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Abstract

Approximate analytical expressions for controllability and observability grammian matrices

and Hankel singular values of discrete LTI 
exible structures are derived. The diagonal domi-

nance property of the discrete grammians is shown which results in the invariance of the principal

directions. The approximate discrete Hankel singular values converge to the continuous formula

with increased sampling rate while the controllability and observability grammians go to zero

and in�nity respectively. The approximate formula are accurate up to frequencies close to the

Nyquist.

1 Introduction

It is well known that degrees of controllability and observability for linear systems are conveniently

captured by the singular values of grammians. These singular values have a wide range of applica-

tions from system identi�cation and model reduction to actuator and sensor placement for e�ective

control and sensing con�guration. Although the physical interpretation and approximating formula

has been investigated in detail in the past for continuous systems (see for example [1]-[9]), there is

a signi�cant lack of results for discrete systems although the results are expected to be analogous

to the continuous case. This need for results in the discrete domain is painfully clear, for example,

when a control engineer is faced with the task of analysis and design of controllers for a large order

model of a discrete system.
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In this paper, analytical expressions for controllability and observability grammian matrices

and Hankel singular values of discrete LTI 
exible structures are derived. Results based on two

types of models for discrete 
exible structures are given: discretization of continuous systems

via sampling and zero-order-hold (ZOH) and implicitly discrete models. The �rst type of model

is typically obtained by analytical means while the second type typically arises from system

identi�cation. The sampled/ZOH model is a parameterized model which allows direct comparisons

to continuous singular values when the sampling rate is varied. Derivations of the approximate

singular value formulas are given only for the �rst type of model and the results based on the

second type of parameterization are summarized as corollaries. For the class of 
exible structures

with small damping and distinct frequencies, the above formulae are signi�cantly simpli�ed. The

approach is complementary to the earlier results on continuous time 
exible structures reported

in [5, 6, 7]. Similar to the continuous case, the diagonal dominance property of the discrete

grammians for small damping is shown. As a result, the approximate invariance of principal

controllability and observability directions also hold for discrete time 
exible structures. The

dependence of the grammians on the sampling time and in particular their deviation from the

corresponding continuous grammian is investigated. In particular, it is shown that the approximate

discrete Hankel singular values formula converges to the approximate continuous formula with

increased sampling rate while the controllability and observability grammians go to zero and in�nity

respectively. It is shown by numerical examples that the approximate formula for singular values

of discrete controlability and observability grammians and Hankel singular values are accurate up

to frequencies close to the Nyquist frequency. Two levels of damping are assumed to evaluate the

e�ect of violating the assumption of a lightly damped 
exible structure.

2 Flexible Structure

2.1 Continuous Time

Let the triple (A;B; C) denote a modal state-space representation of a 
exible structure with n

structural modes. Following earlier de�nitions [6, 7, 8, 9, 10] de�ne the modal state vector, x, of

dimension n2 � 1, where n2 = 2n, such that

x =
�

_�1 !1�1 � � � _�n !n�n

�T
(1)
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then the modal state equations take the form

_x = diag(A1; � � � ; An)x+

2
64
B1�
...

Bn�

3
75u (2)

y =
h
C�1 � � � C�n

i
x (3)

where

Ai =

"
�2�i!i �!i
!i 0

#
; Bi� =

"
bi
0

#

C�i =
h
cri

1
!i
cdi

i
(4)

and i = 1; . . . ; n, bi =  Ti E, cdi = F i and cri = G i. Notice that for small damping

0 < �i � 1 (5)

the above choice of the state vector gives the approximately normal state matrix and hence

approximately orthogonal eigenvectors. For 
exible structures with distinct natural frequencies,

the steady-state controllability and observability grammians asymptotically (as � ! 0) approach

2-by-2 block diagonal matrices as given in [6, 7, 10]


2ci =
�2ii
4�i!i

; 
2oi =
�̂2i

4�i!i
; 
4i =

 
�ii�̂i

4�i!i

!2

(6)

where

�2ij = bib
T
j (7)

�̂2i =
1

!2i
cTdicdi + cTricri (8)

are the modal grammian coe�cients [8, 9].

