
Finite-State Analysis of

Space Shuttle Contingency Guidance

Requirements

Judith Crow

Computer Science Laboratory

SRI International

Menlo Park CA 94025 USA

SRI Technical Report SRI-CSL-95-17

Also Available as NASA Contractor Report 4741

July 15, 1996



ii



Abstract

We describe a �nite-state analysis of the mode-sequencing requirements for the Con-
tingency Three-Engines-Out Guidance function of the Space Shuttle 
ight control sys-
tem.

iii



iv



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Informal Description of Three-Engines-Out 3

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Contingency Three-Engines-Out . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 3E/O Region Selection . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 3E/O Contingency Guidance . . . . . . . . . . . . . . . . . . . . 7

2.2.2.1 Pre-ET Separation Maneuver for Region 102 . . . . . . 8

2.2.2.2 Pre-ET Separation Maneuvers for Regions 3 and 4 . . . 8

2.2.2.3 Pre-ET Separation Maneuvers for Regions 1 and 2 . . . 8

2.2.2.4 Post-ET Separation Maneuvers (All Regions) . . . . . . 9

2.3 The Existing Requirements Analysis Process . . . . . . . . . . . . . . . 9

3 Formal Analysis of Contingency 3E/O Sequencing 13

3.1 Finite-State Veri�cation Techniques . . . . . . . . . . . . . . . . . . . . 13

3.2 Modeling Issues and Strategy . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Finite-State Speci�cation of Three-Engines-Out . . . . . . . . . . . . . . 15

3.4 Finite-State Analysis of 3E/O Sequencing . . . . . . . . . . . . . . . . . 20

3.4.1 General Properties of Contingency Abort Sequencing . . . . . . . 20

3.4.2 Essential Properties of Region Selection Sequencing . . . . . . . 21

3.4.3 Essential Properties of Contingency Guidance Sequencing . . . . 25

3.5 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.1 3E/O Region Selection Task Findings . . . . . . . . . . . . . . . 26

3.5.2 3E/O Contingency Guidance Task Findings . . . . . . . . . . . . 27

3.5.3 Desirable Characteristics of 3E/O Algorithms . . . . . . . . . . . 29

v



4 Discussion 31

4.1 Relation to Other Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Limitations of the Method . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

References 34

vi



Chapter 1

Introduction

The project documented in this report was undertaken in the context of a research pro-
gram in formal methods [BCC+95] and forms part of a study intended to demonstrate
that formal speci�cation and veri�cation can enhance the clarity, precision, and compre-
hension of requirements speci�cations for space applications. The project has focused
on the mode-sequencing requirements for Contingency Three-Engines-Out (3E/O), a
function of the contingency guidance component of the Space Shuttle 
ight-control sys-
tem. The analysis and accompanying documentation are presented here in two chapters:
the �rst containing an informal description of the 3E/O requirements and the second
containing a discussion of the �nite-state analysis of these requirements. A �nal chapter
summarizes our work and considers directions for future research.

1.1 Motivation

Although the quality of Space Shuttle 
ight software is generally regarded as exemplary
among NASA software development projects, much of the quality assurance activity
in early lifecycle phases remains a manual exercise lacking well-de�ned methods or
techniques [NASA93, p. 22]. Shuttle 
ight software is complex and life-critical. Software
upgrades to accommodate new missions such as the recent MIR docking, new capabilities
such as Global Positioning System navigation, and improved algorithms such as the
newly automated three-engine-out contingency abort maneuvers (3E/O) are continually
introduced. Such upgrades underscore a need recognized in the NASA community
and in a recent assessment of Shuttle 
ight software development, for \state-of-the-
art technology" and \leading-edge methodologies" to meet the demands of software
development for increasingly large and complex systems [NAS93, p. 91]. The 3E/O
project described in this report represents an attempt to explore productive tools and
pragmatic strategies to address this need.

1



2 Chapter 1. Introduction

1.2 Acknowledgments

The informal description of 3E/O, and the �nite-state analysis that follows, are based
on our interpretation of the requirements documented in [Roc94]. We have derived our
understanding of these requirements from this document, a short note on 3E/O region
selection by Bill Kaufman (Loral), and from several discussions with Ron Avery (Loral),
who o�ered valuable insight into the occasionally inscrutable requirements document
and provided detailed comments on an earlier draft of this report. David Hamilton
(formerly with Loral) initially identi�ed 3E/O as a potentially interesting application
and provided access to documentation and 3E/O expertise during early phases of the
work. The guidance provided by John Rushby (SRI) and by our technical monitor, Rick
Butler (NASA Langley Research Center), was also extremely valuable. Naturally, we
take the blame for any misconceptions that remain. We hope that by giving a precise
speci�cation of our understanding, those with greater familiarity and understanding of
the true requirements will be able to identify our errors and help us develop a precise,
understandable, and accurate analysis that will inform future applications of formal
methods to space applications, as well as future use and modi�cation of [Roc94].



Chapter 2

Informal Description of
Three-Engines-Out

The informal description of 3E/O covers three topics: general background providing an
overview of the Space Shuttle's physical structure and contingency abort procedures,
3E/O functionality including a more detailed description of the two main 3E/O Contin-
gency Guidance functions, and a �nal section on the process currently used to analyze
Space Shuttle 
ight software requirements.

We begin with an informal description of the requirements document itself. Shuttle

ight software requirements are documented as Functional Subsystem Software Require-
ments (FSSRs)| low-level software requirements speci�cations written in English prose
with strong implementation biases, typically including material in the form of pseudo-
code, tables, digrams, or 
owcharts. The 3E/O requirements speci�cation is written
largely in English prose and pseudo-code, accompanied by tables and by 
owcharts
diagrammed in a notation unlike any used elsewhere in the modern computer science
literature. For example, the control 
ow proceeds both forward and backward in these
diagrams. In the worst case, it may be necessary to trace the control 
ow forward
through multiple pages and then backward through these same pages to de�ne a single
path from entry to exit. Although the prose, tables, and 
owcharts are generally con-
sistent, all three have undergone �ve modi�cations { documented in-line { resulting in
layers of annotation that can be di�cult to unravel.

2.1 Background

The Space Shuttle mission pro�le distinguishes six main 
ight phases: ascent, orbit
insertion, orbit, deorbit, entry, and abort, each of which is further divided into two to
four 
ight modes and controlled by software systems referred to as \Digital AutoPilots"
(DAPs). The Ascent and Transition DAPs provide guidance, navigation, and control

3



4 Chapter 2. Informal Description of Three-Engines-Out

(GN&C) for the Space Shuttle during powered 
ight. Put simply, the navigation func-
tion determines where the Shuttle is, guidance determines where it should go next, and
the control function determines how to get it there. Predictably, speci�c GN&C func-
tions vary with respect to mission phase; for example, while guidance target parameters
related to launch site are crucial during the ascent phase, they are irrelevant during the
on-orbit phase. The Space Shuttle is propelled into orbit by two solid-fuel rocket boost-
ers (SRBs) and three rocket engines (Space Shuttle Main Engines or SSMEs) that are
fueled by an external tank (ET), with additional thrust for orbital insertion provided by
the Orbital Maneuvering System (OMS) and the Reaction Control System (RCS). The
SRBs burn out and are jettisoned approximately two minutes into 
ight. The SSMEs
are shut o� and the external tank jettisoned prior to stable-orbit insertion; the exact
ascent pro�le varies depending on tradeo�s including where the ET is likely to land.
For example, direct insertion using only the SSMEs means that the ET is carried to a
higher apogee, increasing the possibility of an inopportune landing, whereas Main En-
gine Cuto� (MECO) followed by an OMS burn lessens the danger that the ET will land
in a populated area. In any case, powered 
ight refers to the SSME-powered ascent and
transition phases in a nominal ascent and to the SSME-powered ascent phase associated
with a mission abort and Return to Launch Site (RTLS).1

RTLS is one of four types of intact ascent aborts and is used if one or more of the
SSMEs fail during the �rst 4 minutes and 20 seconds of 
ight. As the name suggests,
the Shuttle reverses 
ight direction and returns to the launch site. The other three
abort options are: transoceanic abort landing (TAL), abort to orbit (ATO), and abort
once around (AOA). TAL is an emergency landing at a European or North African
Airport, chosen on the basis of launch azimuth and ascent pro�le. TAL is an option
when a velocity greater than 4,000 mph has been reached and is generally preferred to
an RTLS, if both options are available. The conditions under which an RTLS versus
a TAL abort are required can be diagrammed as shown in Figure 2.1. The minimum
and maximum velocities referred to in the �gure are \I-loads," i.e., software constants
that are (re)calculated for each mission. The maximum altitude referred to is calculated
each guidance cycle as a function of apogee altitude, velocity, and I-load values. The
arrows indicate values above(below) the thresholds de�ned by the given conditions.

