
the �ne grid (base grid) solution is shown for the 16�

ramp. In the simulation of the 16� ramp (�g. 10(a)),
good agreement was obtained in the prediction of the
surface pressure distribution when both turbulence
models were used. However, the skin-friction distri-
bution produced di�erent results. (See �g. 10(b).)
For the 24� compression ramp, the computed pres-
sure distribution was insensitive to the e�ect of grid
re�nement as shown in �gure 11(a). However, the
skin-friction results showed some sensitivity to the ef-
fect of grid re�nement. (See �g. 11(b).) Good agree-
ment was obtained for skin friction on the upstream
portion of the ramp. The experimental data on the
24� ramp indicate a massive separation. The region
between x=� = �1:5 and 1.0 where no experimental
data were taken indicates the separation. The k-"1
model was able to predict the attachment point accu-
rately at x=� � 0:03, but it predicted the separation
point slightly downstream of the experimental data
at x=� � �0:15.

Airfoil Con�guration RAE 2822

Experimental data for the RAE 2822 (case 10
at R = 6:2� 106) two-dimensional airfoil section are
available in reference 13. The experimental data
used for this comparison were at a free-stream Mach
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number of 0.75 and at an angle of attack of 3.19
in tunnel coordinates. The computational results
were performed at 2:8� to compensate for wall in-
terference; the computation also included an angle-
of-attack correction equation from reference 13. Six
blocks are used in the present investigation and to-
taled 31000 grid points. Two of these blocks were at
the leading edge at x=c � 0:03, where the 
ow was
assumed to be laminar as in the experiments. The
outer boundary extent was 8c, and no point vortex
correction was included in the far �eld. The base
grid, the half grid in the k direction, and the half grid
in the k and j directions are selected to investigate
the grid e�ect on the k-" solutions. Figure 12 shows
the comparisons among the three di�erent grids and
the experimental data. No signi�cant di�erences are
apparent between the half grid in the k direction and
the base grid in the predicted pressure, velocity, and
skin friction.

In the rest of this section we use the base grid
for comparisons with the experimental data. The
value for the �rst grid height in the computational
mesh was n+ < 2. Figures 13(a){13(c) show the
Baldwin-Lomax and k-"1 turbulence model predic-
tions compared with the experimental data. In �g-
ure 13(a), both models predict a similar pressure co-
e�cient Cp distribution, although k-"1 predicts the
shock location slightly farther forward, which is in
better agreement with the experiment. Figure 13(b)
presents the local skin-friction predictions compared
with the experimental data. The skin friction is nor-
malized by the local boundary layer edge condition.
Both models gave similar predictions for skin fric-
tion upstream of the shock. However, the Baldwin-
Lomax turbulence model gave a much better pre-
diction of the skin-friction data point downstream
of the shock location. In general both models over-
predicted the local skin friction to x=c � 0:6. Fig-
ure 13(c) shows the experimental streamwise velocity
pro�le at x=c = 0:9 compared with predictions from
both turbulence models. The k-"1 model provided a
more accurate velocity pro�le than did the Baldwin-
Lomax prediction. Di�erent wall-damping function
forms a�ect Cp, the velocity pro�le, and the local
skin-friction prediction as shown in �gure 14, which
compares k-"1, k-"2, and k-"3. If n+ � 25 is re-
laxed (�g. 15), again the k-"1 model (or any of the
other forms) signi�cantly overpredicts the local skin-
friction values. However, use of the simple wall func-
tion brings the local skin friction within the range
of the other models (predicted at n+ < 2). All wall
pressure distribution predictions with di�erent wall-
damping functions in the k-" model and the simple
wall function are summarized in �gure 16. The k-"1

model (n+ = 25) gives completely inaccurate predic-
tions of Cp. However, the simple wall function with
n+ � 50 gives similar predictions compared with any
of the other models operated at much smaller n+ val-
ues (<2). Also, the simple wall function with a larger
value of n+ accelerated the convergence rate of the
k-" model as shown in �gures 17 and 18. These �g-
ures show the L-2 norm of the residual RMS and of cl
as a function of the number of iterations, respectively.
A solution with the wall function and n+ = 50 was
established in less than 2000 iterations, which was
similar to the number of iterations required with the
Baldwin-Lomax turbulence model. The following ta-
ble summarizes the cd and cl predictions based on
the di�erent models and modi�cations.