2.2 Discrete Time

Two di�erent forms of parameterizations of the discrete 
exible structures are considered. The

�rst form is used in the detailed derivations in the remaining sections and the results based on the

second form of parameterization are given as corollaries without details.
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2.2.1 Sampled/ZOH Model

Consider a continuous 
exible structure as de�ned by the block diagonal modal state space repre-

sentation in Section 2.1 and sampled at the outputs with period T and with a ZOH at the inputs.

The state equation is given in this case by

x(k + 1) = ~Ax(k) + ~Bu(k) (9)

y(k) = ~Cx(k) + ~Du(k) (10)

where ~C = C, ~D = D while the discrete system matrices, ~A and ~B are given by

~A = eAT = blk-diag(~A1 (T ); . . . ; ~An(T )) (11)

~B =

Z (k+1)T

kT
eA((k+1)T��)d�B

= blk-diag( ~M1; . . . ; ~Mn)B (12)

where ~Mi =
R T
o

~Ai(�)d�, and by denoting the damped frequency of the continuous structure as

!di = !i

q
1� �2i , the ith block of ~A is

~Ai(T ) =
e��i!iT

!di

"
��i!isin(!diT )
+!dicos(!diT )

�!isin(!diT )

!isin(!diT )
�i!isin(!diT )
+!dicos(!diT )

#
(13)

2.2.2 Implicitly Discrete Model

In general, the state matrix of a discrete time model of a 
exible structure may be fully populated.

The following de�nes a similarity transformation to block diagonalize the state matrix:

Lemma 1 Let the quadruple (Az; Bz ; Cz ; Dz) denote the discrete state space matrices of a 
exible

structure. Let (zi; vi) denote the ith eigenvalue and eigenvector pair of Az. The state transformation

matrix
V =

�
Re(v1) �Im(v1) . . . Re(vn) �Im(vn)

�
(14)

block diagonalizes the state equations as in (9) and (10) where

~A = blk-diag( ~A1(T ); . . . ; ~An(T )) (15)

~B = V �1Bz ; ~C = CzV; ~D = Dz (16)

and

~Ai =

"
Re(zi) �Im(zi)
Im(zi) Re(zi)

#
(17)

4



For a lightly damped 
exible structure, its ith discrete eigenvalue lies just inside the unit circle and

can be written as zi = e(��i+j i)T where �i > 0. The ~Ai matrix in (17) then becomes

~Ai =

"
cos( iT ) �sin( iT )
sin( iT ) cos( iT )

#
e��iT (18)

Since the above discrete eigenvalue is related to the eigenvalue of the corresponding sampled

continuous signal the following analogy holds: �i $ �i!i,  i $ !di.

2.3 Small Damping Approximation

Assuming that the sampling rate is su�ciently fast such that the sampling theorem is satis�ed (see

for example p.111 in [11]), i.e., !i �
�
T
for all i, one obtains from (5)

�i!iT � 1 (19)

The 2-by-2 block matrix ~Ai in (13) can be approximated by

~Ai(T ) �= 	i(T )e
��i!iT (20)

where 	i(T ) is an orthogonal matrix of the form

	i(T ) =

"
cos(!diT ) �sin(!diT )
sin(!diT ) cos(!diT )

#
(21)

Note that (20) and (21) are analogous to (18). Using (20), the de�nite integral in (12) reduces to

~B �= blk-diag(M1; . . . ;Mn)B (22)

where

Mi =
1

!2i

"
ai �bi
bi ai

#
(23)

and

ai = !isin(!iT ) + O(�i) (24)

bi = !i(1� cos(!iT )) + O(�i) (25)
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3 Controllability Grammian

3.1 De�nition

For the time interval (koT; k1T ), the discrete time controllability grammian, Wc(ko; k1), is de�ned

in terms of the state transition matrix, �, and input matrix, ~B,

Wc(ko ; k1 ) =
k1�1X
k=ko

�(k1; k+ 1) ~B ~BT�T (k1; k + 1)