AOA, which is more desirable than TAL, is used when one or two SSMEs fail after
the SRBs burn out, but too early in the ascent for an ATO, which becomes an option
if SSME failure occurs late in the ascent. The orbit achieved during ATO is typically
lower than the nominal orbit, requires less performance, and provides time to evaluate
the situation and decide on an alternative mission plan.

The four types of intact ascent aborts (summarized above) all use the Shuttle's OMS
and RCS systems and, as the name suggests, assume that there is a reasonable chance
for an intact abort. The 3E/O case is di�erent because if all three SSMEs fail, the

1The terminology is potentially confusing. The RTLS abort clearly involves descent rather than
ascent; the (mission) phase name re
ects the fact that an RTLS abort is initiated under control of the
Ascent DAP.



2.2. Contingency Three-Engines-Out 5

normal ascent

*

maximum velocity for RTLS abort

+

RTLS abort (too much energy for TAL abort)
*

maximum altitude tolerable without exceeding 3.5g acceleration

+

TAL abort

*

minimum velocity for TAL abort

+

RTLS abort

Figure 2.1: 3E/O Conditions for RTLS and TAL Aborts

chance of an intact abort is virtually nil. Nevertheless, a 3E/O abort invokes RTLS for
two reasons. First, the Glide RTLS DAP is the only DAP designed to handle no-engine
maneuvering of the combined orbiter and ET in the atmosphere; second, the RTLS DAP
contains support software that provides the safest possible conditions for crew bailout.2

The Shuttle can move in six axes: three translational axes: X, Y, Z, and three ro-
tational axes: roll, pitch, and yaw. Movement is achieved using two powerful OMS
engines, 38 primary RCS jets (also called thrusters), and six vernier RCS jets. The
OMS engines are used for major orbital maneuvers, and to provide control in the trans-
lational axes, with additional, �ner control provided by the primary RCS jets. Smaller
maneuvers use only the RCS jets. Translational maneuvers use the primary RCS jets
and rotations normally use the vernier RCS jets. During contingency abort maneuvers,
as well as normal ascent, RCS jets are used to safely maneuver the Shuttle away from
the ET after separation. Since the Shuttle is considerably lower in the atmosphere,
more RCS jets are needed for an RTLS ET separation than for a nominal or TAL ET
separation. An RTLS abort typically requires dumping OMS and RCS fuel to improve
maneuverability and reduce landing weight, which is accomplished by �ring the OMS
and RCS engines.

2.2 Contingency Three-Engines-Out

Contingency Three-Engines-Out is a low-level Ascent DAP and RTLS guidance function
responsible for monitoring ascent parameters and, if three SSMEs fail sequentially or

2We are grateful to Ron Avery for clarifying the use of RTLS in the 3E/O case.



6 Chapter 2. Informal Description of Three-Engines-Out

simultaneously, calculating and commanding the appropriate ET separation and entry
maneuvers if an RTLS abort is necessary. In certain situations, 3E/O is also responsible
for auto contingency maneuvers resulting from the failure of two SSMEs (2E/O). For
example, 3E/O takes over when a main engine cut-o� is commanded during a 2E/O
contingency maneuver. 3E/O is executed repeatedly at speci�ed intervals that range
from 1.92 seconds between SRB separation and MECO con�rmed, to 0.16 seconds after
MECO con�rmed or during a pre-SRB (\�rst-stage") ET separation. Each execution of
3E/O is part of a guidance cycle that remains active during powered 
ight until either
an RTLS contingency abort is required or progress along the powered 
ight trajectory
is su�cient to allow a normal ET separation even if three SSMEs fail.

The contingency 3E/O function consists of two main subfunctions: a region-select
function that selects a contingency-maneuver mode based on the values of ascent pa-
rameters, and a contingency guidance function that is used strictly for display if the
ascent is normal, but is responsible for calculating and commanding initial RTLS abort
maneuvers determined by the selected region if an RTLS contingency arises. Note that
the maneuvers calculated and commanded by the two 3E/O functions may di�er from
one guidance cycle to the next in response to changes in the external environment or in
the Shuttle's internal state.

2.2.1 3E/O Region Selection

The ascent parameters monitored by 3E/O include dynamic pressure, altitude, altitude
rate, velocity, range, and angle of attack. The value of these parameters, the 
ight
phase, and a small number of commands passed down from higher-level control func-
tions as 
ags (e.g., high rate sep) together determine the Shuttle's current contingency
maneuver region. There are six possible regions, each associated with a particular type
of abort maneuver. The maneuvers di�er largely with respect to timing, angle of attack
(�) and sideslip (�) necessary for safe separation of the external tank. Each of the
six regions is associated with a unique color used to display the mode to the crew on
the Shuttle's trajectory display. The color re
ects either normal ascent (blank) or the
relative severity of the contingency, although normal ascent is typically not displayed
until roughly six minutes after SRB separation, i.e., approximately a minute before
MECO. The six maneuver regions are usually denoted by an index, i, where 0 � i � 4
or i = 102.3 Table 2.1 summarizes each of the six regions, including its associated color
and index, the conditions under which Main Engine Cut-O� (MECO) occurs, and the
corresponding ET separation maneuver. The table is based on notes by Bill Kaufman
(Loral), and anticipates discussion (in Section 2.2.2) of the 3E/O Contingency Guidance
function. Only �ve of the six regions discussed here can actually be assigned during

3Region index values illustrate one of several apparent notational inconsistencies in the requirements
document. The index value 102 re
ects the mode corresponding to a 3E/O contingency prior to SRB
separation, i.e., during 
ight mode 102. None of the other region index values correspond to 
ight
modes.



2.2. Contingency Three-Engines-Out 7

3E/O region selection; region 4 is assigned by 3E/O Contingency Guidance after trying
and failing to execute a region 3 maneuver.

color index MECO conditions ET separation maneuver

blank 0 Normal No maneuver necessary.

blue 102 SRBs still attached. Separate during SRB tailo�.

yellow 3 Dynamic pressure high, and Maneuver to � = �4 deg,
not expected to drop. � = 0 and establish

acceptable pitch, yaw, roll rates.

red 4 Region 3 maneuver started after Separate immediately if � < 0
MECO, but dynamic pressure & pitch, yaw, roll rates acceptable.
too high for RCS jets to perform Pitch up to � � 125 deg, establish
desired pitch-down maneuver. small pitch, yaw, roll rates

with pitch rate negative,
then separate.

orange 2 Fairly high angle of attack and Maneuver to � = 0.
moderate dynamic pressure, or When �, yaw, and roll rates
high-rate separation commanded small, establish �4 deg/sec
by higher-level function. pitch rate, then separate.

green 1 No high-rate separation command Attitude-independent separation;
and not yet past apogee, or separate at earliest safe
either � or dynamic pressure time after null pitch, yaw,
is fairly low. and roll rates achieved.

Table 2.1: Summary of 3E/O ET Separation Maneuver Regions

When a region other than 0 is assigned and MECO has been con�rmed, a contin-
gency abort 
ag is set and 3E/O switches from display support to a guidance function
responsible for calculating and commanding the necessary abort maneuvers. We turn
now to the details of this guidance function.

2.2.2 3E/O Contingency Guidance

The primary tasks of 3E/O Contingency Guidance are to command the dissipation of
excess fuel before and after ET separation, calculate the angle of attack and pitch rate
for ET separation, monitor the -Z translation used to maneuver the Shuttle away from
the ET after separation, calculate an angle of attack for entry, command the transition
to the glide phase of the RTLS abort, and oversee the timing and sequencing of all of
the above each guidance cycle during a contingency abort. The calculations mentioned
here actually compute quaternions, four-element matrices that de�ne coordinate trans-
formations. For example, the quaternion calculated for the ET separation maneuver
commands zero sideslip and the current bank angle, as well as the angle of attack. As
Table 2.1 suggests, the characteristics of the maneuver commanded by the quaternion,
as well as the sequence and timing of events, vary depending on the maneuver region
dictated by prevailing conditions and ascent status.



8 Chapter 2. Informal Description of Three-Engines-Out

2.2.2.1 Pre-ET Separation Maneuver for Region 102

The primary consideration for �rst-stage (i.e., 
ight mode 102) aborts is sequencing the
pre-separation maneuvers with SRB tailo�, i.e., using up remaining SRB propellant.
Once the SRB chamber pressures fall below an I-loaded-value indicating that enough of
the propellant has been consumed, ET separation is commanded. Prior to separation, if
the Shuttle's altitude is su�cient to permit a dump of OMS fuel, a one-time only �ring
of the OMS engines is commanded. No further attitude maneuvers are commanded
prior to separation for region 102, because atmospheric density and dynamic pressure
are too high to safely maneuver without risking the structural integrity of the shuttle.

