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Abstract. A parameterized de�nition of subtractive 
oating point di-
vision algorithms is presented and veri�ed using PVS. The general al-

gorithm is proven to satisfy a formal de�nition of an IEEE standard

for 
oating point arithmetic. The utility of the general speci�cation is
illustrated using a number of di�erent instances of the general algorithm.

1 Introduction

As computing systems become more complex, it becomes increasingly di�cult
to ensure that testing fully exercises the design. This was made abundantly clear
by the infamous bug in the 
oating point unit of the Intel Pentium(TM) micro-
processor. The bug consists of �ve missing entries in a lookup table. Pratt [20]
provides a thorough analysis of this error. He provides compelling arguments that
a thorough manual analysis of a design may still allow errors to evade detection.
This is particularly true if the 
aw is in a region of the design that is thought
to be unreachable. Machine assisted reasoning is crucial to prevent such errors.
The SRT divider [19] veri�ed by Rue�, Srivas, and Shankar [17] illustrates how
the Prototype Veri�cation System (PVS) [16] can be used to prevent omissions
in lookup tables similar to that employed by the Pentium (TM). Their work
describes a formal relationship from a veri�ed algorithm to a formal description
of a hardware design. In order to complete the veri�cation, it is necessary to

relate the algorithm to a formal description of the 
oating point operation.
Our work provides a formal relationship from the IEEE 
oating point stan-

dards [6, 7] to a class of veri�ed division algorithms.A strength of theorem prover
based veri�cation is that it allows veri�cation of classes of algorithms. Once a
class is veri�ed with respect to the standard, it is trivial to instantiate it with a
speci�c instance. The SRT divider [19] veri�ed in [17] is an instance of the class
we have veri�ed. Other instances include the classical restoring and nonrestoring
division algorithms. Thus, our general theory provides a standard speci�cation
for IEEE compliant subtractive division.

The veri�cation is structured in a hierarchical fashion. At the root is a ver-
i�cation of the class of subtractive division algorithms. We illustrate the utility
of the general veri�cation by exhibiting a number of instances. Then it is shown
how these algorithms can be extended to provide IEEE compliant rounding.



These instances provide a collection of formal speci�cations for implementations
of 
oating point division that are known to meet the standard.

2 Related work

Much of the previous work in theorem prover based veri�cation of 
oating
point algorithms has focused on verifying core algorithms and a correspond-
ing hardware design. The �rst e�orts targeted veri�ed implementation of binary
nonrestoring algorithms. Leeser, O'Leary, and others present a veri�cation (us-
ing Nuprl) of a binary nonrestoring square root algorithm and its implementa-
tion [12, 9]. Verkest, et al present a similar veri�cation (using nqthm) of a binary
nonrestoring division algorithm [21].

In response to the 
aw in the Pentium [20], several researchers investigated
theorem prover based veri�cations of SRT division hardware. Clarke, German,
and Zhao used the Analytica theorem prover to verify Taylor's [19] radix-4
SRT division circuit [4]. Their veri�cation includes an abstract representation
of the lookup table and a proof that it de�nes all necessary values for the quo-
tient selection logic. Rue�, Srivas, and Shankar generalize this work using the
PVS theorem prover. They present a general veri�cation of arbitrary radix SRT
division algorithms, instantiate their theory with Taylor's radix-4 SRT division
circuit [19], and verify a description of the hardware. Included in their work is
a technique to verify a concrete representation of the lookup table. By virtue of
PVS' type system, proof obligations are automatically generated to ensure that
blank entries in the table are inaccessible.

In all of the e�orts above, the veri�cations address the functional correct-
ness of 
oating point algorithms and an associated hardware design. They do
not address the issue of relating the algorithms to a formal de�nition of 
oating
point operations. Harrison has presented a veri�cation of two 
oating point al-
gorithms; square root, and a CORDIC [22] natural logarithm algorithm [8]. For
both algorithms, Harrison relates the proofs to a 
oating point interpretation.
Although he does not present hardware descriptions, he does address some of
the preliminary error analysis necessary to provide correct rounding. The IEEE
standards for 
oating point arithmetic unambiguously state that operations

shall be performed as if it �rst produced an intermediate result correct to

in�nite precision and with unbounded range, and then that result rounded

according to one of the modes : : : [6, 7]

Barrett manually veri�ed a general rounding algorithm with respect to a Z for-
malization of IEEE 754 [1, 2]. When Barrett performed his veri�cation, there
was no machine assisted reasoning for the Z speci�cation language. Some tools
for machine assisted application of Z have recently been developed [13]. Thus
far, these have not been applied to 
oating point veri�cation.