= Pc(k1 � ko)P
T
c (k1 � ko) (26)

where Pc(k1 � ko) id the discrete time controllability matrix

Pc(k1 � ko) =
h

~B ~A ~B . . . ~Ak1�ko�1 ~B
i

(27)

It can be shown that the above grammian satis�es the following equation

~AWc(ko; k1) ~A
T + ~B ~BT = Wc(ko; k1)

+�(k1; ko) ~B ~BT�T (k1; ko) (28)

For asymptotically stable linear systems, the last term in (28) vanishes as k1 ! 1. This leads to

the steady-state discrete time controllability grammian,Wc1 , which satis�es the following Sylvester

equation

~AWc1
~AT + ~B ~BT = Wc1 (29)

3.2 Closed-Form Solution

By taking advantage of the 2 by 2 block diagonal form of the state matrix in (11), the Sylvester

equation in (29) can be written as a set of 2-by-2 Sylvester equations

~Ai [Wc1 ]ij ~A
T
j + [~B ~BT ]ij = [Wc1 ]ij (30)

where i; j = 1; . . . ; n, and

~Ai = ~Ai(T ) (31)

[ ~B ~BT ]ij = ~BiBiB
T
j
~Bj (32)

and [Wc1 ]ij is the (i; j)th 2 by 2 block of [Wc1 ]. For small damping, (30) can be approximated

by
e��i!iT	i [Wc1 ]ij	

T
j e

��j!j T
� [Wc1 ]ij = �[

~B ~BT ]ij (33)
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and equivalently by postmultiplying by the orthogonal matrix 	j one obtains

�i	i [Wc1 ]ij � [Wc1 ]ij	j�
�1
j = �[~B ~BT ]ij	j�

�1
j (34)

where

�i = e��i!iT (35)

After some manipulation, it can be shown (see Appendix A) that the solution for the steady state

discrete time controllability grammian for 
exible structures is given as follows:

Proposition 1

[Wc1 ]ij
�= �

�2ij

2!2i !
2
j

Re

�
�1

[Qij ]11
�ij

+ �2

[Qij ]21
�ij

�
(36)

where i; j = 1; . . . ; n and

[Qij ]11 = �j faiaj + bibj + j(biaj � aibj)g (37)

[Qij ]21 = �j f�aiaj + bibj + j(biaj + aibj)g (38)

�ij = �i�i � ��1j �j (39)

�ij = �i�
�

i � ��1j �j (40)

�1 =

"
1 j

�j 1

#
; �2 =

"
�1 �j
�j 1

#
(41)

For the state space parameterized as in (15) to (17) the following results hold:

Corollary 1

[Wc1 ]ij = �

1

2 ��j
Re

�
�1

[�Qij ]11
��ij

+ �2

[�Qij ]21
��ij

�
(42)

where i; j = 1; . . . ; n and

[�Qij ]11 = zj faij + dij + j(cij � bij)g (43)

[ �Qij]21 = zj f�aij + dij + j(cij + bij)g (44)

��ij = ��izi � ���1j zj (45)

��ij = ��iz
�

i � ���1j zj (46)

��i = e��iT (47)

In the above corollary, zi denotes the ith discrete eigenvalue while aij , bij , cij , and dij are the input

matrices de�ned by h
~B ~BT

i
ij
=
�
V�1BzB

T
z V �T

�
ij
=

�
aij bij
cij dij

�
(48)

Note that Corollary 1 is an exact relationship.
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3.3 Diagonal Dominance

The denominator scalars in (36) can be expanded as follows�
�ij
�ij

�
=

�
(1� �i!iT )�i � (1 + �j!jT )�j +O(�2i )
(1 + �i!iT )��i � (1 + �j!jT )�j + O(�2i )

�
(49)

where �i is the i-th discrete eigenvalue of the i-th 2-by-2 orthogonal matrix 	i. For the o�-diagonal

block matrices where i 6= j�
�ij

�ij

�
=

"
�i � �j � �i!iT (�i + �j) + O(�2i )
��i � �j � �i!iT (�

�

i + �j) + O(�2i )

#

�=
"
�i � �j
��i � �j

#
(50)

For the diagonal block matrices where i = j�
�ii

�ii

�
=

"
�2�i!iT�i + O(�2i )