2.2.2.2 Pre-ET Separation Maneuvers for Regions 3 and 4

The primary concern for region 3 aborts is high dynamic pressure, which can cause
aerodynamic moments to exceed the ability of the RCS jets to perform the pitch-down
to a near-zero angle of attack. If this occurs, the region is switched from 3 to 4,
the pitch rate is zeroed, and a region 4 quaternion is calculated. Otherwise, a region
3 quaternion is calculated, commanding the near-zero angle of attack, along with a
slight pitch rate (to compensate for 
ight-path angle rotation). When the appropriate
pre-separation maneuver has been completed, ET separation is initiated. Since these
calculations are repeated each guidance cycle, the switch from region 3 to region 4 can
occur at any point after an I-loaded amount of time has elapsed prior to ET separation.
If control limitations prevent the simultaneous satisfaction of all necessary parameters
{ in this case, angle of attack, sideslip, and body rates (i.e., pitch, yaw, and roll rates)
{ separation is commanded as soon as the angle of attack (the most crucial parameter
for the separation maneuver) equals or exceeds an I-loaded threshold.

2.2.2.3 Pre-ET Separation Maneuvers for Regions 1 and 2

Region 2 aborts are referred to as \high-rate separation maneuvers" and are used when
the Shuttle is coming down with a fairly high angle of attack and the dynamic pressure
is moderate, or when a higher-level control function commands a region 2 maneuver to
accommodate the transition from a 2E/O to a 3E/O guidance function. The quaternion
calculated each guidance cycle when a region 2 abort is in progress establishes zero
sideslip. When yaw and roll rates are small, a �4 deg/sec pitch rate is commanded.
Under certain conditions, the time required to zero the sideslip is su�ciently long that
dynamic pressure builds to unsafe levels. Under these circumstances, if a region 2
abort has not been explicitly commanded, the region is switched from 2 to 1 and an
attitude-independent separation maneuver is begun immediately. Otherwise, the pitch
rate maneuver is begun as soon as sideslip is below an I-loaded threshold and yaw and
roll rates are acceptably small. Separation is commanded as soon as the di�erence
between the desired and established pitch rates is acceptably small, or when too much
time has elapsed since sideslip was zeroed.



2.3. The Existing Requirements Analysis Process 9

As noted above, region 1 separation is attitude independent, i.e., there is no attempt
to modify the Shuttle's attitude prior to separation, which is commanded after body
rates have become acceptably small and dynamic pressure has dropped to a safe value. If
the rate of descent is too great or too little time remains for a maneuver to entry attitude,
then separation is initiated immediately after body rates and dynamic pressure reach
safe values. Otherwise, up to 14 seconds are allowed to permit the RTLS separation
sequence to complete.

2.2.2.4 Post-ET Separation Maneuvers (All Regions)

The post-separation maneuver sequence is identical for all �ve abort regions. Imme-
diately after ET separation, a -Z translation is commanded to maneuver the Shuttle
away from the ET4. When this translation has been completed, excess OMS propellant,
if any, is burned by �ring the two OMS engines and selected aft RCS jets. RCS and
OMS jets are interconnected for this (and other) purposes via a series of valves that can
be con�gured either automatically or manually. The venting of excess OMS propellant
occurs exactly once in the post-ET maneuver sequence for regions 1-4, but is not used
in region 102; the time between the pre- and post-separation dumps in a �rst-stage
abort may not be su�cient to satisfy OMS/RCS system constraints. When the RCS
jets become available following the OMS/RCS interconnect (if any), an entry-attitude
quaternion is commanded, establishing level wings, zero sideslip, and an angle of attack
based on the Shuttle's current relative velocity. The �nal step in the post-separation
sequence is to command an automatic transition to the glide phase of RTLS abort as
soon as attitude and body rates reach acceptable ranges or dynamic pressure exceeds
an I-loaded threshold.

2.3 The Existing Requirements Analysis Process

The process used to develop shuttle 
ight-software requirements documents typically
yields a textual description, possibly accompanied by diagrams such as data-
ow di-
agrams, state charts, or object diagrams. If diagrammatic material is provided, it is
considered secondary; the primary requirements document is the informal English de-
scription. This phase is followed by the development of high-level test plans and product
assurance activities, including Fagan-style inspections [Fag76,Fag86] of both the require-
ments and the test plan. Both the requirements and the test plan also undergo a baseline
review before work on lower-level engineering products is allowed to proceed.

Since the 3E/O document we are working from is a Change Request (CR) [Roc94],
the similarly well-de�ned process for modifying an existing requirements document is of

4A -Z translation moves the Shuttle downward along the Z axis, which runs parallel to the Shuttle
plane of symmetry, and perpendicular to the X axis, which runs parallel to the Shuttle body, with the
Y axis completing the right-handed orthogonal system.



10 Chapter 2. Informal Description of Three-Engines-Out

particular interest. The process begins when an engineer writes a requirements Change
Request (CR), documenting modi�cations to a Shuttle 
ight software system. A CR
typically goes through several drafts with the author interacting primarily with the
Requirements Analyst (RA) responsible for the given software (sub)system. When
the author and RA agree that the CR correctly captures the requirements, the CR is
submitted to a review board. The CR is then prioritized along with other CRs for
consideration during a formal review conducted by a group of RAs. The formal review
process includes the following:

� Preparation of an engineering assesment including a summary, of the proposed
change, a justi�cation, and an analysis of its potential impact on the software
system.

� Detailed analysis of the CR guided by a Requirements Inspection Checklist con-
taining generic error categories. Errors found are documented on an Issue Form.

� One or more Formal Inspections of the CR, as needed (depending on factors such
as CR size and complexity), conducted by a team consisting of the CR author,
RA, developer, veri�er, etc., to review issues found during analysis, to compile
a list of items that must be investigated before implementation of the CR may
procede, and to insure that all participants have a consistent understanding of the
requirements.

� Tracking and resolution of all outstanding issues.

� Baselining; when all issues have been resolved (\closed"), the CR is baselined and
scheduled for implementation.

� Collection and analysis of quality metrics, primarily the number of issues detected
during inspection and the number of problems encountered after the requirements
evaluation (RE) phase. The ratio of the former to the later yields a rough quality
metric (the \process error rate") for RE.

Although the processes sketched here for both the initial development and the mod-
i�cation of requirement documents { including ongoing quality assurance activities {
are considered e�ective, [NASA93, pp. 9,22] notes the limitations paraphrased below:

� Current techniques are largely manual and highly dependent on the skill and
diligence of individual inspectors and review teams.

� There is no methodology to guide the analysis process, no structured way for RAs
to document their analysis, and there are no completion criteria.

� Although these techniques catch a substantial number of defects, the density of
defects found during requirements analysis suggests that many errors escape de-
tection.



2.3. The Existing Requirements Analysis Process 11

� NASA projects using currently-available techniques have reached a quality ceiling
on critical software subsystems, suggesting that innovations are needed to reach
new quality goals.

These limitations contribute a signi�cant part of the rationale for exploring the use
of formal methods { including the state exploration technique described below { as a
strategy for complementing and enhancing the existing requirements analysis process.



12



Chapter 3

Formal Analysis of Contingency
3E/O Sequencing

The series of sequential maneuvers described in the informal description of 3E/O can
be viewed as mode-sequencing, i.e., conditioned events or behaviors that occur in an
order prescribed by the satisfaction of one or more constraints. Characterizing the
constraint satisfaction that de�nes the permissible sequences of mode transitions is
sometimes referred to as a mode-sequencing problem. Abstracting the 3E/O algorithm
to its most basic precepts yields just such a series of sequential steps conditioned, in this
case, by a context consisting of variables representing the Shuttle's external (physical)
environment and internal state. As such, 3E/O is too procedural to be a good candidate
for the type of formal speci�cation and proof supported by systems like PVS [ORSvH95],
but can be quite naturally modeled as a �nite-state system. This observation led us
to wonder whether the type of mode-sequencing exempli�ed by 3E/O could be veri�ed
most e�ectively using �nite-state analysis techniques.1

3.1 Finite-State Veri�cation Techniques

Finite-state veri�cation techniques, described in [ZWR+80, CG87, BCM+92, Kur93,
McM93], have been around in one guise or another since at least the late 1970's. These
techniques were �rst used for verifying protocols (described as a collection of commu-
nicating �nite-state machines) and have been applied almost exclusively to hardware
or software implementation of control algorithms such as communication [HK90,Sha93]
and cache coherence protocols [ID93]. Although to our knowledge, no previous attempts

1The quaternion calculations are the only computational component of 3E/O. Although these calcu-
lations constitute an important 3E/O output, the matrix manipulations involved are relatively simple,
well understood operations. We model quaternion calculation with (only) enough granularity to ensure
that a quaternion value is appropriately assigned, but otherwise focus exclusively on basic sequencing
properties.

13



14 Chapter 3. Formal Analysis of Contingency 3E/O Sequencing

have been made to apply �nite-state veri�cation techniques to the type and scale of
mode-sequencing problem described here, the approach seemed worth exploring. The
rationale is as follows.