Procedure cl cd

Experiment . . . . . . . . 0.743 0.0242

k-"1, n+< 2 . . . . . . . . 0.720 0.0257

k-"2, n+< 2 . . . . . . . . 0.764 0.0269

k-"3, n+< 2 . . . . . . . . 0.772 0.0257

Baldwin-Lomax, n+< 2 . . . 0.756 0.0290

WF, n+<25 . . . . . . . . 0.730 0.0261

WF, n+<50 . . . . . . . . 0.736 0.0231

k-"1, n+< 25 . . . . . . . 0.364 0.0222

Supersonic Flow Through Square Duct

Numerical calculations that used linear and non-
linear k-" turbulence models were carried out for
supersonic 
ow through a square duct. Figure 19
shows a schematic of the known secondary 
ow pat-
tern in square duct 
ows. The 
ow is symmetric
about the y- and z-axes so only one quadrant of the
duct 
ow was computed. A Mach number of 3.9
and a unit Reynolds number of 0:012 � 106 cm�1

(0:035�106 in�1) were used with a 41�41 grid in the
cross-
ow plane and 251 grid points in the streamwise
direction. Because the 
ow is complex, appropriate
grid spacing near solid boundaries was maintained
to ensure appropriate near-wall e�ects of k and ".
The �rst point located o� the wall was n+ < 1 and
the grid was stretched in the normal direction by an
exponential grid-stretching formula. Approximately
16 points were placed in each direction normal to the
walls to resolve the boundary layer. The rest of the
points in the normal direction were distributed uni-
formly between the edge of the boundary layer and
the symmetry boundary.

Figures 20{24 show comparisons of the results ob-
tained for the linear and nonlinear turbulence models
and the experimental data. (See ref. 14.) Figure 20
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presents the e�ects of linear and nonlinear turbu-
lence models on the computed skin-friction distri-
bution at x=D = 50. The skin-friction distribution
obtained with the nonlinear model is in better agree-
ment with the experimental data, whereas the linear
model shows a monotonic increase in value for Cf

with the spanwise coordinate. The nonlinear model
captures the undulations observed in the experimen-
tal data with remarkable precision. These undula-
tions represent the convecting e�ect of the secondary

ow, corrections which were not predicted by the lin-
ear model.

Figure 21 shows the e�ect of two wall-damping
functions (eqs. (18) and (20)) on skin-friction pre-
dictions when the nonlinear model is used. This re-
sult demonstrates that to obtain improved predic-
tions, the nonlinear model has to be coupled with
the appropriate damping function such as that devel-
oped by Speziale, Abid, and Anderson. (See ref. 17.)
Previous studies with this near-wall model gave im-
proved predictions in simple wall-bounded separated

ows such as the backward-facing step. (See ref. 22.)

Figure 22 shows the e�ect of including compress-
ibility corrections (eqs. (16) and (17)) on skin-friction
predictions with the nonlinear model. Compressibil-
ity correction is clearly not needed for this case; the
results obtained without a compressibility correction
and with the Wilcox model (ref. 7) are both in close
agreement with the experimental data. However, the
Sarkar et al. model (ref. 6) gave lower values of Cf .
These lower results are not surprising because the
compressibility correction in reference 6 is applied
to all regions of the 
ow and does not have a built-
in mechanism to switch o� near the wall boundaries
where the compressibility e�ects are minimal. In
contrast, the Wilcox compressibility correction has
a switching function based on the local turbulence
Mach number and turns o� automatically in the re-
gions with little or no compressibility.