��i � �i � �i!iT (�
�

i + �i) + O(�2i )

#

�= �2
"

�i!iT�i
jsin(!iT )

#
(51)

Figure 1 shows the undamped discrete eigenvalues and denominator scalars �ij and �ij in the

complex plane. For small damping, the eigenvalues lie close to the unit circle, i.e., multiplied by

the scalar �i (see 35). Notice from �gure 1 that if the system has distinct complex conjugate poles,

the vectors �i and �j will never be collinear if i 6= j so that �ij 6= 0 and �ij 6= 0. From (50) and

(51), note that only the denominator factor �ii asymptotically approaches zero as the damping

ratio approaches zero. Since ai; aj; bi; bj are constants, the numerator factors, [Qij ]11 and [Qij]21,

in (36) are also constants. This means that the diagonal block matrices of the grammian, [Wc1 ]ii,

which contains the denominator factor �ii, can be arbitrarily large as �i ! 0 while the magnitude

of the o�-diagonal block matrices, [Wc1 ]ij is �xed. Thus the controllability grammian matrix for

discrete 
exible structures is diagonally dominanant. Consider only the block diagonal terms, for

i = j. (37) and (38) simplify to

[Qii ]11 = �i(a
2
i + b2i ) �= 2!2i �i (1 � cos(!iT )) (52)

[Qii]21 = �i (bi + jai)
2 �= 2!i(1 � cos(!iT )) (53)

Using (52) and (53), the block diagonal grammian in (36) can be simpli�ed to the form

[Wc1 ]ii �=
�2ii(1 � cos(!iT ))

2!3i

"
1

�iT
1

sin(!iT )
1

sin(!iT )
1

�iT

#
(54)

Furthermore, only the diagonal elements of the block diagonal matrix are inversely proportional to

the damping so that the simplest approximation form can be written as follows
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Proposition 2
[Wc1 ]ii �= 
2ci I2�2 (55)

where 
2ci =
�2ii

4 �i!i
�

2 (1 � cos(!iT ))

!2i T
(56)

The �rst term in (56) corresponds to the ith controllability grammian for the corresponding

continuous system. The term �ii corresponds to the ith modal grammian for controllability.

Similarly for the state space parameterized as in (15) to (17), the diagonal dominance of [Wc1 ]ii

in (42) holds because it contains the denominator factor ��ii which can be arbitrarily large as �i ! 0.

After some algebra, it follows that the block diagonal grammian in (42) can be expressed as

[Wc1 ]ii =
1

4��i

�
aii + dii
�iT

I2�2 +

�
aii � dii �2bii
2bii �aii + dii

�

+
1

tan( iT)

�
2bii aii � dii

aii � dii 2bii

��
(57)

Furthermore, only the �rst term in (57) is inversely proportional to damping so that the simplest

form of the approximation can be written as

Corollary 2

[Wc1 ]ii
�= aii + dii

4�iT
I2�2 (58)

4 Observability Grammian

4.1 De�nition

For the time interval (koT; k1T ), the discrete time observability grammian, Wo(ko; k1), is de�ned

by
Wo(ko; k1 ) = PT

o (k1 � ko)Po(k1 � ko) (59)

where the discrete observability matrix is

Po(k1 � ko) =

2
66664

~C
~C ~A
...

~C ~Ak1�ko�1

3
77775 (60)

It can be shown that the above grammian satis�es

~ATWo(ko; k1) ~A+ ~CT ~C = Wo(ko; k1)

+�(k1; ko)
T ~CT ~C�(k1; ko) (61)
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For asymtotically stable linear systems, the last term in (61) vanishes as k1 ! 1. This leads to

the steady-state discrete time observability grammian, Wo1 , which satis�es the Sylvester equation

~ATWo1
~A+ ~CT ~C = Wo1 (62)

4.2 Closed-Form Solution

Analogous to the controllability case, ( ~A; ~B) can be replaced by ( ~AT ; ~CT ) so that a set of 2-by-2