Like most fault-handling logic, 3E/O consists largely of mode switching and excep-
tion handling. The input and state spaces of these types of applications tend to lack a
regular and easily characterizable structure and there is typically little or no algorithmic
complexity. Typechecking and proof of invariants to establish correctness of functional
requirements are therefore not well-suited to fault-handling applications. The simplest
way to validate these systems is to enumerate the entire input and state spaces by brute
force. While this is rarely practical|the state space of most applications of interest
is far too great to make such brute force enumeration feasible|it is often possible to
\downscale" the state space of an application to a fairly small �nite size and still retain
the essential behaviors of the original system.2 The properties to be checked are gener-
ally speci�ed as explicit assertions or as error-checks programmed into the component
speci�cations. Since this approach checks that all reachable states satisfy the given
properties, it is also referred to as \reachability analysis."

3.2 Modeling Issues and Strategy

As noted above, the 3E/O algorithm consists of a series of sequential maneuvers that
are readily modeled as a �nite-state machine. The only real di�culty derives from the
number and characteristics of the input variables. The 3E/O requirements document
contains six full, double-spaced pages of inputs, most of which represent I-loaded thresh-
olds used to calculate the order and timing of the maneuver sequences. Nevertheless,
the sheer number of inputs is less problematic than their inherent complexity. Even a
simple model of the physics of the Shuttle's ascent is beyond the scope of this project.

The modeling strategy we developed is based on the following assumptions. First,
there is no need to confront head-on the inherent complexities of the real physical
world. For example, we care only whether the current altitude and altitude rate predict
an apogee altitude greater or less than the calculated altitude-velocity curve; the exact
values or physical laws involved are irrelevant for verifying sequencing properties. As a
result, we don't have to explicitly model the largely continuous values documented in
the requirements, but can instead use either qualitative ranges or booleans.

Second, we make the further simplifying assumption that there are no constraints
on the simultaneous values assumed by variables representing physical parameters, i.e.,
we ignore physical constraints between physical parameters and assume that all such
parameters are completely independent. For example, we make no attempt to capture
the relation between velocity and altitude. Although this is clearly naive, it is also

2In fact, experience suggests that ennumerating all behaviors of a downscaled system is a considerably
more e�ective debugging method than exploring some of the behaviors of the original system.



3.3. Finite-State Speci�cation of Three-Engines-Out 15

overly general, implying that while we may consider too many cases, we do not overlook
any.3

Finally, we largely ignore time, except for the implicit notion of time inherent in
an ordered sequence of events. These three assumptions provide a reasonably tractable
and accurate model of the 3E/O input space.

In addition, we reduce the large number of inputs by exploiting the fact that a
boolean-valued operation on two inputs is equivalent, as a sequencing constraint, to a
simple boolean variable. For example, the boolean expression used to determine if the
Shuttle has su�cient range to make it back to the runway checks whether the down-
range horizontal earth-relative velocity is strictly less than 0, and the di�erence between
the predicted and actual range capability is strictly greater than an I-loaded minimum
acceptable range di�erence, i.e., v horiz dnrng < 0 AND delta r > del r usp. The
value of the operation in each conjunct is either true or false, and hence for our purposes,
indistinguishable from that of a boolean-valued variable. In other words, as a sequenc-
ing constraint, this conjunction is equivalent to the expression: v horiz dnrng LT 0

AND delta r GTR del r usp, where each conjunct is reduced to a simple boolean vari-
able. By universally quantifying over these variables, we e�ectively show that for all
possible values of the two (original) expressions, certain properties hold. We use this
strategy for all inputs that represent the physical environment. Inputs that represent
the Shuttle's internal state, e.g., the 
ag that indicates whether contingency 3E/O has
been activated or the variable that encodes whether MECO has occurred, are modeled
as inputs. Another way to view the modeling approach taken here is that we de�ne
a state transition system operating within a two-level context: a global environment
consisting of monitored variables for external physical aspects, i.e., variables represent-
ing sampled sensor values, and a local environment consisting of monitored variables
for Shuttle-internal physical aspects, i.e., variables representing the Shuttle's internal
status. This view is similar to the standard A-7 model [HKPS78,Hen80, vS90], except
that the distinction made here between \external" and \internal" environment variables
would probably not appear as such in a standard A-7 interpretation.4

3.3 Finite-State Speci�cation of Three-Engines-Out

Mur�, the �nite-state veri�er used in this study was developed by David Dill and his
students at Stanford University [DDHY92, ID93]5 and consists of the Mur� Compiler
and the Mur� description language for �nite-state asynchronous concurrent systems,

3In the context of �nite-state veri�cation, a technique which prides itself on being able to handle
very large (but �nite) state spaces, it is far better to consider too many possibilities, than too few.

4 [vS90] distinguishes three types of environmental state variables: application, established and
hardware-dependent, but these distinctions are implementation-based, whereas ours re
ect a somewhat
di�erent bias.

5Mur� is named after the author of the irrefutable law which states that \The bug is always in the
case you didn't test."



16 Chapter 3. Formal Analysis of Contingency 3E/O Sequencing

which is loosely-based on Chandy and Misra's Unity model [CM88] and includes user-
de�ned datatypes, procedures, and parameterized descriptions. A Mur� description
consists of constant and type declarations, variable declarations, rule de�nitions, start
states, and a collection of invariants. The Mur� compiler takes a Mur� description and
generates a C++ program that is compiled into a special-purpose veri�er that checks
for invariant violations, error statements, assertion violations, deadlock, and (in certain
versions) liveness. Mur� can be used as a veri�er or as a simulator. The veri�er attempts
to enumerate all possible states of the system and the simulator explores a single path
through the state space. In both cases, e�cient encodings, including symmetry-based
techniques, and e�ective hash-table strategies are used to alleviate state explosion. To
date, we have used Mur� exclusively as a veri�er.

The 3E/O speci�cation is written in two parts, one for each of the two main 3E/O
functions: region selection and contingency guidance. The region selection function is
quite small and was speci�ed �rst in order to re�ne the modeling approach and analysis
strategy before tackling the considerably larger guidance function.

We illustrate the use of Mur� to specify 3E/O with a somewhat abridged version of
the region-selection algorithm. We actually implemented two versions of this algorithm,
one in the so-called \protocol-style" which is highly nondeterministic and therefore
rather di�cult to follow, and a more readily understood functional version, part of
which we present here.

To begin, we need a way of talking about variables that are not simple booleans.
As noted earlier, we would like to do this as abstractly as possible, using types that
range over qualitative rather than quantitative domains. Thus for the highly restricted
purpose of this speci�cation, we need only three types of values for velocity: those
greater than a maximum threshold, those greater than a minimum threshold, and those
less than or equal to the minimum threshold. We use a similarly abstract domain
for dynamic pressure. The other two type de�nitions explicitly enumerate domains
representing the relevant 
ight modes and the maneuver regions. Since region 4 is not
assigned by the region selection function (for reasons discussed in Section 2.2.1), it does
not appear as an element of the domain of type region. The value regE denotes errors
and is introduced strictly to make it easier to track error states.

Type

velocity: enumfGTR_vi_3eo_max, GTR_vi_3eo_min, LEQ_vi_3eo_ming;

dynamic_pressure: enumfGTR_qbar_reg3, GTR_qbar_reg1, LEQ_qbar_reg1g;

major_mode: enumfmm102, mm103, mm601g;

region: enumfregE, reg0, reg1, reg2, reg3, reg102g;

We also need a handful of global variables. The �rst four variables are 
ags indicating
whether a 3E/O contingency abort has been signaled, whether the SSMEs have been



3.3. Finite-State Speci�cation of Three-Engines-Out 17

shut down (main engine cuto� is a necessary condition for ET separation), whether
a high-rate ET separation (i.e., maneuver region 2) has been signaled, and whether a
region has been assigned, respectively. Two other global variables are introduced: one
of type major mode and one of type region.

Var

cont_3EO_start,

meco_confirmed,

high_rate_sep,

region_selected: boolean;

m_mode: major_mode;

r: region;

We next de�ne the basic region selection function. To conserve space in the pre-
sentation, we have not included declarations for the functions Nominal Ascent and
RTLS Abort, referenced in reg sel. Nominal Ascent checks to see if the ascent is normal
and, if not, calls a function that assigns an appropriate maneuver region. RTLS Abort

monitors the abort phase. reg sel assigns a maneuver region based on the current 
ight
mode (m mode) and the set of variables representing the prevailing physical conditions.
m mode is a global variable nondeterministically set by rules (see below). The formal
parameters provide the external context that conditions the selection of the maneuver
region, several of which should be familiar from the previous discussion on modeling.
In the course of state exploration, reg sel is called with all possible combinations of
values for these variables. The switch construct introduces a standard case expression.