Figure 23 shows the e�ect of grid resolution on
the computed skin-friction distribution. These com-
putations were performed for 21, 31, and 41 points
in the normal direction but with the same stream-
wise grid spacing. When the mesh in the normal
direction was re�ned, the stretching coe�cient was
progressively increased to obtain �ner mesh spacing
near the wall, but an identical number of grid points
in the boundary layer was maintained. The points
in the outer region increased by a factor of 3 in the
transition from a coarse to a �ner mesh.

Figure 24 shows the cross-
ow velocity patterns
computed with the linear and nonlinear models and
the experimentally measured cross-
ow pattern at

x=D = 50. Dramatically improved results are
obtained with the nonlinear model shown in �g-
ure 24(b). The results clearly show that the sec-
ondary 
ows (vortices) are symmetrical about the
diagonal and rotate in opposite directions. These
vortices are essentially driven by the gradients of
the Reynolds stresses, which cannot be simulated
with the linear models and which transport net mo-
mentum toward the corner of the duct. The com-
puted cross-
ow velocity vectors that are based on
the nonlinear turbulence model agree well with the
experimentally observed patterns. (See �g. 24(c).)
In contrast, the linear model (�g. 24(a)), predicts
a unidirectional 
ow because the turbulence model
cannot adequately represent the 
ow physics.

Concluding Remarks

A systematic investigation was conducted to as-
sess the e�ect of grid resolution and various near-wall
damping functions in the turbulence model of kinetic
energy (k) and dissipation rate (") on the computed

ow �eld of several aerodynamic con�gurations. The
computed results were compared with the available
experimental databases. The geometries considered
in the present study were a 
at plate, 16� and 24�

compression corners, a two-dimensional airfoil sec-
tion, and supersonic 
ow through a square duct. In
addition, a nonlinear k-" turbulence model was used
to predict the aerodynamic characteristics of super-
sonic 
ow through a square duct, and the e�ect of
compressibility corrections was investigated. Skin-
friction, pressure, and velocity distributions were rea-
sonably predicted with the two-equation turbulence
model in its di�erent forms.

The 
at-plate test case was selected because it is
the simplest of all the geometries for which the e�ects
of various near-wall grid spacing, turbulence models,
and damping functions can be easily tested. The
results obtained with the Jones and Launder turbu-
lence model (k-"1) were more accurate and consistent
than those for the Baldwin-Lomax turbulence model
for large n+ (height of �rst grid line normal to solid
surface). The number of grid points normal to the
solid surface is not as important as a correct value
of n+. Use of the simple wall function with the k-"
turbulence model allowed the use of coarser grids in
which n+ � 50 but which maintained reasonably ac-
curate predictions of skin friction.

The compression corner and airfoil geometries
represent the next level of 
ow complexity because
these cases contain separated 
ow regions that in-
teract with a shock. A 
ow of Mach 2.85 over 16�

and 24� compression ramps was computed and com-
pared with the experimental data. For the case of
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16� ramp, good agreement was obtained in predicting
the surface pressure and the skin friction upstream
of the ramp. The 24� ramp had a massive separated

ow region. The k-"1 model accurately predicted the
reattachment point but predicted the location of the
separation point slightly downstream of the experi-
mental data.

For the airfoil geometry, the k-" model with
Jones and Launder damping function (k-"1) and
the Baldwin-Lomax turbulence model gave similar
pressure coe�cient distributions, although the k-"1
model predicted the shock slightly farther, in better
agreement with the experiment. Both models also
yielded a similar prediction for skin friction upstream
of the shock. The simple wall function with the k-"1
turbulence model at large values of n+ brought the
local skin friction within the range of the predictions
obtained for other models (predicted at n+ < 2).
Also, a larger n+ accelerated the convergence rate
of the k-" model. Comparisons were also made be-
tween the models of Jones and Launder (k-"1), Van
Driest (k-"2), and Speziale et al. (k-"3). All models
predicted similar pressure distributions, but use of
di�erent forms of the damping function yielded sig-
ni�cantly di�erent skin-friction predictions upstream
of the shock. In general, the k-"1 model most accu-
rately predicted the overall features of the 
ow �eld.