Sylvester equations for the observability grammian satis�es

~AT
i [Wo1 ]ij

~Aj + [ ~CT ~C ]ij = [Wo1 ]ij (63)

where i; j = 1; . . . ; n, and [Wo1 ]ij is the (i; j)th 2-by-2 block of [Wo1 ]. With the same approach

as taken in Section 3.2, it can be shown (see Appendix B) after some algebra that the solution for

the steady state discrete time observability grammian for 
exible structures is given as:

Proposition 3

[Wo1]ij �= �

1

2
Re

�
� �1

[Rij ]22
�ij

+ � �2
[Rij ]12
�ij

�
(64)

where
[Rij ]22 = �j

�
�11ij + �22ij � j (�21ij � �12ij )

	
(65)

[Rij ]12 = �j

n
��11ij + �22ij � j(�21ij + �12ij )

o
(66)

For the state space parameterized as in (15) to (17) analogous results hold. However, the

output matrix appears in a di�erent form. The outer product of the output matrix for the (i; j)

block becomes

[ ~CT ~C]ij = �CT
�i
�C�j =

"
��11ij

��12ij
��21ij

��22ij

#
(67)

where

�C�i = Cz [Re(vi);�Im(vi)] (68)

��11ij = Re(vi)
TCT

z CzRe(vj) (69)

��12ij = �Re(vi)TCT
z CzIm(vj) (70)

��21ij = �Im(vi)TCT
z CzRe(vj) (71)

��22ij = Im(vi)
TCT

z CzIm(vj) (72)

10



Note the symmetry for i = j

��21ii = ��12ii (73)

This di�erent form of the state and output matrix leads to the following result for the (i; j) block

of the observability grammian.

Corollary 3

[Wo1 ]ij = �

1

2 ��j
Re

�
� �1

[�Rij ]22
��ij

+ � �2
[�Rij ]12
��ij

�
(74)

where
[�Rij ]22 = zj

�
��11ij + ��22ij � j (��21ij �

��12ij )
	

(75)

[ �Rij ]12 = zj

n
���11ij + ��22ij � j(��21ij +

��12ij )
o

(76)

Note that the above corollary is an exact relationship and is very similar in form to the approxi-

mation in Proposition 3.

4.3 Diagonal Dominance

The diagonal dominance argument for the observability grammian is similar to the controllability

case. From (50) and (51), note that only the denominator factor �ii asymptotically goes to zero as

the damping ratio approaches zero. Since the terms �klij are �xed constants, the numerator factors,

[Rij ]22 and [Rij ]12, in (64) will also be �xed constants. This means that the diagonal block matrices

of the grammian, [Wo1 ]ii, which contains the denominator factor �ii, can be made arbitrarily large

as �i ! 0 while the o�-diagonal block matrices, [Wc1 ]ij will not. This represents the diagonal

dominance property of the observability grammian for discrete 
exible structures. Therefore,

consider only the block diagonal terms. After some algebra, the block diagonal observability

grammian in (64) can be reduced to the form

[Wo1 ]ii �=
1

4

�
�11ii + �22ii
�i!iT

I2�2 +

�
�11ii � �

22

ii 2�12ii
2�12ii ��11ii + �22ii

�

+
1

tan(!iT )

�
2�12ii ��11ii + �22ii

��11ii + �22ii �2�12ii

��
(77)

Furthermore, only the �rst term in (77) is inversely proportional to damping so that the simplest

form of the approximation can be written as follows

Proposition 4

[Wo1 ]ii
�= 
2oiI2�2 (78)
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2oi =
(�11ii + �22ii )

4�i!iT
=

�̂2i
4�i!i

� 1

T
(79)

The �rst term in (79) corresponds to the ith observability grammian for the corresponding contin-

uous system.

Similarly for the state space parameterized as in (15) to (17), the diagonal dominance of [Wc1 ]ii

in (74) holds because it contains the denominator factor ��ii which can be arbitrarily large as �i ! 0.