Function reg_sel(vel:velocity; q_bar:dynamic_pressure;

delta_r_GTR_del_r_usp, v_horiz_dnrng_LT_0,

alpha_n_GTR_alpha_reg2,h_dot_LT_hdot_reg2,

apogee_alt_LT_alt_ref:boolean): region;

Begin

Switch m_mode

case mm102: r := reg102; cont_3EO_start := true;

case mm103: r := Nominal_Ascent_ck(vel,q_bar,apogee_alt_LT_alt_ref,

alpha_n_GTR_alpha_reg2,

h_dot_LT_hdot_reg2);

case mm601: r := RTLS_Abort(q_bar,v_horiz_dnrng_LT_0,

delta_r_GTR_del_r_usp, h_dot_LT_hdot_reg2,

alpha_n_GTR_alpha_reg2);

Endswitch;

Return r;

Endfunction;



18 Chapter 3. Formal Analysis of Contingency 3E/O Sequencing

The rule below uses the previously de�ned reg sel function to assign an appropriate
region and, if conditions warrant and SSME cuto� has been con�rmed, to initiate an
RTLS abort. Mur� rules de�ne nondeterministic state transitions. The boolean expres-
sion that precedes the arrow (==>) de�nes a condition that characterizes the states under
which the body, i.e., the statements following the arrow, may be executed. The Ruleset
construct is syntactic sugar that generates a copy of the rules within its scope for every
value of the bound variable. For example, the variable vel ranges over the enumerated
type velocity, and therefore can take on the following three values: GTR vi 3eo max,
GTR vi 3eo min, and LEQ vi 3eo min. There is a single rule, Select Region, within
the scope of this ruleset, so the ruleset will generate three rules identical in all respects
except for the value of the variable vel. The deeply nested rulesets are used to gener-
ate all possible combinations of values for the variables that model the Shuttle's ascent
environment. As noted previously, this approach yields a complete, if overly simplistic,
model of the input space.

Ruleset vel: velocity Do

Ruleset apogee_alt_LT_alt_ref: boolean Do

Ruleset q_bar: dynamic_pressure Do

Ruleset h_dot_LT_hdot_reg2: boolean Do

Ruleset alpha_n_GTR_alpha_reg2: boolean Do

Ruleset v_horiz_dnrng_LT_0: boolean Do

Ruleset delta_r_GTR_del_r_usp: boolean Do

Rule "Select Region"

!cont_3EO_start

==>

Begin

r:= reg_sel(vel,q_bar,delta_r_GTR_del_r_usp,v_horiz_dnrng_LT_0,

alpha_n_GTR_alpha_reg2,h_dot_LT_hdot_reg2,

apogee_alt_LT_alt_ref);

region_selected := true;

If meco_confirmed & r != reg0 Then cont_3EO_start := true Endif;

Endrule;

Endruleset; -- delta_r

Endruleset; -- v_horiz

Endruleset; -- alpha

Endruleset; -- h_dot

Endruleset; -- q_bar

Endruleset; -- apogee

Endruleset; -- vel

The next set of rules illustrates the use of nondeterministic assignment to model
the input of state variables such as major mode, meco confirmed, and high rate sep.
Note that these rules allow multiple assignments of the same mode, as well as a change



3.3. Finite-State Speci�cation of Three-Engines-Out 19

of modes (from 103 to 601) to re
ect the transition from a normal ascent to an abort
contingency, but correctly preclude the possibility of transitioning from a contingent
abort to a normal ascent state.

Rule "set mm103"

!cont_3EO_start & m_mode != mm601

==>

Begin

m_mode := mm103;

Endrule;

Rule "set MM601"

!cont_3EO_start

==>

Begin

m_mode := mm601;

Endrule;

Rule "set meco_confirmed"

!cont_3EO_start & !m_mode = mm102 & !meco_confirmed

==>

Begin

meco_confirmed := true;

Endrule;

Rule "set high_rate_sep"

!cont_3EO_start & !high_rate_sep

==>

Begin

high_rate_sep := !high_rate_sep;

Endrule;

Startstate is a special type of rule that is executed exactly once at the beginning of
a Mur� execution. A startstate that assigns a value to every global variable is required
of all Mur� programs. Here, we need only initialize the (internal) state variables, since
the (external) environment variables are denoted by universally quanti�ed variables in
Mur� rulesets. Note the use of undefine, an as yet undocumented Mur� feature that
at least partially relaxes the stricture that every global variable must be initialized. In
this case, we prefer to leave the value of region unde�ned until an appropriate region
is calculated, rather than introduce another element of the enumerated type (region).



20 Chapter 3. Formal Analysis of Contingency 3E/O Sequencing

Startstate "Init"

Begin

cont_3EO_start := false;

m_mode := mm102;

meco_confirmed := false;

high_rate_sep := false;

region_selected := false;

Undefine r;

Endstartstate;

We model the basic mode sequencing properties of the Region Selection and Con-
tingency Guidance functions as state transition constraints and then show that if these
constraints are satis�ed, key properties of the algorithms also hold. The key properties
are typically speci�ed as invariants, i.e., expressions that must be true in all states, and
are illustrated in the following section.

3.4 Finite-State Analysis of 3E/O Sequencing

The 3E/O requirements document [Roc94] provides a procedural description of 3E/O,
but does not identify essential properties of the contingency abort functions. In order
to validate the Mur� speci�cation, we derived a handful of properties that capture the
fundamental characteristics of mode sequencing intrinsic to 3E/O region selection and
contingency guidance. These derived properties fall into two categories: properties of
the form function X shall satisfy constraint Y, e.g., property 2 in Section 3.4.1 below,
and those of the form the outputs of function X shall obey constraint Y, e.g., property 1
below.

We have approached 3E/O mode-sequencing as a constraint satisfaction problem,
but it is worth noting that the sequencing constraints we are exploring constitute a
partial order on the modes, i.e., any two comparable modes are ordered by a precedence
relation that is re
exive, antisymmetric, and transitive. For example, the constraint
that a MECO con�rmation check must precede a contingency abort command can be
expressed as meco � cont ab, where � denotes the relation \precedes or co-occurs,"
and transitivity ensures that

(region select � meco ^ meco � cont ab)! region select � cont ab:

3.4.1 General Properties of Contingency Abort Sequencing

The contingency abort algorithms are functional, i.e., each set of inputs maps to a
unique output { either a maneuver region in the case of Region Select or an abort



3.4. Finite-State Analysis of 3E/O Sequencing 21

maneuver in the case of Contingency Guidance. Additionally, each contingency abort
function is de�ned by a prescribed sequence of calculations, wholly determined by the
Shuttle's external environment and internal state.

1. For each possible set of inputs, there is exactly one contingency abort output
de�ned by exactly one sequence of calculations.

2. The sequence of calculations that de�nes a contingency abort output is always
executed in the prescribed order.

We can instantiate these properties for each of the two major Contingency Guidance
functions, as shown below.

3.4.2 Essential Properties of Region Selection Sequencing

1. On each invocation, Region Selection shall assign and output exactly one maneuver
region.

2. Region Selection shall assign a maneuver region according to a �xed sequence of
calculations.

3. Region Selection shall initiate a contingency abort for region 102, and, if main-
engine cuto� has been con�rmed, for regions 1, 2, and 3.

Property 1 states the basic premise of Region Selection, namely this function always
calculates and outputs a region. Additionally, we require that the assigned region be
one of: region 0, 102, 1, 2, 3, or E, and that these regions be distinct. In theory, these
two properties should follow from the enumerated region type

region: enumfregE, reg0, reg1, reg2, reg3, reg102g;

but to be certain, we explicitly state the following two invariants.

Invariant "regions are pairwise disjoint"

(regE != reg0 & regE != reg1 & regE != reg2 & regE != reg3 &

regE != reg102 & reg0 != reg1 & reg0 != reg2 & reg0 != reg3 &

reg0 != reg102 & reg1 != reg2 & reg1 != reg3 & reg1 != reg102 &

reg2 != reg3 & reg2 != reg102 & reg3 != reg102);

Invariant "regions are exhaustive"

(forall r:region (r=regE | r=reg0 | r=reg1 | r=reg2 |

r=reg3 | r=reg102));



22 Chapter 3. Formal Analysis of Contingency 3E/O Sequencing

Property 2 states that the prescribed order of calculation is respected when assigning
regions. This property follows by inspection of the Mur� constraints encoded in the rules
and in If..then..else statements that constitute the bodies of the Mur� functions
for region selection. Property 3 is a particular instance of Property 2 and states that
a contingency abort is initiated only after an abort maneuver region has been selected
and MECO has been con�rmed. We typically establish speci�c properties of this kind
through invariants. The two forms of the invariant shown below are equivalent, although
the invariant form is usually more e�cient because the Mur� compiler can exploit
restricted properties explicitly identi�ed as invariants. The error statement, Error,
generates a run-time error.

