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Chapter 1

Introduction

The software package PLATSIM provides time and
frequency domain analysis of generic space platforms
that can be modeled as linear, time-invariant systems.
PLATSIM can perform open-loop analysis or closed-
loop analysis with different linear time-invariant space-
craft control systems, such as attitude control systems
with or without flexible body controls, active isolation
systems, and payload or instrument local control sys-
tems. In the time domain analysis, PLATSIM simulates
the response of the space platform to disturbances and
calculates the jitter and stability values from the response
time histories. In the frequency domain analysis,
PLATSIM calculates frequency response function matri-
ces and provides the corresponding Bode plots. While
PLATSIM was designed for analyzing space platforms,
it only assumes that it has a finite element model of a
structure that is being excited by force and/or torque
inputs. Thus, any structure (e.g., aeronautical, automo-
tive, structural, or mechanical) that fits this model can be
analyzed by PLATSIM.

Several novel algorithmic features have been devel-
oped and are incorporated in PLATSIM. These features
result in a significant increase in the computational effi-
ciency for all analyses. PLATSIM exploits the particular
form of sparsity (block diagonal with 2× 2 blocks) of the
plant matrices both in the continuous form used in the
frequency analysis and in the discretized form used in the
time simulation. A new and original algorithm for the
efficient computation of closed-loop (as well as open-
loop) frequency response functions for large-order sys-
tems has been developed and implemented within
PLATSIM. This algorithm is an enabling technology for
the analysis of large-order systems. Furthermore, a novel
and efficient jitter analysis routine that determines jitter
and stability values from time simulations in an efficient
manner has been developed for and is incorporated in the
PLATSIM package (ref. 1). This routine increased the
computational speed by more than 1600 times in typical
examples over the brute force approach of sweeping min-
ima and maxima.

PLATSIM allows the user to maintain a database of
performance measurement outputs on the space platform
and a database of disturbance scenarios. An individual
run of PLATSIM can use all performance outputs or a
user-selected subset, and the user selects one disturbance

scenario for each run. Output options for time domain
analysis include on-screen plots of time histories at user-
selected output locations (e.g., instrument boresight),
encapsulated Adobe PostScript (EPS) files of these plots,
tables of jitter values for user-provided time window
sizes, and files containing the time history data in either
compressed or full form. Output options for frequency
domain analysis include on-screen Bode plots, EPS files
of these plots, and files containing the plot data.

PLATSIM requires MATLAB® version 4.1 or
higher. MATLAB, a product of The MathWorks, Inc., is
a technical computing environment for high-performance
numeric computation and visualization (ref. 2).
PLATSIM also uses the Control System Toolbox, which
is another product of The MathWorks, Inc. User input to
PLATSIM is provided in MATLAB readable data files
and MATLAB function M-files.

PLATSIM uses six main modules: a plant definition
module, a spacecraft control system module (user-
supplied), a disturbance module (user-supplied), a simu-
lation module, a frequency analysis module, and a jitter
analysis module. All modules are written as MATLAB
M-files, which are compatible with MATLAB
version 4.1 or higher. However, the jitter analysis mod-
ule, the frequency analysis module, and the simulation
module have also been rendered as FORTRAN 77
MATLAB MEX-files to improve the execution time for
those modules.

PLATSIM uses a sparse matrix formulation of the
spacecraft modal model (which differs from MATLAB’s
built-in sparse utilities) for the spacecraft dynamic
model. Utilizing sparseness makes the time simulations
and frequency analysis efficient, particularly when large
numbers of modes are required to capture the true
dynamics of the spacecraft. The user provides a linear,
time-invariant, continuous-time state space model of the
spacecraft control system. PLATSIM performs time sim-
ulation of the system by first discretizing the spacecraft
dynamics (taking advantage of the sparsity in the model)
and the spacecraft control system and then carrying out
an algebraic state propagation for discrete time steps.
Frequency domain analysis consists of evaluating the
system transfer function over a user-specified range of
frequencies and then extracting gain and phase
information.
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PLATSIM requires the following user inputs: modal
data of the spacecraft as generated by finite element anal-
ysis, damping ratios for flexible modes, information
about control actuators, measurement feedback sensors,
and performance instrument outputs (e.g., boresight mea-
surements), spacecraft disturbance data, and spacecraft
control system matrices. The finite element data, includ-
ing the modal frequencies and mode shapes at required
grid points, must be provided either in ASCII files
omega.dat  andphi.dat , or MATLAB binary files
omega.mat  andphi.mat , respectively. The damping
ratios for the structural modes are defined in the
MATLAB function mkdamp. The data for instrument
connectivity and input/output selection must be provided
through the MATLAB function instdata . The
required data on spacecraft disturbances, such as distur-
bance profiles, elements, and integration step sizes, must
be provided through the MATLAB functiondistdata .
In the EOS (Earth Observing System) example used
throughout this manual,distdata  calls other user-
defined MATLAB routines, which perform tasks such as
calculating individual disturbance profiles. The matrices
modeling the space platform control system (SCS) must
be output by the MATLAB functionformscs . Any
spacecraft control system can be implemented by
PLATSIM as long as it is stable and has a linear time-
invariant model. The space platform control system can
be a basic spacecraft attitude control system with possi-
ble augmentations by additional control systems to con-
trol local vibrations, isolate payloads, or articulate
payloads.

The program can be used in three modes, a GUI
mode, a command-driven mode, or a batch mode. The
three modes differ in the way the required and optional

flags and parameters that control execution are defined.
In the GUI mode, the parameters and flags are chosen
from pop-up MATLAB menus with a keypad and a
mouse. In the command-driven mode, the required
parameters and flags are defined through keyboard
responses to PLATSIM questions; however, any optional
parameters are defined with MATLAB command lines.
In the batch mode, all flags and parameters are defined in
MATLAB command lines, which can be placed in an
ASCII input file.

Although PLATSIM was developed to analyze
generic space platforms, the Earth Observing System
EOS-AM-1 (ref. 3) is used throughout this manual as an
example. Furthermore, several M-files and data files
included in the PLATSIM distribution, some of which
are listed in appendix A, correspond to the EOS-AM-1
spacecraft. These files are the spacecraft control system
defined informscs.m , the instrument types and con-
nectivity data defined ininstdata.m , the finite ele-
ment data defined inomega.mat  and phi.mat , the
damping schedule defined inmkdamp.m, and the
spacecraft disturbance data defined indistdata.m
and its supporting routines. These files can serve as tem-
plates for the user-supplied files for other space platform
applications.

The MATLAB convention for naming MEX-files is
to append to the function name an extension that starts
with the characters.mex  and may have additional char-
acters depending on the computer or operating system.
For example, in this document, the MEX-file for function
jitter is referred to asjitter.mex* . The * can stand
for 0 or more additional characters in accordance with
the UNIX or DOS wild card character convention.
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Mathematical Formulation

Second-Order Modal Equations

The dynamics of the spacecraft can be written in a
second-order form as

where M, D, and K are then × n mass, damping, and
stiffness matrices, respectively;x is the n × 1 position
and/or attitude vector;u is them × 1 spacecraft control
input vector, which includes the attitude control system
inputs along with any additional augmenting controllers;
w is ther × 1 disturbance vector;H is then × m control
input influence matrix; andHd is then × r disturbance
influence matrix. In addition,y is theq × 1 measurements
output vector andypr is thel × 1 performance output vec-
tor; Cp andCr areq × n measurement output influence
matrices; and , , and  are thel × n perfor-
mance output influence matrices.

The elements of the control input and the disturbance
influence matrices depend on how the control inputs and
the disturbances are applied to the spacecraft. In general,
element (i, j) of matrixH represents the influence of the
control inputj on the position coordinatei (the ith ele-
ment of position vectorx). For example, if the second
control input applies a force and/or torque solely on posi-
tion coordinate 15, then all elements of the second col-
umn of matrixH would be 0 except its 15th element,
which would be 1. Generally, if thejth control input
applies a force or torque to onlys position coordinates

, , ..., , each with a distribution factor ofαi
with i = 1, ...,s, then the elements of columnj of matrix
H would all be 0 except for the elementsl1, l2, ..., ls,
which take valuesα1, α2, ...,αs, respectively. The ele-
ments of the disturbance influence matrix are defined in
the same manner.

The elements of the measurement output (and the
performance output) influence matrices depend on the
measurement process. In general, element (i, j) of matrix
Cp represents the contribution of the response at position
coordinatej to measurementi, and element (i, j) of Cr
represents the contribution of the rate response at posi-

Mẋ̇ Dẋ Kx+ + Hu Hdw+=

y Cpx Cr ẋ+=

y
pr

Cp
pr

x Cr
pr

ẋ Ca
pr

ẋ̇+ +=

Cp
pr

Cr
pr Ca

pr

xl1
xl2 xls

tion coordinatej to measurementi. For example, if mea-
surement outputk has contributions only from the
response att position coordinates , , ..., , each
with a contribution factorθi with i = 1, ...,t, then the ele-
ments of rowk of matrix Cp would all be 0 except for
elementso1, o2, ...,ot, which take valuesθ1, θ2, ...,θt,
respectively. Moreover, all elements of rowk of matrix
Cr would be 0. The elements of the performance output
influence matrices , , and  can be defined in a
similar manner.

If the second-order system is transformed into nor-
mal mode coordinates, andp of the normal modes are
retained to capture the relevant dynamics of the space-
craft, then the system equations can be written in a modal
form as

where , , and  are thep × p modal mass, damping,
and stiffness matrices, respectively;q is thep × 1 vector
of modal coordinates; and  and  are thep × m
spacecraft control input and thep × r disturbance influ-
ence matrices in modal coordinates, respectively. Futher-
more,  and  areq × p measurement output
influence matrices in modal coordinates, and , ,
and  arel × p performance output influence matrices
in modal coordinates.

PLATSIM assumes that the mode shapes are
normalized with respect to the mass matrix and
damping is modal. These assumptions result in

, , and

, where ωi and ζi are the

open-loop frequencies and damping ratios.

The spacecraft control input and disturbance influ-
ence matrices are defined as follows:

xo1
xo2

xot

Cp
pr Cr

pr Ca
pr

Mq̇̇ Dq̇ Kq+ + Hu Hdw+=

y Cpq Crq̇+=

y
pr

Cp
pr

q Cr
pr

q̇ Ca
pr

q̇̇++=

M D K

H Hd

Cp Cr
Cp

pr Cr
pr

Ca
pr

M Ip p×= D diag 2ζ1ω1 2ζ2ω2 … 2ζpωp, ,,( )=

K diag ω1
2 ω2

2 … ωp
2, , , 

 
=

H ΦT
H=

Hd ΦT
Hd=
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The measurement and performance output influence
matrices are given by

The columns of matrixΦ are thep retained mode shapes:

First-Order Modal Equations

The second-order modal equations can be rewritten
in a first-order form as follows:

(1)

The vectorxs is the plant state vector whose components
are as follows:

Furthermore, the vectorsy andypr are the plant (space-
craft) measurement and performance outputs, respec-

Cp CpΦ=

Cr CrΦ=

Cp
pr

Cp
prΦ=

Cr
pr

Cr
prΦ=

Ca
pr

Ca
prΦ=

Φ φ1 φ2 … φp, , ,[ ]=

ẋs Asxs Bsu Bdw+ +=

y Cxs=

y
pr

C1
pr

xs C2
pr

ẋs+=








xs

q1

q̇1

q2

q̇2

qp

q̇p 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

= ...
...

tively. The matrixAs is the plant state matrix and has the
following form:

(2)

where

(3)

The matrix Bs is the control input influence matrix,
which is formed by setting its odd-numbered rows to 0
and by using the rows of  for its even-numbered rows
as follows:

(4)

in which , for example, represents element (i, j) of
matrix . (In MATLAB notation,B(1 : 2 : 2p, 1 :m) =
zeros(p, m) andB(2 : 2 : 2p, 1 :m) = .) The matrixBd
is formed from  in the same manner.

The measurement output influence matrixC is
defined by setting the odd-numbered columns ofC to the
columns of  and by setting the even-numbered col-
umns ofC to the columns of  as follows:

where  and  denote element (i, j) of
matrix  and , respectively. (In MATLAB notation,
C(1 : q, 1 : 2 : 2p) =  and C(1 : q, 2 : 2 : 2p) = .)
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Furthermore,  is defined from  and  in the
same fashion, and  is defined by setting the odd-
numbered columns of  to 0 and the even-numbered
columns of  to the columns of . (In MATLAB
notation,  (1 :l, 1 : 2 : 2p) = zeros(l, p) and
(1 : l, 2 : 2 : 2p) = .)

By substituting the first equation of equations (1)
into the third, the acceleration term can be replaced by
feedthrough as follows:

(5)

The performance output influence matrix is given by

The performance feedthrough matrices are

Notice that if no performance acceleration output
exists , then  and . Thus,
both feedthrough matrices  and .

Control System Equations

In this development, the space platform is assumed
to be controlled by a linear time-invariant attitude control
system. However, additional augmenting controllers that
are also linear time invariant can be implemented along
with the attitude control system and analyzed by the
PLATSIM program. The model of a linear time-invariant
spacecraft control system for a typical space platform can
be written as

(6)

wherexc denotes the spacecraft control system states;Ac,
Bc, andCc represent the spacecraft control system state
matrix, input influence matrix, and output influence
matrix, respectively; andy is the measurement output
vector defined in the previous section. Typical measure-
ment outputs can consist of roll, roll rate, pitch, pitch
rate, yaw, and yaw rate measurements taken at the space-
craft navigational unit.
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pr

Cp
pr

Cr
pr

C2
pr

C2
pr

C2
pr Ca

pr

C2
pr C2

pr

Ca
pr
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Discrete Time Simulation

The simulation technique used here is a discrete
closed-loop or open-loop simulation of the spacecraft
plant and the spacecraft control system. To perform this
simulation, the plant matrices and the control system
matrices are separately discretized for the given integra-
tion step size, and then the discretized dynamics are com-
bined for closed-loop simulation through algebraic state
propagation. Equation (5) discretizes as

(7)

The spacecraft control system, equation (6), discretizes
as

(8)

The overbars indicate the discretized system matrices.
The discrete plant state matrix  has the following
form:

where the square partition matrix  is the discretized
counterpart of the partition matrix , which can be eas-
ily computed through the zero-order hold function in
MATLAB ( c2d ). The remaining plant and spacecraft
control system matrices can also be transformed into dis-
crete forms through the same MATLAB function.

Frequency Domain Equations

For the open-loop plant,y andu of equation (5) are
nonexistent; thus, the equations reduce to the following:

The open-loop transfer function from the disturbancesw
to the performance outputypr is given by

(9)
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pr
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
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The closed-loop system is more complicated. By
using equations (5) and (6), the closed-loop dynamics of
the controlled spacecraft can be written as

(10)

wherex represents the closed-loop state vector defined as

(11)

The matrices , , and  are the closed-loop state
matrix, disturbance influence matrix, and output influ-
ence matrix, respectively. These matrices are defined as
follows:

(12)

The closed-loop transfer function from the disturbances
w to the performance outputypr is given by the
following:

(13)

Chapter 10 contains the efficient methods used by
PLATSIM to calculate the transfer functions in
equations (9) and (13).

Jitter and Stability Measurement

One measure of pointing jitter in a time series has
been described in an internal report by Martin Marietta as
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Ã
As Bs– Cc

BcC Ac

=

B̃d
Bd

0
=

C̃
pr

C
pr

Du
pr

Cc–=














T̃ s( ) C̃
pr

sI Ã–( )
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the worst case peak-to-peak variation of the actual point-
ing direction over relatively short time intervals; pointing
stability has the same definition except that the time
intervals are relatively long. This measure of jitter (or
stability) is the one calculated by PLATSIM. These time
intervals are referred to here as “windows.”

Recall thatypr(j) is the value at time stepj of vector
ypr of the performance outputs. A generic component of
this vector is denoted byz such thatz(j) denotes the
(scalar) value of a typical performance output at time
stepj. Suppose that the vectorz has lengthn and that the
window (time interval) that is slid alongz during the
measurement of jitter is of such a length as to coverk
points ofz. (If the length of the window isTw and the
time increment between points ofz is ∆T, thenk is the
largest integer such that .) Now define
zmax andzmin as follows:

Then jitter is given by

The straightforward way to calculate jitter has com-
putational complexity  as measured by
the number of references into thez vector. A novel algo-
rithm with computational complexityO(n) is imple-
mented in PLATSIM1 to perform this calculation. If jitter
or stability is to be calculated for the same time signal for
several windows, additional time savings is realized by
using the information inzmax andzmin for a smaller win-
dow to calculatezmax andzmin for a larger window. This
calculation also hasO(n) complexity but with a smaller
O constant than the jitter calculation for the smallest
window.

1A paper by Daniel P. Giesy describing this, titled “Efficient Cal-
culation of Jitter,” has been submitted for publication.

k 1–( ) ∆T Tw≤

zmax j( ) max z i( ) j i j k 1–+≤ ≤[ ]=

zmin j( ) min z i( ) j i j k 1–+≤ ≤[ ]=

Jitter max zmax j( ) zmin j( )– 1 j n k– 1+≤ ≤[ ]=

O k n k– 1+( )[ ]
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Input Files

 To construct the data needed to use the theory of
chapter 2, PLATSIM requires the following information:

1. Information to calculate the first-order dynamic
plant equation matrices in equation (5)

2. Matrices for the space platform control system in
equation (6)

3. Sampling period to calculate the matrices in the
discrete forms of equations (7) and (8)

4. Disturbance time histories (thew of eq. (7))

5. Windows for jitter-stability analysis

6. Character information to label outputs and menu
buttons

PLATSIM obtains this information from input files
that define the modal model of the spacecraft, the space-
craft damping schedule for its elastic modes, the instru-
ment types and connectivity data, the spacecraft
disturbances, and the spacecraft control system.

The finite element modal data are read from two
MATLAB readable data files, one for frequencies and
one for mode shapes. These data files can be either in
ASCII format or MATLAB binary MAT-file format.
PLATSIM checks to see whether the MATLAB binary
file is present. If it is, PLATSIM loads it. Otherwise, the
ASCII file is loaded.

The remaining input data are transmitted to
PLATSIM by the execution of user-supplied MATLAB
function M-files. In these files, the user can load the data
needed by PLATSIM from data files, set the output vari-
ables to values hardcoded into the M-file, or perform
more extensive internal calculations to determine the
data. Examples of the latter two approaches are included
in the EOS example files distributed with the PLATSIM
software. The user must conform exactly to the specifica-
tions for input and output parameters for these files.The
remainder of this chapter is devoted to presenting the
details of these input files.

Finite Element Data

The finite element modal frequency and mode shape
data are provided in ASCII filesomega.dat  and
phi.dat  or MATLAB binary files omega.mat  and

phi.mat , respectively. While the ASCII files are more
convenient for moving the data from a finite element
modeling program to PLATSIM, using the binary
MAT-files to reduce the loading time for these files is
more efficient, particularly for the mode shape data. The
user may want to keep both and regenerate the
MAT-files from the ASCII files only when the ASCII
files change. The data in both ASCII files are assumed to
have a free format. Note that both these files should be
placed in MATLAB’s directory path. They are accessed
by loading them into the MATLAB environment in a file
namedformplnt.m .

The file omega.dat  contains one frequency per
line as follows:

wherep is the number of modes in the spacecraft model.
If p frequencies are defined inomega.dat , modal
amplitudes on exactlyp modes should be defined in
phi.dat  and theith mode inphi.dat  should corre-
spond to frequencyωi.