After some algebra, it follows that the block diagonal grammian in (74) can be expressed as

[Wo1 ]ii = �

1

2 ��i

�
��11ii + ��22ii

��i � ���1i

I2�2

+
��i

��
4
i � 2 ��2i cos(2 iT ) + 1

�
��1 ��2

��2 �1

�!
(80)

where
�1 = (���11ii + ��22ii )(��

2

i cos(2 iT)� 1) + 2��12ii ��2

i sin(2 iT) (81)

�2 = (���11ii + ��22ii )��
2

i sin(2 iT)� 2��12ii (��
2

i cos(2 iT)� 1) (82)

Furthermore, only the �rst term in (80) is inversely proportional to damping so that the simplest

form can be written as the approximation below.

Corollary 4

[Wo1 ]ii
�=

��11ii +
��22ii

4�iT
I2�2 (83)

5 Hankel Singular Values

Due to the diagonal dominance property of the discrete controllability and observability grammian

for 
exible structures, the square of the ith Hankel singular value follows from Propositions 2 and

4:

Proposition 5



4
i

�= 
2oi

2

ci

=
1� cos(!iT )

8!6

i �
2

i T
2

bib
T
i (c

T
dicdi + !2

i c
T
ricri) (84)

Similarly, for the state space parameterized as in (15) to (17), Corollaries 2 and 4 lead to the

approximate Hankel singular values

Corollary 5


4i
�= (aii + dii)(��

11

ii +
��22ii )

(4�iT )2
I2�2 (85)
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Let the factors of deviations of the singular values of the discrete grammians from the singular

values of the continuous grammians (as given by (6)) be de�ned by the following for the ith mode:

ci =
2(1� cos(!iT ))

!2

i T
(86)

oi =
1

T
(87)

In the limit when the sampling period approaches zero, the singular values of the scaled discrete

grammians converge to continuous values while the discrete Hankel singular value approaches the

Hankel singular value of the continuous system [5, 6, 7] as follows:

Proposition 6

lim
T!0

ci � 1

T
= 1 (88)

oi � T = 1 (89)

lim
T!0


4i =

 
�ii�̂i

4�i!i

!2

(90)

where �2ii and �̂2i are de�ned by (7) and (8).

Note that without the sampling period scaling factor, the discrete controllability grammian ap-

proaches zero while the discrete observability grammian approaches in�nity. This result is consistent

with the earlier and more general result involving principal component analysis (see Proposition

7, [4]). In addition, the above convergence of the discrete to continuous Hankel singular values for


exible structures is analogous to the more general result (Proposition 8, [4]) where the singular

values of the discrete Hankel matrix converges to the corresponding singular values of the grammians

for the balanced system. For the state space parameterized as in (15) to (17), the Hankel singular

value dependence on the inverse square of the sampling period in Corollary 5 cancels with the

numerator factor (aii + dii) which is proportional to square of the sampling period as indicated

by (12) and (48). Indeed, similar results hold for the above type of parameterization in that the

controllability and observability grammians go to zero and in�nity respectively, with decreasing

sampling period.

The relationship between the discrete Hankel matrix PoPc [4, 12] and the approximate formula

for the Hankel singular values �2 given in (84) is given below.
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Proposition 7 De�ne the SVDs Po = Uo�oV
T
o , and Pc = Uc�cV

T
c , then

PoPc = R(WoWc)
1

2ST �= R�2ST (91)

where R = UoV
T
o , S = VcU

T
c , and RTR = I = STS

For comparison purposes with respect to the singular values of the continuous grammians, the

factors ci � 1

T
and oi �T are used. This additional sampling period factor makes the singular values

of the discrete grammian physically consistent with continuous singular values. Figure 2 shows

the e�ect of sampling on the singular values of the observability and controllability grammians

and the Hankel singular values as compared to the corresponding continuous singular values. At

high sampling rates (for instance !i
!NYQ

� :2), the predicted discrete singular values are close

to the corresponding continuous singular values. Both the controllability and Hankel singular

values decrease with slower sampling rate. The exact discrete singular values are expected to

drop signi�cantly in the neighborhood of Nyquist frequencies. This singularity near Nyquist is not

predicted by the approximate analytical formula. In particular, the observability factor remains

constant which is counter intuitive and hence this approximation appears to fail near the Nyquist

frequency.