Recently, the microcode for the 
oating point division and square root algo-
rithms of the AMD5K86

TM microprocessor has been mechanically veri�ed using
the ACL2 theorem prover [15, 18]. Both algorithms assume correct hardware for




oating point multiplication, addition, and subtraction. Both veri�cations in-
clude detailed analysis of rounding and proof that the delivered result is rounded
in accordance with the IEEE standard. In addition, the veri�cations guarantee
that all intermediate results of the algorithms �t the datapath of the existing

oating point hardware.

Our work is a generalization of the Rue�, Srivas, and Shankar veri�cation.
In addition, to the SRT algorithms, our veri�cation encompasses most of the
algorithms presented in [5]. In addition, our veri�cation includes a formal path
relating the algorithm to the IEEE standard.

2.1 Brief introduction to PVS

The Prototype Veri�cation System (PVS) [16] is a veri�cation system that pro-
vides support for general purpose theorem proving. The speci�cation language
is a higher order logic augmented with dependent types. Theories can be pa-
rameterized, and the dependent type mechanism allows for stating arbitrary
constraints on theory parameters. The type system of PVS includes predicate
subtypes and is therefore undecidable. PVS frequently generates proof obliga-
tions to ensure that expressions are well typed. PVS has powerful decision proce-
dures, so many proofs involving simple arithmetic expressions can be discharged
automatically. In addition, PVS provides a collection of pre-proven results in the
prelude. Also included with PVS are libraries providing support for bit-vectors
and �nite sets. In PVS, the real numbers are a base type, and other numeric
types are de�ned as subtypes of the reals. This allows speci�cations to freely
mix operations on numeric types.

3 General veri�cation of subtractive division algorithms

There are two principle classes of 
oating point division algorithms. The subtrac-
tive algorithms use shifting followed by addition/subtraction to generate quotient
digits in time linear with respect to the size of the operands. Multiplicative algo-
rithms, such as Goldschmidt's Algorithm or Newton-Raphson iterations provide
fewer iterations, but the operations in each iteration grow increasingly complex.
Ercegovac and Lang present a detailed study of subtractive algorithms algo-
rithms for both division and square root [5]. The general division algorithm is
presented in PVS providing a parameterized class of veri�ed subtractive division
algorithms.

3.1 General algorithm de�nition

Subtractive algorithms generate one quotient digit per iteration. They are de-
signed so that in iteration i the remainder is no larger than r�i for a radix-r
algorithm. Ercegovac and Lang present a series of interrelated factors which
di�erentiate subtractive division algorithms: the radix (r), the quotient-digit
set (f�a;�a + 1; :::;�1;0; 1; :::; a� 1; ag), the range of the divisor (b), and the



quotient-digit select function (qs) [5]. These factors are all parameters to the
general division theory. The formal parameters are:

r : {i : posint | i > 1},

a : {i : posint | ceiling((r-1)/2) <= i & i < r},

b : {i : posint | 1 < i & i <= r},

(IMPORTING divide_types[r, a, b])

qs : qs_type

The �rst three parameters are de�ned using predicate subtypes of the positive
integers. In addition, the types for a and b are constrained by the value of r.
The type signature for function qs depends on all of the previous parameters.
The declaration for type qs type is imported from theory divide types. Theory
divide types declares constant � = a

r�1 and the following types:

D_type : TYPE = {d : real | 1 <= d & d < b}

dividend : TYPE = {x : posreal | 1/r <= x & x < rho}

p_type(D) : TYPE = {p : real | abs(p) <= rho*D}

qs_type : TYPE =

[D : D_type, p : p_type(D) ->

{q : subrange(-a,a) | abs(r*p - q*D) <= rho*D}]

Constant � denotes the redundancy factor of the quotient-digit set. It repre-
sents a trade-o� in design complexity between the quotient selection function
and generation of divisor multiples. The type of the divisor is constrained by
D type, which is de�ned to include the numeric range of the signi�cand of a
normalized 
oating point number. The type of the dividend is constrained to
ensure that it satis�es constraints imposed on the partial remainder. Parame-
terized type p type(D) encodes an invariant, dependent on divisor D, that the
partial remainder must satisfy during execution of the algorithm. Finally, the
type of the quotient selection function, qs type, is restricted to functions that,
given a divisor D and a partial remainder p such that jpj � � �D, return a digit
q such that �a � q � a and jr � p� q �Dj � � �D.