The file omega.mat  should contain a variable
omega, which is ap × 1 vector containing the frequen-
cies fromomega.dat , as described previously. Such a
variable can be generated in MATLAB from the
omega.dat  file by the command:

>> load omega.dat

The omega.mat  file can then be generated by the
MATLAB command:

>> save omega omega

Uses to denote the number of grid points at which
mode shape data is to be given in filephi.dat  and
label these grid points with grid numbersN1, N2, ...,Ns.
Thenphi.dat  has(p × s) lines in the format shown in

figure 1, where , , and  are the modal translations

in X, Y, andZ, and , , and  are rotations aboutX,

ω1

ω2

ωp

...

Xj
i Yj

i Zj
i

θj
i φj

i ψj
i
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Y, andZ for modei at grid pointNj. Note that grid points
that are not needed to model instruments, the control sys-
tem, or disturbances do not need to be included in file
phi.dat . However, if they are included, care must be
taken to ensure that each mode block contains data for
exactly the same grid points.

The file phi.mat  should contain a variablephi ,
which is a (p × s) × 7 matrix containing the grid numbers
and mode shape data fromphi.dat , as described previ-
ously. This variable can be generated in MATLAB from
the filephi.mat  by the command

>> load phi.dat

The file phi.mat  can then be generated by the
MATLAB command

>> save phi phi

Modal Damping Schedule

PLATSIM determines the damping ratios of the flex-
ible spacecraft modes by a calling the user-supplied
MATLAB function mkdamp in file mkdamp.m. The
first line ofmkdamp.m has the following form:

function [d]=mkdamp(omega)

The inputomega is a vector containing the modal
frequenciesω1, ω2, ...,ωp. The user must set the out-
putd to a vector containing the corresponding damping
ratios. Appendix B contains a sample filemkdamp.m for
the EOS-AM-1 mission. This file defines a damping ratio
of 0.2 percent for structural modes with frequencies
under 15 Hz, a damping ratio of 0.25 percent for struc-
tural modes with frequencies between 15 Hz and 50 Hz,
and damping ratio of 0.3 percent for structural modes

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 1.  Format ofphi.dat .

N1 X1
1

Y1
1

Z1
1 θ1

1 φ1
1 ψ1

1

N2 X2
1

Y2
1

Z2
1 θ2

1 φ2
1 ψ2

1

Ns Xs
1

Ys
1

Zs
1 θs

1 φs
1 ψs

1

...

N1 X1
2

Y1
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2 θ1
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2 ψ1
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N2 X2
2
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2
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2 θ2

2 φ2
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...

...

...

...
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p
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p
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p φ2
p ψ2

p
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p
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p

Zs
p θs

p φs
p ψs

p

...
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with frequencies over 50 Hz. The user running
PLATSIM in its graphical user interface (GUI) mode can
use Modify Damping under the Options menu to change
the damping schedule. (See chapter 6.)

Effector and Sensor Data

 The term effectors in a system modeled by
PLATSIM refers to the control system actuators and the
disturbances denoted byu and w, respectively, in
equation (5). The termsensors refers to the measurement
and performance outputs, denoted byy andypr, respec-
tively. A commonalty exists in the structure of the data
needed by PLATSIM to calculate the input influence
matricesBs and Bd and the output influence and feed-
forward matrices , , , , , and ,
which operate on the states and effectors to calculate
their influence on the sensors.

Common Data Structure

The simplest effector or sensor to model is located at
a grid point of the structure and either produces or mea-
sures linear motion parallel to an axis or rotational
motion about an axis. This information is transmitted by
passing PLATSIM the grid number (which must appear
in file phi.mat  or phi.dat ) and a direction number
whose value is an integer between 1 and 6. Direction
number 1 represents a force that is parallel to theX-axis
for an effector, or it represents a linear displacement that
is parallel to theX-axis for a sensor. Direction numbers 2
and 3 serve the same purpose for theY- and Z-axes,
respectively. Direction number 4 represents torque about
the X-axis for an effector or angular displacement about
theX-axis for a sensor. Direction numbers 5 and 6 serve
the same purpose for theY- andZ-axes, respectively. A
sensor can measure linear or angular displacements or it
can measure the rate or acceleration of this displacement.
Thus, its type is specified to PLATSIM in an additional
type number that has the value 0 for displacement, the
value 1 for rate, or the value 2 for acceleration. In addi-
tion, each effector and sensor is assigned an identifica-
tion number, which should be a positive integer. This
number also tells PLATSIM the order of effectors and
sensors in vectors. PLATSIM arranges the effectors and
sensors so that their identification numbers are in
increasing order. Thus, the user must define identifica-
tion numbers such that the order of entries in the control
input vectoru and the measurement outputs vectory con-
nects properly with the control system model. The identi-
fication number is also used to form variable names for
MATLAB variables in some output files and to form file
names on some computer systems. A weighting factor is
also included in the common data structure. One use of

Cp Cy Cp
pr Cy

pr
Du

pr Dw
pr

this weighting factor is for conversion of units. For
example, if a performance output is a pointing error that
is being calculated in radians and the user wants the
results to be in arc-seconds, then a weighting factor of
3600× 180/π would accomplish this conversion.

The weighting factor can also be used to model
effectors and sensors that might be located off any grid
point or oriented in a nonaxial direction. Before explain-
ing this use of the weighting factor, this document
explains how the data are passed to PLATSIM.

The grid number, direction number, identification
number, and weighting factor (and type number for sen-
sors) are stacked in a column vector. The necessary num-
ber of column vectors are assembled into a matrix, which
is then passed to PLATSIM. A single effector or sensor
can be modeled by information in more than one of these
columns. The user simply uses the same identification
number in all columns that refer to a single effector or
sensor. Each single effector or sensor described by the
grid number and the direction number of each column
(and the type number for sensors) is multiplied by its
weighting factor, and all these weighted columns with
the shared identification number are combined into a sin-
gle effector or sensor in the PLATSIM model of the
plant.

For example, suppose that anX-axis thruster is
located halfway between grid points 1211 and 1212. This
location is identified by including two columns in the
act  matrix (see section entitled “Instrument Data”) as
follows:

The duplicate use of identification number 550 indi-
cates that one actuator is being described by these two
columns. The weighting factor 0.5 and the direction
number 1 mean that half the force of actuator 550 will be
applied in theX-direction at each of grid points 1211
and 1212. This arrangement gives the effect of placing
the actuator half way between these grid points.

For another example, suppose that the user wants to
assess the linear acceleration performance at grid point
277 in a direction lying in the first quadrant of the local
Y-Z plane 30° from the positiveY-axis. This arrangement
is identified to PLATSIM by including two columns in

1211 1212

1 1

550 550

0.5 0.5
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thepout  matrix (see section entitled “Instrument Data”)
as follows:

The two columns are again linked by using the same
identification number in row 3. Row 1 shows that both
columns deal with grid point 277. Row 2 shows that
translational information in theY- and Z-directions is
being combined. The weighting factors in row 4 are the
direction cosines for the desired direction. Row 5 is
added to the sensor data and, in this example, indicates
that acceleration information is desired.

These two applications of the weighting factor can
be combined by multiplying the weighting factors from
each individual use. For example, suppose grid points
515 and 516 are 10 in. apart and a roll attitude sensor is
modeled, which has the identification number 300 and is
located between these grid points 3 in. from grid
point 515. Furthermore, the output is to be converted
from radians to arc-seconds. This conversion is accom-
plished by including two columns in thepout  matrix as
follows:

The fourth row of weighting factors is found by mul-
tiplying the vector (0.7, 0.3), which is used to weight the
roll attitude from grid points 515 and 516 by the unit
conversion factor 3600× 180/π.

Instrument Data

This section explains how to input data into
PLATSIM to define the instruments on the space plat-
form, to provide names for the performance outputs, and
to specify the jitter-stability windows to be used in the
analysis. These instruments are the actuators, measure-
ment output sensors, and performance outputs, corre-
sponding to variablesu, y, and ypr, respectively, of
equation (5). The data should be provided through a user-
supplied MATLAB functioninstdata  in a file named
instdata.m . The first line of instdata.m  must
have the following form:

277 277

2 3

4 4

0.866 0.500

2 2

515 516

4 4

300 300

1.4439 10
5× 0.6188 10

5×
0 0

function [act,mout,pout,instr,...
         window]=instdata

The following is a description of the user-defined
output parameters in fileinstdata . (See appendix B
for a sample fileinstdata.m  for the EOS-AM-1
spacecraft.)

1. Parameteract  is a matrix with four rows and as
many columns as necessary to represent the actua-
tors (vectoru of eq. (5)) in the format given in the
section entitled “Common Data Structure.”

2. Parametermout  is a matrix with five rows and as
many columns as necessary to represent the mea-
surement outputs (vectoru of eq. (5)) in the format
given in the section entitled “Common Data Struc-
ture.” PLATSIM is only programmed to handle dis-
placement and rate sensors as input to the control
system; thus, entries in row five, the type numbers,
are limited to 0’s and 1’s. However, acceleration
feedback to the control system can be implemented
by the addition of a judiciously selected prefiltering
of a velocity signal (e.g., a differentiator followed
by a roll-off filter of relative degree of at least two
to eliminate feedforward and fit into the format of
eq. (6)).

3. Parameterpout  is a matrix with five rows and as
many columns as necessary to represent the perfor-
mance outputs (vectorypr of eq. (5)) in the format
given in the section entitled “Common Data Struc-
ture.” When PLATSIM is run, the user is given an
opportunity to select a subset of the performance
measurements presented in the matrixpout . Thus,
when writing the user-supplied MATLAB function
instdata , the user can include any performance
sensor that may be desired in any analysis. This
inclusion should reduce the need to edit this file
when changing analytical focus.WARNING:
PLATSIM does not permit the user to mix the
acceleration type with displacement and rate types
in a single (multicolumn) performance output
instrument.

4. Parameterinstr  is a matrix of character strings
that provides names for the performance outputs.
The number of rows ininstr  must equal the
number of performance outputs, that is, the number
of distinct entries in the third row ofpout . Each
element ofinstr  is a string consisting of three or
four fields separated from each other by the vertical
bar (|) character. The first field is an integer that
must correspond to one of the performance output
identification numbers defined in the third row of
pout . Furthermore, every identification number in
that row must be referenced ininstr . The second
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field contains one or more alphanumeric words that
provide a unique name for the corresponding per-
formance output. These names are used in
PLATSIM on menu labels and in output tables and
graphs. These names are also used as parts of file
names after imbedded blanks have been replaced
by underscores. For this naming convention, the
user should be aware of the following:

• No special characters (except blanks which are
replaced by underscores) should be used which
would confuse the operating system when used
in a file name.

• When determining whether character strings are
distinct, embedded blanks should be considered
to be the same as underscores (e.g., SWIR roll
and SWIR_roll should be considered to be the
same).

• When determining whether character strings are
distinct, the case sensitivity of the operating sys-
tem should be considered (e.g., swir_roll and
SWIR_roll can be considered distinct under
UNIX, but should be considered the same under
DOS).

The third field is used to name the menu option
under which this instrument is found in menu
mode. By using the same name in the third field of
several entries, the names are grouped in a sub-
menu under the same menu heading. For example,
if three instruments are named VNIR roll, VNIR
pitch, and VNIR yaw in their respective second
fields of their instr  entries, then by putting
VNIR in the third field of all three, all three are
found as submenu items under the menu option
VNIR. If the optional fourth field is present,
PLATSIM adds it to the second field in labeling the
Y-axis of time history plots. This field can be used,
for example, to give the units of the output.

5. Parameterwindow  is a row vector defining the
window sizes (in the same time units, usually sec-
onds, used for parameterperiod  in function
distdata , which is described in the next section)
for the jitter analysis.

Disturbance Data

 The PLATSIM package was developed with the
assumption that spacecraft simulations and analyses
would be performed for a variety of different disturbance
scenarios, and users would maintain their own distur-
bance database. Easy interactive access to the distur-
bance database is provided in PLATSIM through a
graphical user interface (GUI). The operation and capa-

bilities of the disturbance GUI are described in the “Dis-
turbance” section in chapter 6.

The PLATSIM disturbance data are communicated
to the main package through a user-supplied MATLAB
function distdata  in file distdata.m . This user-
supplied data file is used to provide a complete descrip-
tion of all spacecraft disturbance scenarios, which can
consist of several disturbance events. A disturbance
event is a force or torque time history acting on the plat-
form. This event is modeled in PLATSIM by a pure force
or torque effector (see section entitled “Common Data
Structure”) and a discretized force or torque time history
stored as a column vector, which is to be applied to the
platform through this effector.

 The actual structure of the user disturbance data is
described in the remainder of this section. The first
line(s) of file distdata.m  must have the following
form:

function [dist,w,period,cnames,...
         dnames instdat,mapping]...
         =distdata(casenum)

The data the user returns in the first three parameters
(dist , w, andperiod ) depends oncasenum , and the
data returned in the last four parameters (cnames ,
dnames, instdat , andmapping ) must be the same
independent of the value ofcasenum . The data returned
in dist , w, andperiod  model the one or more distur-
bance events of the disturbance scenario identified by
casenum .

The input fordistdata.m  is as follows:

• casenum : If PLATSIM calls distdata  with
casenum = 0 , then the user need only return the
last four parameters (cnames , dnames, instdat ,
andmapping ). If casenum  is input as a positive
integer between the values of 1 and the number of
rows in character matrixdnames, then all seven
parameters should be returned with the values in the
first three corresponding to the disturbance scenario
whose name is in rowcasenum  of dnames. All
other values ofcasenum  are invalid.

The output fordistdata.m  is as follows:

• dist : A matrix of four rows and as many columns
as necessary to describe one disturbance effector
(see section entitled “Common Data Structure”) for
each column of the matrixw.

• w: A matrix of force and/or torque disturbance time
history profiles. The number of rows inw is the num-
ber of time steps, and the number of columns inw is
the number of disturbance events. During simula-
tion, the time history in the first column ofw is



12

Chapter 3

applied to the disturbance effector indist  with the
smallest identification number, the second column of
w to the disturbance with the second smallest identi-
fication number, and so on.

• period : A scalar time step value used to define the
disturbance profile and also used as the sample
period for time discretization of the space platform
control system and plant matrices. The same discret-
ization period is used for all the events in a single
disturbance scenario. The parameterperiod  should
be returned in the same time units, usually seconds,
as the parameterwindow  returned by the function
instdata  described previously.

• cnames : A string matrix that contains the menu
heading labels for the disturbance GUI. The distur-
bance GUI creates a pull-down menu option for each
row in cnames . The entries incnames  are used for
menu labeling only and do not appear in output
documentation.

• dnames: A string matrix of disturbance scenario
case names. The rows indnames are used for label-
ing pull-down menu items in the disturbance GUI,
for labeling plot figures, for constructing file names
for the PostScript and ASCII jitter table output files,
and for constructing file names for the frequency
domain analysis output files containing transfer
function and Bode plot data. When a disturbance
scenario is selected, PLATSIM callsdistdata
with casenum  set equal to a number that correctly
corresponds to a row in the matrixdnames. The file
distdata.m  must return the disturbance case that
corresponds to the disturbance scenario defined by
casenum . Individual disturbance scenarios can be
“commented out” by editingdistdata.m  to return
the corresponding row ofdnames with an asterisk
(*) as the first character. The scenario still appears on
the disturbance GUI menu, but in a distinctive gray
type, and it is not selectable. However, PLATSIM
does not guard against the selection of a “com-
mented out” disturbance scenario in batch mode or
in command mode when the text version of the dis-
turbance selection menu is being used. (This alter-
nate menu is used when the UNIX environment vari-
able DISPLAY is determined by the MATLAB
functiongetenv  to be undefined.)

• instdat : The variablesinstdat  andmapping
together define whichdnames row entries appear
under a GUI pull-down menu for a particular
cnames  disturbance. The vectorinstdat  can be
any length and its entries can be in any numerical
order. The only limitation oninstdat  entries is
that they must be validdnames matrix row num-

bers. Remember that the entries ininstdat  corre-
spond to row numbers in thednames string matrix.

• mapping : The vectormapping , which must con-
tain nonnegative integers, defines the partitioning of
the instdat  vector required to map the entries in
dnames to the disturbance GUI labels created from
cnames . The number of entries in themapping
variable must equal the number of rows incnames .
Also, the sum of all entries inmapping  must equal
the number of elements ininstdat . For example,
if instdat  has 30 elements then, the MATLAB
commandsum(mapping)  must also equal 30.

As an example to illustrate the use of the parameters
cnames , dnames, instdat , andmapping , suppose
the file distdata.m  contains the following
commands:

cnames = str2mat(’Calibration’,’Tracking’);

dnames = str2mat(’Solar Array’,...
’Telescope calib’,’Antenna calib’);

dnames = str2mat(dnames,...
’Telescope track’, ’Antenna track’,...
’Antenna sweep’);

instdat=[1 2 3 1 4 5 6];

mapping=[3 4];

This disturbance database contains six disturbances
whose names are given in the six lines of thednames
matrix. When PLATSIM is run in GUI or command line
mode, two options on the disturbance menu are labeled
Calibration and Tracking. The Calibration submenu has
three items (mapping(1) = 3 ), which are from the
first three rows of thednames matrix (the first three
entries ofinstdat  are[1 2 3] ). The Tracking sub-
menu has four items (mapping(2) = 4 ), which are
taken from rows 1, 4, 5, and 6 ofdnames (the next four
entries ofinstdat  are [1 4 5 6] ). Note that the
same disturbance scenario (solar array in this example)
can be included in more than one category. The
MATLAB function str2mat  can be used to build these
character arrays.

An example of a typical disturbance data structure
matrix that is returned with proper execution of a
distdata.m  disturbance file is given as follows. The
example is a disturbance scenario that consists of two
distinct disturbance events. The first disturbance event is
a roll torque (coordinate direction 4) that is equally dis-
tributed across two FEM grid points. The second distur-
bance event is a yaw torque (coordinate direction 6) that
is applied at a single grid point.
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Note that the number of distinct elements in the third
row of dist , corresponding to the disturbance numbers,
and the column dimension of the disturbancew must be
the same. In the previous example,w must have two
equal length columns. Furthermore, the mapping
between the disturbance numbers and the columns ofw is
based upon the sorted order (from lowest to highest) of
the disturbance numbers. That is, the first disturbance
w(:,1) is applied at the finite element grid point corre-
sponding to the smallest disturbance number. In the pre-
vious example,w(:,1) corresponds to disturbance 100,
and w(:,2) corresponds to disturbance 150. The
PLATSIM package is not capable of detecting whether
or not the user complies with this sorted-order mapping
convention.

The input variablecasenum  to the user-provided
file distdata.m  is used to select a particular distur-
bance scenario from the user-provided database. The
value of casenum  should correspond to a valid row
number in thednames string matrix. For all nonbatch
mode operations, the value ofcasenum  is set by the dis-
turbance module’s GUI. In batch mode, the value of
casenum  is set in the batch mode input file. The value
casenum=0  is reserved for internal use.