Invariant "cont_3EO_start"

cont_3EO_start ->

((m_mode=mm102 | meco_confirmed) & !Isundefined(r) & r!=reg0);

Rule "alternate invariant cont_3EO_start"

!(cont_3EO_start ->

((m_mode=mm102 | meco_confirmed) & !Isundefined(r) & r!=reg0))

==>

Error "Invariant violated: alternate invariant cont_3EO_start"

Endrule;

Additional invariants were used to debug the speci�cation and to explore implica-
tions of the requirements, e.g., by checking for suspected anomalies. For example, we
suspected that a region 0 assignment could persist from one cycle to the next, result-
ing in failure to detect changes that would ordinarily trigger an abort maneuver. To
test this hypothesis, we output the error region, regE, whenever we detected a region
0 assignment that did not satisfy the necessary constraints and added a simple invari-
ant stating that regE never occurs. This strategy is equivalent to stating the following
invariant

(r = regE) -> !((m_mode = mm103 & (vel = GTR_vi_3eo_max |

(vel = GTR_vi_3eo_min & apogee_alt_LT_alt_ref))) |

(m_mode = mm601 & v_horiz_dnrng_LT_0 &

delta_r_GTR_del_r_usp)))

The resulting error trace is reproduced below. The trace illustrates nicely the type
of debugging information provided via counterexamples generated by �nite state veri-
�cation techniques. Note the �nal (anomalous) state in which delta r GTR del r usp

becomes false during a presumably normal RTLS abort (
ight mode 601). This cor-
responds to a scenario in which an RTLS abort has been invoked, but the fact that
the Shuttle lacks su�cient range for an intact RTLS abort is not detected or signaled.



3.4. Finite-State Analysis of 3E/O Sequencing 23

Although there is no possibility of an intact RTLS with three engines out, failure to
detect or signal accurate range information could potentially further jeopardize crew
safety.



24 Chapter 3. Formal Analysis of Contingency 3E/O Sequencing

Invariant no pathological region 0 cycles failed.

Startstate Init fired.

cont_3EO_start : false

meco_confirmed : false

high_rate_sep : false

region_selected : false

m_mode:mm102

r:Undefined

----------

Rule set MM601 fired.

cont_3EO_start : false

meco_confirmed : false

high_rate_sep : false

region_selected : false

m_mode:mm601

r:Undefined

----------

Rule Select Region, vel:GTR_vi_3eo_max, apogee_alt_LT_alt_ref:true,

v_horiz_dnrng_LT_0:true, delta_r_GTR_del_r_usp:true,

q_bar:GTR_qbar_reg3, h_dot_LT_hdot_reg2:true,

alpha_n_GTR_alpha_reg2:true fired.

cont_3EO_start : false

meco_confirmed : false

high_rate_sep : false

region_selected : true

m_mode:mm601

r:reg0

----------

Rule Select Region, vel:GTR_vi_3eo_max, apogee_alt_LT_alt_ref:true,

v_horiz_dnrng_LT_0:true, delta_r_GTR_del_r_usp:false,

q_bar:GTR_qbar_reg3, h_dot_LT_hdot_reg2:true,

alpha_n_GTR_alpha_reg2:true fired.

cont_3EO_start : false

meco_confirmed : false

high_rate_sep : false

region_selected : true

m_mode:mm601

r:regE

----------

End of the error trace.



3.4. Finite-State Analysis of 3E/O Sequencing 25

The error re
ected in this trace initially appeared signi�cant, given that the algo-
rithm fails to detect and signal two anomalous RTLS scenarios: the situation re
ected
in the error trace, where the Shuttle lacks su�ent range for an intact abort, and the sit-
uation where the vehicle is heading away, rather than toward, the landing site. Checking
with the RA responsible for this function, we learned that the termination criteria for
this task specify that the Contingency Abort function terminates if region 0 is assigned.
Apparently the fact that the algorithm currently checks each cycle for a region 0 assign-
ment from the previous cycle is misleading and indicates a questionable redundancy in
the requirements, rather than a serious oversight.

3.4.3 Essential Properties of Contingency Guidance Sequencing

The properties enumerated for contingency guidance similarly re
ect the general charac-
teristics of 3E/O Contingency Abort sequencing. The basic order of calculation follows
the two main guidance phases: pre-ET separation and post-ET separation. In the
pre-ET phase, additional ordering constraints are imposed by the operative maneu-
ver region. In the post-ET phase, the maneuver region is irrelevant and the ordered
sequence includes -Z translation calculations, entry maneuver calculations, and com-
manded transition to 
ight mode 602. For clarity, we specify the basic functions of
the guidance algorithm separately from the sequencing constraints. Since the analysis
strategy for contingency guidance is identical to that for region selection, we list these
properties without further discussion.

� On each invocation, contingency guidance shall calculate and output commands
for exactly one contingency abort maneuver.

� Contingency Guidance shall calculate an abort maneuver according to a �xed
sequence of calculations.

� Contingency Guidance shall command an ET separation.

� Contingency Guidance shall command at most one interconnected OMS dump.

� Contingency Guidance shall calculate and output an entry maneuver.

� Contingency Guidance shall command a transition to glide RTLS (
ight mode
602).

� The transition to mode 602 shall not occur until the entry maneuver has been
calculated.

� The entry maneuver calculations shall not commence until the OMS/RCS inter-
connect, if any, is complete.

� The OMS dump shall not be considered until the -Z translation is complete.



26 Chapter 3. Formal Analysis of Contingency 3E/O Sequencing

� Completion of -Z translation shall not be checked until ET separation has been
commanded.

� ET separation shall be commanded if and only if an abort maneuver region is
assigned.

3.5 Findings

The �nite-state speci�cation and analysis of 3E/O produced the set of issues enumer-
ated below in Sections 3.5.1 and 3.5.2. These issues represent the usual collection of
undocumented assumptions, inconsistent and imprecise terminology, redundant calcula-
tions, missing initializations, interface anomalies, and logical errors invariably exposed
through the process of formalizing and analyzing requirements. Predictably, the signif-
icance of the issues varies. Of the approximately 20 issues listed below and reported
to the 3E/O requirements analyst (RA), roughly one-third were noted and will appear
in an upcoming Documentation (Errata) CR. Other issues that we felt impacted the
clarity and precision of the requirements, including implementation bias and redundant
calculations (cf. Section 3.5.3), were not considered important by the RA. The logical
error listed in item 2 of Section 3.5.2 represents a signi�cant error in the requirements
that was also discovered by the existing requirements analysis process. To our knowl-
edge, the other issues listed below had not been previously discovered.

3.5.1 3E/O Region Selection Task Findings

1. Anomaly in the algorithm on cycles in which no abort is signaled: the algorithm
currently checks each cycle for a nominal ascent pattern that precludes the need
for abort procedures (region 0). The termination criteria for this task imply that
the algorithm will never be reentered if region 0 is assigned, in which case the
region 0 check is unnecessary.6

2. Redundancy in the algorithm after a high rate separation is commanded: assuming
that the command cannot be rescinded on subsequent cycles, the corresponding
region doesn't need to be recalculated each cycle, as is currently the case.

3. Inconsistent initialization of output parameters: some are initialized, others are
not. For example, ALT APOGEE and ALT REF are initialized, but T DEL, G, and
RTLS ABORT DECLARED are not. If these output parameters are initialized by other
functions, that information is not currently documented in 3E/O.

4. Unstated Assumption: MECO must be con�rmed for region 102 before a contin-
gency abort is initiated.

6More precisely, the exit should be restored to step 5 and step 6 should be eliminated.



3.5. Findings 27

5. Inconsistencies between informal description and stated algorithm, e.g.:

� The informal description says \If the apogee altitude is above this curve, a
contingency abort capability is still required." The algorithm checks whether
the apogee altitude is strictly less than the computed altitude-velocity curve.

� The informal description says \If the vehicle is heading back towards the
landing site, and the current range is greater than an I-loaded value, a 3E/O
region index is calculated." The algorithm calculates a region index if the
current range is less than or equal to the I-loaded value.

6. Ambiguities in the informal English description; e.g.,

� \Otherwise, the 3E/O �eld is blanked out and no further contingency abort
calculations will be performed." This is ambiguous; no further calculations
are performed on this cycle or on this and (all) subsequent cycles?

� \After SRB separation, on every pass that the 3E/O region index is calcu-
lated, a check is made to see if MECO con�rmed has occurred. If so, a check
is made to see if the major mode is 103. If so, an RTLS is automatically
invoked to transition to major mode 601. A 3E/O contingency start 
ag is
then set ..." The description is ambiguous and could be interpreted to mean
the contingency 
ag is set only if the major mode is 103.

7. Omissions from the algorithm or informal English description; e.g.,

� The algorithm indicates that a display is updated, but fails to mention which
of the relevant displays should be changed.

� The informal English description has not been updated to re
ect modi�ca-
tions to parameters DELTA R and DEL R USP.

3.5.2 3E/O Contingency Guidance Task Findings

1. Interface anomaly: while there is an explicit transition to an RTLS abort mode
(that signals termination of 3E/O) in all other regions, there is no such transition
for a �rst stage abort. The reason for this anomaly: existing requirements and
code used functions external to 3E/O to command the RTLS transition for �rst-
stage aborts and these existing requirements were not modi�ed when they were
\integrated" into the current requirements.