For the test case that featured square duct ge-
ometry, a secondary 
ow structure developed in the

direction perpendicular to the main 
ow. The skin-
friction distribution with the nonlinear k-"3 turbu-
lence model was in better agreement with the ex-
perimental data, whereas the linear k-"3 turbulence
model produced a monotonic increase in the local
skin friction with the spanwise coordinate. The non-
linear model clearly captured the major trends ob-
served in the experimental data and 
ow-�eld fea-
tures. The undulations that were observed represent
the convecting e�ect of the secondary 
ow, undula-
tions which were not predicted by the linear turbu-
lence model. The near-wall damping function devel-
oped by Speziale et al. (k-"3) helped to yield better
prediction of the skin-friction distribution than that
of Jones and Launder (k-"1) for this case. The com-
pressibility correction of Wilcox performed better
than that of Sarkar et al. for this case because the
former has a built-in mechanism to switch o� near
the wall where compressibility e�ects are small.

This investigation provided signi�cant insight into
the applications of turbulence models in the predic-
tion of attached and separated 
ows. Comparisons of
grid e�ects and the use of di�erent turbulence models
indicate that the k-" turbulence model can be used
successfully to predict these 
ows.

NASALangley Research Center

Hampton, VA 23681-0001

October 26, 1994
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Appendix

Universal High-Order Symmetry

Boundary Condition for Navier-Stokes

Codes

A universal symmetry boundary condition was
derived by using a general three-dimensional curvi-
linear coordinate system. Here, x1, x2, and x3 are
the computational domain axes and u1, u2, and u3

are the corresponding velocities. At each cell face, a
local Cartesian coordinate system (X1, X2, and X3)
is established by the inward normal of that cell face
and two other linearly independent directions in the
plane of the cell face. A velocity vector in this neigh-
borhood is decomposed into vector components in
the local coordinate system. Across this boundary, a
ghost point b is assumed to be located at the mirror
image of the real point p within the computational
domain. (See �g. A(1).) The velocity vector asso-
ciated with the ghost point is the mirror image of
the original velocity vector and satis�es the follow-
ing condition: 8<

:
U1

U2

U3

9=
;
b

=

8<
:
�U1

U2

U3

9=
;
p

(A1)

where Ui is related to the local velocities ui for points
p and b through the A (transformation) matrix,

Ub = Au
b

Up = Au
p

)
(A2)

where

A =

2
4 n1 n2 n3

m1 m2 m3

l1 l2 l3

3
5

A�1 = AT

9>>>>=
>>>>;

(A3)

and n, m, and l are the directional cosines between
the X and x coordinates. Equation (A2) can be
rewritten from equations (A1) and (A3) as follows:

u
b = A�1Ub

= A�1
�
Up� 2U1f1; 0; 0g

T
�

= A�1Au
p � 2U1A

Tf1; 0; 0gT

Furthermore, the above equation can be written in
the simpler form,

u
b = u

p � 2U1fn1; n2; n3g
T (A4)

Special Cases

Halfplane Symmetry

In the case of halfplane symmetry, the symmetry
plane is aligned with the x1{x3 plane and theN array
is de�ned as

N = f0; 1; 0gT

Substituting the values for N in equations (A2)
and (A4) yields

8<
:
u1

u2

u3

9=
;
b

=

8<
:

u1

�u2
u3

9=
;
p

Quarterplane Symmetry

In the case of quarterplane symmetry, two sym-
metry planes exist. One is the same as the halfplane
symmetry case; the other symmetry plane is aligned
with the x2, x3 plane. The N array is de�ned as