Space Platform Control System

The space platform control system is provided by a
call to MATLAB function formscs  in a user-supplied
file formscs.m . This routine assumes that the space-
craft control system of the platform is represented by lin-
ear time-invariant dynamics. Note that routineformscs
can be used to model the attitude control system as well
as any additional control system that augments the atti-

dist

329526 329527 329526

4 4 6

100 100 150

0.5 0.5 1

=

tude control system for enhanced performance, for exam-
ple, flexible body control, local payload isolation, or
disturbance rejection. The first line of fileformscs.m
must have the following form:

function [ascs,bscs,cscs]=formscs

where the output parametersascs , bscs , and cscs
denote the state matrix, the input influence matrix, and
the output influence matrix of the space platform control
system, respectively. For time domain analysis, these
matrices are subsequently discretized by the MATLAB
routinec2d  by using a sampling period equal to the inte-
gration step size, which PLATSIM gets from parameter
period of user-supplied filedistdata.m .

Currently, the contents of fileformscs.m  in
appendix B correspond to the attitude control system of
the EOS-AM-1 spacecraft, with the exception that reac-
tion wheel dynamics or output quantization are not
included. The user must replace or modify the contents
of formscs.m  to model control systems for platforms
other than EOS-AM-1. However, the user has to ensure
that the calling sequence in the revisedformscs.m
remains the same; that is, the order and number of the
output variables remain unchanged. The following
assumptions are made informscs :

1.  PLATSIM assumes that the space platform control
system is implemented with a negative feedback
connection. (See eq. (6).) The number of space
platform control system inputs are assumed to
equal the number of measurement outputs of the
plant. Moreover, a straight connection exists
between the measurement outputs of the plant and
the inputs of the space platform control system.

2.  The number of space platform control system out-
puts are assumed to equal the number of control
inputs to the plant. Moreover, a straight connection
exists between the outputs of the space platform
control system and the inputs of the plant.
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PLATSIM Output

PLATSIM returns its results to its users in two gen-
eral manners—interactive and permanent. Interactive
output includes MATLAB workspace variables that are
set to the results of PLATSIM calculations and plots and
tables displayed in MATLAB figure windows. Perma-
nent output consists of a variety of files. The most useful
of the PLATSIM workspace variables can be captured in
MATLAB MAT-files. Plots can be output as encapsu-
lated PostScript files. Tables of jitter values are output as
both ASCII and PostScript files. In the following sec-
tions, general file naming conventions are given first and
the modifications necessary for PC file-naming conven-
tions are given at the end of each section.

Time Domain Analysis

Full Time Histories

When PLATSIM is performing time domain analy-
sis, it first calculates the time histories of the selected
performance outputs in response to the selected distur-
bance scenario. The user has two choices. Either a sepa-
rate simulation is performed for each individual
disturbance event in the scenario (this is the default), or a
simulation is performed showing the response when all
events of the disturbance scenario are applied simulta-
neously. These simulations have the potential to produce
a large amount of data. The results of each simulation are
contained in a variabley, which contains one column for
each performance measurement output and one row for
each row in the user-supplied disturbance time histories
used to drive the simulation.

When the PLATSIM script has finished the time
domain analysis, if multiple simulations have been per-
formed, only the most recent one (corresponding to the
disturbance event with the highest identification number)
remains in the variabley. The others have been over-
written to prevent excessive use of computer memory. If
the user needs these full time histories, the user can elect
to have them written to MAT-files. Filey1.mat  con-
tains the time history for the first disturbance event
(which is the default case) or it contains the time history
for all events simultaneously (if that choice is made). If
more than one disturbance event is used and they are
being run individually, the additional time histories are in
files y2.mat , y3.mat ,..., up to as many as are needed.

Each file contains the time history in variabley as previ-
ously stated, a scalar variable period that contains the
time increment between discrete points of the simulation,
and a character arrayinstr  whose rows contain the
names of the performance outputs that are being simu-
lated. Once again, the user is cautioned to be careful
about requesting these files because depending on the
numbers of performance outputs, time steps of simula-
tion, and disturbance events, they can be large and
require significant disk space.

Time History Plots

The user can elect to have the time histories plotted
on screen and also elect to write EPS files of the on-
screen plots (this is the default). If the latter is chosen,
then a reduced form of the data is plotted. Although some
simulations have involved a hundred thousand or even a
million time steps, the reduced data typically involves
vectors of length less than ten thousand. The reduction is
performed in such a manner (see chapter 15) that the
visual effect of plotting the reduced data is virtually iden-
tical to that of plotting the full time history. Thus, the
results are faster on-screen plotting, faster writing of EPS
files, smaller PostScript files, and faster printing of these
files by a PostScript printer. (The time required for a
printer to process the PostScript file has been seen to
decrease from more than 30 min when printing a plot
made from a full time history of 100000 points to less
than 2 min to print a plot made from the reduced data.)

If each disturbance event is simulated individually,
then one time history is generated for each combination
of performance measurement output and disturbance
event. If the disturbance events are run simultaneously,
then one time history exists per performance measure-
ment output. The reduced data from a typical time his-
tory are contained in a MATLAB variable with a name
such asp342_1 . The number 342 is a performance out-
put identification number, taken from the third row of the
user-supplied matrixpout . (See chapter 3.) The num-
ber 1 indicates that this is the response to the first event
in the chosen disturbance scenario when the disturbance
events are run separately, or it indicates that this is the
response when the disturbance events are run simulta-
neously. If more than one event occurs in the disturbance
scenario and if they are run separately, then the reduced
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response to the second event has a number 2 after the
underscore, and so on. The variablep342_1  (or like
variables) is a two-column matrix, with the number of
rows being somewhere between 2 and 4 times the value
of execution time parameternplpts . (See chapter 15
and appendix C.) The plots are made by plotting the sec-
ond column of this variable as a function of the first
column.

All these variables are saved in a MATLAB
MAT-file with a name such asMODIS_static_
imbalance_1_time.mat . The MODIS_static_
imbalance  part of the name comes from replacing any
blanks with underscore characters in the name for the
disturbance used in this simulation. This name was given
in the array dnames returned by user-supplied
MATLAB function distdata . The number1 is used if
this data comes from the first disturbance event in the
disturbance scenario when events are being run sepa-
rately and is also used if the events are run simulta-
neously. If the events are being run separately, the
second event would have a number2. The time  in the
name distinguishes this file from a similarly named file
from the frequency analysis part of PLATSIM.

If the user chooses the option Plot with Hardcopy,
PLATSIM writes EPS files of the plots, which the user
can send to the printer. These files have names such as
MODIS_Yaw_1_time.eps . TheMODIS_Yaw part of
the name comes from replacing any blanks with under-
score characters in the name for the performance output
used in this simulation that was given in the second field
of the appropriate entry of the arrayinstr  returned by
user-supplied MATLAB functioninstdata . The num-
ber 1 andtime  follow the same conventions described
in the previous paragraph.

Jitter

If the calculation of jitter is elected (this is the
default), then the results of the jitter calculation are avail-
able to the user in several forms. If disturbance events are
run separately, then the results of the jitter calculation for
the first event are contained in the MATLAB variable
JITTER1 , those for the second event (if any) are in
JITTER2 , etc. Each of these variables is a matrix with
one column for each jitter window and one row for each
performance output. (The order of the rows is determined
by the numerical order of the identification numbers of
the performance outputs.) In addition, the total jitter vari-
able,JITTER , is just the sum of the individual jitter cal-
culations. If the disturbance events are run simul-

taneously, the results are contained in the variables
JITTER1  andJITTER , which in this case are identical.

The variableJITTER1  is preserved in the same file
as the variables containing the reduced time histories for
first event (or combined events). If the user chooses not
to plot the time histories but wants the jitter values, the
variableJITTER1  is the only thing in this file. Continu-
ing the example started in the section on time history
plots, JITTER1  would be in file MODIS_static_
imbalance_1_time.mat . If a second disturbance
event was being used,JITTER2  would be in file
MODIS_static_imbalance_2_time.mat . In ad-
dition, a file namedMODIS_static_imbalance_
time.mat  would be written containing onlyJITTER .

The table of jitter values is displayed on the screen.
If the events are run separately, a table is presented for
each event and another for the jitter totals. The worst
value in each column is displayed in a contrasting color
for emphasis. These tables are also written in both Post-
Script and ASCII files. The PostScript format tries to
emulate what is shown on the screen; however, if
too many performance measurement outputs exists, the
PostScript file prints two or more pages. The ASCII
format is more suitable for importing into a document.
If disturbance events are run separately, the Post-
Script files for the individual disturbance event jitter
results are saved in files with names such
as MODIS_static_imbalance_1_jitr.ps ,
MODIS_static_imbalance_2_jitr.ps . The
table with the overall totals is saved in
MODIS_static_imbalance_jitr.ps . For the
ASCII files, the names are the same except they have
the extensionout  instead ofps . If the simulation is
for  a single event in the disturbance scenario or  the
disturbance events are run simultaneously,  then only one
jitter result occurs. This result is written to the files
with names without event numbers. From the previous
example, these names would beMODIS_static_
imbalance_jitr.ps  and MODIS_static_
imbalance_jitr.out .

Example

As an example, suppose that PLATSIM is run with
the default values of all execution time parameters and
the example data distributed with the PLATSIM soft-
ware, which is based on the EOS-AM-1 spacecraft. Sup-
pose further that the disturbance scenario selected is
MODIS static imbalance. Then the following files are
generated by PLATSIM:
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The reduced time histories for the EOS-AM-1 instru-
ments, namely, CERES1, CERES2, MISR, MODIS,
MOPITT, NAVBASE, SWIR, TIR, and VNIR, are pro-
vided in the corresponding EPS files for roll, pitch, and
yaw axes with the extension.eps . For example, the file
CERES1_Roll_1_time.eps  contains the roll
response of the CERES1 instrument due to the first
MODIS static imbalance disturbance element (vector),
and VNIR_Yaw_2_time.eps  contains the yaw
response of the VNIR instrument due to the second
MODIS static imbalance disturbance element (vector).

A typical time history output in fileMISR_Roll_
2_time.eps  is shown in figure 2. This time history
was generated with the 703-mode model of the
EOS-AM-1 spacecraft being distributed with the
PLATSIM software.

The files MODIS_static_imbalance_1_
time.mat  and MODIS_static_imbalance_2_
time.mat  are MATLAB binary files that include the

reduced time history data for all EOS-AM-1 instruments
and the corresponding jitter values (in variables JITTER1
and JITTER2) for the first and the second MODIS static
imbalance disturbance elements (vectors), respectively.
File MODIS_static_imbalance_time.mat  is a
MATLAB binary file that has the overall jitter values
(in variable JITTER). The filesMODIS_static_
imbalance_1_jitr.out  and MODIS_static_
imbalance_2_jitr.out  are ASCII files that con-
tain the jitter values, in a tabular form, for the first and
the second MODIS static imbalance disturbance ele-
ments (vectors), respectively. The fileMODIS_
static_imbalance_jitr.out  is an ASCII file
containing the total jitter values in a tabular form. These
values are obtained through the direct summation of jitter
values in files MODIS_static_imbalance_1_
time.mat  and MODIS_static_imbalance_2_
time.mat . The following is an example of the jitter
data written to fileMODIS_static_imbalance_
1_jitr.out :

MODIS_static_imbalance_1_time.mat           MODIS_static_imbalance_2_time.mat

MODIS_static_imbalance_time.mat

CERES1_Pitch_1_time.eps CERES1_Pitch_2_time.eps CERES1_Roll_1_time.eps

CERES1_Roll_2_time.eps CERES1_Yaw_1_time.eps CERES1_Yaw_2_time.eps

CERES2_Pitch_1_time.eps CERES2_Pitch_2_time.eps CERES2_Roll_1_time.eps

CERES2_Roll_2_time.eps CERES2_Yaw_1_time.eps CERES2_Yaw_2_time.eps

MISR_Pitch_1_time.eps MISR_Pitch_2_time.eps MISR_Roll_1_time.eps

MISR_Roll_2_time.eps MISR_Yaw_1_time.eps MISR_Yaw_2_time.eps

MODIS_Pitch_1_time.eps MODIS_Pitch_2_time.eps MODIS_Roll_1_time.eps

MODIS_Roll_2_time.eps MODIS_Yaw_1_time.eps MODIS_Yaw_2_time.eps

MOPITT_Pitch_1_time.eps MOPITT_Pitch_2_time.eps MOPITT_Roll_1_time.eps

MOPITT_Roll_2_time.eps MOPITT_Yaw_1_time.eps MOPITT_Yaw_2_time.eps

NAVBASE_Pitch_1_time.eps NAVBASE_Pitch_2_time.eps NAVBASE_Roll_1_time.eps

NAVBASE_Roll_2_time.eps NAVBASE_Yaw_1_time.eps NAVBASE_Yaw_2_time.eps

SWIR_Pitch_1_time.eps SWIR_Pitch_2_time.eps SWIR_Roll_1_time.eps

SWIR_Roll_2_time.eps SWIR_Yaw_1_time.eps SWIR_Yaw_2_time.eps

TIR_Pitch_1_time.eps TIR_Pitch_2_time.eps TIR_Roll_1_time.eps

TIR_Roll_2_time.eps TIR_Yaw_1_time.eps TIR_Yaw_2_time.eps

VNIR_Pitch_1_time.eps VNIR_Pitch_2_time.eps VNIR_Roll_1_time.eps

VNIR_Roll_2_time.eps VNIR_Yaw_1_time.eps VNIR_Yaw_2_time.eps

MODIS_static_imbalance_1_jitr.out           MODIS_static_imbalance_2_jitr.out

MODIS_static_imbalance_jitr.out

MODIS_static_imbalance_1_jitr.ps            MODIS_static_imbalance_2_jitr.ps

MODIS_static_imbalance_jitr.ps
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The MODIS_static_imbalance_1_jitr .ps ,
MODIS_static_imbalance_2_jitr.ps , and
MODIS_static_imbalance_jitr.ps  files are
equivalent to their.out  counterpart files except that
they are in a PostScript format.

File-Naming Conventions for PC’s

PC’s running under DOS (disk operating system)
limit which character strings can be file names. Letters
are mapped to uppercase. The file name can have at most
eight characters, which are optionally followed by a
period and an extension of one to three characters.
PLATSIM knows it is running on a PC when the first
two characters of the character string returned by the
MATLAB function computer  are PC. If so, then the
output files are given alternate names that conform to PC
DOS restrictions.

The file that was namedMODIS_static_
imbalance_1_time.mat  is now named
JITTER1.MAT , and the file MODIS_static_
imbalance_time.mat  is now named
JITTER.MAT . In addition, MODIS_static_
imbalance_1_jitr.out  is now JITR_1.OUT

and MODIS_static_imbalance_jitr.out  is
JITR.OUT . The parallel .ps  files are similarly
renamed. TheCERES2_Yaw_1_time.eps  file in the
EOS-AM-1 example is now namedP9_2_T.EPS . The
number 9 comes from the identification number used for
the instrument namedCERES2 Yaw. Double-digit iden-
tification numbers are also used completely as in
P19_1_T.EPS  for SWIR_Roll_1_time.eps , but
only the low-order two digits of larger identification
numbers are used. Thus, the PC user must ensure that
instruments are uniquely identified by the two low-order
digits of their identification numbers.

Frequency Domain Analysis

Transfer Function Evaluation

When PLATSIM performs frequency domain analy-
sis, it first calculates an open- or closed-loop transfer
function from disturbances to performance outputs,
which can have multiple inputs or outputs. PLATSIM
generates the column vectorw of frequencies from infor-
mation contained in some execution control parameters.
For transfer function inputs, the user first specifies a

Disturbance Source: MODIS static imbalance(1)

Window 1.00 1.80 9.00 55.00 420.00 480.00 1000.00

NAVBASE Roll 3.19 3.82 7.55 12.50 12.50 12.50 12.50
NAVBASE Pitch 0.42 0.55 1.40 2.20 2.20 2.20 2.20
NAVBASE Yaw 3.97 4.96 14.19 26.88 26.88 26.88 26.88
CERES1 Roll 3.19 3.82 7.55 12.50 12.50 12.50 12.50
CERES1 Pitch 0.42 0.55 1.40 2.20 2.20 2.20 2.20
CERES1 Yaw 3.97 4.96 14.19 26.88 26.88 26.88 26.88
CERES2 Roll 3.19 3.82 7.55 12.50 12.50 12.50 12.50
CERES2 Pitch 0.42 0.55 1.40 2.20 2.20 2.20 2.20
CERES2 Yaw 3.97 4.96 14.19 26.88 26.88 26.88 26.88
MISR Roll 3.19 3.82 7.55 12.50 12.50 12.50 12.50
MISR Pitch 0.42 0.55 1.40 2.20 2.20 2.20 2.20
MISR Yaw 3.97 4.96 14.19 26.88 26.88 26.88 26.88
MODIS Roll 3.19 3.82 7.55 12.50 12.50 12.50 12.50
MODIS Pitch 0.42 0.55 1.40 2.20 2.20 2.20 2.20
MODIS Yaw 3.97 4.96 14.19 26.88 26.88 26.88 26.88
MOPITT Roll 3.19 3.82 7.55 12.50 12.50 12.50 12.50
MOPITT Pitch 0.42 0.55 1.40 2.20 2.20 2.20 2.20
MOPITT Yaw 3.97 4.96 14.19 26.88 26.88 26.88 26.88
SWIR Roll 3.19 3.82 7.55 12.50 12.50 12.50 12.50
SWIR Pitch 0.42 0.55 1.40 2.20 2.20 2.20 2.20
SWIR Yaw 3.97 4.96 14.19 26.88 26.88 26.88 26.88
TIR Roll 3.19 3.82 7.55 12.50 12.50 12.50 12.50
TIR Pitch 0.42 0.55 1.40 2.20 2.20 2.20 2.20
TIR Yaw 3.97 4.96 14.19 26.88 26.88 26.88 26.88
VNIR Roll 3.19 3.82 7.55 12.50 12.50 12.50 12.50
VNIR Pitch 0.42 0.55 1.40 2.20 2.20 2.20 2.20
VNIR Yaw 3.97 4.96 14.19 26.88 26.88 26.88 26.88

RUN DATE: 29-Apr-94
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disturbance scenario and PLATSIM uses all (the default)
or a user-specified subset of the events of that scenario as
inputs. The outputs are either all (the default) of the per-
formance output instruments or a user-specified subset.

The natural object to contain the results of these cal-
culations is a complex array with three indices (sub-
scripts), one each for the inputs, outputs, and frequency
values. MATLAB handles the complex part naturally,
but only accepts two indices. To overcome this limita-
tion, some data manipulation is used. Suppose that there
arei  inputs andj  outputs, and that the transfer function
is evaluated at the frequency inw(k)  and placed in the
temporary MATLAB variablegt , which is then a com-
plex matrix withj  rows andi  columns. PLATSIM then
transfers all information from the temporary matrixgt
into row k of the output variableg by a statement with
the form

g(k,:) = reshape(gt,1,j*i);

In other words, the columns ofgt  are stacked into a sin-
gle column vector and the transpose of that vector is
placed in the row ofg corresponding to the row ofw
from which the frequency value came. Then the gain in

decibelsm and the phase in degreesp are calculated as
follows:

m=20*log10(g);

p=(180.0/pi)*angle(g);

The variablesw, g, m, andp are MATLAB work-
space variables that are available to the user when
PLATSIM completes the frequency domain calculation.
They are also written in MATLAB binary form to a
MAT-file with a name such asMODIS_static_
imbalance_freq.mat . The MODIS_static_
imbalance  part of the name comes from replacing any
blanks with underscore characters in the name for the
disturbance used in this analysis. This name was given in
the dnames array returned by the user-supplied
MATLAB function distdata . The variablesndist
andinstr  are also in this file. The variablendist  is a
vector of integers that tells which events of the distur-
bance scenario were used in the calculation as inputs.
The variableinstr  is a matrix of characters, each row
of which names a performance instrument that was used
as an output in the calculation.