2. Logical error: If a Region 2 ET separation is downmoded to a Region 1 separation
in Step 23, the pitch rate, i.e., output variable WCB2, will not be set to appropriately
re
ect the downmode. The problem is particularly acute if the downmode occurs
after the �rst pass, because commanded region 2 pitch rates continue when they
should in fact be zeroed for region 1.



28 Chapter 3. Formal Analysis of Contingency 3E/O Sequencing

3. Unnecessary entry maneuver calculations: Step 22 calculates a region 2 quater-
nion before Step 23 checks to see if conditions dictate a downmode to region 1.
Since region 1 maneuvers are attitude-independent, the calculation is not used if
a downmode is required.

4. Unstated Assumptions:

� The variable ET SEP MAN INITIATE is set both internal and external to 3E/O.
If it is set externally, it is possible to exit 3E/O via a region 1 maneuver
without setting output variable FRZ 3EO (cf. Step 28). Apparently only the
crew can cause this and the assumption is that under these circumstances,
the crew will also take responsibility for attitude control.

� In Step 6, the algorithm checks for REGION 102 and for REGIONS 1-4. and
exits if it detects any other region assignment. In fact, any other region
assignment is an error, but the assumption is that testing and inspection
will ensure that only correct region values are used and that Step 5, which
guarantees an emergency separation if all else fails, will catch any remaining
region-assignment errors.

� After ET separation, dynamic pressure permitting, a one-time only intercon-
nected OMS dump is performed following completion of the -Z translation.
However, due to timing constraints, this dump is not performed if ET sep-
aration occurs in �rst stage. The algorithm currently initiates the dump
maneuver prior to checking for a �rst-stage abort. As a result, the delay
in the main propulsion system LO2 dump is zeroed, regardless of whether
a �rst-stage ET separation has occurred and the dump is precluded. The
operative assumption is that all region 102 post-ET separation dumps will
be inhibited, but this appears inconsistent with zeroing the LO2 dump delay.

� Output parameters, including ET SEP MAN INITIATE and ETSEP Y DRIFT,
that are not initialized in Contingency 3E/O Guidance are apparently as-
sumed to be initialized elsewhere.

5. Inconsistencies between informal description and stated algorithm, e.g.:

� The informal English description in Steps 8 and 9 does not make it clear that
these steps must be performed one time only in lockstep, i.e., on the same
cycle.

� In Step 14, the English reads in part: \[if the] MET has exceeded an I-loaded
value. . . " while the pseudo-code test checks for =>. Actually, the pseudo-
code no longer checks MET, but the di�erence between the current running
GMT (Greenwich-Mean-Time) and the GMT associated with lifto�, so the
English needs to be updated in both respects.

� The de�nition in the Table 4.10.1-1 entry for P MAX REG1 states \Maximum
pitch rate . . . ," but it should read \Maximum roll rate . . . "



3.5. Findings 29

� Similarly, The de�nition in the Table 4.10.1-1 entry for Q MINUS Z MAX states
\Maximum pitch rate for MM102-to-MM602 transition," but it should read
\Maximum pitch rate for immediate MM602 transition."7

6. Ambiguities in the informal English description; e.g.,

� The conjugate of the VR-to-M50 quaternion is not Q M50 VR (as the descrip-
tion and parentheses suggest), but rather Q VR M50.

3.5.3 Desirable Characteristics of 3E/O Algorithms

The �ndings enumerated above suggest certain characteristics that a \good" set of
3E/O requirements should exhibit. First, the requirements should specify that the con-
tingency guidance algorithm calculate all and only necessary maneuvers. Assuming the
current requirements are updated to correct the logical error responsible for failure to
recalculate the ET separation maneuver following a downmode from region 2 to region
1 (cf. Section 3.5.2, item 2), the requirements appear to correctly specify calculation
of all necessary maneuvers. However, the requirements also specify several unnecessary
calculations, including 2 (Section 3.5.1) and 3 (Section 3.5.2). According to the 3E/O
requirements analyst, these redundant calculations are not considered important be-
cause the shuttle currently uses only around 50% of the available compute cycles. How-
ever, the fact that the requirements assume the availability of compute cycles suggests
an underlying implementation bias that distracts attention from the more fundamental
nature of these algorithms. Thus a second desirable characteristic of a good set of 3E/O
requirements is that the algorithm should focus on essential properties and behaviors
and avoid implementation considerations.

A third and �nal desideratum is that the requirements should consistently maintain
and explicitly state all underlying assumptions. For example, the current requirements
for the region selection algorithm specify that before a contingency abort can be initi-
ated, MECO must be con�rmed. This con�rmation is explicitly checked for all abort
regions except region 102. Why isn't MECO con�rmed for region 102 and what is the
underlying requirement? In fact, the underlying requirement is exactly what you would
expect: MECO must be con�rmed in all abort regions before a contingency abort can
be signaled. The con�rmation is implicitly assumed rather than explicitly checked for
major mode 102 (\�rst-stage") aborts because in �rst-stage aborts, region selection is
executed (only) after MECO has been con�rmed.8 This is a nice example because it
not only illustrates the type of implicit assumption frequently underlying these require-
ments, it also provides a clear, simple example of how implementation-level detail and

7Ron Avery pointed out the de�nition for R MINUS Z MAX, as well as for Q MINUS Z MAX, should read
\maximum . . . rate for resuming active attitude control in region 102 -Z maneuver."

8We suspect that this is another instance where existing requirements for region 102 were retro�tted
into the current requirements without documentation or modi�cation. As a result, implicit assumptions,
special-case interfaces, and implementation considerations tend to mask the basic functionality that
region 102 shares with the other abort-regions.



30 Chapter 3. Formal Analysis of Contingency 3E/O Sequencing

inconsistent functional interfaces can obscure the real requirements. To capture the re-
quirements as given, the invariant would have to re
ect the special case for region 102,
i.e.,

cont 3EO start! (m mode = mm102 _ meco confirmed);

obscuring the essential property of the contingency guidance algorithm, namely that

cont 3EO start! meco confirmed:



Chapter 4

Discussion

In this �nal chapter we brie
y explore how the current study relates to other work
in this area, review the limitations of the method, and anticipate directions for future
work.

4.1 Relation to Other Work

Although this work draws on several di�erent formal-methods techniques, there is virtu-
ally no published work that is directly comparable. As noted in Section 3.1, �nite-state
veri�cation techniques have been around for approximately twenty years, but have been
used almost exclusively to verify hardware and software implementation of control algo-
rithms such as communication and cache coherence protocols. As far as we've been able
to determine, only one other application to the domain of software requirements has
been documented. Atlee and Gannon [AG93] describe a largely automated technique
for transforming tabular, SCR-style requirements [HKPS78] such as those used in [vS90]
into a �nite-state machine analyzable by the CTL model checker [CES86,McM93]. The
technique is used to analyze safety properties of two examples, each with a small set of
environmental conditions: an automobile cruise control system and a water-level mon-
itoring system. The major di�erence between their approach and ours, aside from the
nature and scale of the respective application domains, is the fact that their approach
has been re�ned into an automated process and focuses on one style of requirements
speci�cation (SCR) entailing an explicit modeling bias, whereas our approach is manual
and agnostic with respect to style of requirements speci�cation and modeling strategy.

There is also little precedent for modeling continuous physical domains, such as
the Shuttle ascent environment, since these domains are notoriously complex and not
considered good candidates for current formal-methods techniques. Boyer, Green, and
Moore discuss an initial investigation into applying formal methods to programs that
interact with environments using a very simple example: \steering a vehicle down a

31



32 Chapter 4. Discussion

straightline course in a crosswind that varies with time" [BGM82, 3], but apparently
have not pursued this or similar examples on a more realistic scale.

Our use of qualitative values for physical entities is reminiscent of techniques used in
certain sub�elds of Arti�cial Intelligence such as Qualitative Physics [WdK90] for mod-
eling and reasoning about the physical world, but the analogy ends there. Our approach
also di�ers from the simulation and scenario generation used extensively in industrial
applications, including Shuttle requirements analysis (cf. Section 2.3), because state-
exploration is exhaustive, checking all possible paths through the state space, whereas
simulation and scenario generation test extensively, but are inherently non-exhaustive.

4.2 Limitations of the Method

There are two distinct, but related limitations to the approach taken in this study.
First, developing a Mur� speci�cation di�ers very little from writing a program in
a conventional programming language. As a result, it is di�cult to regard a Mur�
speci�cation as an intellectually compelling veri�cation of the desired properties. This
limitation is compounded by a second factor: the utility of a nondeterministic, rule-
based notation is inherently more analytic than descriptive. Unlike a PVS requirements-
level speci�cation that provides a clear, unambiguous description that is potentially
useful for formal calculation, informal analysis, reviews, inspections, and documentation,
a Mur� speci�cation is not an e�ective descriptive document. In other words, although
the rule-based Mur� notation is an excellent vehicle for exhaustively analyzing the
behaviors of �nite-state systems and for checking their properties, it is a decidedly poor
vehicle for communicating and documenting these systems and their properties.