The subtractive division algorithms, given divisor D and dividend X, are
characterized by the following recurrence equations for the quotient q and the

partial remainder p:

qi = r � qi�1 + qdi

pi = r � pi�1 � qdi �D (1)

where q0 = 0, p0 = X, and qdi is the quotient digit selected for iteration i. A
PVS speci�cation of Equation 1 is:

divide(X,D)(n) : RECURSIVE [# p : p_type(D), q: integer #] =

IF n=0 THEN (# p := X, q := 0 #)

ELSE (# p := r*p(divide(X,D)(n-1)) - qd_n*D,

q := r*q(divide(X,D)(n-1)) + qd_n #)

WHERE qd_n = qs(D,p(divide(X,D)(n-1))) ENDIF

MEASURE n



By using record types for the range of the function, the de�nition is a direct
transliteration of the recurrence equations. In addition, by declaring the partial
remainder to be of type p type(D), PVS automatically generates a proof obliga-
tion to ensure that the invariant is satis�ed. This obligation is proven using the
type constraints on the quotient selection function.

3.2 Veri�cation of the general algorithm

To simplify later de�nitions we de�ne the abbreviations:

De�nition1.

p(X;D)(n) =̂ p(divide(X;D)(n))

q(X;D)(n) =̂ q(divide(X;D)(n))

PVS strategy (induct-and-simplify) proves:

Lemma2. p(X;D)(n) � r�n = X � q(X;D)(n) � r�n �D

The invariant property of the partial remainder guarantees

Lemma3.

����p(X;D)(n) � r�n

D

���� � r�n

To strengthen the convergence property, the algorithm includes a corrective step
after the �nal iteration.

De�nition4.

P (X;D)(n) =̂

8<
:
(p(X;D)(n) +D) � r�n if p(X;D)(n) < 0
(p(X;D)(n) �D) � r�n if p(X;D)(n) = D

p(X;D)(n) � r�n otherwise

Q(X;D)(n) =̂

8<
:
(q(X;D)(n) � 1) � r�n if p(X;D)(n) < 0
(q(X;D)(n) + 1) � r�n if p(X;D)(n) = D

q(X;D)(n) � r�n otherwise

Expanding the de�nitions of P and Q, and using lemma 2, we prove:

Theorem5 (correctness).
X

D
= Q(X;D)(n) +

P (X;D)(n)

D

Similarly expanding the de�nition of P and using lemma 3, we prove:

Theorem6 (convergence).
P (X;D)(n)

D
< r�n

Thus, Q(X;D)(n) contains n radix-r digits of the quotient
X

D
.



3.3 Example instantiations

A number of quotient selection functions have been developed for use with the
general subtractive division algorithm. These include three radix-2 algorithms:
restoring, nonrestoring, and SRT; and �ve radix-4 algorithms: two using selection
constants for comparison with p (using a = 3 and a = 2), and three distinct
radix-4 SRT lookup tables. The tables developed are for

1) Partial remainder prediction or use of a carry-save adder:
approximation of p for error from either computing an estimate of the
next remainder as in Taylor's circuit [19] (previously veri�ed in [17]),
or error from a carry-save adder [5]

2) Use of a signed-digit adder: approximation of p always overestimates,
as would be the case when using signed-digit adders to accumulate the
remainder [5]

3) Folded lookup table: lookup table folded for reduced real estate

The process of veri�cation amounts to proving that each quotient digit select
function satis�es the type constraints of qs type. The radix-2 instantiations and
the radix-4 using selection constants were straightforward veri�cations. The pro-
cess of verifying lookup tables in PVS was �rst illustrated by Rue�, Srivas, and
Shankar [17] and repeated here with respect to the general division algorithm.
However, the development of two new lookup tables proved insightful in demon-
strating the usefulness of PVS in the design process. Not only were omissions
from the table detected, but PVS allowed the faster development of new tables.
Each table was developed starting from the base table in [17] and then modi�ed
to meet the new requirements. PVS was used to indicate which table entries were
incorrect under the new speci�cations, allowing the designer to easily modify the
table. Each new table was fully designed and veri�ed in less than three hours
elapsed time.