Figure 2.  Example of time-history plot.
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Bode Plots

If plotting is requested, the Bode plots for the
selected performance outputs in response to the selected
disturbances are plotted on screen. If “plot with hard-
copy” is selected, in addition to on-screen plots
PLATSIM writes EPS files of the plots. These files have
names such asMODIS_Yaw_1_freq.eps . The
MODIS_Yaw part of the name comes from replacing any
blanks with underscore characters in the name for the
performance output used in this analysis. This name was
defined in the second field of the appropriate entry of the
instr  array returned by the user-supplied MATLAB
function instdata . The number1 means that this was
the response to the first event in the chosen disturbance
scenario. Thefreq  part of the name distinguishes these
plots from the time-history plots.

Example

As an example, suppose that PLATSIM is run with
the default values of all execution time parameters except
thattdflag = ’no’  (which selects frequency domain
analysis) and also uses the example data distributed with

the PLATSIM software, which is based on the
EOS-AM-1 spacecraft. Suppose further that the distur-
bance scenario selected is MODIS static imbalance.
Then the following files are generated by PLATSIM.

The Bode plots for the EOS-AM-1 instruments,
namely, CERES1, CERES2, MISR, MODIS, MOPITT,
NAVBASE, SWIR, TIR, and VNIR, are provided in EPS
form in the corresponding files for roll, pitch, and yaw
axes with the extension.eps . For example, the file
CERES1_Roll_1_freq.eps  contains the Bode plot
for the roll response of the CERES1 instrument due to
the first MODIS static imbalance disturbance element
(vector), andVNIR_Yaw_2_time.eps  contains the
Bode plot for the yaw response of the VNIR instrument
due to the second MODIS static imbalance disturbance
element (vector). Figure 3 shows a sample Bode plot out-
put. This Bode plot was generated with the 703 mode
model being distributed with the PLATSIM software.
The fileMODIS_static_imbalance_freq.mat  is
a MATLAB binary file containing the results of the fre-
quency domain calculation in the form indicated at the
beginning of this section.

MODIS_static_imbalance_freq.mat

CERES1_Pitch_1_freq.eps CERES1_Pitch_2_freq.eps CERES1_Roll_1_freq.eps

CERES1_Roll_2_freq.eps CERES1_Yaw_1_freq.eps CERES1_Yaw_2_freq.eps

CERES2_Pitch_1_freq.eps CERES2_Pitch_2_freq.eps CERES2_Roll_1_freq.eps

CERES2_Roll_2_freq.eps CERES2_Yaw_1_freq.eps CERES2_Yaw_2_freq.eps

MISR_Pitch_1_freq.eps MISR_Pitch_2_freq.eps MISR_Roll_1_freq.eps

MISR_Roll_2_freq.eps MISR_Yaw_1_freq.eps MISR_Yaw_2_freq.eps

MODIS_Pitch_1_freq.eps MODIS_Pitch_2_freq.eps MODIS_Roll_1_freq.eps

MODIS_Roll_2_freq.eps MODIS_Yaw_1_freq.eps MODIS_Yaw_2_freq.eps

MOPITT_Pitch_1_freq.eps MOPITT_Pitch_2_freq.eps MOPITT_Roll_1_freq.eps

MOPITT_Roll_2_freq.eps MOPITT_Yaw_1_freq.eps MOPITT_Yaw_2_freq.eps

NAVBASE_Pitch_1_freq.eps NAVBASE_Pitch_2_freq.eps NAVBASE_Roll_1_freq.eps

NAVBASE_Roll_2_freq.eps NAVBASE_Yaw_1_freq.eps NAVBASE_Yaw_2_freq.eps

SWIR_Pitch_1_freq.eps SWIR_Pitch_2_freq.eps SWIR_Roll_1_freq.eps

SWIR_Roll_2_freq.eps SWIR_Yaw_1_freq.eps SWIR_Yaw_2_freq.eps

TIR_Pitch_1_freq.eps TIR_Pitch_2_freq.eps TIR_Roll_1_freq.eps

TIR_Roll_2_freq.eps TIR_Yaw_1_freq.eps TIR_Yaw_2_freq.eps

VNIR_Pitch_1_freq.eps VNIR_Pitch_2_freq.eps VNIR_Roll_1_freq.eps

VNIR_Roll_2_freq.eps VNIR_Yaw_1_freq.eps VNIR_Yaw_2_freq.eps
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File-Naming Conventions for PC’s

As in the section on time domain analysis, the file-
naming conventions just given do not work for PC’s. The
conventions used on PC’s are exemplified here. The file
that was named MODIS_static_imbalance_
freq.mat  is FREQ.MAT. What wasCERES2_Yaw_
1_freq.eps  in the EOS-AM-1 example is now named
P9_2_F.EPS . The number 9 comes from the identifica-

tion number used for the instrument named CERES2
Yaw. Double-digit identification numbers are used com-
pletely as in P19_1_F.EPS  for SWIR_Roll_1_
freq.eps , but only the two low-order digits of larger
identification numbers are used. Thus, the PC user must
ensure that instruments are uniquely identified by the two
low-order digits of their identification numbers. This
identification method allows for up to 99 events in a dis-
turbance scenario.

Figure 3.  Example of Bode plot.
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Program Execution Overview

Overview

As previously stated, PLATSIM operates in the
MATLAB technical computing environment at
MATLAB version 4.1 or higher. The Control System
Toolbox, by MathWorks, Inc., must also be available. To
run PLATSIM, the user must first start MATLAB, which
needs to know where to find the PLATSIM software and
the user-supplied data and M-files. At least one
PLATSIM execution control parameter,runmode , must
be set manually, and depending on the value of
runmode  and the user’s desire to override default val-
ues, additional execution control parameters may need to
be set manually as well. The user then invokes
PLATSIM. If runmode  is not ’batch’ , the user has
an opportunity to set more of the execution control para-
meters. (See chapters 6 and 7 on execution in GUI mode
and in command mode.) Finally, the time or frequency
domain analysis requested by the user is performed, any
requested plots are displayed, and any requested output
files are created.

File Management

Of the many ways files can be managed, the authors
give one suggestion here. Because most files that consti-
tute the permanent record of PLATSIM’s output have
names that do not reflect the disturbance scenario being
used, each disturbance scenario should be run in its own
subdirectory. Otherwise, the second disturbance scenario
run uses many of the same file names as the first and thus
write over output from the first disturbance scenario.
Furthermore, if time domain simulations are to be run by
using events in a disturbance scenario both individually
and simultaneously, these runs should be made in sepa-
rate directories to avoid file naming conflicts. The files
from the PLATSIM distribution should be kept in a sub-
directory of their own, and another directory should be
maintained for the user-supplied files specific to the
application being considered.

Suppose that PLATSIM is in directory/usr/
local/platdir , the user-supplied platform model
files are in /astro1/usr2/jdoe/observer , and
the specific disturbance analysis is being run in

/astro1/usr2/jdoe/observer/calib . Also
suppose that a file namedstartup.m  (ref. 2) is in this
last directory and the file included the following lines:

path(’/usr/local/platdir’,path);

path(’/astro1/usr2/jdoe/observer’,path);

Then each time MATLAB is started in direct-
ory /astro1/usr2/jdoe/observer/calib ,
MATLAB executes filestartup.m  and then appropri-
ately sets the MATLABPATH variable. When the
PLATSIM makefile  is executed with the UNIXmake
utility, a templatestartup.m  file is created. The user
can use this file to access the EOS-AM-1 example data
included with PLATSIM or modify the second path
statement to point to the user’s own data.

Execution Control Parameters

The execution of PLATSIM is controlled by some
20 execution control parameters. One of these,
runmode , must be set by the user before invoking
PLATSIM. The acceptable values forrunmode  are
’GUI’ , ’command’ , and ’batch’ . (Only the first
character is significant, and PLATSIM is insensitive to
the case of characters in runmode.) Depending on which
mode PLATSIM is run in and what default values the
user wants to change, the user may need to set some
other execution control parameters by MATLAB assign-
ment statements before PLATSIM is invoked. The GUI
mode (runmode=’GUI’ ) and the command mode give
the user a more user-friendly access to some of these
parameters. Appendix C contains a complete list of exe-
cution control parameter names, functions, and default
values.

On-Line Help

A small amount of on-line help is available. The
About option on the GUI interface window brings up an
overview of PLATSIM. The MATLAB command
help platdir  (assuming PLATSIM is installed in
directory platdir  as suggested in the appendix) pro-
vides a list of one-line descriptions of the various M-files
that constitute PLATSIM.
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GUI Execution Mode

A graphical user interface has been developed for
PLATSIM, which uses MATLAB’s Handle Graphics
available in MATLAB version 4. The objective of this
GUI is to provide the user with a convenient and intuitive
way to set PLATSIM execution control parameters. Fig-
ure 4 shows a screen image of the PLATSIM GUI. The
basic interface consists of five menu options (MATLAB
uimenu  functions) and two slider controls (MATLAB
uicontrol  functions). In addition to setting execution
control parameters, the GUI also provides the user with
easy access to some common MATLAB workspace com-
mands. The GUI Mode can be executed by typing
runmode=’gui’  followed by platsim  in the
MATLAB command window. Normal execution of the

PLATSIM GUI creates a file calledplatsim.mat  that
contains parameters associated with various GUI menus
and sliders. A complete description of all PLATSIM GUI
features is given in the following sections. If the user
wants to override the default actions controlled by execu-
tion control parametersphold , nplpts , or gad , then
these parameters must be set by hand in the MATLAB
command window before PLATSIM is invoked.

Workspace

The Workspace menu has the following MATLAB
function commands: New Figure, Clear & Reset
Defaults, Who, Whos, Save, and Close Window. A

Figure 4.  Graphical user interface for PLATSIM jitter analysis package.
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complete description of all Workspace menu functions,
with the exception of Clear & Reset Defaults, can be
found in theMATLAB Reference Guide (ref. 2). The
Clear & Reset Defaults function requires the existence of
a file calledplatsim.mat , which is automatically cre-
ated in the current working directory. Selecting the Clear
& Reset Defaults menu executes various MATLAB com-
mands, includingclear  and load platsim.mat .
The result of this action effectively clears all variables
except those needed by the GUI. In addition to clearing
all variables, the values of all buttons and sliders are reset
to their default values.

Options

The Options menu provides access to several
PLATSIM analysis and documentation output functions.
This menu allows the user to select the following
PLATSIM features: performance output locations, inter-
active graphical modification of the structural model
(frequencies and damping ratios), the level of simulation
output documentation, feedback control, jitter analysis,
and whether output time-history data should be saved.
The following sections contain detailed descriptions of
the Options menu features.

• The Performance Outputs menu provides access to
the performance output selection figure window. The
performance output window allows users to select a
full or partial set of output locations from those
defined in the user-defined functioninstdata.m .
This utility allows for a large database of out-
put locations to be maintained in function
instdata.m  without the computational expense
of solving for all outputs in every analysis. The
labeling and grouping of the menu items for the per-
formance output window is determined by the third
field in the workspace variableinstr , which is
defined in the user-defined functioninstdata.m .
All entries with the same character string in the third
field of instr  are located under the same pull-
down menu, and this common character string is
used to title the menu group. The performance out-
put selection figure window has three button func-
tions. These buttons are used to select all outputs,
deselect all outputs, or close the selection window,
and they are labeled Set All, Clear All, and Close. A
user can select performance outputs by using the
Select All option for each group or the master Set All
button for all groups. Any currently selected output
can be deselected by simply reselecting the item or
selecting the Clear All button. Currently, because of
a documented program error in MATLAB 4.1, the
Close button has been disabled to eliminate the
occurrence of bus errors on some UNIX machines
when PLATSIM is running under versions prior

to 4.2. When the Close button is disabled, the perfor-
mance output selection figure window can be closed
by issuing aclose(perfig)  command from the
MATLAB workspace.

• The Control menu allows the user to select between
open-loop and closed-loop analysis of the spacecraft.
The space platform control system must be defined
in the user-changeable fileformscs.m . The default
setting for the Control menu is closed-loop analysis.

• The Plotting & Printing menu provides the user with
the same options as given for the Command-Driven
mode, as described in the following chapter. The
default settings for this menu arepltflag=
’yes’;  andprtflag=’yes’; .

• The Perform Jitter Analysis menu allows the user to
select whether jitter analysis is performed (this is the
default) or not.

• The Save Output Time History menu provides the
user with the option to save the complete output time
history data. In other words, variablesy  andinstr
are saved if this option is set to yes. However, select-
ing yes for this option has the potential of creating a
large file and therefore should be used with caution.
The output data are saved in one file per disturbance
event; these files are labeledy1.mat , y2.mat ,
y3.mat , etc. The default setting for this option is
saveflag=’no’ . This variable is optional; hence,
the user is not prompted when using PLATSIM in
the command-line driven mode. In this mode, issu-
ing the MATLAB commandsaveflag=’yes’
before issuingplatsim  saves the output time-
history data.

• The Modify Plant Model menu has two menu
options: Frequencies and Damping Ratios. These
menu options allow the user to graphically modify or
define both frequency uncertainties and modal
damping ratios. Details for using these options
follow.

Frequency Ratio Modification

The Frequencies option of the Modify Plant Model
menu provides the user access to a graphical interface
tool, which is shown in figure 5. This interface tool has a
variety of options for adding modal uncertainties to the
plant structural model. Two basic types of uncertainties
are considered: a constant scaling and a random scaling.
The constant scaling uncertainties are defined as follows:

ωi
* ωi

o ωi
o

S×+=
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The random scaling uncertainties are defined as follows:

The variablesS andRi in the previous equations repre-
sent a user-defined constant scale factor and a set of ran-
dom numbers uniformly distributed over the interval
(0, 1) (by the MATLAB random number generator
rand ). The frequency spectrum, as defined in files
omega.dat  or omega.mat , can be divided into inter-
vals (ranges) to allow for different levels of uncertainties
for different ranges of modes within the frequency spec-
trum. The user can change the number of ranges by
selecting the interface button labeled Ranges. A range, as
defined by the interface, is denoted by the interval (a, b],
wherea and b are the lower and upper bounds on the
interval, respectively. For example, ifa = 10 andb = 20,
then all modes from 11 through 20 (including mode 20)
have the sameS factor. The lower and upper bounds
(range) for the interval can be changed by using a mouse
to click and drag on the vertical lines that represent inter-
val ranges. The scale factors (value) can also be changed
by using a mouse to click and drag on the shaded regions
between the vertical lines. Both range and value can be
changed with keyboard entries once the corresponding

ωi
* ωi

o ωi
o

Ri S××+=

graphical element has been activated. A range or value
element is activated by using the mouse to click on a ver-
tical line or shaded region, respectively. Once a graphical
element has been activated, its numeric value is dis-
played in the range or value text area of the graphical
interface.

A user can choose between constant or random scal-
ing by using the Scaling button (constant is the default
setting). The frequency spectrum axis can be changed
from Mode Number (default setting) to Frequency (Hz)
by using the top button on the interface. Other features
include Reset, File, and Mode-by-Mode. The Reset but-
ton resets the frequency uncertainty scale factor to 0 for
all modes. The File button allows the user to either save
the current frequency uncertainties to a.mat  file or load
a preexisting.mat  file containing frequency uncertain-
ties. The Mode-by-Mode button provides access to a
graphical interface that allows convenient mode-at-a-
time frequency modifications.

Figure 6 shows a screen image of the Mode-by-
Mode graphical interface. This interface gives the user a
list of frequencies of all modes displayed in a read-only
text window on the right side of the interface. The user
can use the Change Selection buttons to scroll through

Figure 5.  Spacecraft modal uncertainty graphical user interface.
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the list of frequencies or use the Frequency of Interest
text field to enter a particular frequency region of
interest. The value in hertz of the currently selected mode
is displayed in the Desired Value text field. The currently
selected mode is shown between the two horizontal
dashed lines. The value of this mode can be changed by
either deleting the text and reentering a new value or by
scaling it with any arithmetic operator, for example, +,−,
* for multiplication, or / for division. Additional options
on the mode-by-mode graphical interface include Reset,
Undo, and Close. The Reset button restores the modal
frequencies to their nominal values as defined with the
interface in figure 5, and the Undo button clears only the
last frequency modification. The Close button closes the
interface and accepts all frequency changes. A final note
on frequency modifications is that each time the Fre-
quencies submenu is selected, the frequencies defined in
files omega.dat  or omega.mat  are used as the initial
values.

Damping Ratio Modification

The Damping Ratios option from the Modify Plant
Model menu provides the user access to a graphical tool
for defining or modifying the spacecraft’s modal damp-

ing schedule. The operation of the damping schedule
graphical interface is similar to the frequency modifica-
tion graphical interface. The graphical damping tool
allows users to easily modify elements within the struc-
tural damping matrix. Structural damping ratios and
ranges are specified by using a mouse to click and drag
on graphical elements that represent modal damping
ratios and ranges. Keyboard entries are also permitted
once a modal damping range or value element has been
activated by a mouse click. (See previous frequency
modification description.) Damping schedules can also
be saved or loaded by using the File button. This GUI
feature uses, as its default damping schedule, the sched-
ule defined in the user-changeable filemkdamp.m. If
mkdamp.m has not been defined, then a default damping
schedule of 0.25 percent is assumed for all modes.

Analysis

The Analysis menu allows the user to select between
either time domain or frequency domain analysis modes.
The time domain and frequency domain modes are mutu-
ally exclusive options; that is, PLATSIM does not allow
for simultaneous time and frequency domain analyses.
Selecting the button labeled frequency domain analysis

Figure 6.  Mode-by-Mode frequency modification graphical user interface.
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changes the functionality of the slider in the lower right
corner of the main PLATSIM GUI and displays an addi-
tional figure window for setting frequency domain
parameters. The additional figure window is closed when
the frequency domain analysis is started or when fre-
quency domain is no longer the mode of analysis.

 Additional options under the Analysis top-level
menu are Display Parameters, Progress Meter, and Begin
Analysis. Selecting the Display Parameters button
echoes the current values of PLATSIM parameters in the
MATLAB command window. Progress Meter is selected
by default and can be deselected by clicking on it with
the mouse. During time domain analysis, if Progress
Meter is selected, a graphic meter is displayed that shows
the percent completion of the simulation response to the
current disturbance event. Selecting Begin Analysis exe-
cutes the MATLAB script file plattime.m  or
platfreq.m  for time or frequency domain analyses,
respectively. Once an analysis, time or frequency
domain, has been started, all GUI functions are disabled.
User control of the GUI is not returned until the analysis
is finished. As of MATLAB version 4.2, the user can ter-
minate the analysis at any time by sending an interrupt
signal (Control C on most UNIX workstations) from the
MATLAB command window unless both the Progress
Meter is turned on and the analysis is performed by
MEX-file (as opposed to M-file). Even if MATLAB is
unresponsive to the interrupt signal, the system responds
to the suspend signal (typically, control Z). The user
resorting to this expedient should remember to kill the
suspended process.