4.3 Future Work

There is currently a great deal of interest in integrating various Formal Methods tech-
niques to provide e�ective and e�cient design and veri�cation environments for complex
systems. Combining general, but labor-intensive theorem proving techniques with the
domain-speci�c, but highly automatic �nite-state veri�cation paradigm appears to be a
promising approach. As discussed in [RSS95], several formal methods systems integrate
model-checking and proof-checking, although to date there have been few, if any, truly
e�ective integrations of these complementary technologies. Despite the shortcomings
noted above, �nite-state veri�cation is a particularly useful tool for debugging formal
speci�cations because of its speed, high-degree of automation, and ability to generate
counterexamples. As noted at the end of Section 3.4.2, these failure traces, i.e., paths
through the state space that terminate due to run-time errors, can be extremely useful
for correcting and re�ning a speci�cation. Used in conjunction with a richer, more 
ex-
ible speci�cation language and an automated theorem prover, the very real bene�ts of
this technique can be exploited, while avoiding its weaknesses.



4.4. Concluding Remarks 33

Exploring e�ective ways of integrating Mur�-style state exploration with PVS-style
speci�cation and theorem checking is an example of this hybrid approach. There is
already a BDD-based model-checker for the propositional mu-calculus available as a
decision procedure within the PVS proof checker [RSS95]. There is also an experimental,
automated translation from Mur� to PVS and the reverse translation is under study.
These translations will ultimately further automate integrated approaches in which
properties that can be e�ciently checked with state exploration and properties that
require more general theorem-proving capabilities are both accommodated within a
single system. We are also exploring largely manual points of integration, including
the use of the PVS table construct to complement state-exploration, thereby providing
perspicuous documentation, as well as the ability to explore additional properties of the
3E/O contingency abort function.

4.4 Concluding Remarks

The discipline of formal speci�cation and analysis is invariably productive and the 3E/O
study is no exception. The process of formally specifying the 3E/O requirements has ex-
posed the usual collection of undocumented assumptions, logical errors, and inconsistent
and imprecise terminology. Most of the errors were found in the process of scrutinizing
and trying to understand the requirements document, but the �nite-state veri�cation
provided additional assurance as well as documented counterexamples. Mur� was par-
ticularly useful for exploring the large input space and verifying that assumptions about
the cyclic behavior of the 3E/O Guidance Task were well-founded.

The 1993 assessment of Shuttle 
ight software development practices cited at the
beginning of this report recommends that \. . . software safety programs must take ad-
vantage of state-of-the-art techniques and leading edge methodologies to build safety
into the software and the system while enhancing software development capabili-
ties." [NAS93, p. 91] Finite-state veri�cation merits further study as we explore tech-
niques, methodologies, and the integration of complementary paradigms for improving
Space Shuttle 
ight software development.



References

[AG93] Joanne M. Atlee and John Gannon. State-Based Model Checking of Event-
Driven System Requirements. IEEE Transactions on Software Engineering,
19(1):24{40, January 1993.

[BCC+95] R. Butler, J. Caldwell, V. Carreno, M. Holloway, P. Miner, and B. Di Vito.
NASA Langley's Research and Technology Transfer Program in Formal
Methods. In Tenth Annual Conference on Computer Assurance COMPASS

95, pages 26{30, Gaithersburg, MD, June 1995.

[BCM+92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic Model Checking: 1020 States and Beyond. Information and Com-

putation, 98(2):142{170, June 1992.

[BGM82] Robert S. Boyer, Milton W. Green, and J. Strother Moore. The Use of a
Formal Simulator to Verify a Simple Real Time Control Program. Technical
Report ICSCA-CMP-29, Institute for Computing Science and Computer
Applications, July 1982.

[CES86] E. M. Clarke, E. Emerson, and A. Sistla. Automatic Veri�cation of Fi-
nite State Concurrent Systems Using Temporal Logic Speci�cations. ACM
Transactions on Programming Languages and Systems, 8(2):244{263, April
1986.

[CG87] E. M. Clarke and O. Gr�umberg. Research on Automatic Veri�cation of
Finite-State Concurrent Systems. In Joseph F. Traub, Barbara J. Grosz,
Butler W. Lampson, and Nils J. Nilsson, editors, Annual Review of Com-

puter Science, Volume 2, pages 269{290. Annual Reviews, Inc., Palo Alto,
CA, 1987.

[CM88] K. Mani Chandy and Jayadev Misra. Parallel Program Design { A Foun-

dation. Addison-Wesley, Reading, MA, 1988.

[DDHY92] David L. Dill, Andreas J. Drexler, Alan J. Hu, and C. Han Yang. Protocol
Veri�cation as a Hardware Design Aid. In 1992 IEEE International Con-

ference on Computer Design: VLSI in Computers and Processors, pages
522{525. IEEE Computer Society, 1992. Cambridge, MA, October 11-14.

34



References 35

[Fag76] M. E. Fagan. Design and Code Inspections to Reduce Errors in Program
Development. IBM Systems Journal, 15(3):182{211, March 1976.

[Fag86] M. E. Fagan. Advances in Software Inspection. IEEE Transactions on
Software Engineering, SE-12(7):744{751, July 1986.

[Hen80] K. L. Heninger. Specifying Software Requirements for Complex Systems:
New Techniques and Their Application. IEEE Transactions on Software

Engineering, SE-6(1):2{13, January 1980.

[HK90] Zvi Har'El and Robert P. Kurshan. Software for Analytical Development
of Communications Protocols. AT&T Technical Journal, 69(1):45{59, Jan-
uary/February 1990.

[HKPS78] K. L. Heninger, J. W. Kallander, D. L. Parnas, and J. E. Shore. Software
Requirements for the A-7E Aircraft. NRL Report 3876, Naval Research
Laboratory, November 1978.

[ID93] C. Norris Ip and David L. Dill. Better Veri�cation through Symmetry. In
CHDL '93: 11th Conference on Computer Hardware Description Languages

and their Applications, pages 87{100. IFIP, 1993. Ottawa, Canada.

[Kur93] R.P. Kurshan. Automata-Theoretic Veri�cation of Coordinating Processes.
Princeton University Press, Princeton, NJ, 1993.

[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1993.

[NAS93] An Assessment of Space Shuttle Flight Software Development Practices. Na-
tional Research Council Committee for Review of Oversight Mechanisms for
Space Shuttle Flight Software Processes, National Academy Press, Wash-
ington, DC, 1993.

[NASA93] Formal Methods Demonstration Project for Space Applications { Phase I

Case Study: Space Shuttle Orbit DAP Jet Select. Multi-Center NASA Team
from Jet Propulsion Laboratory, Johnson Space Center, and Langley Re-
search Center, December 1993. NASA Code Q Final Report (Unnumbered).

[ORSvH95] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke.
Formal Veri�cation for Fault-Tolerant Architectures: Prolegomena to the
Design of PVS. IEEE Transactions on Software Engineering, 21(2):107{
125, February 1995.

[Roc94] Space Shuttle Orbiter Operational Level C Functional Subsystem Software

Requirements: Guidance Navigation and Control { Part A Guidance Ascent

and RTLS. Rockwell International, Space Systems Division, OI-25, CR
90705h edition, June 1994.



36 References

[RSS95] S. Rajan, N. Shankar, and M.K. Srivas. An Integration of Model-Checking
with Automated Proof Checking. In Pierre Wolper, editor, Computer-Aided
Veri�cation, CAV '95, pages 84{97, Liege, Belgium, June 1995. Volume 939
of Lecture Notes in Computer Science, Springer-Verlag.

[Sha93] W. David Shambroom. Use of Protocol Validation and Veri�cation Tech-
niques in the Design of a Fault-Tolerant Computer Architecture. In Fault

Tolerant Computing Symposium 23, pages 636{640, Toulouse, France, June
1993. IEEE Computer Society.

[vS90] A. John van Schouwen. The A-7 Requirements Model: Re-Examination
for Real-Time Systems and an Application to Monitoring Systems. Tech-
nical Report 90-276, Department of Computing and Information Science,
Queen's University, Kingston, Ontario, Canada, May 1990.

[WdK90] Daniel S. Weld and Johan de Kleer, editors. Readings in Qualitative Rea-

soning about Physical Systems. Morgan Kaufmann, San Mateo, CA, 1990.

[ZWR+80] Pitro Za�ropulo, Colin H. West, Harry Rudin, D.D. Cowan, and Daniel
Brand. Toward Analyzing and Synthesizing Protocols. IEEE Transactions

on Communications, COM-28(4), April 1980.