4 Veri�cation with respect to the IEEE standard

This section illustrates how to extend the above general algorithm to provide a
veri�ed IEEE compliant implementation of division. This does not constitute a
full proof of compliance, it just illustrates how non-exceptional cases of division
can be realized. This veri�cation step is performed with respect to a formal
speci�cation of IEEE 854 de�ned using PVS [14]. The veri�cation is performed
in two stages. First, a generalization of the basic guard, round, and sticky bit
rounding algorithm is shown to satisfy the requirements of the standard. Then,
the general subtractive algorithm is shown to provide su�cient information to
utilize this rounding scheme. The veri�ed rounding scheme is applicable for all

oating-point algorithms. In addition, the theory mapping the standard to the
general subtractive algorithm includes a number of intermediate results that
apply to all 
oating point division algorithms.



4.1 Rounding scheme

The IEEE Standards for 
oating-point arithmetic [6, 7] require support for four
rounding modes. The default mode is round to nearest even, and requires that
the return value be the 
oating point number nearest to the exact result. If
the exact result is halfway between two 
oating point numbers, the standards
require that it be rounded to the one with an even least signi�cant digit. The
other three modes round the result towards positive in�nity, negative in�nity, or
zero. The discussion in this section uses the following fact about real numbers.

Lemma7. For any integer b > 1, a nonzero real number z can be uniquely

decomposed into three parts: a sign,sgn(z) 2 f�1; 1g; an integer exponent e(z);
and a signi�cand 1 � sig(z) < b such that

z = sgn(z) � sig(z) � be(z)

The following de�nition is from the PVS prelude:

De�nition8. The fractional part of a real number z is de�ned by

fzg =̂ z � bzc

The next two de�nitions are from Miner's PVS formalization of IEEE 854 [14].
The function, round, converting real number z to an integer for each of the four
rounding modes required by the IEEE standard is de�ned by:

De�nition9.

round(z; to pos) =̂ dze

round(z; to neg) =̂ bzc

round(z; to zero) =̂ sgn(z) � bjzjc

round(z; to near) =̂

8><
>:
bzc if fzg < 1� fzg
dze if 1� fzg < fzg

2�
j
dze
2

k
otherwise

This de�nition is extended to round a real number z to a real number with at
most p base-b digits of precision using the following function:

De�nition10.

round scaled(z;mode) =̂ round(z � bp�1�e(z);mode) � be(z)�(p�1)

A common algorithm for implementing IEEE compliant rounding to p digits
of precision uses two extra digits and a sticky-
ag [11]. The �rst extra digit is
called the guard digit and ensures that the computed result can be normalized
while preserving p digits of precision. This is necessary for multiplication and di-
vision algorithms. The second extra digit is called the round digit, and is used to
control rounding for every mode except to zero. Finally, a sticky 
ag is required
to distinguish the case when the in�nitely precise result lies halfway between



two representable values for mode to near. The PVS theory implementing the
Guard, Round, Sticky (GRS) scheme has been generalized to allow an arbitrary
even radix. Thus it works for both base-2 and base-10 instances of IEEE 854.
The principle function realizing the GRS rounding scheme is:

De�nition11. For s 2 f�1; 1g, n 2 N, base-b digit d, and boolean sticky

grs(s; n; d; sticky; to pos) =̂

�
n+ 1 if s � 0 ^ ((d > 0) _ sticky)
n otherwise

grs(s; n; d; sticky; to neg) =̂

�
n+ 1 if s < 0 ^ ((d > 0) _ sticky)
n otherwise

grs(s; n; d; sticky; to zero) =̂ n

grs(s; n; d; sticky; to near) =̂

�
n+ 1 if (d > b

2
) _ (d = b

2
^ (sticky _ odd?(n)))

n otherwise

To complete the de�nition of rounding using the GRS scheme, we use the fol-
lowing functions to scale the result and extract the relevant �elds.