Disturbance

The Disturbance menu allows the user to select the
disturbance model to be used in the PLATSIM analysis
as well as select how multielement disturbance scenarios
are handled in time simulations. The submenu Select
Disturbances provides the user with access to the distur-
bance module, which is described in detail in chapter 11.
The submenus Run Disturbances Separately and Run
Disturbances Together control whether several simula-
tions are run, one for each individual disturbance event,
or whether the result of all disturbance events acting
simultaneously is simulated. Typically, jitter analysis is
performed by using individual disturbance events (i.e.,
run separately), and the contribution of all responses are
summed together. However, to determine overall space-
craft response at various output locations, the Run Dis-
turbances Together option provides a more useful
approach. Selecting Run Disturbances Together sets the
workspace variablemultflag  to yes (the default is no).
Themultflag  variable is considered to be an optional

time domain execution control parameter; hence, the user
is not prompted for its value when using PLATSIM in
the command-line driven mode. To run the disturbances
together when using PLATSIM in the command-line
mode, the user should issue the following MATLAB
command before issuingplatsim :

>> multflag=’yes’

Quit

The Quit button simply quits the current MATLAB
session without saving any workspace variables.

Number of Modes Slider

A slider control can be used to set the number of
modes to be included in the analysis. The slider allows
the user to use the mouse to move a sliding bar that sets
the numeric input for the value in the text field of the
slider. The slider moves according to the instructions
given in the MATLAB 4.1 Release Notes: “When you
mouse on an arrow, the slider position indicator (and the
associated slider value) moves in the indicated direction
by a value of 1/100th of the total range. Clicking the
mouse while the pointer is in the trough moves the slider
1/10th of the total range.” Currently, the total range for
the number of modes is set to 600. Therefore, one click
on the position indicator of the mode slider sets the num-
ber of modes equal to six.

The values of the sliders can also be changed by
clicking the mouse in the text field and typing the desired
scalar or vector values. A scalar entry of 100 is equiva-
lent to [1:100]  in MATLAB notation; that is, the first
100 modes are used in the simulation. Vector entries are
used when multiple mode ranges are desired or when
mode range starting points do not include the first mode.
All vector entries must follow MATLAB’s syntax. For
example, to capture the rigid body response plus the flex-
ible body response between modes 100 and 200, the user
would enter[1:6 100:200]  in the slider text field.
Negative scalar values are also permitted and used to
indicate that a single mode is used in the simulation. For
example, if a text field entry of−100 is used, only mode
100 is used in the simulation. A slider value of 0 (the
default) implies that all available modes are used in the
simulation. The user must enter mode numbers in the text
field for modes greater than 600.

Clip Window Slider/Range of Disturbance
Events

This GUI slider serves a dual role. In time domain
analysis, the Clip Window Slider is used to define the
clip window (tclip ), and in frequency domain
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analysis, it is used to define the subset of disturbance
events inputs (ndist ) for a given disturbance scenario.
The functionality of this slider is similar to that of the

mode slider. Definition of thetclip  andndist  execu-
tion control parameters are provided in appendix C. The
default value of the Clip Window Slider is 0.
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Command-Driven Execution Mode

 In command-driven mode, the user can set many of
the execution control parameters by responses to ques-
tions from PLATSIM. To access and execute PLATSIM
in command-driven mode, one must be running
MATLAB 4.1 or higher. The MATLABPATH variable
must be set properly so that MATLAB knows where to
find PLATSIM and the user’s model of the platform. In
MATLAB, the user must issue the command
runmode=’command’;  set any PLATSIM execution
control parameters that are not accessible through
responses to PLATSIM questions, and issue the com-
mandplatsim  to MATLAB. These execution control
parameters used by both time and frequency domain
analyses are as follows:phold  to set the maximum time
that any given plot is held on the screen;gad  to adjust
the gains matrix, anddesint  to select a proper subset
of the performance output instruments defined in the
user-supplied fileinstdata.m . Complete definitions
of all execution control parameters are given in
appendix C.

Time Domain Analysis

Additional execution control parameters that apply
to time domain analysis are as follows:multflag ,
which must be set to yes if multiple events in a
disturbance scenario are to be run simultaneously;
saveflag , which must be set to yes if the full time his-
tories are to be written to MAT-files;jtrflag , which
must be set to no if no jitter analysis is desired;tclip ,
which must be set to a positive value in the time units
used in the time-history analysis if the user wants to dis-
regard an initial segment of the time history during jitter
analysis; andnplpts , which must be set to a value if
the user does not want the default value for the number
of points to use in reducing time-history data for plotting.
Additionally, the performance meter, which is on by
default, can be turned off by settingpmflag  to no.

After the user has set the desired execution control
parameters, theplatsim  command is issued. The user
then performs the following steps:

1. Accept the default value, yes, for the time domain
analysis prompt by entering a carriage return.

2. With the left mouse button, the user should choose
a disturbance sequence from the MATLAB pop-up

menu that appears on the screen. The menu dis-
appears after a choice has been made. (See chap-
ter 11 for a full description of the disturbances
menu.) If PLATSIM has reason to believe that the
user’s terminal does not support graphics, then a
text menu with numbered options is used instead of
the GUI menu.

3. After receiving the promptEnter number of
modes to use (enter 0 for all) [0]? , the
user should provide the number or range of space-
craft modes to be used in the analysis. To use all
modes given in the file omega.mat  (or
omega.dat ), enter0 or accept the default with a
carriage return. To use the firstk modes in the anal-
ysis, enterk . To use a mixed range of modes (e.g.,
modes 4 to 8, 300, and 450 to 480), enter a
MATLAB vector [4:8,300,450:480] . To use
a single  mode, such as mode k, enter-k .

4. After receiving the promptPlot results
[yes]? , enteryes , y, or carriage return for the
time histories to be reduced and plotted on the
graphics display. To obtain jitter results without
plotting, enterno  or n.

5.  After requesting plotting (item 4) and receiving the
promptPrint results [yes]? , enteryes , y,
or carriage return for the plots to be printed to an
encapsulated PostScript file. Otherwise, enterno
or n.

6. After receiving the prompt Closed-loop
Analysis [yes]? , enter yes , y, or carriage
return for a closed-loop analysis with the spacecraft
control system. Otherwise, enterno  or n.

A typical PLATSIM session in a command-driven
mode is presented in the following computer listing for
an EOS-AM-1 disturbance scenario. The commands and
command responses have been highlighted in bold. Any-
thing not in bold was generated by the program. A car-
riage return used to accept a default value is shown as
<CR>.

>> runmode=’c’;
>> desint=13:15;
>> pmflag=’n’;
>> platsim
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Time Domain Analysis [yes]? <CR>

Form the disturbance vector and
instrument data

Selected disturbance case:
MODIS static imbalance

Task completed in 7.45 seconds

Form the continuous plant matrices

Enter range of modes to use (enter 0
for all) [0]? [1:6,13:20,25]

Task completed in 5.417 seconds

Discretize the plant dynamics
Task completed in 0.1167 seconds

Plot results [yes]? <CR>

Print results [yes]? n

Perform linear discrete simulation

Closed-loop Analysis [yes]? n

Initiating simulation for disturbance
vector 1

Task completed in 21.02 seconds

Perform jitter analysis
Task completed in 6.45 seconds
Current plot held

Truncate, plot, and print time
histories

Task completed in 7.317 seconds

Simulation for disturbance vector 1
completed

Initiating simulation for disturbance
vector 2

Task completed in 19.53 seconds

Perform jitter analysis
Task completed in 6.417 seconds
Current plot held

Truncate, plot, and print time
histories

Task completed in 7.467 seconds

Simulation for disturbance vector 2
completed

Current plot held

PROGRAM COMPLETED
Total cpu time = 86.65 seconds

In this example, setting the execution control param-
eterdesint  to 13:15  before invoking PLATSIM sim-
ulates the response of only three performance outputs
that were assigned identification numbers 13, 14, and 15.
These identification numbers are defined in the user-
supplied MATLAB function in fileinstdata.m . The
first command response chooses time domain analysis by
accepting the default. Note, the second command
response, which is used to choose a disturbance scenario,
is a mouse command from the menu shown in figure 7,
and thus has not been included in this session. PLATSIM
is then asked to build a model of the plant with modes 1
through 6, 13 through 20, and 25. The default to plot
results is accepted; thus, the data are reduced for plotting,
plots are displayed on the screen, and the plot data are
written to a MATLAB MAT-file. The user declines print
results; thus, the EPS files of the plots are not created.
The last user response selects open-loop analysis.

Frequency Domain Analysis

To perform frequency domain analysis, after setting
any desired execution control parameters and issuing the
platsim  command, the user performs the following
steps:

1. Respond withno  or n to the time domain analysis
prompt. This response informs PLATSIM that fre-
quency domain analysis will be performed.

2. With the left mouse button, the user should choose
a disturbance scenario from the MATLAB pop-up
menu that appears on the screen. The menu dis-
appears after a choice has been made. (See chap-
ter 11 for a full description on the disturbances
menu.) If PLATSIM has reason to believe that the
computer terminal does not support graphics, then
a text menu with numbered options is used instead
of the GUI menu.

Figure 7.  Disturbance module pop-up menu.

PLATSIM DISTURBANCES
ASTER-TIR   MODIS  MOPITT  Misc. Disturbances

CHOOSE A DISTURBANCE MODEL
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3. After receiving the promptEnter number of
modes to use (enter 0 for all) [0]? ,
the user should provide the number or range of
spacecraft modes to be used in the analysis. To
use all modes given in the fileomega.mat  (or
omega.dat ), enter0 or accept the default with a
carriage return. To use the firstk modes in the
analysis, enterk . To use a mixed range of modes
(e.g., modes 4 to 8, 300, and 450 to 480), enter a
MATLAB vector [4:8,300,450:480] . To
use a single  mode, such as mode k, enter-k .

4. After receiving the promptEnter number of
disturbances to use (enter 0 for all)
[0]? , provide the number or range of distur-
bance events of the chosen disturbance scenario
to be used in the frequency analysis. To use all
events in the disturbance scenario, enter0 or a
carriage return to accept the default. To use the
first k events in the analysis, enterk . To use a
mixed range of events, (e.g., events 1, 3, 5, 6, and
7), enter a MATLAB vector[1,3,5:7] . To use
a single disturbance event, such as mode k,
enter-k .

5. After receiving the promptPlot results
[yes]? , enteryes , y, or carriage return for the
Bode logarithmic gain and phase diagrams to be
plotted on the graphics display. Otherwise, enter
no  or n.

6. After requesting plotting (item 5) and receiving
the prompt Print results [yes]? , enter
yes , y, or carriage return for the plots to be
printed to an EPS file. Otherwise, enterno  or n.

7. After receiving the promptClosed-loop
Analysis [yes]? , enteryes , y, or carriage
return for a closed-loop frequency analysis with
the spacecraft control system. Otherwise, enter
no  or n.

8. After receiving the promptInput the lower
bound value for frequency in power of
10 [-2]? , enter the desired lower bound fre-
quency value (decimals are accepted, carriage
return accepts the default). Note that the default
for the lower bound value is 0.01 (or 10−2).

9. After receiving the promptInput the upper
bound value for frequency in power of
10 [4]? , enter the desired upper bound fre-
quency value (decimals are accepted, carriage
return accepts the default). Note that the default
for the upper bound value is 10000.0 (or 104).

10. After receiving the promptInput the number
of points to be used in the frequency
plots [1000]? , enter the desired number of
points to be used in the generation of the fre-
quency response function matrix (carriage return
accepts the default). Note, the default number of
points is 1000.

A typical PLATSIM session in a command-driven
mode is presented in the following computer listing for
an EOS-AM-1 disturbance sequence. The commands and
command responses have been highlighted in bold. Any-
thing not in bold was generated by the program. A car-
riage return used to accept a default value is shown
as<CR>.

>> runmode=’c’;
>> platsim

Time Domain Analysis [yes]? n

Form the disturbance vector and
instrument data

Selected disturbance case:
MODIS static imbalance

Task completed in 7.417 seconds

Form the continuous plant matrices

Enter range of modes to use (enter 0
for all) [0]? 40

Task completed in 7.2 seconds

Enter range of disturbance events to
use (enter 0 for all) [0]? <CR>

Plot results [yes]? <CR>

Print results [yes]? <CR>

Closed-loop Analysis [yes]? <CR>

Input the lower bound value for fre-
quency in power of 10 [-2]? <CR>

Input the upper bound value for fre-
quency in power of 10 [4]? 3

Input the number of points to be used
in the frequency plots [1000]? 501

Form the Spacecraft Control System
(SCS) matrices

Task completed in 1.067 seconds

Initiating Bode Plot for the distur-
bance set

Task completed in 11.33 seconds

Plot and print Bode plots
Task completed in 89.75 seconds
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PROGRAM COMPLETED

Total cpu time = 117 seconds

 The first command response selects frequency
domain analysis. Note that the second command
response, which is used to choose a disturbance
sequence, is a mouse command from the menu shown in

figure 7 and thus has not been shown. In this example,
modes 1 through 40 are used in the plant model, all dis-
turbance elements of the disturbance sequence are cho-
sen for frequency domain analysis. Both plotting and
printing options are chosen; a closed-loop analysis is
requested; and a frequency range between 0.01 (10−2)
and 1000.0 (103) with 501 point discretization is chosen.
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Batch Mode

In batch mode, PLATSIM execution control parame-
ters are either set by the user with MATLAB assignment
statements before the commandplatsim  is entered or
used with their default value. These assignments can be
done in an interactive MATLAB window, but they are
primarily intended to allow the user to run PLATSIM in
the background with commands from a prewritten script.
With two exceptions, if the user has not defined an exe-
cution control parameter when the commandplatsim
is given, PLATSIM assigns a default value to the vari-
able. One of these exceptions,runmode , must be set
before PLATSIM is called. The other exception is
casenum . If PLATSIM is running in GUI or command
mode,casenum  is set by user responses to the Distur-
bances menu. In batch mode,casenum  must be set
before PLATSIM is called. Appendix C contains specifi-
cations for the individual execution control parameters.

Batch Mode Operation

 This section uses two examples to demonstrate the
batch mode operations.

Example 1. MATLAB is Started in a Directory
Containing Two Files

::::::::::::::
startup.m
::::::::::::::
format compact
path(’/scb3/usr5/eos/platdir’,path)
path(...
’/scb3/usr5/eos/platdir/eos_eg’,path)
::::::::::::::
runplat.m
::::::::::::::
diary % generate a diary of

% the run

runmode=’b’; % run in batch mode

tdflag = ’n’ % perform frequency
% domain analysis

nmode = 40; % use first 40 modes

clflag = ’n’; % run Bode plot open
% loop

casenum = 7; % use ’MODIS static
% imbalance’ disturbance
% from the EOS-AM-1
% example

prtflag = ’n’; % do not write .eps
% files

desint = 14; % only output is ’MODIS
% Pitch’

ndist = -2; % use only the second
% event from the ’MODIS
% static imbalance’
% disturbance

phold = 120; % give the user at least
% 2 minutes to look at
% plot

platsim % This should now run a
% single input/single
% output Bode plot
% using 1000 points
% logarithmically spaced
% between .01
% and 10,000.

MATLAB is started and the command>> runplat
is given. The necessary calculations are performed and
the Bode plot is displayed. To exit from MATLAB, the
command >> quit  is given. Now two new
files are in  the directory—MODIS_static_
imbalance_freq.mat , which contains the results of
the Bode calculation in MATLAB readable form, and
diary , which contains a record of events. The follow-
ing shows the contents ofdiary .

Selected disturbance case:
MODIS static imbalance

Form the continuous plant matrices
Task completed in 3.333 seconds

Form the Spacecraft Control System
(SCS) matrices

Task completed in 0.6833 seconds

Initiating Bode Plot for the distur-
bance set

Task completed in 0.55 seconds
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Plot and print Bode plots
Task completed in 39.35 seconds

PROGRAM COMPLETED
Total cpu time = 43.98 seconds
>> quit

1471741 flops.

 Example 2

This example uses a batch operation utility such as
the UNIX at  command. First a command script is pre-
pared and written to a file, saydoit , as follows. (Line
numbers are not present in the script, they have been
added here for reference purposes.)

1. setenv DISPLAY
2. /usr/local/matlab-4.1/bin/matlab\

<< EOF > mat-out
3. diary
4. runmode=’b’;

5. casenum=7;

6. pmflag=’n’;

7. platsim

8. quit

9. EOF

The UNIX commandat -m 20:00 doit  waits
until 8 p.m. and then starts executing the commands in
doit . Line 1 ofdoit  corrects a problem MATLAB has
on some systems with trying to run plotting commands
without being run from a logged-in terminal. Line 2
starts MATLAB running and uses the remaining lines as
input to MATLAB until it finds the EOF in line 9.
MATLAB then executes lines 3 through 8 causing it to
run PLATSIM in batch mode with disturbance number 7
(MODIS static imbalance) and with defaults for all other
run parameters exceptpmflag . When the job is done,
the user can obtain results from the files created by
PLATSIM.
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Time Domain Analysis Module

The fileplattime.m  is the main driver for the lin-
ear time domain simulation and jitter analysis program. It
connects the plant definition module, the spacecraft con-
trol system module, the disturbances module, the simula-
tion module, and the jitter analysis module. PLATSIM
takes advantage of the sparsity of the spacecraft dynamic
model system matrix to perform efficient open-loop and
closed-loop simulations. To take advantage of the open-
loop sparsity, PLATSIM individually discretizes the
plant and the controller models and then combines them
in a feedback loop. This loop is generally not restrictive
because almost all modern control systems are digitally
implemented. Theplattime  module calls various rou-
tines to form the open-loop plant and disturbance matri-
ces, to discretize the system matrices, to form the
spacecraft control system matrices, to obtain time simu-
lations of the performance outputs, to perform jitter anal-
ysis, and finally to document the results in MATLAB
binary, tabular ASCII, and graphical PostScript forms.
These routines are described in the order used as follows:

1. Routinedistrbs  (in file distrbs.m ) is used
to call user-supplied routinedistdata . From
the returned information,distrbs  can obtain
the disturbance profiles and the corresponding
grid points and directions for those disturbances
as well as the integration step size.

2. Routine instrmts  (in file instrmts.m ) is
used to call user-supplied routineinstdata .
From the returned information,instrmts  can
define instrument types, locations, directions, and
names as well as the window sizes for the jitter
analysis.

3. Routinerminstr  (in file rminstr.m ) is used
to redefine the performance output data according
to parameterdesint , which identifies those per-
formance outputs to be used in simulations and
jitter analysis.

4. Routine formplnt  (in file formplnt.m ) is
used to generate the sparse open-loop plant
matrices.

5. Routinediscrtz  (in file discrtz.m ) is used
to discretize the sparse system matrices with a
sampling period equal to the integration step size.

6. User-supplied routine formscs  (in file
formscs.m ) is used to generate the spacecraft
control system matrices. These matrices are sub-
sequently discretized by the MATLAB routine
c2d  with a sampling period equal to the integra-
tion step size.

7. Routine simuc  (in file simuc.m  or
simuc.mex* ) is used to perform the closed-
loop simulations for the discrete system.

8. Routine simuo  (in file simuo.m  or
simuo.mex* ) is used to perform the open-loop
simulations for the discrete system.

9. Routine jitter  (in file jitter.m  or
jitter.mex* ) is used to compute jitter values
from the time histories computed bysimuc  or
simuo  for the time windows defined by variable
window  in file instdata.m .

10. Routine jitterds  (in file jitterds.m ) is
used to generate the ASCII files that contain the
jitter results in tabular form.

11. Routinetable  (in file table.m ) is used to gen-
erate the PostScript files that contain the jitter
results in tabular form.