N = f1; 0; 0gT

Substituting the values for N in equations (A2)
and (A4) yields

8<
:
u1

u2

u3

9=
;
b

=

8<
:
�u1
u2

u3

9=
;
p

This mathematical formulation is implemented in
the PAB3D Navier-Stokes code and replaces all the
special cases of symmetry boundary conditions. It
is also used for specifying a slip boundary condition
for Euler 
ow calculations. The halfplane symmetry
for a polar grid is an exception to this rule. The
velocity vector image is re
ected across the halfplane
boundary, whereas the ghost points at the pole are
re
ected across a moving mirror. Nevertheless, the
generalized symmetry boundary condition can be
easily modi�ed to work in this case, and it has
been included in the PAB3D code. This generalized
symmetry condition has tremendously simpli�ed the
boundary condition procedure in advanced Navier-
Stokes and Euler CFD methods. It also provides the
ability to include symmetry boundary conditions in
a structured CFD grid without the restrictions for
alignment with the global coordinate system.
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Figure A1. Symmetry boundary condition formulated in local Cartesian coordinate system.
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Figure 1. In
ow boundary condition for k-" turbulence model.
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Figure 3. Solution for supersonic 
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at-plate boundary layer based on k-"1 and Baldwin-Lomax models.
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Figure 4. Solution for supersonic 
ow over 
at-plate boundary layer based on k-"1, k-"2, and k-"3 models.
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Figure 5. E�ect of spacing �rst grid point o� wall on velocity pro�le.
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(b) Baldwin-Lomax turbulence model.

Figure 6. E�ect of spacing �rst grid point o� wall on average skin-friction distribution.
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(b) Average skin-friction distribution.

Figure 7. E�ect of grid distribution in normal direction with k-" turbulence model for n+ = 5.
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(b) Average skin-friction distribution.

Figure 8. Solution for k-" model with and without wall function for n+ = 10.
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Figure 9. Solution for k-" model with and without wall functions for n+ = 50.
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Figure 10. Computations for 16� compression ramp with Baldwin-Lomax and k-"1 models.
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Figure 11. Computations for 24� compression ramp for k-"1 models with di�erent grid resolutions.
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Figure 12. E�ect of grid for two-dimensional airfoil section with k-"1 turbulence model.

29



Fine grid
Half j grid
Half j and k grids
Experiment

.040

.080

.060

.2 .4 .6 .8 1.0

y/c

u/ue

.020

0

(c) Velocity pro�le.

Figure 12. Concluded.

30



Baldwin-Lomax
Experiment

k-ε1

.200

.600

1.000

1.400

0 .2 .4 .6 .8 1.0

-Cp

x/c

-.200

-.600

-1.000

-1.400

(a) Pressure distribution.

 
Baldwin-Lomax
Experiment

k-ε1

.002

.006

.004

0 .2 .4 .6 .8 1.0

Cf

x/c

0

-.002

(b) Local skin-friction distribution.

Figure 13. Computations for two-dimensional airfoil section with Baldwin-Lomax and k-"1 turbulence models.
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Figure 14. Computations for two-dimensional airfoil section with Baldwin-Lomax and k-"1 turbulence models.
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Figure 22. E�ect of compressibility correction on nonlinear model for supersonic 
ow through square duct.

41 × 41 grid

31 × 31 grid

21 × 21 grid

0

.2

.4

.6

.8

1.0

1.2

1.4

1.6

.2 .4 .6 .8 1.0

Cf × 103

y/a

Figure 23. E�ect of grid resolution and k-"3 model on nonlinear model for supersonic 
ow through square duct.
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(a) Linear model. (b) Nonlinear model.
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Figure 24. Cross-
ow velocity patterns at x=D = 50 for supersonic 
ow through square duct; computed with
k-"3 model.
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