De�nition12.

scaled(z) =̂ bjzj � bp�1�e(z)c

round digit(z) =̂ bjzj � bp�e(z)c mod b

sticky 
ag(z) =̂ fjzj � bp�e(z)g 6= 0

Function scaled extracts the p most signi�cant base b digits of z scaled to a
natural number. Function round digit extracts the (p+1)th digit, and sticky 
ag

is true if and only if there are signi�cant digits beyond the (p+1)th. For a result
in a sign and magnitude representation, functions scaled and round digit can
be realized in hardware by extracting the appropriate digits from the given
result. Implementing the sticky 
ag requires some additional logic; the actual
realization will vary depending upon the algorithm employed to compute the
result. For comparison to round scaled, we de�ne

De�nition13.

round grs(z;mode)

=̂ sgn(z) � be(z)�(p�1) �

grs(sgn(z); scaled(z); round digit(z); sticky 
ag(z);mode)

The principle result of this section is:

Theorem14.

round grs(z;mode) = round scaled(z;mode)



The PVS proof of this result consists of a fairly simple case analysis, except for
mode to near.

The initial PVS proof for mode to near included a complicated case analysis,
where it was di�cult to exploit symmetry. IEEE 
oating point numbers are
de�ned using a sign and magnitude representation. However, the de�nition of
round scaled does not take advantage of this representation. Thus, the �rst proof
for mode to near included an unnatural case split on the sign of the argument.
Since the GRS rounding scheme is de�ned in terms of a sign and magnitude
representation, the cases for negative arguments do not align in the same manner
as for the positive arguments. Thus, there was little opportunity to reuse proofs
from the corresponding positive cases. The PVS proof has been simpli�ed using
the following lemma (which was proven using PVS strategy (grind))

Lemma15.

round(z; to near) = sgn(z) � round(jzj; to near)

Even without the case split due to the sign, the proof for mode to near still
involves a di�cult case analysis. This case analysis consists of relating the values
of the round digit and sticky 
ag to the corresponding cases from the speci�cation
for rounding mode to near.

4.2 Relating the general algorithm to the standard

The veri�ed rounding scheme asserts that in order to achieve IEEE compliant
rounding to p signi�cant digits, it is su�cient to compute (p + 1) truncated
signi�cant digits and determine if there are any remaining non-zero digits. The
general subtractive division algorithm ensures at least n � 1 digits of precision
after n iterations. Furthermore, if the computed remainder is nonzero, then there
are additional digits in the in�nitely precise result. Since it is possible for the
radix of the division algorithm to be di�erent from that for the representation
of 
oating point numbers, the PVS theory has to relate the potential division
radices to those allowed by the standards.

There are some simple results that describe the range of possible values
for 
oating point division. Let x denote a base-b 
oating point number with
p signi�cant digits. A �nite 
oating point number x is represented using three
�elds: a sign �x 2 f0; 1g, an integer exponent Ex, and a signi�cand dx, where dx
is a function from f0; : : : ; (p� 1)g to f0; : : : ; (b� 1)g. The numerical value of dx
is given by

vd(x) =

p�1X
i=0

dx(i) � b
�i

The numerical value of 
oating point number x is given by

v(x) = (�1)�x � bEx � vd(x)

A 
oating point number x such that 1 � vd(x) < b is normalized. Furthermore,
if its exponent also falls within the range allowed by the standard, it is a normal


oating point number.



The IEEE standard requires that all operations be performed as if to in�nite
precision and then rounded. The in�nitely precise quotient of two 
oating point
numbers x and y is v(x)=v(y). A number of general facts about 
oating point
division have been proven using PVS. These include the following:

Lemma16.

v(x)

v(y)
= (�1)�x��y � bEx�Ey �

vd(x)

vd(y)

This lemma states that a 
oating point division algorithm can be decomposed
into simple operations on the sign and exponent �elds combined with an algo-
rithm to compute the quotient of the signi�cands.

Lemma17. For normalized 
oating point numbers x and y,

b�1 + b�(p+1) �
vd(x)

vd(y)
� b� b(1�p)

Lemma18. For normalized 
oating point numbers x and y, if vd(x) < vd(y)
then

vd(x)

vd(y)
� 1� b(1�p)

Lemmas 17 and 18 assert that the result of a 
oating point division algorithm
requires at most one left shift to normalize the result, and furthermore, the neces-
sity of post-divide normalization can be determined by comparing the magnitude
of the signi�cands. Therefore, rounding cannot a�ect the exponent �eld for a di-
vision operation. These results are true for any 
oating point division algorithm;
they do not depend on a particular instantiation.