12. Routinetrplot4  (in file trplot4.mex* ) is
used to condense the time-history data in such a
way that hardcopy plots of the condensed time
histories have the same visual effect as plots of
the full time history.

The jitter and simulation analysis is started by call-
ing the jitter and simulation analysis module that resides
in a file namedplattime.m . The optional parameters
gad , tclip , desint , saveflag , and multflag
are used withinplattime  to provide additional capa-
bilities. The error and diagnostic messages generated by
plattime  (in file plattime.m ) are as follows:

1. In the command-line and GUI execution modes, if
a correct disturbancecasenum  is not selected
from the disturbances menu, then the following
message appears in the MATLAB window:

A proper disturbance casenum was
not specified, please select one
now.
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Solution: Choose a proper disturbancecasenum
from the pop-up menu. This error also stops execu-
tion in batch mode.

2. If the scalar parametertclip  defined is greater
than the simulation time and the execution mode is
command driven or menu driven, then the follow-
ing message appears in the MATLAB window:

• tclip is larger than tfinal;

• input a new value for tclip.
If the scalar parametertclip  defined is greater
than the simulation time and the execution mode is
batch, then the following message appears:

• tclip is larger than tfinal;
• tclip is set to 0.5*tfinal.”

Solution: Adjust tclip  or increase the simulation
time.
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Plant Definition Module

Continuous Model

 The Plant Definition module generates the open-
loop state matrix, the control input influence matrix, the
measurement and performance output influence matri-
ces, and the disturbance influence matrix. These matrices
are generated by routineformplnt . As mentioned ear-
lier, the plant dynamics in a first-order state space form is
given in equation (5) as

wherexs is the plant state vector,u is the spacecraft con-
trol system input vector,w is the disturbance vector,As is
the plant state matrix,Bs is the input influence matrix,Bd
is the disturbance influence matrix,C and Cpr are the
measurement and performance output influence matri-
ces, and  and  are the control input and distur-
bance feedthrough matrices. The respective structure of
these vectors and matrices are defined in chapter 2. How-
ever, because of the sparse nature of the open-loop state
matrix, this matrix is stored byformplnt  in the follow-
ing compact form:

In this form,ωi andζi represent the modal frequency and
modal damping ratio of modei. The symbolp represents
the number of modes included in the model. This com-
pact form reduces the storage requirements fromp × p to
2 × p and prepares the state matrix for PLATSIM sparse
computations. The routineformplnt  requires the fol-
lowing user-supplied inputs or input files:
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• In the command-driven mode,formplnt  prompts
the user for the range of structural modes to be used
in the analysis. The form of this input is discussed in
chapter 7.

• For the modal frequencies,formplnt  first looks
for a MATLAB binary file omega.mat . If such a
file does not exist,formplnt  then attempts to load
the ASCII fileomega.dat .

• For the structural mode shapes,formplnt  first
looks for a MATLAB binary filephi.mat.  If such
a file does not exist,formplnt  then attempts to
load the ASCII filephi.dat .

• As mentioned previously,formplnt  uses routine
mkdamp (in the user-supplied filemkdamp.m) to
generate the modal damping ratios.

The error and diagnostic messages generated by
formplnt  are as follows:

• If any of the mode numbers chosen for analysis is
greater than the number of modes available in the file
omega.dat  or omega.mat , then the following
message appears in the MATLAB window and pro-
gram execution stops:

An error has been detected in
file formplnt.m; maximum mode
number chosen is greater than
number of modes available; pro-
gram termination in formplnt.

Solution: Check the mode numbers and restart the
program.

• If the number of rows of arrayphi  (in file
phi.mat  or phi.dat ) is not an integer multiple
of the number of modal frequencies defined in file
omega.mat  or omega.dat , then the following
error message appears in the MATLAB window and
program execution stops:

The number of rows of phi (in file
phi.mat or phi.dat) must be an
integer multiple of the number of
elements of omega (in file
omega.mat or omega.dat). Program
termination in formplnt.
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Solution: Make thephi  andomega files consistent
and restart the program.

• If a grid point defined in fileinstdata.m  for the
spacecraft control system input is not defined in
arrayphi  (in file phi.mat  or phi.dat ), then the
following error message appears in the MATLAB
window and program execution stops:

An error has been detected in
file formplnt.m. A FEM space
platform control system input
grid number as referenced in file
instdata.m is not available in
file phi.dat or phi.mat. Program
termination in formplnt.

Solution: Check the first row of parameteract  in
file instdata.m , check file phi.dat  or
phi.mat , and restart the program.

• If a grid point used in fileinstdata.m  for the
measurement outputs is not defined in arrayphi  (in
file phi.mat  or phi.dat ), then the following
error message appears in the MATLAB window and
program execution stops:

An error has been detected in
file formplnt.m. A FEM measure-
ment output grid number as refer-
enced in file instdata.m is not
available in file phi.dat or
phi.mat. Program termination in
formplnt.

Solution: Check the first parametermout  in file
instdatas.m , check filephi.dat  or phi.mat ,
and restart the program.

• If a grid point used in fileinstdata.m  for the per-
formance outputs is not defined in arrayphi  (in file
phi.mat  or phi.dat ), then the following error
message appears in the MATLAB window and pro-
gram execution stops:

An error has been detected in
file formplnt.m. A FEM perfor-
mance output grid number as ref-
erenced in file instdata.m is not
available in file phi.dat or
phi.mat. Program termination in
formplnt.

Solution: Check the first row of parameterpout  in
file instdata.m , check file phi.dat  or
phi.mat , and restart the program.

• If a grid point used in filedistdata.m  for a distur-
bance sequence is not defined in arrayphi  (in file
phi.mat  or phi.dat ), then the following error

message appears in the MATLAB window and pro-
gram execution stops:

An error has been detected in
file formplnt.m. A FEM distur-
bance grid number as referenced
in file distdata.m is not avail-
able in file phi.dat or phi.mat
Program termination in formplnt.

Solution: Check file distdata.m  and file
phi.dat  or phi.mat  and restart the program.

Discrete Model

Routinediscrtz  (in file discrtz.m ) is used to
discretize the plant dynamics, with a zero-order hold, for
use in the simulation of the open-loop and closed-loop
response. This routine takes advantage of the sparsity of
the open-loop state matrix of the plant and discretizes the
dynamics of each mode separately. For example, for
modei the discretized dynamics is obtained by forming

where  is theith 2× 2 partition of state matrix ,
is a matrix formed by rows 2i − 1 and 2i of the control
input influence matrix ,  is a matrix formed by rows
2i − 1 and 2i of the disturbance influence matrix , and
the rows of 0’s are added to produce a square matrix .
Then, the exponential of  is computed as follows:

where , , and  are appropriate partitions of .
These partitions represent the discretized state matrix,
control input influence matrix, and disturbance influence
matrix for modei. The discretized plant matrices can be
written as

where , , and , respectively, represent the dis-
cretized state matrix in compact form, control input
influence matrix, and disturbance influence matrix of the
plant.
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Disturbance Module

The PLATSIM disturbance module provides the
capability to interactively select various disturbance sce-
narios with a graphical user interface. The disturbance
module also offers a command-line mode when
MATLAB is run in the terminal graphics mode. This
module also allows batch mode simulations. (See
chapter 8.)

The main PLATSIM GUI provides access to three
disturbance functions under the pull-down menu labeled
Disturbance. The three disturbance functions are labeled
Select Disturbances, Run Disturbances Separately, and
Run Disturbances Together. When the pull-down menu
labeled Select Disturbances is selected, an additional fig-
ure window with a top-level menu appears. Figure 7
shows this menu for the EOS example. The disturbance
window top-level menu displays labels pertaining to dis-
turbance scenario groups that consist of one or more dis-
turbance scenarios. A single instrument or system can
have multiple disturbance scenarios. For example, a
scanning telescope can have a disturbance scenario that
describes the forces and/or torques related to the motion
of a scanning mirror, and it can have a separate distur-
bance scenario for calibration operations.

The entries in thecnames  and dnames matrices
provide the names for the disturbance scenario groups
and the disturbance scenarios, respectively. (See section
on “Disturbance Data” of chapter 3.) Each disturbance
scenario (a row entry indnames) is a separate submenu
item under the top-level menu and can consist of single
or multiple disturbance events. String variables describ-
ing the disturbance scenarios are used for labeling time
history plots, submenus, items, and jitter file names. The
disturbance scenario group names are used only as label-
ing for menu buttons. A disturbance scenario can be
selected from the pull-down menu with a single click
from a mouse. Upon selection, the appropriate distur-
bance models, as defined in the user-provided file
distdata.m , are executed and instrument or system
disturbance data are loaded into the MATLAB work-
space. This procedure can take several seconds to com-
plete; actual time depends on the number of data points
and individual force or torque profiles that comprise the
disturbance scenario.

 If the user attempts to run a simulation without first
selecting a disturbance model, a warning message is dis-
played with instructions to select a disturbance. Then the
disturbance module figure window is displayed.

The PLATSIM disturbance module consists of two
internal functions (distrbs.m  and newmenu.m)
and a user-provided filedistdata.m . The file
distrbs.m  is the disturbance module executive file
and is used to call bothdistdata.m  andnewmenu.m.
In batch mode, the disturbance figure window is not dis-
played, and disturbance selection is accomplished by
predefining the variablecasenum . The batch mode
variablecasenum  must be assigned in the batch mode
input file to a valid disturbance scenario case number
(i.e., a validdnames row number). As described in the
batch mode operation section, the workspace variable
runmode=’batch’  is reserved as an indicator of
batch mode operation.

The functionnewmenu.m controls all GUI func-
tions for the PLATSIM disturbance module. This func-
tion displays a figure window with a top-level menu. The
labels for this menu correspond to the disturbance sce-
nario group labels stored in variablecnames . Each top-
level menu has several submenus corresponding to the
disturbance scenarios as referenced in their respective
rows of the matrixdnames. The output argument
casenum  refers to a row number indnames and is
passed back into the filedistdata.m .

The PLATSIM disturbance options labeled Run Dis-
turbances Separately and Run Disturbances Together
determine how simulation results are generated. If Run
Disturbances Separately is selected, the time history
response (including jitter results) for each disturbance
event in a particular disturbance scenario is calculated
separately. The total jitter results are then determined by
adding the contribution from each disturbance event.
When the overall dynamic response of the systems is
desired (i.e., the response of the system due to all distur-
bance events applied simultaneously), then Run Distur-
bances Together should be selected.
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Simulation Module

The simulation routine namedsimuc  (in file
simuc.m  or simuc.mex* ) takes advantage of the
sparsity of the plant system matices to perform efficient
time simulations for the closed-loop system. The open-
loop simulations are performed by the routinesimuo  (in
file simuo.m  or simuo.mex* ). These routines use the
sparse discrete model of the plant and the discrete model
of the spacecraft control system. A discrete simulation of
the open-loop and closed-loop behavior of the system is
performed through algebraic state propagation. The dis-
cretized dynamics of the plant and the spacecraft control
system from equation (7) on mathematical formulations
are as follows:

where  refers to the discrete form of the block diago-
nal form of chapter 2, and

The simulation routines take advantage of the sparsity of
discretized state matrix . The 2× p packed version of
the discrete system matrix is now denoted by . Then
the simulation routines propagate the plant states as
follows:
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where, for example,  uses MATLAB nota-
tion to represent a vector whose elements are the first,
third, fifth, etc., elements of ;  repre-
sents a vector using every other element from the second
column of  starting with the second row; and , ,

, u, andw denote the discrete plant state matrix, the
discrete spacecraft control input influence matrix, the
discrete disturbance influence matrix, the spacecraft con-
trol input vector, and the disturbance vector, res-
pectively. Symbols*  and .*  denote matrix multiplica-
tion and element-by-element vector multiplication,
respectively.

 With this method of propagation, the matrix vector
multiplication  requires only about 4p floating-
point operations as compared with the 4p2 floating-point
operations for the full matrix-vector multiplication. Thus,
this method results in significant reduction in computa-
tional time, particularly as the number of modes in model
increases (p > 100). Currently, the simulation routine
simuc  does not accommodate feedthrough terms (asso-
ciated with measurement outputs not performance out-
puts) for the plant or the spacecraft control system.
However, feedthrough terms for the plant or the space-
craft control system can easily be implemented with a
slight modification of the routine.

To increase the computational speed of the discrete
simulation beyond MATLAB routinessimuc  and
simuo , the routines have been implemented in
FORTRAN 77 with the same discrete architecture. The
calling statement of the MEX-file version of the open-
loop and closed-loop simulation routines are the same as
their M-file counterparts. Appendix A explains how to
create the MEX-files from the FORTRAN 77 code dis-
tributed with PLATSIM.
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Frequency Domain Analysis Module

PLATSIM accomplishes frequency domain analysis
by calling the MATLAB scriptplatfreq  (in M-file
platfreq.m ) from the platsim.m  script. The
platfreq  script obtains values for any PLATSIM run-
time parameters that have not been previously set, calls a
frequency domain analysis routine to calculate the Bode
plot data, and forms the plots.

The frequency domain analysis routines are named
sbodeo  (in files sbodeo.m  andsbodeo.mex* ) for
open-loop analysis andsbodec  (in files sbodec.m
and sbodec.mex* ) for closed-loop analysis. These
routines evaluate the transfer function matrix from the
selected events of the chosen disturbance scenario to the
selected performance outputs at each point of a user-
specified vector of frequency values. Efficiency is
achieved in the calculation by taking advantage of spe-
cial characteristics of the plant model.2 The open-loop
system matrix is sparse (see chapter 10), and the odd-
numbered rows of the control and disturbance influence
matrices are 0.

Open-Loop Calculation

Recall that the open-loop transfer function from the
disturbancesw to the performance outputypr is given in
equation (9) as

where, for purposes of this chapter,  and  contain
only the columns requested by execution control parame-
terndist . The symbolr denotes the number of columns
in these matrices.

By taking advantage of sparsity in the open-loop sys-
tem matrix, the computational complexity of calculating

 is much less than it is for the full matrix
techniques. Recall from equations (2) and (3) that

2A paper by Peiman G. Maghami and Daniel P. Giesy describing
this, titled “Efficient Computation of Closed-Loop Frequency Re-
sponse Matrices for Large Order Flexible Systems,” has been sub-
mitted for publication.
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whereI2 denotes the 2× 2 identity matrix. Furthermore,
as noted in the discussion following equation (4) in chap-
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The gain and phase angle data (Bode plot data) are then
computed directly from the frequency response function
matrix. If no acceleration performance measurements
exist, then the feed-forward term is 0 and the software
bypasses the step where  is added.

The standard, full matrix way to calculateQ(s)
involves first performing an LU decomposition of

 followed by a backward and then forward solu-
tion of the triangular systems of equations using the col-
umns ofBd as right-hand sides. The FLOP (floating point
operations) count for this isO(p3) + O(p2r). When the
solution is calculated as in equations (14) and (15), the
FLOP count isO(pr). This count represents a substantial
savings, particularly when a large number of modes is
necessary to model the desired phenomena.

Closed-Loop Calculation

Recall from equations (10) to (12) that the closed-
loop dynamics of the controlled spacecraft can be written
as

where

and

 Given the closed-loop state matrix , the block
diagonal form of the open-loop plant has obviously been
destroyed by the coupling generated by the feedback
connection of the plant and the spacecraft control system.
However, the initial sparsity of the open-loop state
matrix is still intact. Now, this sparsity is exploited to
develop an efficient method for the computation of the
closed-loop frequency response function matrix of the
controlled flexible spacecraft. Recall from equation (13)
that the closed-loop transfer function from the distur-
bances to the performance outputs is

If sparsity is not exploited and many structural modes are
modeled, then from equation (13), a large computational
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effort is required to calculate the closed-loop frequency
response function matrix because the matrix term

 needss = jω to be computed for all desired
frequency values.

The matrix term in equation (13) can be written as

(16)

where Is and Ic are identity matrices of orders equal to
the size of plant state vector and controller state vector,
respectively. Now let the elements of the matrix term

 be defined as

(17)

A formula for this inverse is given in section 5.3g of
reference 4 as follows:

(18)

where it is called Schur’s identity. Using equations (12)
and (17) in equation (13), the closed-loop transfer func-
tion from the disturbances to the performance outputs is
reduced to the following:
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Using equation (16), replaceE12 andE21 in the expres-
sion for ∆ in equation (18) and the previous equation.
This substitution produces the following:

(19)

In this form, the following computational efficien-
cies are observed:

• Because ,  and  have 0’s in the
odd-numbered rows, the subexpressions  and

 can be computed with the techniques pre-
sented for efficient computation of the open-loop
transfer function.

• The computation of  requires a full matrix
computation. However, it should not be costly to
compute because∆ is of the same order as the space-
craft control system, which is usually small com-
pared with the order of the analysis model of the
plant.

• Common subexpressions, such as those mentioned
in the previous items and those enclosed in parenthe-
ses in equation (19), are computed once, saved, and
reused.
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• Because of the expected shapes of the matrices and
the exploitation of common subexpressions, precom-
puting certain matrix products in equation (19) that
are independent of the frequency parameters is not
advisable.

• If no acceleration sensors exist in the performance
outputs so that the feed-forward matrices are 0, the
software can bypass the second line of the  calcula-
tion in equation (19).

Now, having defined , the frequency response
function matrix of the closed-loop system is evaluated
for various values ofs = jω, with ω taking on the user-
specified frequency values. The closed-loop gain and
phase plots (Bode plots) are then computed directly from
the frequency response function matrix.

Software Implementation

The evaluation of the open-loop or closed-loop
transfer function is accomplished by MATLAB function
M-files or MEX-files. The M-files contain straight-
forward implementations of the calculations presented in
the preceding two subsections.

The FORTRAN 77 source code for the MEX-files
uses the Basic Linear Algebra Subprograms (BLAS) to
perform vector-vector, vector-matrix, and matrix-matrix
operations. (See refs. 6 to 12.) In addition, the LAPACK
(ref. 12) subroutine ZGESV, a complex double precision
linear equation solver, is used to calculate .
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Jitter Analysis Module

The jitter analysis module namedjitter  (in file
jitter.m  and (optionally)jitter.mex* ) performs
efficient jitter analysis of discrete time histories repre-
sented in MATLAB as a vector of points.

The level of jitter in a given time history is defined
as a function of a user-supplied jitter window, which is
just a time interval whose duration is no more than the
duration of the time history. Suppose that the discrete
time history z containsn points z(1), ...,z(n) at equal
time increment) and the length of the jitter window can
coverk of these points at a time with . First define
zmax by setting

and definezmin by setting

The components of the vectorszmax and zmin give the
maximum and minimum values inz for each distinct
position of the window as it slides along the vectorz. Jit-
ter is then defined by

which is the maximum peak-to-peak excursion inz over
the jitter window in any position. In a typical application,
jitter needs to be calculated for several different jitter
windows (i.e., several different values ofk).

If this definition is turned into a simple computer
program, the calculation is inefficient because

 references into thez vector must be made.
In typical applications,n is 100000 or more, andk can
run from several hundred through several tens of thou-
sands up to as large asn. Several ideas are implemented
to improve the efficiency of this calculation.