6 Example

To validate the analytical formula, the exact and approximate grammians are computed for a former

NASA experimental structure called the Control-Structures Interaction Evolutionary Model (CEM)

and is described in more detail in [8, 9]. A total of eight air thrusters are selected along with three

displacement sensors. The structural model consists of n2 = 12 modes whose �rst six modes

are suspension modes. The frequencies are closely spaced and lightly damped, which is a typical

phenomenon for this kind of structure. Case 1 assumes 1 % damping ratio while case 2 assumes

5 % damping ratio for all modes. Note that a 
exible structure with 5 % damping ratios for all

modes (case 2) will not usually be considered as lightly damped. This signi�cant level of damping

is used for the purpose of evaluating the level of the approximation errors in the singular value

formulas.

Figure 3 shows the comparisons between the exact (29) and the approximate singular values

of the controllability (54,55) and observability (77,78) grammians and Hankel singular values (84).

14



The three rows of plots in �gure 3 correspond to the sampling rates of

q =
fNY Q �maxi fi

maxi fi
= 100; :1; :0001 (92)

where maxi fi =
!12

2�
. The �rst two rows from �gure 3 representing normalized sampling rates of

q = 100 and :1, show that the approximate formula predicts the singular values accurately, up to

frequencies near 90 % of Nyquist frequency. However, the last row of plots (q = :0001) show a near

singular condition represented by a large drop in the smallest singular value with increased errors

in the remaining singular values. However, the last row corresponds to frequencies very close to

Nyquist i.e., q = :0001.

Figure 4 shows RMS error plots of the approximate diagonal singular values for both types

of approximations as a function of sampling rate, 2 � fNY Q. Each error of the singular value is

normalized by the corresponding exact value. The �gure shows that the approximate formula

predicts quite accurately down to Nyquist frequencies that are only 10 percent higher than the

fastest mode. The normalized RMS error is dominated by errors in the smallest singular values

consistent with �gure 3.

To evaluate the e�ect of larger damping ratios (case 2) in the approximate formulas for the

singular values at di�erent sampling frequencies, �gure 5 shows the comparisons between the exact

and the approximate singular values of the controllability and observability grammians and Hankel

singular values. The three rows of plots in �gure 5 corresponds to the sampling rates in case 1. As

in the lighter damping case, the approximate formula predicts the singular values accurately, up to

frequencies near 90 % of Nyquist frequency. The last row of plots similarly shows a near singular

condition represented by a large drop in the smallest singular value with increased errors in the

remaining singular values.

Figure 6 shows the approximate diagonal singular values as a function of sampling rate. Figure

6 shows that the approximate formula predicts quite consistently down to Nyquist frequencies that

are only 10 percent higher than the fastest mode. The normalized RMS error is again dominated by

errors in the smallest singular values consistent with �gure 5. The RMS error signi�cantly increases

with the �ve fold increase in damping ratios. However, it is noted that the damping ratios for case

2 are too large to be considered a lightly damped 
exible structure.
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7 Conclusions

The results complement earlier work on continuous time 
exible structure. For 
exible structures

modeled in discrete time, analytical expressions for singular values of controllability and observ-

ability grammian matrices and Hankel singular values are derived and validated through numerical

examples. For the class of 
exible structures with small damping and distinct frequencies, the above

formulae are signi�cantly simpli�ed. It is found that the approximate formula is quite accurate

up to near Nyquist frequencies. The discrete Hankel singular values converges to the approximate

continuous formula with increased sampling rate. The simple but accurate approximate formula

could provide useful physical insights in the selection of actuators and sensors, model reduction,

and controller designs for 
exible structures modeled in discrete time.
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A Proof of Proposition 1

By modal decomposition of the orthogonal 2 by 2 matrix in (21)

	i = Xi�iX
H
i (93)

where

�i = diag(�i; �
�

i ) = diag(ej!diT ; e�j!diT ) (94)

Xi =
1p
2

"
j �j
1 1

#
= Xj (95)

(34) can be decomposed, after premultiplying by XH
i and postmultiplying by Xj to obtain