These results allow us to de�ne the following exponent adjustment function
for the quotient of normalized 
oating point numbers x and y:

Adj(x; y) =

�
1 if vd(x) < vd(y)
0 otherwise

The above results allow us to de�ne a template for a 
oating point division
algorithm

De�nition19. For normal 
oating point numbers x and y such that Emin �

Ex � Ey � Adj(x; y) � Emax, let z =
vd(x)

vd(y)
in

div algorithm(x; y;mode)=̂�nite(XOR(�x; �y); Ex�Ey�Adj(x; y); digit div(x; y)

where

digit div(x; y)=̂nat2d(grs((�1)�x��y ; scaled(z); round digit(z); sticky 
ag(z);mode)



Constructor �nite generates a �nite 
oating point number from a sign, an ex-
ponent, and a digit vector. Function nat2d converts a natural number n, where
n < bp, to a digit vector. To complete the algorithm, it is necessary to compute
scaled, round digit, and sticky 
ag for the given quotient.

The theory relating the general algorithm to the IEEE standard uses the
same formal parameters as the the general division theory. It also uses additional
parameters needed to import the IEEE theories. The base for the 
oating point
representation is b, the radix for the division algorithm, r, is selected so that
r = bi for some positive integer i. This ensures shift operations can be e�ectively
used in the computation of the partial remainder. The divisor, vd(y), already
satis�es the type constraint D type. The dividend needs to be shifted right either
one or two base-b digits to ensure that it satis�es the initial type constraints for
the partial remainder. Finally, the algorithm must be be iterated enough times
to ensure p + 1 signi�cant digits. The following de�nitions invoke the general
algorithm using arguments selected to ensure the algorithm computes enough
information for IEEE compliant rounding.

De�nition20. Let pre = 2� b�c, i = logb(r), and steps =
�
p+2+pre

i

�
in

Quotient(x; y) =̂ bpre �Q(vd(x) � b
�pre; vd(y))(steps)

Remainder(x; y) =̂ bpre � P (vd(x) � b
�pre; vd(y))(steps)

Using results from the general division theory, we establish the following results

Lemma21.

vd(x)

vd(y)
= Quotient(x; y) +

Remainder(x; y)

vd(y)

Lemma22.

Remainder(x; y)

vd(y)
< b�(p+2)

This result combined with lemma 17 ensures that the computed quotient has a
su�cient number of signi�cant digits for correct rounding. The arguments for
the GRS rounding algorithm are:

De�nition23.

scaled div(x; y) = bQuotient(x; y) � b(p�1)+Adj(x;y)c

round digit div(x; y) = bQuotient(x; y) � bp+Adj(x;y)c mod b

sticky 
ag div(x; y) = (fQuotient(x; y) � bp+Adj(x;y)g+Remainder(x; y)) > 0

All that remains is to prove the following:

Theorem24 (IEEE compliant). For normal 
oating point numbers x and y

such that Emin � Ex �Ey � Adj(x; y) � Emax

fp div(x; y;mode) = div algorithm(x; y;mode)



The PVS proof of IEEE compliant has two major parts. The �rst part of the
proof consists of showing that the restrictions on the exponents of x and y ensure
that the result of fp div returns a normal 
oating point number. The second part
of the proof uses the following identities:

Lemma25.

scaled div(x; y) = scaled

�
v(x)

v(y)

�

round digit div(x; y) = round digit

�
v(x)

v(y)

�

sticky 
ag div(x; y) = sticky 
ag

�
v(x)

v(y)

�

The PVS proofs of these three identities involve algebraic manipulation of exper-
essions composed of exponents, absolute values, and the integer 
oor function.
The proofs are not conceptually di�cult, but they do not succumb to PVS' brute
force proof strategies.

4.3 IEEE compliant division

Given the above veri�ed general algorithm and a quotient selection function of
type qs type for some division radix r, quotient digit set bound by a, and 
oating
point base b. it is trivial to construct a veri�ed IEEE compliant subtractive
division algorithm.