For the smallest jitter window, a single scan is made
throughz, and lists of pointers are kept that point to loca-
tions inz that might possibly contribute tozmax or zmin.
At each step, a check is made to determine each value
that can be dropped from each list. Values can be
dropped if the window has passed by the location it
points to or if new information has superceded it. At each

k n≤

zmax i( ) max
i

z i( ) z i 1+( ) … z i k 1–+( ), ,,[ ]=

zmin i( ) min
i

z i( ) z i 1+( ) … z i k 1–+( ), ,,[ ]=

jitter max zmax 1( ) zmin 1( ) … zmax n k– 1+( ), ,–[=

zmin n k– 1+( ) ]–

k n k– 1+( )

step, the value ofzmax is z(j), where j is the smallest
pointer in the maximum list. The determination ofzmin is
analogous. A running tally is kept that yields jitter at the
end of the sweep.

For each larger jitter window, further efficiency is
gained by using the information stored inzmax andzmin
from the previous jitter window. Suppose , the
information stored inzmax and zmin correspond to a
window containing  points, and jitter is to be
calculated for a jitter window containing  points. To
find , the interval

 is first covered with intervals of length
(overlap is permissible and can be used to advantage, but
none of the short intervals can extend outside the long
interval). Then, the maximum of thez data over each
short interval is found from an appropriate entry ofzmax,
and the maximum of thez data over the long interval is
determined as the maximum of these numbers. By prop-
erly choosing this covering, the maximum can be deter-
mined for several additional values ofi by moving only
the left and right covering intervals and leaving the cen-
tral group of covering intervals fixed. For these values of
i,  is computed by taking
the maximum of just three numbers, that is, values from
thezmax array for the left and right covering intervals and
a value for the central group that was calculated at the
initial placement of the covering intervals. Eventually,
this moving of left and right intervals and leaving the
central group fixed arrives at an unusable configuration,
at which point a new start must be made with a new cov-
ering. The calculation of  is
performed in the same manner. With these values,zmax
andzmin can be updated for the new jitter window length,
and a value accumulated to find the jitter at the new jitter
window length.

For some values ofn, k1, andk2, the time to recom-
pute the central group contribution each time a new start
is made with a new covering becomes significant. Thus,
using an adaptation of the technique for the first window,
now applied to subsequences from thezmax and zmin
arrays for thek1 window, provides further efficiency in
thek2 window calculation.

The proposed jitter algorithm provides for sub-
stantial computational efficiency. In a typical case, with
n = 100001 and four jitter windows giving values of

k1 k2<

k1
k2

max z i( ) … z i k2 1–+( ), ,[ ]
i i k2 1–+,[ ] k1

max z i( ) … z i k2 1–+( ), ,[ ]

min z i( ) … z i k2 1–+( ), ,[ ]
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k = 500, 900, 4500, and 27500, the processing time from
the techniques outlined previously is a factor of over
1600 times less than that obtained with the brute force
method. Testing indicates that the present method is lin-
ear in problem size (i.e., the problem is twice as big when
both n and k values are doubled), and the brute force
method is quadratic in problem size.

The jitter analysis is performed with a statement of
the form

[zjtr, zmax, zmin] = jitter(z, delt,...
win);

The required inputs are as follows:

z A vector containing the time history. The value
of n above islength(z) .

delt A scalar containing time increment between
points ofz .

win A vector containing the lengths of the jitter
windows (measured in time units, the values of
k used above are in the vectorwin/delt ).

The restrictions are as follows:

• The value indelt  must be positive.

• The numbers inwin  must be in nondecreasing order,
and the largest must be no bigger than
delt*(length(z) − 1) , the total duration of the
time history in z.

The outputs are as follows:

zjtr A vector the same length aswin . The value
returned inzjtr(i)  is the jitter inz  for the
jitter window win(i) . This output is
required.

zmax, These are optional outputs, originally included
zmin for debugging purposes. These are the same as

thezmax andzmin in the definition above for the
longest jitter window inwin .

The file jitter.m  contains help information for
the jitter function and does the jitter calculation if no
MEX-file is available. The jitter calculation however can
be performed substantially faster with the file
jitter.mex* . Appendix A explains how to create the
MEX-files from the FORTRAN 77 code distributed with
PLATSIM.

The FORTRAN 77 code for jitter analysis is con-
tained in six subprograms that are distributed in the files

jitter.for , jitter.f , jitr1b.f , jitr1d.f ,
jitrnb.f , jitrnd.f , and jitterg.f . The file
jitterg.f  contains the MATLAB MEX-file gateway
routine. This routine manages the transfer of data
between MATLAB and FORTRAN. The remaining five
routines can be used as a package in FORTRAN 77
applications for jitter analysis.

The main routine is subroutineJITTER . This rou-
tine calculates the number of points in each jitter win-
dow, then it selects from among the remaining four
modules to complete the jitter calculation.

Two of the modules,JITR1B  and JITR1D , per-
form the calculation for the smallest window. They are
identical in function; both take the time history vectorz
and the numberk of points in the jitter window as input
and return the amount of jitter inz for this window and
the zmax andzmin arrays. The difference is in the algo-
rithm used.JITR1B  implements the brute force calcula-
tion, andJITR1D  uses the more sophisticated version.
Both algorithms are included because for values ofk
close to 1 orn, the brute force algorithm is better than the
more sophisticated algorithm, which has some nontrivial
O(n) overhead. The decision as to which module to use is
based on comparing the estimated timings of the two
modules. These timing estimates are based on timing for-
mulas that were empirically determined by timing a vari-
ety of problems over a range ofn andk values on a Sun
Sparc 10/512 workstation. A weighted least-squares fit-
ting technique is used on the resulting data to provide
coefficients in timing formulas. The form of these timing
formulas is based on an analysis of the algorithms.

Once the first window calculation has initialized the
zmax andzmin arrays, further calculation is performed by
eitherJITRNB  or JITRND. These are also identical in
function; they take as inputzmax; zmin; n; k1, (the number
of points in the window used in calculating the input val-
ues ofzmax andzmin), andk2, (the number of points in the
window over which jitter is now to be calculated). The
output is the value of jitter for this new window and
updated values in the arrayszmax andzmin for this new
window. The difference betweenJITRNB  andJITRND
is in whether the calculation of the maximum and mini-
mum ofy over the central group of short input windows
is done in a brute force fashion or by the more sophisti-
cated algorithm. Once again, the choice of which module
to use is determined by comparing the estimated timings
based on empirical formulas.
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Data Reduction

Plotting and printing time histories from a
PLATSIM simulation can place a heavy burden on com-
putational resources. These time histories are normally a
hundred thousand or even a million points long. Plotting
a time history of 100000 points produces an EPS file of
about half a megabyte, which takes a typical PostScript
printer about 9.5 min. to print. The EOS-AM-1 study
produced 24 output time histories that typically con-
tained a million points for each of the 59 disturbance
events. The burden this amount places on disk space and
printer time makes it virtually impossible to produce
hardcopies of all these plots.

The goal is to use MATLAB to reduce and plot time
histories calculated by the linear time simulation and
make hard copies in a reasonable amount of time with a
reasonable amount of disk storage. One solution is to plot
fewer points by sampling. This solution is fine as long as
the plot is smooth, but the plot looses visual information
when a lot of jitter occurs in the signal. In the worst case,
major jitter components can be aliased out. At the very
least, fine detail of the jitter envelope is lost.

The solution presented here is based on physical
characteristics of the plot device. Typical printers today
are raster devices. The printers used in the development
of PLATSIM are laser printers with a resolution of
300 dpi (dots per inch). A default size MATLAB plot
printed in landscape mode uses anX-axis of 8.5 in, which
is 2550 pixels long. Plotting 1000001 points over this
axis means that 392 or 393 points are plotted over each
pixel of theX-axis. Thus, the pen moves vertically up
and down about 392 times before it undergoes a motion
with a minimal horizontal movement. The idea is to cal-
culate the net effect of all that vertical movement and
then plot it with a minimum of pen strokes.

The data points to be plotted are divided into
nplpts  (one of the execution control parameters) non-
overlapping groups of consecutive points, the groups
containing, as nearly as possible, the same number of
points. A polygonal path is computed that covers the
range of each group vertically at a single representative
x-coordinate (which is accomplished with a single verti-
cal line segment) together with vertical and sideways

positioning moves to transition from one group of data to
the next. To make the resulting graph print as fast as pos-
sible, logic was introduced to minimize the number of
line segments in the plot. When this technique was
implemented in an M-file, it involved a lot of if-then-else
logic and was slow. Thus, this technique was also imple-
mented as a MEX-file with a speed increase of about
80 times.

The principle module for fast plotting is
trplot4  (in file trplot4.m  and (optionally)
trplot4.mex* ). This routine is used as follows:

>>[a,b]=trplot4(delt,y,nplpts)

The vectory  is assumed to be a time history withy(i)
occurring at time(i-1)*delt . If nplpts  is set to a
number reflecting that pixel count (3600 has been found
to work for full page plots in landscape orientation on
300 dpi printers and is the default value of optional vari-
ablenplpts ), thenplot(a,b)  gives nearly the same
picture as plot(t,y)  (where t=delt*(0:
length(y)-1))  with 2*nplpts ≤ length(b)
≤ 4*nplpts-2 .

 Appendix A explains how to create the MEX-files
from the FORTRAN 77 code distributed with
PLATSIM.

Five files support the fast plotting module:
trplot4.for , trplot4.f , trplot4g.f , xn.f ,
and trplot4.m . The file trplot4.for  is simply
a concatenation of the three.f  files. The file
trplot4.f  is the main computational module for
trplot4.mex* . The file trplot4g.f  is the gate-
way routine for transforming data between MATLAB
format and FORTRAN 77 format. The filexn.f  con-
tains a utility subroutine. The filetrplot4.m  is a
MATLAB M-file function that is logically equivalent to
trplot4.mex*  but much slower. Even if the
MEX-file is used,trplot4.m  is included to provide
help.

NASA Langley Research Center
Hampton, VA 23681-0001
June 12, 1995
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Installation Instructions

UNIX Systems

PLATSIM is distributed in a UNIX tar file, which
may be in compressed format. The PLATSIM code is in
directory platdir , and the files pertaining to the
EOS-AM-1 example are in the subdirectory
platdir/eos_eg .

If PLATSIM comes in a compressed file (i.e., the
last letter of filename is Z), it should be uncompressed
with the UNIX utility uncompress . The user should
then change (cd ) to the directory which will be the par-
ent of directoryplatdir  and untar the tar file. (The
commandtar -xf platsim_ tar_file_name
works on a Sun SPARCstation.)

Next, change the directory toplatdir  and edit
makefile  according to the directions in the
makefile  comments. This step is necessary to custom-
ize makefile  to the user’s computing environment.

The MATLAB MEX-files and filestartup.m  are then
created by the UNIX commandmake. If the user does
not want to compile MEX-files but still wants the tem-
plate file startup.m , then use the commandmake
startup .

Other Systems

For systems other than UNIX, the user can install the
PLATSIM files on the system by following the directions
included with the distribution medium. The directory
platdir  includes six files with.for  extensions. Each
of these contains the FORTRAN 77 code for the corre-
sponding MEX-file. To obtain MEX-files the user needs
to compile each of these files individually with the script
fmex , which is supplied with the MATLAB. To provide
MATLAB with the location of PLATSIM and the user-
supplied model, the user needs to edit thestartup.m
file that is distributed with PLATSIM.
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Listing of User-Supplied Routines for EOS-AM-1
Example

The following listings are examples of the routines to be supplied to PLATSIM by the user. These examples are
based on the EOS-AM-1 spacecraft and are distributed with PLATSIM. The source listing for PLATSIM and its sup-
porting routines are available through NASA’s software technology transfer center COSMIC.3 The user may want to use
these examples as templates for writing the user-supplied routines for the platform that the user wishes to analyze.

mkdamp.m

 function [d]=mkdamp(omega)
%
% function [d]=mkdamp(omega)
%
% purpose: to assign modal damping ratios
%
% input variables:
%
% omega : vector containing the natural frequencies
%
% output variables:
%
% d : vector of damping ratios
%
%

% Author: Peiman G. Maghami
%         Spacecraft Controls Branch
%         NASA Langley Research Center
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% damping schedule for the EOS-AM-1 Spacecraft
%
% damping ratio = 0.2% for modes with frequency less than 15Hz
% damping ratio = 0.25% for modes with frequency greater than 15Hz
%                 but less than 50Hz
% damping ratio = 0.3% for modes with frequency greater than 50Hz
for i=1:max(size(omega));
%
%
if omega(i)< 30.0*pi; d(i)=0.002;
elseif omega(i)>=30.0*pi&omega(i)<100.0*pi; d(i)=0.0025;
else;d(i)=0.003;end;end;d=d’;

3COSMIC (Computer Software Management and Information Center), 382 E. Broad Street, University of Georgia, Athens, GA 30602.
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instdata.m

  function [act,mout,pout,instr,window]=instdata
%
% function [act,mout,pout,instr,window]=instdata
%
% purpose: a user-defined routine to provide the grid point numbers, directions
%          distribution/contribution factors, and identification numbers for
%          the spacecraft instruments. It provides names for the prformance
%          outputs, as well as, window time sizes for jitter/stability analysis.
%
%
% output variables:
%
%
% act    : control input information matrix
% mout   : measurement output information matrix
% pout   : performance output information matrix
% instr  : list of names for performance outputs
% window : list of time window sizes for jitter analysis
%
%
%

% Author: Peiman G. Maghami
%         Spacecraft Controls Branch
%         NASA Langley Research Center
%         August, 1993
%
% modified: P. G. Maghami
%           March, 1994
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% The following parameters are associated with EOS-AM-1 Spacecraft.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% define the spacecraft control input information matrix (the ACS input at
% the RWA)
%
act=[155003,155003,155003;
     4,     5,     6;
     1,     2,     3;
     1.0,   1.0,   1.0];
%
% define grid points for the measurement feedbacks at the NAVBASE
%
mout=[111091,111091,111091,111091,111091,111091;
      4,     4,    5,     5,     6,     6;
      1,     2,    3,     4,     5,     6;
      1.0,   1.0,  1.0,   1.0,   1.0,    1.0;
      0,     1,    0,     1,     0,      1];
%
% define grid points for performance outputs
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% [NAVBASE, CERES1, CERES2, MISR, MODIS-N, MOPITT, SWIR, TIR, VNIR]
%
pout=[111091,111091,111091,350420,350420,350420,...
       351420,351420,351420,333498,333498,333498,361203,361203,361203,...
       396400,396400,396400,329722,329722,329722,326989,326989,326989,...
       325647,325647,325647;
       4,5,6,4,5,6,4,5,6,4,5,6,4,5,6,4,5,6,4,5,6,4,5,6,4,5,6;
       1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27;
       1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;
       0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
%
% convert the performance output units from rads to arcsec
%
pout(4,:)=(180.0*3600.0/pi)*pout(4,:);
%
%
% define the performance output names, display and unit labels
%
instr=str2mat(’1|NAVBASE Roll|NAVBASE|arcsec’,’2|NAVBASE Pitch|NAVBASE|arcsec’);
instr=str2mat(instr,’3|NAVBASE Yaw|NAVBASE|arcsec’);
instr=str2mat(instr,’4|CERES1 Roll|CERES|arcsec’,’5|CERES1 Pitch|CERES|arcsec’);
instr=str2mat(instr,’6|CERES1 Yaw|CERES|arcsec’);
instr=str2mat(instr,’7|CERES2 Roll|CERES|arcsec’,’8|CERES2 Pitch|CERES|arcsec’);
instr=str2mat(instr,’9|CERES2 Yaw|CERES|arcsec’);
instr=str2mat(instr,’10|MISR Roll|MISR|arcsec’,’11|MISR Pitch|MISR|arcsec’);
instr=str2mat(instr,’12|MISR Yaw|MISR|arcsec’);
instr=str2mat(instr,’13|MODIS Roll|MODIS|arcsec’,’14|MODIS Pitch|MODIS|arcsec’);
instr=str2mat(instr,’15|MODIS Yaw|MODIS|arcsec’);
instr=str2mat(instr,’16|MOPITT Roll|MOPITT|arcsec’,’17|MOPITT Pitch|MOPITT|
      arcsec’);
instr=str2mat(instr,’18|MOPITT Yaw|MOPITT|arcsec’);
instr=str2mat(instr,’19|SWIR Roll|ASTER|arcsec’,’20|SWIR Pitch|ASTER|arcsec’);
instr=str2mat(instr,’21|SWIR Yaw|ASTER|arcsec’);
instr=str2mat(instr,’22|TIR Roll|ASTER|arcsec’,’23|TIR Pitch|ASTER|arcsec’);
instr=str2mat(instr,’24|TIR Yaw|ASTER|arcsec’);
instr=str2mat(instr,’25|VNIR Roll|ASTER|arcsec’,’26|VNIR Pitch|ASTER|arcsec’);
instr=str2mat(instr,’27|VNIR Yaw|ASTER|arcsec’);
%
% set window sizes for the jitter analysis
%
window=[1.0,1.8,9.0,55.0,420.,480.0,1000.00];
%

distdata.m

function [dist,w,dt,cnames,dnames,instdat,mapping]=distdata(casenum)
% function [dist,w,dt,cnames,dnames,instdat,mapping]=distdata(casenum)
%

% Author:  Sean P. Kenny
%          NASA Langley Research Center
%          Spacecraft Controls Branch
% Created: 2/14/94
%
%-----------------------------------------------------------------------
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if nargin<1,
    casenum=0;
end;
%
%
% Individual Instrument Disturbances (IID)
%
% Defines labels for pull-down menus, also labels for jitter tables,
% and time history plots.
%
% An IID GUI menu item can be disabled by including a preceding asterisk
% in the string variable, e.g., s23=’* High Gain Antenna’, is
% displayed, but cannot be selected with the mouse. This feature
% pertains to GUI mode ONLY ! Batch mode or terminal display allows
% the selection of all entries.
%
%
s1=’TIR repoint’;
s2=’TIR calibrate’;
s3=’TIR scan’;
s4=’TIR chopper’;
s5=’TIR cryocooler LDE’;
s6=’MODIS scan mirror’;
s7=’MODIS static imbalance’;
s8=’MODIS dynamic imbalance’;
s9=’MOPITT mirror scan’;
s10=’MOPITT cryocooler LDE’;
s11=’MOPITT pressure modulated cells’;
s12=’Reaction Wheel Assembly case 1’;
s13=’* Reaction Wheel Assembly case 2’;
s14=’Solar Array Drive’;
s15=’Solar Array Thermal Snap’;
%
%
% Combine IID’s into a matrix form (a maximum of 10 arguments are allowed)
% Each string variable represents a row entry within the dnames string matrix.
dnames=str2mat(s1,s2,s3,s4,s5,s6,s7,s8,s9,s10);
dnames=str2mat(dnames,s11,s12,s13,s14,s15);
%
%
%-----------------------------------------------------------------------
%
%    Major Instrument Disturbance Case (MIDC)
% (labels for top-level menu items on pop-up figure)
%
ss1=’ASTER-TIR’;
ss2=’MODIS’;
ss3=’MOPITT’;
ss4=’Misc. Disturbances’;
%
% Combine MIDC’s into a matrix form
cnames=str2mat(ss1,ss2,ss3,ss4);
%
%
% Setup mapping between MIDC’s and IID case numbers.
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%
% instdat(i) corresponds to ss(i), e.g., instdat5 are all IID’s that
% belong to MIDC ss5. The elements of the instdat(i) vectors are the
% row indices of the IID’s within the dnames string matrix. For example,
% if the 4th,5th, and 10th row entries in dnames correspond to instdat5,
% then instdat5=[4,5,10].
%
%
  mapping=[];
instdat1=[1,2,3,4,5];
  linst=length(instdat1);
  mapping=[mapping,linst];
instdat2=[6,7,8];
  linst=length(instdat2);
  mapping=[mapping,linst];
instdat3=[9,10,11];
  linst=length(instdat3);
  mapping=[mapping,linst];
instdat4=[12,13,14,15];
  linst=length(instdat4);
  mapping=[mapping,linst];
%
instdat=[instdat1,instdat2,instdat3,instdat4];
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
% Based upon menu selection, create the proper disturbance
% input vector(s).
%
%
%  TIR Mirror Repointing
%
if (casenum == 1)
% 326990 ==> scanner
igrid=[326990];
idir=[4];
inum=[1];
ifac=ones(size(inum));
dist=[igrid;idir;inum;ifac];
[dt,torque] = tir1;
w(:,1)=torque’;
%
%  TIR Mirror Calibration
%
elseif (casenum == 2)
% 326944 ==> chopper
igrid=[326990];
idir=[4];
inum=[1];
ifac=ones(size(inum));
dist=[igrid;idir;inum;ifac];
[dt,torque] = tir2;
w(:,1)=torque’;
%