�i�iX
H
i [Wc1 ]ijXj �XH

i [Wc1 ]ijXj�j�
�1

j

= �XH
i [ ~B ~BT ]ijXj�j�

�1

j (96)

It follows that the four elements of the 2-by-2 matrix, [Wc1 ]ij , satisfy"
�ij [ ~Wc1 ]

11

ij ��ij [
~Wc1 ]

12

ij

�ij [ ~Wc1 ]
21

ij ��ij [ ~Wc1 ]
22

ij

#
= Qij (97)
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where

[Wc1 ]ij = Xi[ ~Wc1 ]ijX
H
j (98)

[ ~Wc1 ]ij =

2
4 [ ~Wc1 ]

11

ij [ ~Wc1 ]
12

ij

[ ~Wc1 ]
21

ij [ ~Wc1 ]
22

ij

3
5 (99)

Qij = �XH
i [ ~B ~BT ]ijXj�j�

�1

j (100)

and �ij and �ij are de�ned by (39) and (40). For small damping, (22) can be used to simplify the

outer product [ ~B ~BT ]ij appearing in (100) to

[~B ~BT ]ij �= [ ~MBBT ~MT ]ij = Mi [BB
T ]ijM

T (101)

where ~M = blk-diag(M1; . . . ;Mn). Using the expression Mi in (23) and [BBT ]ij where

[BBT ]ij = BiB
T
j =

"
�ij 0
0 0

#
(102)

where �2ij is de�ned by (7), the expression in (101) can be expanded to

[ ~B ~BT ]ij �=
�2ij

!2

i !
2

j

"
aiaj aibj
biaj bibj

#
(103)

Using (94,95,103), Qij in (100) can be approximated as

Qij
�= � �2ij

2!2

i !
2

j

"
[Qij ]11 [Qij]

�

21

[Qij ]21 [Qij]
�

11

#
(104)

where [Qij ]11 and [Qij ]21 are de�ned in (37) and (38). From (97), the 2 by 2 matrix [ ~Wc1 ]ij can

be written as

[ ~Wc1 ]ij �= �

�2ij

2!2i !
2
j

"
1
�ij

[Qij]11
1
��
ij

[Qij]
�

21
1
�ij

[Qij]21
1
��
ij

[Qij]
�

11

#
(105)

Finally, (36) is obtained from (98) and (105).

B Proof of Proposition 3

With the same approach as taken in the proof of Proposition 1, it can be shown that"
��ij [

~Wo1 ]
11

ij �ij [ ~Wo1 ]
12

ij

��ij [
~Wo1 ]

21

ij �ij [ ~Wo1 ]
22

ij

#
= Rij (106)

where

[Wo1 ]ij = Xi[ ~Wo1 ]ijX
H
j (107)

[ ~Wo1 ]ij =

2
4 [ ~Wo1 ]

11

ij [ ~Wo1 ]
12

ij

[ ~Wo1 ]
21

ij [ ~Wo1 ]
22

ij

3
5 (108)

Rij = �XH
i [ ~C

T ~C ]ijXj�
�

j�
�1

j (109)
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where �ij and �ij are given in (39) and (40). The output matrix product, [ ~CT ~C ]ij can be written

as

[ ~CT ~C ]ij = CT
�iC�j

=

"
cTricrj

1

!j
cTricdj

1

!i
cTdicrj

1

!i!j
cTdicdj

#

=

"
�11ij �12ij
�21ij �22ij

#
(110)

Note that for i = j, �21ii = �12ii . For the special case of rate sensors only,

�12ij = �21ij = �22ij = 0; �11ij = cTricrj (111)

while for the case of displacement sensors only,

�12ij = �21ij = �11ij = 0; �22ij =
cTdicdj

!i!j
(112)

It can be shown that Rij in (109) can be approximated as

Rij
�= �1

2

"
[Rij ]

�

22
[Rij ]12

[Rij ]
�

12
[Rij ]22

#
(113)

where [Rij ]22 and [Rij ]12 are given by (65) and (66). Finally, after some algebra, [Wo1 ]ij given by

(64) is obtained.
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