An example instantiation for IEEE 754 single precision radix-4 SRT divi-
sion using signed-digit adders to compute the partial remainder consists of the
following sequence of PVS declarations.

IMPORTING

divide_types[4,2,2],

signed_digit_lookup

qs: qs_type[4,2,2] = q_sel

IMPORTING

ieee_divide[4,2,2,qs,24,192,127,-126]

Theory signed digit lookup contains the de�nition of an SRT4 lookup table
suitable for use with a signed-digit adder. In addition, it contains the proof
that the quotient selection function q sel satis�es type qs type[4,2,2]. Theory
ieee divide de�nes function div algorithm and includes the proofs from the
previous section. With the instantiation of the quotient selection function, the
function div algorithm completely describes a veri�ed IEEE compliant division
algorithm composed of operations that have simple hardware realizations. The
designer must verify that the hardware design correctly implements this algo-
rithm, but need not be concerned with the functional correctness of the algo-
rithm.



Given a collection of veri�ed quotient selection functions, it is easy for a
designer to select one appropriate to the constraints of a particular development
e�ort.

5 Suggestions for future work and lessons learned

5.1 Suggestions for future work

There are a number of ways to build on the work presented here. The basic style
of the speci�cation is common for a large number of 
oating point algorithms.
The most obvious class of algorithms to consider is subtractive square root al-
gorithms. Another good candidate for exploration is whether a similar general
schema can be developed for division through multiplication algorithms.

Another example to be considered is the generalized CORDIC algorithm [22].
The algorithm has already been de�ned in PVS, and the solutions to the de�ning
CORDIC equations have been veri�ed. These proofs required the addition of
some axioms describing properties of trigonometric and hyperbolic functions.
The limited support (in PVS) for reasoning about these functions made analysis
of accumulated error and convergence di�cult, thus remaining as future work.

From the above mentioned work, it should be possible to build up a library
of general 
oating point algorithms veri�ed with respect to the IEEE standard.
Such a library would present a developer of 
oating point hardware with a
variety of options, provided there was a good link between the veri�ed library
and hardware development tools.

5.2 Lessons learned

In general, the veri�cation of functional correctness of recurrence based algo-
rithms is a simple matter using PVS. However, details often ignored by other
veri�cations required the most di�cult and time consuming proofs. There were
two primary sources of di�culty: poor choices in the structure of the formal
speci�cation and working in a domain where there is limited support from the
prover. During this veri�cation e�ort, most proof steps consisted of algebraic ma-
nipulation of expressions involving exponentiation for which there are a limited
number of preproven properties. Although the prelude includes some facts about
exponentiation, there are a number of improvements possible to more e�ectively
automate such proofs.

The PVS type system can be used to e�ectively restrict types in de�nitions.
However, this may lead to much time spent proving irrelevant type correctness
conditions. Finding the right balance can be di�cult. During the veri�cation
relating the algorithm to the IEEE standard, much of the e�ort consisted of
repeatedly discharging the same collection of type correctness conditions.



6 Concluding remarks

Formal veri�cation is an enabling technology. This general veri�cation will allow
designers to focus their e�orts on more advanced optimizations of hardware
implementations secure in the knowledge that the routine aspects of the design
have been addressed. However, a great deal of work is still needed to make formal
veri�cation a useful technology. In particular, a designer should not be required
to generate all of the supporting theories for well known algorithms and hardware
structures. A large set of libraries should be available from which to select the
pieces required to complete and verify a design.

The ultimate goal of the work is to assist in the development of veri�ed hard-
ware. With that in mind, the general algorithmwas presented in a standard form
that can be easily transformed to an equivalent tail-recursive description [10].
This would provide a top-level speci�cation for deriving a hardware realization
using a transformational system such as DRS [3]. This process has been tested
with the general subtractive division algorithms presented in this paper.

The work presented here is a major step toward establishing an environment
conducive to development of provably correct 
oating point hardware. The pri-
mary bene�t of the work is not the fact that subtractive division algorithms are
shown to be compliant with IEEE standards. Instead, this work demonstrates
that with proper foresight in developing and verifying generalized solutions, it is
then much easier for future designers to verify particular instantiations of those
general solutions. As a complete library of veri�ed 
oating point algorithms
emerges, future 
oating point implementations should have a much higher con-
�dence of correctness.
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