60

Appendix B

%  TIR Scanner
%
elseif (casenum == 3)
% 326990 ==> scanner
igrid=[326990 326990 326990 326990 326990 326990];
idir=[1 2 3 4 5 6];
inum=[1:6];
ifac=ones(size(inum));
dist=[igrid;idir;inum;ifac];
[dt,torque] = tirscan1;
w(:,1)=torque’;
[dt,torque] = tirscan2;
w(:,2)=torque’;
[dt,torque] = tirscan3;
w(:,3)=torque’;
[dt,torque] = tirscan4;
w(:,4)=torque’;
[dt,torque] = tirscan5;
w(:,5)=torque’;
[dt,torque] = tirscan6;
w(:,6)=torque’;
%
%  TIR Chopper
%
elseif (casenum == 4)
% 326944 ==> chopper
igrid=[326944 326944];
idir=[1 2];
inum=[1:2];
ifac=ones(size(inum));
dist=[igrid;idir;inum;ifac];
[dt,torque] = tirchop1;
w(:,1)=torque’;
[dt,torque] = tirchop2;
w(:,2)=torque’;
%
%  TIR Compressor/Displacer Low Distortion Electronics (LDE)
%
elseif (casenum == 5)
% 326992 ==> compressor
% 326993 ==> displacer
igrid=[326992 326992 326992 326992 326992 326993 326993 326993 326993 326993];
idir=[1 2 4 5 6 2 1 4 5 6];
inum=[1:10];
ifac=ones(size(inum));
dist=[igrid;idir;inum;ifac];
[dt,torque] = tirca1;
w(:,1)=torque’;
[dt,torque] = tirca2;
w(:,2)=torque’;
[dt,torque] = tirca3;
w(:,3)=torque’;
[dt,torque] = tirca4;
w(:,4)=torque’;
[dt,torque] = tirca5;
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w(:,5)=torque’;
[dt,torque] = tirda1;
w(:,6)=torque’;
[dt,torque] = tirda2;
w(:,7)=torque’;
[dt,torque] = tirda3;
w(:,8)=torque’;
[dt,torque] = tirda4;
w(:,9)=torque’;
[dt,torque] = tirda5;
w(:,10)=torque’;
%
%
%  MODIS scan mirror
%
elseif (casenum == 6)
% 3601 ==> averaged interface
% 361203 ==> scan mirror center
% 361342 ==> scan mirror motor/encoder
% 355349 ==> solar door 8/12/93 spk
igrid=[361342];
idir=[4];
inum=[1];
ifac=ones(size(inum));
dist=[igrid;idir;inum;ifac];
[dt,torque] = modis1;
w(:,1)=torque’;
%
%  MODIS static imbalance
%
elseif (casenum == 7)
% 361342 ==> scan mirror motor/encoder
igrid=[361342 361342];
idir=[2 3];
inum=[1:2];
ifac=ones(size(inum));
dist=[igrid;idir;inum;ifac];
[dt,for1,for2] = modis2;
w(:,1)=for1’;
w(:,2)=for2’;
%
%  MODIS dynamic imbalance
%
elseif (casenum == 8)
% 361342 ==> scan mirror motor/encoder
igrid=[361342 361342];
idir=[5 6];
inum=[1:2];
ifac=ones(size(inum));
dist=[igrid;idir;inum;ifac];
[dt,tor1,tor2] = modis3;
w(:,1)=tor1’;
w(:,2)=tor2’;
%
%  MOPITT mirror scan
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%
elseif (casenum == 9)
% 396400 ==> scan motor 1
% 396403 ==> scan motor 2
% 3608 ==> Avg. interface
igrid=[396400];
idir=[4];
inum=[1];
ifac=ones(size(inum));
dist=[igrid;idir;inum;ifac];
[dt,torque] = mopitt;
w(:,1)=torque’;
%
%  MOPITT Compressor/Displacer Low Distortion Electronics (LDE)
%
elseif (casenum == 10)
% 396416 ==> compressor
% 396417 ==> displacer
igrid=[396416 396416 396416 396417 396417 396417];
idir=[2 1 5 2 1 5];
inum=[1:6];
ifac=ones(size(inum));
dist=[igrid;idir;inum;ifac];
[dt,torque] = mopittc1;
w(:,1)=torque’;
[dt,torque] = mopittc2;
w(:,2)=torque’;
[dt,torque] = mopittc3;
w(:,3)=torque’;
[dt,torque] = mopittd1;
w(:,4)=torque’;
[dt,torque] = mopittd2;
w(:,5)=torque’;
[dt,torque] = mopittd3;
w(:,6)=torque’;
%
%  MOPITT pressure modulated cell (PMC)
%
elseif (casenum == 11)
% 396412 ==> PMC #1
% 396413 ==> PMC #2
igrid=[396412 396413];
idir=[1 1];
inum=[1:2];
ifac=ones(size(inum));
dist=[igrid;idir;inum;ifac];
[dt,pmc1,pmc2] = mopmc;
w(:,1)=pmc1’;
w(:,2)=pmc2’;
%
%
%  Reaction Wheel Assembly (RWA) Imbalance: Case 1
%
% ** static imbalance in wheel #1 **
%
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elseif (casenum == 12)
% 50600 ==> RWA averaged interface
% 155003 ==> RWA 1 (farthest from C.G.)
igrid=[155003 155003 155003];
idir=[1 2 3];
inum=[1:3];
ifac=ones(size(inum));
dist=[igrid;idir;inum;ifac];
[dt,rwax,rway,rwaz] = rwa1;
w(:,1)=rwax’;
w(:,2)=rway’;
w(:,3)=rwaz’;
%
% Reaction Wheel Assembly (RWA) Imbalance: Case 2
%
elseif (casenum == 13)
% ==>
%igrid=[        ];
%idir=[1 2 3];
%inum=[1:3];
%ifac=ones(size(inum));
%dist=[igrid;idir;inum;ifac];
disp(’THIS CASE IS NOT CURRENT as of 8/11/93 SPK’);
%[dt,rwax,rway,rwaz] = rwa2;
%w(:,1)=rwax’;
%w(:,2)=rway’;
%w(:,3)=rwaz’;
%
% Solar Array Harmonic Drive
%
elseif (casenum == 14)
% 69090 ==> solar array drive (SAD)
igrid=[69090];
idir=[5];
inum=[1];
ifac=ones(size(inum));
dist=[igrid;idir;inum;ifac];
[dt,torque] = sadhd;
w(:,1)=torque’;
%
% Solar Array Thermal Snap
%
elseif (casenum == 15)
% 69090 ==> SAD
% 60024 ==> SA
igrid=[69090 60024 60024];
idir=[4 1 3];
inum=[1:3];
ifac=ones(size(inum));
dist=[igrid;idir;inum;ifac];
[dt,torque] = sa1;
w(:,1)=torque’;
[dt,torque] = sa2;
w(:,2)=torque’;
[dt,torque] = sa3;
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w(:,3)=torque’;
%
end
%
% End distdata.m

formscs.m

  function [aacs,bacs,cacs]=formscs

%
% function [aacs,bacs,cacs]=formscs
%
% Purpose: To Form the continuous-time spacecraft control system (SCS)
%          for the space platform
%
%          Currently, this function forms the attitude control system
%          for the EOS-AM-1 Spacecraft.
%
%
% output variables:
%
% aacs : the SCS state matrix (continuous)
% bacs : the SCS input influence matrix (continuous)
% cacs : the SCS output influence matrix
%

% Author: P. G. Maghami
%         Spacecraft Controls Branch
%         NASA Langley Research Center
%         December, 1992
%
% Modified: March, 1994
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% third-order Butterworth filter
kf=0.25005;
af=1.0;
bf=1.2600;
cf=0.7938;
df=kf;
numf=kf;denf=[af,bf,cf,df];
% wide-band notch filter
an=0.52335;
bn=0.19678;
cn=1.0;
kn=0.57408;
numn=[an,bn,cn];denn=[an,kn,cn];
% rate gyro
kg=1.0;
wg=12.5664;
zg=0.7071;
numg=[kg*wg*wg];deng=[1.0,2.0*zg*wg,wg*wg];
% zero order hold
taw=0.512;
% numh=taw;denh=[0.125*taw*taw,taw,1.00];
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numh=1.00;denh=[0.125*taw*taw,taw,1.00];
% delay
numd=[0.125*taw*taw,-taw,1.00];dend=[0.125*taw*taw,taw,1.00];
%
krp=[4284.6;6696.4;8322.5];kri=[30.604;40.761;105.68];
%
% rate loop compensator-roll
numrr=[krp(1),kri(1)];denrr=[1.00,0.00];
%
% rate loop compensator-pitch
numrp=[krp(2),kri(2)];denrp=[1.00,0.00];
%
% rate loop compensator-yaw
numry=[krp(3),kri(3)];denry=[1.00,0.00];
%
kp=[0.051604;0.049064;0.047159];ki=[1.5199e-4;1.6984e-4;3.3011e-4];
%
% position loop compensator-roll
numpr=[kp(1),ki(1)];denpr=[1.00,0.00];
%
% position loop compensator-pitch
numpp=[kp(2),ki(2)];denpp=[1.00,0.00];
%
% position loop compensator-yaw
numpy=[kp(3),ki(3)];denpy=[1.00,0.00];
%
% rate loop total compensation
%
%
% transform (numg,deng) to state-space
%
[a1,b1,c1,d1]=tf2ss(numg,deng);
%
%
% tranform the position-loop combined TFs to state-space
%
[ap1,bp1,cp1,dp1]=tf2ss(numpr,denpr);
[ap2,bp2,cp2,dp2]=tf2ss(numpp,denpp);
[ap3,bp3,cp3,dp3]=tf2ss(numpy,denpy);
%
%
% combine the position loop and rate loop filters
%
[ac1,bc1,cc1,dc1]=append(ap1,bp1,cp1,dp1,a1,b1,c1,d1);
[ac2,bc2,cc2,dc2]=append(ap2,bp2,cp2,dp2,a1,b1,c1,d1);
[ac3,bc3,cc3,dc3]=append(ap3,bp3,cp3,dp3,a1,b1,c1,d1);
%
cc1=cc1(1,:)+cc1(2,:);dc1=dc1(1,:)+dc1(2,:);
cc2=cc2(1,:)+cc2(2,:);dc2=dc2(1,:)+dc2(2,:);
cc3=cc3(1,:)+cc3(2,:);dc3=dc3(1,:)+dc3(2,:);
%
% combine the butterworth filter and the notch filter
%
[num1,den1]=series(numf,denf,numn,denn);
%
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% combine the rate loop compensator in series with the notch filter
%
[num31,den31]=series(numrr,denrr,num1,den1);
[num32,den32]=series(numrp,denrp,num1,den1);
[num33,den33]=series(numry,denry,num1,den1);
%
% add the zero order hold in series
%
[num41,den41]=series(num31,den31,numh,denh);
[num42,den42]=series(num32,den32,numh,denh);
[num43,den43]=series(num33,den33,numh,denh);
%
% add the time delay in series
%
[numinr,deninr]=series(num41,den41,numd,dend);
[numinp,deninp]=series(num42,den42,numd,dend);
[numiny,deniny]=series(num43,den43,numd,dend);
%
% transform the rate loop TFs to state-space
%
[ar1,br1,cr1,dr1]=tf2ss(numinr,deninr);
[ar2,br2,cr2,dr2]=tf2ss(numinp,deninp);
[ar3,br3,cr3,dr3]=tf2ss(numiny,deniny);
%
%
% Form the SCS state-space model
%
%
[aacs1,bacs1,cacs1,dacs1]=series(ac1,bc1,cc1,dc1,ar1,br1,cr1,dr1);
[aacs2,bacs2,cacs2,dacs2]=series(ac2,bc2,cc2,dc2,ar2,br2,cr2,dr2);
[aacs3,bacs3,cacs3,dacs3]=series(ac3,bc3,cc3,dc3,ar3,br3,cr3,dr3);
%
[aacs,bacs,cacs,dacs]=append(aacs1,bacs1,cacs1,dacs1,aacs2,bacs2,cacs2,dacs2);
[aacs,bacs,cacs,dacs]=append(aacs,bacs,cacs,dacs,aacs3,bacs3,cacs3,dacs3);
%
% apply the scale factor KW of the reaction wheels (units in lb-in/ssc)
%
kw=0.22*12.00;
cacs=cacs*kw;
dacs=dacs*kw;
%
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Execution Control Parameters

PLATSIM has 20 execution control parameters,
which are MATLAB workspace variables. Some of these
parameters have meaning to both time and frequency
domain analysis, some only to time domain, and some
only to frequency domain. With two exceptions, if the
user has not defined an execution control parameter
when the commandplatsim  is given, PLATSIM
assigns a default value to the variable. One of these

exceptions,runmode , must be set before PLATSIM is
called. The other exception iscasenum . If PLATSIM is
running in GUI or command mode,casenum  is set by
user responses to the Disturbances menu. In batch mode,
casenum  must be set before PLATSIM is called. Speci-
fications for the individual execution control parameters
follow:

Execution Control Parameters

   Name  Default   Used by                                     Description

runmode Undefined Both Determines what mode PLATSIM runs in. Must be set to
one of’GUI’ , ’command’ , or ’batch’  before the
platsim  command is entered. Only the first character
of runmode  is significant and may be of either case.

tdflag Yes Both Defaults to time domain analysis. Settdflag = ’no’
for frequency domain analysis. Can be set from GUI
Analysis menu and command mode.

casenum None Both Which disturbance to use. PLATSIM inputs this value to
the user-supplied MATLAB functiondistdata . Can
be set from GUI and command mode Disturbance menu.

nmode 0 Both Which structural modes to model. The default0 means
all modes. A positive integern means modes 1
throughn. A negative integer-n  means only moden. A
MATLAB vector like [1:6,10,13:16]  means use
exactly the mode numbers in the vector. Can be set from
GUI mode by slider or data entry box and from command
mode.

clflag Yes Both Defaults to closed loop analysis. For open loop analysis,
setclflag=’no’ . Can be set from GUI mode Control
submenu of Options menu and from command mode.

desint Undefined Both Determines which performance outputs will be modeled.
If left undefined, all will be used. To use, setdesint  to
a vector of instrument identification numbers (these
appear in the third row of thepout  matrix returned by
user-supplied MATLAB functioninstdata ). Can be
set from GUI mode Performance Output submenu of
Options menu. Note 1 applies.

pltflag Yes Both In time domain analysis, causes reduction of time history
data for plotting and writing of MAT-file with reduced
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time histories. In both analyses, causes plots (time his-
tory or Bode) to be displayed on screen. Disable by set-
ting pltflag=’no’ . Can be set from GUI mode
Plotting & Printing submenu of Options menu and from
command mode.

prtflag Yes Both Ifpltflag  is set to yes, this causes the encapsulated
PostScript forms of the plots to be written to files. Dis-
able by settingprtflag=’no’ . Can be set from GUI
mode Plotting & Printing submenu of Options menu and
from command mode.

gad Identity Both This is used for adjusting the spacecraft control system
inputs. Parametergad  should be defined as anm × m
matrix, wherem is the number of spacecraft control sys-
tem inputs in the vectoru. The scaled control inputs are
given byunew= gad × uold. Note that the default matrix
for gad  is an identity matrix. This is actually imple-
mented by adjusting the spacecraft control system output
influence and feedthrough matrices bygad . For open-
loop analysis, this parameter is ignored. This option is
usually used when inertia changes require gain adjust-
ments for the spacecraft system. Notes 1 and 2 apply.

phold 20 Both A mnenmonic for plot hold,phold  is the number of sec-
onds a time history or Bode plot or jitter analysis table
will remain on screen before being cleared for the next
plot. Notes 1 and 2 apply.

jtrflag Yes Time Defaults to perform jitter analysis on time histories. Dis-
able by settingjtrflag=’no’ . Can be set from GUI
mode Options menu. Note 1 applies.

multflag No Time Defaults to run a separate time simulation for each event
in the disturbance scenario. To simulate the effect of all
disturbances simultaneously, setmultflag=’yes’ .
Can be set from GUI mode Disturbance menu. Note 1
applies.

saveflag No Time Defaults to not save full time histories in MAT-files. To
save full time histories, setsaveflag=’yes’ . Can be
set from GUI mode Options menu. Note 1 applies.

tclip 0 Time The parametertclip  is used for clipping the time histo-
ries. If the value entered is not 0 (the default), any data
point corresponding to a time beforetclip  will be
removed, that is, not used for jitter computation. Units of
tclip  must match the units of parameterperiod
returned by user-supplied MATLAB function
distdata . This option is useful in the jitter analysis of
steady-state disturbance sequences such as the
EOS-AM-1 solar array drive disturbance and cryocooler
disturbances. May be set from GUI mode slider or data
entry box. Note 1 applies.

pmflag Yes Time Defaults to display during simulation a performance
meter that shows what percent of the simulation calcula-
tion is completed. Can be set from GUI mode Analysis
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________________________________
Note 1: To run PLATSIM in command mode with a nondefault

value for this parameter, it must be set by MATLAB assignment
statement prior to invokingplatsim .

Note 2: To run PLATSIM in GUI mode with a nondefault value
for this parameter, it must be set by MATLAB assignment state-
ment prior to invokingplatsim .

menu. To turn off the performance meter in command or
batch modes, setpmflag=’no’ . Note 1 applies.

nplpts 3600 Time The parameternplpts  is used in reducing the time his-
tories for plotting. Refer to chapter 15 for a more com-
plete description of this parameter. Notes 1 and 2 apply.

ndist 0 Frequency This parameter determines which events of the distur-
bance scenario to use in calculating the frequency
response function matrix. The default0 means all events.
A positive integern means events 1 through n. A nega-
tive integer-n  means only event n. A MATLAB vector
like [1:2,4,7]  means use exactly the event numbers
in the vector. Can be set from GUI mode by slider or data
entry box and from command mode.

il −2 Frequency The smallest frequency at which frequency domain anal-
ysis will be done is10il . May be a decimal. Can be set
from GUI mode in a data entry box in the Frequency
Parameters window, which opens when Frequency
Domain Analysis is selected and from command mode.

iu 4 Frequency The largest frequency at which frequency domain analy-
sis will be done is10iu . May be a decimal. Can be set
like il .

npts 1000 Frequency The number of frequency points at which frequency
domain analysis will be done isnpts . Can be set
like il .
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